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1 Introduction

Motivated by the consideration of non-local effects within the framework of string cosmology,
new non-local field models emerged through a reformulation of initial conditions employing
the diffusion method, as proposed in [1, 2], with further developments discussed in [3]. This
approach draws inspiration from the bosonic cubic string field theory elucidated by [4]. As
observed in [5], by imposing field commutativity solely on the brane, local fields on the brane
induce non-local fields in both Minkowski and anti-de Sitter spacetimes.

However, distinct from such scenarios, wherein local fields induce non-local effects, the
specific form of non-locality generated by fractional Laplacians provides a reverse mapping.
Remarkably, it is demonstrated that the non-local scalar field on the brane can be transformed
into a local field theory in the bulk through the application of the extension problem formulated
by Caffarelli and Silvestre [6]. This transformative mapping has been recently employed to
investigate the conformal invariance of fractional Lagrangian field theories [7] and the long-
range Ising model [8], yielding results consistent with the AdS/CFT method. Additionally,
the canonical quantization of the local scalar theory in the bulk has been recently addressed
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in [9]. An alternative methodology for quantizing field theories has been previously delineated,
based on the power series expansion of the fractional kinetic operator, in [10–13].

The free scalar field discussed in [9], derived from the fractional scalar field through the
extension problem, falls within the category of non-local field theories featuring fractional
operators. These theories have attracted considerable interest, particularly in addressing
pivotal issues within quantum field theories, quantum gravity in the UV regime (refer to [14]
for a recent review), and their relevance in string theory [15, 16].

The introduction of non-locality through fractional operators, as extensively discussed
in [17], facilitates the exploration of local interaction terms. These terms, stemming from
non-local scalar field theories with fractional Laplacians, are often more straightforward and
manageable in comparison to interactions arising from delocalization, a concept extensively
investigated in [18]. Furthermore, amplitudes stemming from non-local interaction vertices
have been observed in string field theory [19–21]. The non-local scalar field theories with
fractional Laplacians, akin to the focus of this study, have recently found applications in
constructing MOND models [22, 23] and calculating entanglement entropy in long-range
interacting systems [24]. Investigations into massless and massive non-local scalar field theories
within the context of non-local conformal field theories and the entanglement entropy problem
are presented in [25, 26]. Moreover, the extension problem has been leveraged to scrutinize
anomalous dimensions for boundary conserved currents in holography, encompassing general
p-forms and Maxwell equations [27], and to explore fractional electromagnetism [28, 30].

In this paper, we explore the classical aspects of the lowest-dimensional realization of
the extension problem [6], specifically focusing on the mapping between a one-dimensional
non-local theory on the boundary and a two-dimensional local field theory in the bulk,
with a particular emphasis on applications to classical mechanics. To establish a physically
meaningful representation of this mapping, we introduce a model of the classical fractional
particle. This model considers n independent scalar fields representing the coordinates of
the particle in Euclidean Rn space, with the one-dimensional variable interpreted as the
time-variable. The significance of the fractional particle model lies in its generalization of the
classical particle to the fractional realm, a domain where the fractional quantum one-particle
Schrödinger equation has already been under investigation for some time [31]. Additionally,
it extends the understanding of the non-local particle, with a kinetic term defined by the
standard derivative interpreted in terms of strings [32]. An insightful observation, presented
in [33], asserts that the Nambu-Goto action can be approximated by a non-local particle
action when examining strings from a large distance. This observation underscores the
fundamental association of non-locality with extended objects.

While non-locality is a fundamental aspect of quantum mechanics, justifying the exami-
nation of fractional quantum particles, it represents a conceptual challenge to make sense of
the corresponding classical fractional particle model. This paper aims to contribute to this
problem, by introducing and discussing the fractional particle, along with some of its physical
properties. Specifically, we explore the relationship between momentum and kinetic energy,
showcasing that the latter can be expressed in terms of both instantaneous momentum,
viewed as the product of instantaneous velocity and mass, and canonical momentum. This
formulation shows some light on the complex challenges inherent in the construction of the

– 2 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
8

Hamiltonian formalism for field models governed by fractional Laplacians. Further discussions
encompass the symmetries of the free fractional particle model, the equations of motion,
and the application of the general method of Green’s function to solve these equations. We
present three illustrative examples of fractional particles: the free particle, the fractional
harmonic oscillator and the charged fractional particle in an electromagnetic field. Applying
the results of the extension problem to the fractional particle, we establish a mapping to a
two-dimensional classical sigma model on the positive half-plane. The extension problem
and the particle equation of motion determine the boundary conditions imposed on the local
sigma model in the bulk. We solve the classical equations of motion with fractional particle
boundary conditions for the sigma model fields. Subsequently, we quantize the sigma model
using the canonical quantization method, deriving the canonical commutation relations of
the mode operators, the canonical Hamiltonian, and calculating the vacuum energy for any
value of the fractional parameter.

Although our construction of fractional particles is grounded in the field theory perspective,
it is crucial to highlight the broader applicability of the fractional particles across various
physics problems. Fractional calculus, gaining attention in recent years, offers a means to
model complex physical phenomena beyond the reach of standard calculus. Since there are
different definitions of the fractional operators, different types of fractional particle models can
be constructed. Various perspectives provide motivation for employing the fractional particle
model with the fractional Laplacian in the kinetic term. Mathematically, the inclusion of
the fractional Laplacian in the kinetic term facilitates the implementation of the extension
problem by Caffarelli and Silvestre, enabling a straightforward mapping of the particle
to a non-fractional two-dimensional field theory. From an applied standpoint, fractional
particle models hold a great potential across various fields. Specifically, the fractional
Laplacian allows the generalization of diffusion and random walks, making it pertinent to
systems with long-range interactions and correlations. As an instance of applications, the
classical fractional particle model finds relevance in the study of systems characterized by
fractional Brownian motion, where statistical properties exhibit long-range correlations [34].
Additionally, the model can be applied to materials with viscoelastic properties, such as
certain polymers and soft tissues, whose behavior eludes full capture by classical models.
The dynamics of particles within these materials, accounting for non-local interactions and
memory effects inherent in the fractional Laplacian formalism, can be elucidated through
classical fractional particles [35]. Furthermore, the model provides a fine-grained description
of heat conduction in materials with anomalous thermal behavior, such as fractal structures
or materials with long-range correlations [36] and turbulent flows [37]. Finally, the classical
fractional particle offers insight into fractional diffusion in porous media. In such cases, the
model can effectively study how particles diffuse through porous structures with long-range
interactions and fractional derivatives [38].

The structure of this paper is as follows: in section 2, we present the fractional classical
particle model featuring the fractional Laplacian. The construction method is straightforward,
aligning with the principles of fractional operator equations, wherein the standard Laplacian
is replaced by the fractional Laplacian in the kinetic term. This incorporation of the fractional
Laplacian introduces non-locality into the theory at the level of free particles, allowing us
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to keep the interactions local. This section encompasses discussions on equations of motion,
linear momentum, kinetic energy, symmetries of the free particle, and the application of
the Green’s function method in the general case. In section 3, we analyse three illustrative
examples: the free fractional particle, the fractional harmonic oscillator, and the electrically
charged fractional particle in an electromagnetic field. Section 4 employs the extension
problem to construct the corresponding classical local sigma model. We derive the equations
of motion in the bulk and achieve exact solutions, building upon the results established in [9]
for the case of free scalar fields. Subsequently, we undertake the quantization of the sigma
model using the canonical quantization method. This involves determining the canonical
Hamiltonian and presenting an explicit formula for the vacuum energy. In the last section,
we discuss the results obtained and outline potential avenues for further research inspired by
the insights gained in this work. In the appendix 6, we have compiled some definitions of the
fractional Laplacian, and in the appendix 7, we have given the formulas of the vacuum energy
at the boundary and the plots of vacuum energy for some values of the fractionality parameter.

2 Fractional classical particle

In this section, we introduce the fractional classical particle in Rn as a natural extension
of the Newtonian particle. This novel model is derived by replacing the one-dimensional
Laplacian, corresponding to the second derivative with respect to the time variable, with the
fractional Laplacian. We examine the key aspects of this model, including the definition of
momentum and kinetic energy, the global symmetries, and the application of the Green’s
function method to solve the equations of motion. Additionally, we investigate the behavior
of the fractional particle within a generalized force field.

2.1 Equations of motion of fractional particle

We start by recalling the action of the classical particle that moves in a n-dimensional
Euclidean space under the influence of a potential V [x], given by

S[x] =
∫ +∞

−∞
dτ

[
m

2
dxa(τ)

dτ

dxb(τ)
dτ

ηab − V [x]
]

. (2.1)

Here, m is the particle mass, xa : R → Rn are smooth maps on the time parameter τ ∈ R to
the target-space Rn, the Latin indices a, b, . . . = 0, 1, . . . , n − 1 indicate the components of
the target-space objects, and V [x] is a potential functional that is smooth in all variables.
Also, we denote by ηab = δab the components of the Euclidean metric tensor and we use the
covariant notation for convenience. The kinetic term from S[x] can be rewritten as

S0[x] = −m

2

∫ +∞

−∞
dτ xa(τ)d2xb(τ)

dτ2 ηab , (2.2)

if xa’s satisfy the following boundary conditions

xa(τ)
dxa(τ)

dτ
→ 0 as τ → ±∞ . (2.3)

The particle model discussed above can be extended to a non-local particle model. This
can be achieved by introducing non-locality in one of two ways: either by substituting the

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
8

second derivative in the kinetic term with a fractional second order derivative (specifically,
the one-dimensional fractional Laplacian), or by delocalizing the interactions from V [x] (refer
to [18] for more details), or potentially both. This paper will focus on exploring the first
method, which results in the free fractional particle action

S
(α)
0 [x] = −mα

2

∫ +∞

−∞
dτ xa(τ) (−∆τ )

α
2 xb(τ)ηab . (2.4)

The parameter mα formally plays the similar role in S
(α)
0 [x] as the particle mass m in the

action S0[x] with which mα must coincide at α = 2. However, in natural units c = ℏ = 1,
the dimension of ⟨mα⟩ = E3−α for any arbitrary value of α. That shows that the simplest
choice for mα is mα = m3−α. Since we want to describe a fractional classical particle, we
interpret the one-dimensional variable τ from (−∆τ )

α
2 as a time-variable. With that, our

model describes the evolution of the fractional particle in the n-dimensional Euclidean space.
Also, it describes n one-dimensional scalar fields. The one dimensional fractional Laplacian is
equivalent to the Riesz derivative on R or, in general, on Rn. In what follows, we consider the
coordinates xa ∈ X where X is any of the spaces L p, C0, Cbu or S on which the definitions
of the fractional Laplacian given in the appendix 6 are equivalent. As in the case of the
standard particle model, we can incorporate local interaction terms into the kinetic action
S

(α)
0 [x] to depict the dynamics of the fractional particle in an external field

S(α)[x] = −
∫ +∞

−∞
dτ

[
mα

2 xa(τ) (−∆τ )
α
2 xb(τ)ηab + V [x]

]
. (2.5)

If V [x] is an arbitrary polynomial, S(α)[x] characterizes a non-linear non-local fractional
particle model.

The equation of motion of the fractional particle can be obtained by applying the
variational principle to the action S(α)[x]. To this end, consider the arbitrary infinitesimal
variation of the coordinates

xa(τ) → x′a(τ) = xa(τ) + δxa(τ) . (2.6)

The variation of S(α)[x] under the transformations (2.6) is given by

δS(α)[x]=−
∫ +∞

−∞
dτ

[
mα

2
(
δxa(τ) (−∆τ )

α
2 xa(τ) + xa(τ) (−∆τ )

α
2 δxa(τ)

)
+ ∂V [x]

∂xa(τ)δxa(τ)
]

.

(2.7)
Next, by using the following inversion property of the fractional Laplacian distribution∫ +∞

−∞
f(τ) (−∆τ )

α
2 g(τ)dτ =

∫ +∞

−∞
g(τ) (−∆τ )

α
2 f(τ)dτ, (2.8)

for any two functions f and g that satisfy the condition (6.7), we obtain the equation of motion

mα (−∆τ )
α
2 xa(τ) + ∂V [x]

∂xa(τ)
= 0 . (2.9)

Equation (2.9) represents a specific instance of the fractional Poisson equation, which is
occasionally referred to as the fractional Laplace equation, with ∂aV [x] serving as the source.
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Generally, the Poisson equation can accommodate more general sources fa(τ), which may
not necessarily depend on xa. These sources are incorporated into the model based on
phenomenological reasoning rather than the action principle. Interpreted as generalized
forces, these sources give rise to a non-homogeneous, non-local equation of motion

mα (−∆τ )
α
2 xa(τ) + ∂V [x]

∂xa(τ)
= fa(τ) . (2.10)

Although the fractional particle model presented above appears to be a straightforward
extension of the standard particle model, it’s important to acknowledge that the properties
of (−∆τ )

α
2 render this generalization non-trivial, both mathematically and physically. To

further elucidate this point, we will discuss the linear momentum and kinetic energy of
fractional particles.

2.2 Linear momentum and energy

Generally, the task of defining the linear or canonical momentum for fractional systems is
complex, primarily because the fractional Laplacian lacks a straightforward interpretation in
the context of tangent spaces. Furthermore, given that the kinetic energy exhibits non-locality
in time, it is anticipated that the momentum will also be non-local. To understand how these
concepts are embodied within the previously discussed fractional particle model, we need
to first examine the relationship between the operator (−∆τ )

α
2 and the conventional first

derivative d/dτ . For this purpose, we employ the equivalent formulation of the fractional
Laplacian in terms of the regularized principal value, as per [39], which leads us to the
following expression

(−∆τ )
α
2 xa(τ) = C1,α

∫ +∞

0
dζ

xa(τ + ζ) + xa(τ − ζ)− 2xa(τ)
ζ1+α

= −C1,α

α

d

dτ

[∫ +∞

0
dζ

xa(τ + ζ)− xa(τ − ζ)
ζα

]
, (2.11)

for all 0 ≤ α < 2. The above relation can be used to define the first-order fractional
derivative as (

−∆(1)
τ

)α
2 xa(τ) = c1,α

[∫ +∞

0
dζ

xa(τ + ζ)− xa(τ − ζ)
ζα

]
, (2.12)

where c1,α = −C1,α/α. The equation (2.11) gives the relationship between the fractional
Laplacian, the first derivative, and the first-order fractional derivative, which can be formally
written as

(−∆τ )
α
2 = d

dτ

[(
−∆(1)

τ

)α
2
]

. (2.13)

The above relations can be used to recast the free particle action from the equation (2.4)
into the following form

S
(α)
0 [x] = −mα

2

∫ +∞

−∞
dτ xa(τ) (−∆τ )

α
2 xb(τ)ηab =

mα

2

∫ +∞

−∞
dτ

dxa(τ)
dτ

(
−∆(1)

τ

)α
2 xb(τ)ηab .

(2.14)
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From S
(α)
0 [x], we can derive the canonical momentum

πa
α(τ) =

∂L

∂(∂τ xa(τ))
= mα

2
(
−∆(1)

τ

)α
2 xa(τ) . (2.15)

By introducing the classical instantaneous linear momentum p(τ) = mv(τ) = mẋ(τ), the
kinetic energy at any instant τ can be written as

Tα(τ) =
pa(τ)πa

α(τ)
2m

. (2.16)

The expression (2.16) extends the notion of kinetic energy to the fractional particle model.
Unlike the classical scenario, the relationship between the tangent vector to the trajectory at
a given parameter τ and the energy is no longer dictated by a scalar product within either the
tangent space or the phase space. This deviation arises due to the involvement of the operator(
−∆(1)

τ

)α
2 , which does not reside in either of these conventional spaces. Remarkably, in the

limit approaching classical dynamics, the traditional formula for kinetic energy is recovered

lim
α→2

Tα(τ) =
mẋa(τ)ẋa(τ)

2 = pa(τ)pa(τ)
2m

. (2.17)

In the presence of a potential or interaction term, the total particle energy is the sum between
its kinetic and potential energies, as in classical mechanics. The conservation principles
of energy and linear momentum in classical mechanics stem from the model’s invariance
under time and space translations, as elucidated by Noether’s theorem. Consequently, the
preservation of these fundamental properties warrants careful consideration when extending
the analysis to the realm of fractional particles.

We note that the structure of Tα(τ) is determined by the necessity for the kinetic
term to be represented in terms of the fractional Laplacian. Given that the kinetic en-
ergy no longer exhibits quadratic dependence on momentum, a natural inclination arises
to construct the Lagrangian employing a first-order fractional derivative, resembling ∼(
−∆(1)

τ

)α
2 xa(τ)

(
−∆(1)

τ

)α
2 xa(τ). This alternative formulation leads to a distinctive frac-

tional particle model, where the conventional d/dτ in the Newtonian particle action is
substituted by

(
−∆(1)

τ

)α
2 . However, despite the symmetrical expression in xa(τ)’s, establish-

ing a connection between the kinetic energy and canonical momentum becomes unfeasible,
as the latter is no longer well defined in this model. Furthermore, the interpretation of(
−∆(1)

τ

)α
2 xa(τ) remains ambiguous, complicating the understanding of this model. Despite

these limitations, the fractional particle model resulting from this substitution warrants
investigation. Nonetheless, due to its deviation from the extension problem by Caffarelli and
Silvestre, it will not be further elaborated upon in this paper.

2.3 Symmetries of fractional particle model

Let us examine the symmetries of the free fractional particle action given by the equation (2.4).
By construction, the action S

(α)
0 [x] is invariant under rotations within the target-space,

denoted as

xa(τ) → x′a(τ) = Λa
b xb(τ) , (2.18)
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where Λ ∈ SO(n). The translations within the target space are characterized by trans-
formations of the form

xa(τ) → x′a(τ) = xa(τ) + ϵa , (2.19)

where ϵ ∈ Rn represents a constant vector field. The variation of S
(α)
0 [x] under such

translations, denoted by (2.19), is expressed as

δϵS
(α)
0 [x] = S

(α)
0 [x′]− S

(α)
0 [x] = −mα

2 ϵa

∫ +∞

−∞
dτ (−∆τ )

α
2 xa(τ)

= −mα

2 ϵa

(
−∆(1)

τ

)α
2 xa(τ)

∣∣∣∣+∞

−∞
= 0 , (2.20)

where, in the second line above, we used equation (2.12) and the fact that

lim
|τ |→∞

(
−∆(1)

τ

)α
2 xa(τ) = 0 , (2.21)

for 0 < α < 2. It’s important to note that the last equality in (2.20) holds as a consequence
of the Laplacian operator’s definition. In the case where α = 0, we obtain∫ +∞

−∞
dτ
(
−∆(1)

τ

)0
xa(τ) =

∫ +∞

−∞
dτ xa(τ) , (2.22)

which is expected to vanish in accordance with the properties of the coordinates xa(τ) ∈ X .
Let us now examine the implications of world-line translations. We consider infinitesimal

transformations of the time variable given by

τ → τ ′ = τ + δτ = τ + ϵ , (2.23)

where ϵ represents an infinitesimal real constant parameter. The variation of S
(α)
0 [x] under

these transformations (2.23) is conventionally defined as

δS
(α)
0 [x(τ)] = S

(α)
0 [x′(τ + ϵ)]− S

(α)
0 [x(τ)] . (2.24)

As the coordinates are scalar functions x′a(τ ′) = xa(τ), it is imperative to establish the
invariance of the fractional Laplacian under world-line translations. Utilizing the integral
representation of the fractional Lagrangian, as defined by equation (6.5), we can compute the
variation of the fractional Laplacian resulting from these world-line translations as follows

(−∆τ ′)
α
2 x′b(τ ′) = C1,α

∫ +∞

−∞
dζ ′

x′b(τ ′)− x′b(ζ ′)
|τ ′ − ζ ′|1+α

= (−∆τ )
α
2 xb(τ) . (2.25)

Substituting (2.25) into (2.24), we arrive at

δS
(α)
0 [x(τ)] = 0 . (2.26)

This discussion shows that the fractional particle exhibits the expected symmetries, which
converge to the known symmetries of the classical particle as α → 2.

Polynomial interaction potentials, as mentioned previously, can be incorporated into
the framework. To uphold rotational symmetry, these potentials should remain functions
of V [x2] = V [xaxa] in the conventional manner. On the other hand, potentials explicitly
dependent on τ do not maintain reparametrization invariance.
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2.4 Fractional Green’s function

The dynamics of fractional particles can be better understood through an examination of
their equations of motion. For a large class of systems where the particle is subjected to
generalized forces, solutions to the equations of motion are effectively obtained through
the application of the method of time-dependent Green’s functions. It’s important to note,
however, that the Green’s functions of the fractional Laplacian depend on the function space
considered, as well as on the imposed boundary conditions. In our analysis, we assume that
the functions involved belong to any of the spaces denoted by X . As establised in [39], all
three definitions of the fractional Laplacian provided in the appendix 6 are equivalent on X .

Under this hypothesis, let us consider equation (2.10) with generalized sources fa(τ) =
sa(τ). Here, we consider a constant potential ∂V [x]/∂xa = 0, although the results can be
readily extended to non-constant potentials. The fractional Green’s function, denoted as
Gα(τ, τ ′), satisfies the associated fractional Green’s equation

(−∆τ )
α
2 Gα(τ, τ ′) = δ(τ − τ ′) , (2.27)

where τ and τ ′ belong to R, and we assume that Gα(τ, τ ′) = Gα(τ − τ ′) are invariant
under translations.

The equation (2.27) is an equality in the sense of distributions acting on test functions φ,
as specified in equation (6.6). Since the Fourier and distributional definitions are equivalent,
(−∆τ )

α
2 Gα(τ−τ ′) can be defined as outlined in equation (6.2) [39]. Exploiting this equivalence,

for any fixed τ ′ and any test function φ, we obtain∫ +∞

−∞
dτ φ(τ) (−∆τ )

α
2 Gα(τ − τ ′) =

∫ +∞

−∞
dτ φ(τ)F−1 {|ω|αF{Gα}(ω)} (τ − τ ′)

=
∫ +∞

−∞
dτ φ(τ)δ(τ − τ ′) .

(2.28)

Utilizing the elementary properties of the Fourier transforms of distributions, where δ =
F−1{1}, we arrive at

G̃α(ω) := F{Gα(τ − τ ′)}(ω) = 1
|ω|α

. (2.29)

By applying the inverse Fourier transform (6.4) to the equation (2.28), we obtain the
following Green’s function

Gα(τ − τ ′) =
∫ ∞

−∞

dω

2π

1
|ω|α

eiω(τ−τ ′) = 1
π
sin
(

πα

2

)
Γ(1− α)|τ − τ ′|α−1 . (2.30)

Since the fractional Laplacian is a linear operator, the general solutions to the equation of
motion with arbitrary sources can be constructed using the Green’s function

xa
α(τ) = xa

α,0(τ) +
1

πmα
sin
(

πα

2

)
Γ(1− α)

∫ +∞

−∞
dτ ′ 1

|τ − τ ′|1−α
sa(τ ′) , (2.31)

where xa
α,0(τ) is a solution of the homogeneous fractional Poisson equation. The instantaneous

particle velocity v(τ) is the tangent vector to the trajectory at τ which can be calculated
from (2.31), and it is given by

va
α(τ) = va

α,0(τ) +
α − 1
πmα

sin
(

πα

2

)
Γ(1− α)

∫ +∞

−∞
dτ ′ τ − τ ′

|τ − τ ′|3−α
sa(τ ′) , (2.32)
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where va(τ) = dxa(τ)/dτ . This vector determines p(τ) = mv(τ) as in the classical mechanics.
Its connection with the fractional particle’s energy has been discussed in subsection 2.2.

Some comments are in order here. Since we have interpreted τ as being the time-variable,
the solution (2.32) describes the instantaneous position of the fractional particle moving in
the generalized time-dependent force field s(τ). Nevertheless, at any given instant of time,
the particle position depends on the value of s(τ) at all other instants of time, which is a
consequence of the non-local (in time) character of the equation of motion (2.10). The last
term of the equation (2.31) resembles the non-local functions in time that are employed in
the fractional calculus in the description of systems with memory (see, e. g. [41]). However,
there is a major distinction between the two cases because the equation (2.31) calculates
contributions made by the generalized force field from both the past and the future.

It is important to observe that, as in the case of standard linear operators, the Green’s
functions of (−∆τ )

α
2 depend on the boundary conditions of the problem. To illustrate this

point, let us consider finite time intervals τ ∈ [τ1, τ2] and the boundary conditions

Gα(τ1, τ ′) = Gα(τ2, τ ′) = 0 , (2.33)

where τ ′ is a singular point. The equation (2.33) suggests that the Green’s function can
be expanded in terms of sinusoidal functions as follows

Gα
(
τ, τ ′) = ∞∑

n=1
Cn
(
τ ′) sin [nπ(τ − τ1)

τ2 − τ1

]
. (2.34)

After substituting the right hand side of the equation (2.34) into the equation (2.27), and
after some algebraic manipulations, we obtain

Gα
(
τ, τ ′) = 2

τ1 − τ2

∞∑
n=1

(
τ2 − τ1

nπ

)α

sin
[

nπ(τ − τ1)
τ2 − τ1

]
sin
[

nπ(τ ′ − τ1)
τ2 − τ1

]
. (2.35)

In determining the above Green’s function which is symmetric, the boundary conditions
played a crucial role.

As a final comment, the Green’s function is not the only method to calculate the solutions
to the equations of motion. If the particle movement is limited to a finite interval of time,
different methods can be employed to study the fractional Poisson equation. For more
details, see [40].

3 Examples of fractional particle models

This section explores fractional particle models that extend classical models, as discussed
previously. The challenge of obtaining general solutions for fractional Poisson equations,
whether on Rd or within an open ball B ∈ Rd, where d represents the number of variables, is
currently a subject of active research in mathematics. For the fractional particle, with d = 1
and B = I ∈ R representing an open real interval, the boundary conditions, serving as initial
and final conditions, define the pseudo-differential problem defining the particle dynamics.
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3.1 Free fractional particle

The equation governing the motion of a fractional particle moving in the absence of external
influence is described by equation (2.9) with V [x] = 0, yielding the fractional Laplace equation

(−∆τ )
α
2 xa(τ) = 0 . (3.1)

Given that (−∆τ )
α
2 is a non-local operator, the fractional particle position at an instant of

time is determined by its positions at all instants of time. To illustrate the distinction between
the dynamics of free fractional and standard particles, consider the scenario where the particle
is initially stationary at the origin of Rn before τ1 and after τ2 > τ1. From a mathematical
perspective, this scenario defines a Dirichlet problem for the fractional Laplace equation

(−∆τ )
α
2 xa(τ) = 0 for τ ∈ (τ1, τ2) ⊆ R , (3.2)

xa(τ) = 0 for τ ∈ R\[τ1, τ2] . (3.3)

The solution to the Dirichlet problem (3.2) and (3.3) can be expressed in terms of s-
harmonic functions, which are defined as follows [48]: a function hs : R → R+, continuous in
I = (τ1, τ2) ⊆ R, is s-harmonic on I if it satisfies the equation

hs(x) =
∫
R\Iξ(τ)

C(1, s)ξ2s

|ζ − τ | (|ζ − τ |2 − ξ2)s hs(ζ)dζ . (3.4)

Here, the punctured zero-dimensional disk Iξ(τ) is fully contained in the open interval
Iξ ⊂ I = (τ1, τ2), and the limit ξ → 0 should be taken. The normalization constant C(1, s) is
defined such that the integral of hs over R is normalized to unity

C(1, s) = Γ(1/2) sin(πs)
π3/2 . (3.5)

In our notation, s = α/2. We can easily verify that hs(τ) satisfies the equation (3.2) by
noting that [49]

(−∆τ )
α
2 hs(τ) = C(1, s) P.V.

∫
R\Iξ(τ)

hs(τ)− hs(ζ)
|ζ − τ |1+2s

dζ

= C(1, s) lim
ξ→0

∫
R\Iξ(τ)

ξ2s (hs(τ)− hs(ζ))
|ζ − τ | (|ζ − τ |2 − ξ2)s dζ = 0 . (3.6)

If we take I = (−1,+1), the fundamental solution has the following form

xa(τ) = (1− τ2)
α
2 −1ca , (3.7)

where ca is a constant vector in Rn. This solution can be generalized to standard harmonic
functions as follows: if the function ha(τ) satisfies the equation ∆τ ha(τ) = 0 in I, i.e. , ha(τ)
is an harmonic function in I, then

xa(τ) = (1− τ2)
α
2 −1ha(τ) , (3.8)

satisfies the equation (3.2) in I [50, 51].
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To observe the effect of fractionality parameter on free particle motion, let’s consider
specific values for α. When α = 2, equation (3.8) yields the trajectory of a Newtonian particle
xa(τ) = ha(τ) = vaτ + xa

0 from τ1 to τ2, where va and xa
0 represent the components of the

constant velocity and initial position vector. This result arises from the known property
that the only harmonic polynomial of degree one is a linear polynomial. Note that the
initial and final conditions give: −va + xa

0 = va + xa
0 = 0 which fixes both the velocity

and initial position to zero, as expected. However, for α = 1, the trajectory of the 1/2 -
fractional particle is given by

xa(τ) = vaτ + xa
0√

1− τ2
, (3.9)

which can be compared with the solution from equation (3.8) above. As the formula (3.9)
demonstrates, the trajectory of a 1/2-fractional particle becomes singular as τ → ±1 for
arbitrary values of va and xa

0. This singularity is characteristic of the fractional Dirichlet
problem, indicting information on the singularities of the solutions on the boundary of the
parameter set [40]. Nevertheless, when va = xa

0 = 0 as in the case of a Newtonian particle,
the 1/2-fractional particle obeys the law of inertia with a non-singular and vanishing solution.
However, we can see that there are some interesting features of the fractional particle that
differ from the standard particle.

Let’s discuss the physical interpretation of the trajectory defined by equation (3.9).
Firstly, it’s important to note that the trajectory represents a hyperbolic path in Rn. This
characteristic is evident from the denominator

√
1− τ2, indicating singularities at τ = ±1,

where the particle reaches infinite distance in proper time. Secondly, the initial conditions
exert a significant influence on the trajectory. The particle’s initial velocity va and initial
position xa

0 determine the shape and orientation of the hyperbolic path in Rn. Altering the
initial velocity would consequently change the slope and direction of the trajectory. Thirdly,
the trajectory described by equation (3.9) manifests two singularities at τ = ±1, indicating
unbounded motion of the particle at these points. This could imply that the particle attains
infinite distance or velocity at these instances. The presence of the fractional Laplacian
operator in the kinetic term suggests the possibility of the particle experiencing anomalous
diffusion or motion influenced by long-range interactions.

3.2 Fractional harmonic oscillator

The fractional harmonic oscillator, characterized by a fractional particle subject to an external
potential, introduces a new level of complexity to the oscillator paradigm. The fractionality
can be realized through a diverse array of fractional time derivatives, each giving rise to an
unique model with physical applications outlined in the introduction. The precise correlation
between the physical attributes of the systems in question and the fractional nature of the
mathematical models remains an active area of research and interpretation [52]. Beside the
examples mention in the introduction, the fractional harmonic operators find their utility in
various domains of high-energy physics, such as the resolution of the fractional Schrödinger
equation [53], quantum gravity [54], fractional supersymmetric quantum mechanics where the
Hamiltonian is proportional to the p-th power of the supercharge operator [55, 56], and path
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integral quantization [57]. In this subsection, we discuss the fractional harmonic oscillator
equipped with a fractional Laplacian.

The fractional harmonic oscillator characterizes a fractional particle subject to an external
potential defined as

V [x] = |k|
2 xaxa , (3.10)

where τ ∈ R. The equation of motion for a fractional harmonic oscillator, derived from (2.9),
resembles the eigenvectors and eigenvalues equation for the fractional Laplacian operator

(−∆τ )
α
2 xa(τ) = − |k|

mα
xa(τ) . (3.11)

Solving (3.11) leads to expressions in terms of fractional harmonic exponentials. Using
definition (6.2) and after a simple algebra, we arrive at the solution

xa(±)
ω,α (τ) = xa

0 exp

±i

( |k|
mα

) 1
α

τ

 . (3.12)

The functions x
a(±)
ω,α (τ) show that fractional particle oscillates with frequency determined by

ωα =
( |k|

mα

) 1
α

. (3.13)

In the case of α = 2, we recover the standard harmonic oscillator.
The trajectory of the fractional particle, as described by equation (3.12), is periodic in all

directions of the target-space. The period, denoted by Tα, is given by 2π/ωα. Let’s consider
a time interval [τ1, τ2 = τ1 + Tα]. We impose initial and final conditions on xa(τ) such that it
vanishes at the boundary points {τ1, τ2}, as shown in equation

xa(τ1) = xa(τ2) = 0 . (3.14)

Equations (3.11) and (3.14) together define a time-like Dirichlet problem for the fractional
Laplacian. It is important to note that the real and imaginary parts of x

a(±)
ω,α (τ) satisfy

equation (3.11) independently due to the linearity of the fractional Laplacian. The general
solution of the equation (3.11) is a Fourier sum of cosine and sine functions. Consequently,
the general solution of the Dirichlet problem, defined by equations (3.11) and (3.14), can
be expressed as a sum of sine functions only

xa
α(τ) = −

∞∑
l=1

xa
α,l(τ) = −

∞∑
l=1

Ba
α,l

( 2πl

τ2 − τ1

)α

sin
[2πl(τ − τ1)

τ2 − τ1

]
. (3.15)

The coefficients Ba
l in equation (3.15) can be determined by imposing the normalizing condition

∫ τ1+Tα

τ1
dτ xa

α,l(τ)xb
α,r(τ) = δabδlr . (3.16)
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After performing some calculations, we find that the normalized modes are given by

xa
α,l(τ) = π−1

( |k|
mα

) 1
2α

sin

l

( |k|
mα

) 1
α

(τ − τ1)

ua, (3.17)

where ua is the unit vector in the a-direction. We can calculate the instantaneous velocity
of the fractional oscillator, va

α(τ), by taking the first derivative of xa
α(τ) with respect to τ .

The result is given in the following equation

va
α(τ) = −π−1

( |k|
mα

) 3
2α

∞∑
l=1

l cos

( |k|
mα

) 1
2α

(τ − τ1)

ua. (3.18)

As discussed in the previous section, the kinetic energy is the product of vα and πα. Given
that the fractional oscillating modes are independent, the kinetic energy can be expressed
as a sum over modes, as shown in the following equation

E(α) =
∞∑

l=1
E

(α)
l . (3.19)

To determine the instantaneous energy of each mode E
(α)
l , we use equations (2.15) and (2.16).

The canonical momentum πa
α,l is obtained by substituting equation (3.17) into equation (2.15).

This leads to the calculation of the action of
(
−∆1

τ

)α
2 on the modes xa

α,l(τ). Let us determine
the instantaneous energy of each mode E

(α)
l . To this end, we use the equations (2.15)

and (2.16) and observe that the canonical momentum πa
α,l is obtained by substituting the

equation (3.17) into the equation (2.15) which leads to the calculation of the action of(
−∆1

τ

)α
2 on the modes xa

α,l(τ). The result can be found by transforming the first-order
fractional derivative into the integral

(
−∆(1)

τ

)α
2 xa

α,l(τ)= 2α−1π− 3
2

( |k|
mα

) 1
2α Γ

(
1+α

2

)
Γ
(
1− α

2
) ∫ +∞

−∞
dζ

ζ

|ζ|1+α
sin

l

( |k|
mα

) 1
2α

(ζ+τ−τ1)

ua.

(3.20)
After some algebraic manipulations, we obtain the following equation

(
−∆(1)

τ

)α
2 xa

α,l(τ) = 2απ− 3
2

( |k|
mα

) (α−1)2+α2
2α Γ

(
1+α

2

)
Γ (1− α)

Γ
(
1− α

2
)

× sin
[(1− α)π

2

]
cos

l

( |k|
mα

) 1
2α

(ζ + τ − τ1)

ua, (3.21)

which holds for all 0 < α < 2. From this equation, we can calculate the canonical momentum
πa

α,l corresponding to the l-th mode

πa
α,l = −2α−1π− 3

2 mα

( |k|
mα

) (α−1)2+α2
2α Γ

(
1+α

2

)
Γ (1− α)

Γ
(
1− α

2
)

× sin
[(1− α)π

2

]
cos

l

( |k|
mα

) 1
2α

(ζ + τ − τ1)

ua. (3.22)
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The instantaneous kinetic energy of the l-th mode can be obtained from equation (2.16) and
equations (3.18) and (3.22). The result has the following form

Eα
l (τ) = 2α−2π− 5

2 nlmα

( |k|
mα

) (α−1)2+α2+3
2α Γ

(
1+α

2

)
Γ (1− α)

Γ
(
1− α

2
)

× sin
[(α − 1)π

2

]
cos2

l

( |k|
mα

) 1
2α

(ζ + τ − τ1)

 . (3.23)

The equation above shows that Eα
l (τ) depends on the space dimension n, as it accounts

for all degrees of freedom along all space directions. The particle’s instantaneous kinetic
energy, given by the sum on the right-hand side of equation (3.19), is divergent. However, a
more meaningful observable is the average kinetic energy Ēα over the period Tα. This is the
sum of the average energy of the l-modes, and it is given by the following equation

Ēα
l = 1

Tα

∫ τ1+Tα

τ1
dτEα

l (τ) . (3.24)

Note that the only τ -dependent factor in equation (3.23) is the last one. According to
equation (3.13), this is equal to cos2(2πl(τ − τ1)/Tα), whose average over the period Tα

is one-half. Therefore, the average energy Ēα
l is proportional to

∑∞
l=1 l. By applying any

regularization formula for the sum, such as the Dirichlet series regularization

lim
s→0

( ∞∑
l=1

l1−s

)
= − 1

12 , (3.25)

we obtain the regularized value for the average energy

Ēα = 2α−5nlmα

π
5
2 3

( |k|
mα

) (α−1)2+α2+3
2α Γ

(
1+α

2

)
Γ (1− α)

Γ
(
1− α

2
) sin

[(1− α)π
2

]
. (3.26)

The instantaneous potential of a particle moving according to the solution

xa
α(τ) = −

∞∑
l=1

π−1
( |k|

mα

) 1
2α

sin

l

( |k|
mα

) 1
α

(τ − τ1)

ua , (3.27)

can be easily calculated, yielding the following formula

V [xα(τ)] =
n|k|
2π2

( |k|
mα

) 1
α

∞∑
l=1

sin2

l

( |k|
mα

) 1
α

(τ − τ1)

 . (3.28)

The regularized divergent sum on the right-hand side of equation (3.28) vanishes. However,
it is possible to calculate the average potential energy, which is also divergent, but whose
regularized expression is

V̄ [xα(τ)] = −n|k|
8π2

( |k|
mα

) 1
α

. (3.29)
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This concludes the computation of the primary classical physical observables associated with
the fractional harmonic oscillator in n dimensions. Our results are valid for 0 < α < 2, as
previously mentioned. Outside this range, the integrals defining the canonical momentum
lack analytic solutions. Consequently, our discussion excludes the classical Newtonian particle
defined by α = 2. In this case, this value must be fixed from the outset, as noted in the previous
section. This approach reproduces the well-known results of the classical harmonic oscillator.

The results concerning the fractional harmonic oscillator stem from the solvability of the
Dirichlet problem associated with the fractional Laplacian. This solvability property might
not extend to other fractional integral or differential operators utilized in alternative harmonic
oscillator formulations, or even for models involving the fractional Laplacian. Furthermore,
it is our ability to regularize the average energy that permits the derivation of an explicit
analytical expression for the oscillator’s mean energy.

3.3 Charged fractional particle in classical electromagnetic field

As a last example, let us examine the influence of the electromagnetic field on a fractional
particle. There are several possibilities to generalize the interaction between a charged particle
and the electromagnetic field to the fractional case. Here, we consider the simplest case of a
local interaction between the particle of charge q and the electromagnetic potentials ϕ(τ, x)
and A(τ, x) in d = 3 dimensions. Given that this is the conventional classical interaction,
only the kinetic term of the Lagrangian is altered, as per the relation (2.4). Consequently,
the action functional is expressed as

S(α)[x, A, ϕ] =
∫ +∞

−∞
dτ

[
−mα

2 xa(τ) (−∆τ )
α
2 xb(τ)ηab + q

xa(τ)
dτ

Ab(x, τ)ηab − qϕ(x, τ)
]

,

(3.30)
where a, b, . . . = 1, 2, 3. The equation of motion derived from S(α)[x, A, ϕ] has the follow-
ing form

mα (−∆τ )
α
2 xa(τ)− qFab(τ, x)dxb(τ)

dτ
+ ∂aϕ(τ, x) + ∂τ Aa(τ, x) = 0 , (3.31)

where Fab = ∂aAb − ∂bAa. Assuming that xa(τ) remains unchanged under the gauge
transformations

A → A′ = A + ∇Λ , ϕ → ϕ′ = ϕ − ∂τΛ , (3.32)

the Lagrangian Lα[x;A, ϕ] undergoes a transformation similar to that in classical mechanics:

Lα[x;A′, ϕ′] = Lα[x;A, ϕ] + dΛ
dτ

, (3.33)

where Λ is the gauge parameter.
The transformation (3.33) arises from the similarity of the interaction term in Lα[x;A, ϕ]

to that in classical mechanics. The equation of motion (3.31) is a hybrid differential equation,
combining the fractional Laplacian and the standard first derivative in the τ variable. Express-
ing the electric and magnetic fields in terms of potentials, i.e., E = −∇ϕ−∂τ A and B = ∇×A,
allows us to rewrite the equations of motion in terms of the electromagnetic field as follows:

mα (−∆τ )
α
2 xa(τ) = q

[
Ea(τ, x) + (dx

dτ
× B(τ, x))a

]
. (3.34)
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The right-hand side of the equation above exhibits the Lorentz force, where the instantaneous
velocity plays the same role as in classical electrodynamics. This indicates that, under the
assumption of a local interaction between the fractional particle and the classical field, the
dynamics of the fractional particle is governed by the same electromagnetic force as that of a
standard particle. However, notable distinctions emerge due to the presence of the fractional
Laplacian. To elucidate these differences, let us take a closer look at the specific scenario
of a charged fractional particle subjected to a constant magnetic field

E = 0 , B = (0, 0, B) , (3.35)

where B = constant denotes the field component along the vertical axis.
The equation of motion (3.34) takes the following form

(−∆τ )
α
2 x1(τ) = ωα

c

dx2(τ)
dτ

, (3.36)

(−∆τ )
α
2 x2(τ) = −ωα

c

dx1(τ)
dτ

, (3.37)

(−∆τ )
α
2 x3(τ) = 0 , (3.38)

where we have introduced the fractional equivalent of the cyclotron frequency

ωα
c = qB

mα
. (3.39)

Since the motion along the vertical axis is governed by the free fractional particle equation of
motion (3.38), as was discussed in the subsection 3.1, our attention now shifts to examining
the first two equations (3.36) and (3.37). These equations describe the trajectory of the
fractional charged particle within the horizontal plane.

We can solve equations (3.36) and (3.37) by recalling that the exponential function is
an eigenfunction of the operator (−∆τ )

α
2 . Introducing the complex function

zα(τ) = xα
1 (τ) + ixα

2 (τ) , (3.40)

equations (3.35) and (3.36) can be equivalently expressed as the complex equation

(−∆τ )
α
2 zα(τ) = −iωα

c

dzα(τ)
dτ

(3.41)

A comparison of the equations (3.11) and (3.41) suggests the ansatz

zα(τ) = Zαeiω′
ατ , (3.42)

where Zα ∈ C is a constant and ω′
α denotes the oscillating frequency of the fractional particle

in the horizontal plane. Substituting the right-hand side of the equation (3.42) into the
equation (3.41) we obtain the relation

ω′
α =

(
qB

mα

) 1
α−1

. (3.43)
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Without loss of generality, we can set the phase of Zα such that it is real. Consequently, the
motion of the fractional particle in the horizontal plane is described by the following functions

xα
1 (τ) = xα

1 + Zα cos
[(

qB

mα

) 1
α−1

τ

]
, (3.44)

xα
1 (τ) = xα

2 + Zα sin
[(

qB

mα

) 1
α−1

τ

]
, (3.45)

where xα
1 and xα

2 are real constants.
Let us conclude this section with some important remarks. As briefly discussed earlier,

the boundary conditions, which in this case are initial and final conditions, wield considerable
influence over the solutions to the equations of motion. Confining the particle’s motion within
a specific open time interval, these conditions not only determine the constant factors but also
dictate the nature of solutions, often encoding information about temporal discontinuities
at the trajectory’s initial and final instants. Such behaviour typifies fractional Laplacians
in either one or more dimensions [40].

The models developed herein extend classical Newtonian frameworks directly, by frac-
tionalizing solely the kinetic term and assuming local interactions. However, other models
can be constructed by incorporating non-local interactions between particles and fields. For
instance, one could explore fractional electromagnetic fields as investigated in [28–30]. An
in-depth analysis of such models, while pertinent, lies beyond the scope of this paper.

4 Sigma model from free fractional particle

Among the diverse class of fractional particle models, which arise from the formulation of
kinetic and potential terms utilizing fractional operators, the free fractional classical particle
discussed in the previous section stands out for its intriguing property that it can be mapped
into a local classical sigma model by extending the world-line to the superior half-plane and
imposing appropriate boundary conditions. The well-established Caffarelli-Silvestre extension
problem [6] ascertain that this mapping is well defined. This result has been used to establish
a similar correspondence between a non-local fractional scalar field in n-dimensions and a
local scalar field in n + 1-dimensions. Some properties of these non-local and local scalar
fields have been explored in [7–9].

4.1 Classical sigma model

In order to map the classical fractional particle to the local sigma model, we associate a field
Xa : R× R+ → R which is a continuous functions in its arguments to each field xa : R → R,
and we require that the following equations be satisfied

Xa(τ, 0) = xa(τ) , (4.1)

∂µ

[
σ1−α∂µXa(τ, σ)

]
= 0 , (4.2)
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where σ ∈ R+ .1 By the extension problem of Caffarelli and Silvestre [6], the following
equality holds

(−∆τ )
α
2 xa(τ) = κα lim

σ→0+

[
σ1−α∂σXa(τ, σ)

]
, (4.3)

where κα is a positive constant given by

κα =
2αΓ

(
α
2
)

αΓ
(
−α

2
) . (4.4)

The extension problem given by the equations (4.1)–(4.3) generalizes the harmonic extension
problem for the square root Laplacian (−∆τ )−1/2 [6] to α ∈ (0, 2].

The sigma model action is defined as

S
(α)
0 [X] = Tακαc

2

∫ +∞

−∞
dτ

∫ +∞

0
dσσ1−α∂µXa(τ, σ)∂νXb(τ, σ)ηµνηab , (4.5)

where ∂µ = ∂/∂σµ and ηµν is the Euclidean metric tensor in the half-plane. The fields
Xa(τ, σ) represent a map from the half-plane R× R+ to the n-dimensional space. According
to the extension problem (4.3), the dimension of ⟨Xa(τ, σ)⟩ = ⟨xa(τ)⟩ which implies that
⟨Tα⟩ = E2⟨mα⟩ = E5−α. In what follows, we are going to take Tα = 1 for simplicity. Since
the fractionality parameter α appears only in the exponent of the σ factor, the sigma model
is not fractional, that is, it does not contain any fractional operator. An important property
guaranteed by the extension problem is that

S
(α)
0 [x] = S

(α)
0 [X] . (4.6)

After a Wick rotation, τ → τ ′ = iτ , the action S
(α)
0 [X] describes a two-dimensional sigma

model in the half Minkowski space which has on its boundary a free fractional particle.
However, the Wick rotation changes the sign of the kinetic term of the sigma model which
can be made positive by considering a minus sign in the right hand of the equation (4.6).

The equations of motion of Xa(τ, σ) are obtained by applying the variational principle
to S

(α)
0 [X], and they are given by

∂2
τ Xa(τ, σ)− 1− α

σ
∂σXa(τ, σ)− ∂2

σXa(τ, σ) = 0 . (4.7)

The boundary conditions to be imposed on Xa(τ, σ) follow from the equations (4.1) and (4.2),
yielding the following set of equations

lim
σ→0

Xa(τ, σ) = 0 , lim
σ→0

[
σ1−α∂σXa(τ, σ)

]
= 0 . (4.8)

It is noteworthy that equations (4.7) and (4.8) possess an universal nature. Specifically,
any mapping from a fractional field theory in n variables to a local field theory in n + 1
variables, as established by the extension problem [6], will generate these equations along the

1At times, we will adopt the alternative notation for the two-dimensional coordinates σµ = (σ0, σ1) = (τ, σ),
primarily for succinctly expressing the action. However, to maintain clarity and avoid redundant upper indices,
we will represent d2σ(σ1)1−α as dτdσσ1−α, and so forth.
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(n + 1)-th direction. In the context of this discussion, the (n + 1)-th direction corresponds
to the σ direction, spanning the range R+.

The equation (4.7) can be solved by elementary methods, the following general solution
being found

Xa(τ, σ;α) =
∫ +∞

0

dµ(ω)√
2ω

[
Aa(ω)e−iωτ φ(σ, ω;α) + Ba(ω)eiωτ φ̄(σ, ω;α)

]
. (4.9)

In order to avoid the proliferation of indices, we will drop α from the arguments of Xa

and φ. The reality condition Xa(τ, σ) = X̄a(τ, σ) imposes the reality of the coefficients
Āa(ω) = Ba(ω). The main properties of the measure dµ(ω) and the functions φ(σ, ω) were
obtained in [9]. Specifically, it was demonstrated that

dµ(ω) = 2απ−2Γ2
(

α

2

)
sin2

(
πα

2

)
ω1−αdω

= µ(α)ω1−αdω = µ(ω)dω , (4.10)

φ(σ, ω) =
π(ωσ)

α
2 J−α

2
(ωσ)

2
α
2 Γ
(

α
2
)
sin
(
π α

2
) . (4.11)

The functions φ(σ, ω) satisfy the following orthogonality conditions∫ +∞

0
dµ(ω)φ̄ (ω, σ)φ

(
ω, σ′) = σα−1δ

(
σ − σ′) . (4.12)∫ +∞

0
dµ(σ)φ̄ (ω, σ)φ

(
ω′, σ

)
= ωα−1δ

(
ω − ω′) . (4.13)

The equation (4.13) can be obtained from (4.12) by observing that φ(σ, ω) is symmetric in
its variables. If we use the common convention that the determination of the ν-th power
argument z of the Bessel function Jν(z) determines the reality of the function for z ∈ R,
then Jν(x) is real for real ν and x ∈ R+, which is the case described by the equation (4.11)
above, where ν = −α/2 and x = ωσ [58]. With this convention, the boundary limit on the
right-hand side of the equation (4.9) is given by

xa(τ) = lim
σ→0

Xa(τ, σ) = Dα

∫ +∞

0
dµ(ω)ω

α−1
2
[
Aa(ω)e−iωτ + Ba(ω)eiωτ

]
, (4.14)

where
Dα = 1

2
3
2 sin

(
απ
2
)
Γ
(

α
2
)
Γ
(
1− a

2
) . (4.15)

The last two equations establish a concrete correspondence between the solutions of the
classical sigma model given by the equation (4.9) and the fractional particle coordinates
on the boundary at σ = 0.

4.2 Symmetries of sigma model

In this subsection, we analyse the symmetries of the sigma model defined by the Caffarelli-
Silvestre extension problem and explore the conserved quantities of the theory. While the
analytical procedure remains consistent for both SO(n) and SO(n, 1) groups, we choose to
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present the latter for generality. The results from this section can be directly applied to
corresponding situations in Euclidean space and the Newtonian fractional particle model
discussed in this work. According to the Noether’s theorem, the invariance of S

(α)
0 [X] under

global symmetries corresponds to conserved charged, while the presence of local symmetries
indicates a redundancy of the degrees of freedom.

From equation (4.5), it is evident that S
(α)
0 [X] is invariant under the Poincaré trans-

formations in n + 1-dimensions

δXa(σµ) = Λa
bX

b(σµ) + ξa , (4.16)

where Λ ∈ SO(1, n) and ξ is a constant n + 1-dimensional vector. According to Noether’s
theorem, there exist conserved currents associated with the Poincaré symmetry. To determine
these currents, we apply Noether’s method wherein the parameters of the Poincaré transforma-
tions are made functions on σµ. Under an infinitesimal transformation δXa(σµ) = (ϵ·X)a(σµ),
where ϵ(σµ) is the parameter of the transformations and the dot denotes the appropriate
product between ϵ and Xa, the action varies as follows

δS
(α)
0 [X] =

∫ +∞

−∞
dτ

∫ +∞

0
dσ ∂µ (ϵ) · jµ , (4.17)

where, jµ is the current associated to the transformation δXa(σµ).
Let’s begin with the translation symmetry, characterized by the parameter ξa(σµ). It’s

straightforward to observe that

δS
(α)
0 [X] = κα

∫ +∞

−∞
dτ

∫ +∞

0
dσσ1−α∂µ (ξa) ∂µXa . (4.18)

By comparing equations (4.17) and (4.18), we deduce that the current corresponding to
the translation symmetry is

jµ
a = κασ1−α∂µXa . (4.19)

The current jµ
a is conserved on-shell

∂µjµ
a = κα∂µ

(
σ1−α∂µXa

)
= 0 . (4.20)

The corresponding momentum pa is given by

pa(τ) =
∫ +∞

0
dσ ja0 = −κα

∫ +∞

0
dσσ1−α∂τ Xa(τ, σ) =

∫ +∞

0
dσP a(τ, σ) , (4.21)

where Pa(τ, σ) is the canonical momentum conjugate to the field Xa(τ, σ), calculated at a
fixed time value τ = τ0 and defined as usual

Pa(τ, σ) = ∂L(α)
0 (X, ∂X)

∂ [∂τ Xa(τ, σ)] = −κασ1−α∂τ Xa(τ, σ) , (4.22)

where L(α)
0 (X, ∂X) is the Lagrangian density from S

(α)
0 [X].
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Now, let’s examine the Lorentz transformation with the infinitesimal parameter ϵa
b(σµ).

The variation of the action under these transformations is

δS
(α)
0 [X] = κα

∫ +∞

−∞
dτ

∫ +∞

0
dσσ1−α∂µ (ϵab)Xb∂µXa . (4.23)

From equation (4.23), we can see that the current corresponding to the Lorentz symmetry is

jab
µ = κα

(
Xa∂µXb − Xb∂µXa

)
. (4.24)

It is easy to verify that the above current is conserved on-shell

∂µjab
µ = 0. (4.25)

The current jab
µ is constructed to be antisymmetric due to the antisymmetry of the pa-

rameters ϵab.
From the preceding analysis, we can see that the phase space of the sigma model is

parametrized by Xa(τ, σ) and Pa(τ, σ). Since τ is interpreted as a time-variable, we can
introduce the standard Poisson structure in terms of the Poisson brackets at a fixed time{

Xa(τ, σ), Xb (τ, σ′)}
P.B.

=
{
∂τ Xa(τ, σ), ∂τ Xb

(
τ, σ′)}

P.B. = 0 , (4.26)

{
Xa (τ, σ) , ∂τ Xb(τ, σ′)

}
P.B. = σα−1

κα
δa

b δ
(
σ − σ′) . (4.27)

This analysis reveals that the global symmetries of the sigma model derived from the Caffarelli-
Silvestre procedure mirror those of the Polyakov action. While the Lagrangian densities
Lα

0 and LPolyakov have similar structures from the perspective of target space, they exhibit
important distinctions when local symmetries are considered. Unlike the reparametrization
invariance inherent in string theory’s Polyakov action, which originates from the interpretation
of the world-sheet as the surface swept out by string during its evolution, Lα

0 explicitly depends
on σ, rendering it non-reparametrization invariant. This arises due to constraints imposed
by the Caffarelli-Silvestre extension problem, which dictates the form of the sigma model
as a two-dimensional field theory devoid of reparametrization and Weyl symmetries, and
with no direct interpretation in terms of one-dimensional physical objects. Consequently, in
this context, the term ‘world-sheet’ serves as an extension of the string terminology, albeit
without preserving the same content.

This lack of reparametrization invariance leads to notable differences, particularly in
the structure of canonical momenta. In the context of bosonic string theory, two momenta
densities, P τ

a and P σ
a , govern the evolution of string coordinates along the time and space

world sheet variables. Reparametrization invariance of the Lagrangian density under shifts
in τ and σ coordinates dictates the appearance of two momenta, each tied to one of the
world sheet coordinates. However, as the sigma model derived from the extension problem
lacks this reparametrization invariance, the corresponding momentum P σ

a assumes a form
that lacks a straightforward physical interpretation

P σ
a (τ, σ) = ∂L(α)

0 (X, ∂X)
∂ [∂σXa(τ, σ)] = κασ1−α∂σXa(τ, σ). (4.28)

This highlights a distinctive characteristic of the sigma model derived from the extension
problem, where the canonical momenta exhibit behavior that may not align with conventional
expectations.

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
8

4.3 Canonical quantization of sigma model

Quantizing the fractional particle model directly, as discussed in previous sections, poses
significant challenges due to the absence of an apparent canonical structure, even classically.
However, the Caffarelli-Silvestre extension problem offers a promising avenue by enabling
the extension of the fractional particle model residing on the world-sheet boundary to a
local sigma model within the bulk. By quantizing this sigma model, valuable insights into
both systems can be gleaned. Given the canonical structure inherent in the phase space
of the sigma model, canonical quantization emerges as a natural approach. Unlike the
conventional treatment of the standard sigma model, the momentum P σ

a does not hold special
significance, as discussed previously, owing to its lack of interpretability as associated with
reparametrization in the σ-direction.

The canonical quantization of the free scalar field with the Caffarelli-Silvestre extension
problem was delineated in [9]. Here, we follow analogous steps to quantize the sigma
model. According to canonical quantization principles, the coefficients Ab(ω) → ab(ω) and
Āb(ω) → ab†(ω) are elevated to operators on the Fock space of the quantum sigma model,
while Xa(τ, σ) and Pa(τ, σ) are treated as field operators, subject to standard equal-time
commutation relations[

Xb(τ, σ), Pc(τ, σ′)
]
= iδb

cδ
(
σ − σ′) , (4.29)[

Xb(τ, σ), Xc(τ, σ′)
]
=
[
Pb(τ, σ), Pc(τ, σ′)

]
= 0 . (4.30)

Since the equation (4.22) is invertible, the canonical Hamiltonian density Hα
0 is defined by

the Legendre transformation of the Lagrangian density

Hα
0 (τ, σ) = Pa(τ, σ)∂τ Xa(τ, σ)− Lα

0 (τ, σ)

= −σα−1

2κα

[
Pa(τ, σ)P a(τ, σ) + m2

ακ2
ασ2α−2∂σXa(τ, σ)∂σXa(τ, σ)

]
. (4.31)

One can easily verify the following commutation relations[
Xb(τ, σ),Hα

0 (τ, σ′)
]
= −i

σα−1

κα
δb

c P c(τ, σ′)δ(σ − σ′) , (4.32)

[
Pb(τ, σ),Hα

0 (τ, σ′)
]
= iσ1−ακαδbc ∂σ′Xc(τ, σ′)∂δ(σ − σ′)

∂σ′ . (4.33)

The decomposition of quantum fields into modes is given by the following relations

Xb(τ, σ) =
∫ +∞

0

dµ(ω)√
2ω

[
ab(ω)e−iωτ φ(σ, ω) + ab†(ω)eiωτ φ̄(σ, ω)

]
, (4.34)

Pb(τ, σ) = i

∫ +∞

0
dµ(ω)

√
ω

2
[
−ab(ω)e−iωτ φ(σ, ω) + a†b(ω)e

iωτ φ̄(σ, ω)
]

. (4.35)

The commutation relations among the mode operators can be derived using equations (4.12),
(4.32), and (4.33), yielding the following outcome[

ab(ω), ac(ω′)
]
=
[
ab†(ω), ac†(ω′)

]
= 0 , (4.36)[

ab(ω), ac†(ω′)
]
= 2π

µ(ω)δbcδ
(
ω − ω′) . (4.37)
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From the aforementioned relations, we can see that the operators ab†(k, ω) and ab(k, ω) create
and annihilate excitations along b-direction on the half-plane world-sheet of the sigma model
from the state |0⟩b

k,ω, and the vacuum state is the product of all single mode vacua. The
Hamiltonian has the following form

Hα
0 =

∫ +∞

−∞
dτ

∫ +∞

0
dσ Hα

0 (τ, σ) = εα

∫ +∞

0
dσ

∫ +∞

0
dµ(ω)

[
a†b(ω)a

b(ω) + nπ

µ(ω)

]
×
[
σα−1ω1−α|φ(ω, σ)|2 + κ2

ασ1−αω−α|∂σφ(ω, σ)|2
]

,

(4.38)

where εα is a shorthand notation for the parameter

εα = 2
π
sin2

(
πα

2

)
Γ
(
1− α

2

)
Γ
(

α

2

)
. (4.39)

The integrals from the right hand side of the equation (4.39) diverge. This is a common
problem of the scalar field theory, which can be addressed by introducing cutoff parameters
λc in σ and ωc in ω variables [9]. However, calculating the energy of the sigma model for
any given state necessitates the use of computational methods.

An important consideration lies in describing the energy of the sigma model near its
boundary. To derive the boundary Hamiltonian, we substitute the boundary conditions
provided in equation (4.8) into equation (4.38). The localization process is implemented by
introducing the boundary cutoff distance λB, corresponding to an energy cutoff ΛB = λ−1

B

above which energies are integrated out. Denoting the frequency cutoff on the boundary
as ωB, the boundary Hamiltonian is expressed as follows

Hα
0 (λB, ωB) = εα

∫ λB

0
dσ

∫ ωB

0
dµ(ω)

[
a†b(ω)a

b(ω) + nπ

µ(ω)

]
σα−1ω1−α . (4.40)

The boundary vacuum energy can be calculated from the equation (4.40) and it is given by

Eα
vac(λB, ωB) = ⟨0|Hα

0 (λB, ωB)|0⟩ =
εαπnλα

Bω2−α
B

α(2− α) . (4.41)

If we fix the frequecy cutoff at the scale of the localization distance ωB = ΛB, the vacuum
energy near the boundary behaves like Eα

vac(ΛB) = E(α,ΛB) ∼ Λ2−2α
B .

In order to illustrate the boundary vacuum energy as a function of fractionality parameter
α, we give in the table 1 the formulas of Eα

vac(λB, ωB) calculated from the equation (4.41)
for several values of α with the assistance of the computer. In particular, E0

vac(λB, ωB) and
E2

vac(λB, ωB) were obtained by taking the corresponding limits. For ωB = ΛB and n = 4, we
plot the boundary vacuum energy E(α,ΛB) as a function of α for different values of ΛB in
the figure 2 from appendix 7. The family of plots is symmetric with respect to E(α,ΛB = 1).
If ΛB < 1, the boundary vacuum energies have maxima for α ∈ (1, 2). If ΛB > 1, the
boundary vacuum energies display their maxima for values of α ∈ (0, 1). This shows that
the vacuum energy of a fixed fractionality field near the boundary varies according to the
cutoff scale, or, equivalently, to the distance set for localization with respect to the boundary.
As σ tends to zero, the boundary vacuum energy tends to zero, too. We interpret this
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result as a statement on the limitation of the quantum sigma model constructed from the
extension problem to provide information on the fractional particle. Indeed, even if the
classical action of the particle model and the sigma model are equal, the later is non-fractional
and can be quantized while the former does not display a proper canonical structure and,
consequently, cannot be quantized by using standard methods. This open up the problem
of the interpretation of the fractional particle model and of its mathematical structure in
a way compatible with the quantum mechanics.

5 Discussions

In the present paper, we examined the lowest-dimensional realization of the extension problem
for the fractional Laplacian in terms of the classical fractional particle model in n-dimensions.
We have discussed the equations of motion and the Green’s function method, the symmetries
of the free fractional particle, as well as some examples of local interactions such as the
classical harmonic oscillator and the fractional charged particle in the electromagnetic field.
For the free fractional particle, we have constructed the local sigma model provided by the
extension problem. The fractional particle model proposed here represents a generalization of
the Newtonian particle with the fractional Laplacian, while the sigma model generalizes the
standard sigma model on the superior half plane. These two models generalize the application
of the extension problem to the classical scalar field [9]. We have quantized the sigma model by
the canonical quantization method and have discussed the vacuum energy near the boundary.
There are some aspects of the fractional particle and sigma model worth discussing.

Starting with sigma model, we observe that the choice of measure µ(ω) given in the
equation (4.10) is not unique. This point has been made clear in [5], where it was emphasized
that the measure adopted here is useful to describe scale invariance in higher dimensional
field theories. The measure plays an important role in the quantization of the fields in
the bulk [9] since it determines the classical Poisson brackets which are then elevated to
equal-time commutation relations between the fields Xa(τ, σ) and their canonically conjugate
momentum Pa(τ, σ). An interesting problem is to explore the quantization with different
measures. Another important point is the observation that the analogy with the Polyakov
action raises the question of the second momentum P σ

a (τ, σ) defined by the equation (4.28).
Since the sigma model is not reparametrization invariant with respect to σ variable as
discussed at the end of subsection (4.2), we did not use the momentum P σ

a (τ, σ) to define the
physical states. However, it is an interesting problem to make an extensive analysis of the
mathematical structure and physical properties of the sigma model presented here.

An important property of the sigma model, common to higher dimensional scalar fields,
is the following. As already observed in [5, 9], the scalar fields are non-local for a general
µ(ω) measure as a consequence of the defect introduced in the world-sheet by the presence
of the boundary. The non-locality is a quantum effect since µ(ω) determines the properties
of the creation and annihilation operators according to the equations (4.36) and (4.37). In
particular, this introduces a factor of ω1−α that multiplies the number operators, as can be
seen from the equation (4.38). That raises the question of the emergence of oscillating modes
instead of decaying/exploding modes. This is primarily influenced by the bounded domain of
the problem and the specific mathematical framework utilized for the quantization process.
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The bounded domain of the problem, as considered in the extension problem framework, plays
a significant role in shaping the behavior of field modes, since the imposition of boundary
conditions within a finite domain can lead to the confinement of solutions and the promotion
of oscillatory behavior favoring oscillating modes over decay or explosion. On the other
hand, the extension problem by Caffarelli and Silvestre, allows one to control the behavior
of field modes, and guide the system towards oscillatory solutions. Thus, we can conclude
that in bounded spaces, the interplay between the non-local dynamics introduced by the
fractional Laplacian operator and the constraints imposed by the boundaries can lead to
stable oscillatory modes. The confinement of the field within a finite region, coupled with
the mathematical treatment of the problem, supports the existence of oscillations as viable
and physically meaningful solutions.

Turning to the fractional particle model, we observe that the fractional Laplacian,
characterized by its pseudo-differentiability and non-locality, presents interpretative challenges
due to its inherent complexity. It is commonly interpreted in several ways: as a representation
of the quantity of particles capable of transitioning between points in diffusion theory [40];
as a generalized Dirichlet-to-Neumann operator, linked with GJMS operators on smooth
metric spaces [59]; or as a fractional gradient, which correlates with the uniform isotropic
measure [60]. It is crucial to underscore that these interpretations are abstract, and the actual
behavior of functions under the influence of the fractional Laplacian can exhibit significant
complexity, contingent on the specific problem or application. The task of attributing a
geometric interpretation to the fractional operators in fractional calculus - a field replete
with diverse definitions and interpretations — poses a formidable challenge. As of now, the
scientific community has not arrived at a consensus regarding the geometric significance of
these operators. For an in-depth discussion of this subject within the context of fractional
derivatives, refer to [61].

It’s important to recognize that the generalization of the standard Lagrangian in equa-
tion (2.1) to a fractional particle is not unique. We could have directly replaced the derivatives
in τ with first-order fractional derivatives (−∆(1)

τ )
α
2 as defined in equation (6.8), instead

of integrating by parts. Although this is a feasible alternative, we choose the fractional
Laplacian in the kinetic term. This decision is motivated by the well-established properties
of (−∆τ )

α
2 , which simplify the interpretation of the kinetic term. Additionally, defining the

non-local derivative as a fractional Laplacian maintains a simpler mathematical interpreta-
tion, which is absent in (−∆(1)

τ )
α
2 . Another reason for using the fractional Laplacian in the

kinetic term is its equivalence, under the extension problem by Caffarelli and Silvestre [6],
to the local sigma model in two dimensions discussed here [9]. In a formulation based on
the first fractional derivatives, we can only apply this mapping once we have integrated
one of the primary fractional derivatives. This results in a Lagrangian that takes the form
specified in equation (2.5).

The fractional particle models and the sigma model discussed here should be further
investigated in several directions. One important problem is finding solutions to the equations
of motion of the fractional particle with different boundary conditions and with interaction
terms, which is a non-trivial mathematical problem. That could help to better understand the
correspondence between the dynamics of the fractional particle and that of the sigma model.
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Another interesting question is how the interactions in the fractional particle model can be
mapped into the interactions of the sigma model at the classical level. While the Caffarelli-
Silvestre extension problem provides a rigorous mapping of the kinetic terms between the two
models, the interactions are subject to interpretation. An interesting line of inquiry concerns
the construction of the Hamiltonian formalism on the two sides of the extension problem.
For example, it is known that the Hamiltonian formalism is not well defined in the case
of fractional Laplacian fields, as illustrated by our discussion of the linear momentum, too.
On the other hand, the local sigma model Hamiltonian can be defined in the standard way.
That shows a limitation in the applicability of the extension problem to the Hamiltonian
formalism, which urges further analysis.

An important problem to be investigated is related to the generalization of the present
model to other domains that X . For particles moving along finite time intervals, one can
still consider the coordinates as functions from Cbu. However, a detailed analysis of the
boundary conditions is necessary. Besides, the relation between different definitions of the
fractional Laplacian should be treated with care. For example, in [10–13], fractional operators
admit a Fourier-like transform only in the sense of ultradistributions, where the integral
domain is on a complex contour instead of on the real line. A generalization of the particle
model along the line of these works is interesting, since it can lead to a direct quantization
of the particle model by developing the fractional Lagrangian in a power series and can
produce asymptotic quantum states.

An interesting aspect of the classical fractional particle model and sigma model discussed
in this work that deserves further study is the correspondence between their symmetries and
their relation to the conservation of non-local quantities. A related problem is whether the
fractional particle could realize the conformal algebra similarly to the higher order particle
proposed in [62]. And finally, we observe that it is necessary to study deeper the quantum
structure of the sigma model, and in particular the role played by symmetries at different
values of the fractionality parameter. We end by noting that, although the study of the
fractional models discussed here is interesting from a pure mathematical and mathematical
physics point of view, describing concrete physical systems with similar properties to the
classical fractional particles and their corresponding sigma models is a major challenge.

Acknowledgments

I acknowledge R. S. Facundo, C. F. L. Godinho and M. C. Rodriguez for discussions and J.
Gomis for correspondence. I also acknowledge an anonymous referee for very constructive
and important feedback which have greatly improved the quality of the present work. This
work received partial support from the Basic Research Grant (APQ1) from the Carlos Chagas
Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), grant
number E-26/210.511/2024.

6 Basic properties of fractional laplacian

In this appendix, we briefly review some basic properties of the fractional Laplacian. We
refer to [39] and [40] for more details and proofs.
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The fractional Laplacian, denoted as (−∆τ )
α
2 , is a pseudo-differential operator that

generalizes the concept of spatial derivatives from the Laplacian to fractional orders. The
literature presents a multitude of definitions for the fractional Laplacian, equivalent with
each other on certain spaces of functions, yet offering unique perspectives. In this paper, we
adopt three definitions that are equivalent to each other on any of the spaces L p, p ∈ [1,∞),
C0 or Cbu according to the Theorem 1.1 from [39]. Here, α ∈ (0, 2), p ∈ [1, 1

α), L p denotes
the Lebesgue spaces, C0 denotes the space of the continuous functions and Cbu is the space
of bounded uniformly continuous functions. Our formulas are given for functions on R, but
they are the same for functions on Rn with n ∈ N. The definitions below are also equivalent
on the Schwartz space S on the set of rapidly decreasing functions from C∞(R) defined as

S =
{

f ∈ C∞ (R) : sup
τ∈R

∣∣∣τ qf (p)(τ)
∣∣∣ < ∞, ∀ p, q ∈ N0

}
. (6.1)

The first definition is given as a Fourier transform

(−∆τ )
α
2 f(τ) =

∫ +∞

−∞

dω

2π
|ω|αf̃(ω)eiωτ = F−1 {|ω|αF{f}(ω)} (τ) , (6.2)

for all ω ∈ R. Here, F and F−1 denote the Fourier transform and its inverse for which
we use the conventions

f̃(ω) := F {f(τ)} (ω) =
∫ +∞

−∞
dτf(τ)e−iωτ , (6.3)

f(τ) := F−1
{

f̃(ω)
}
(τ) =

∫ +∞

−∞

dω

2π
f̃(ω)eiωτ . (6.4)

The second definition is based on the interpretation of (−∆τ )
α
2 in terms of singular

integrals

(−∆τ )
α
2 f(τ) = C1,αP.V.

∫ +∞

−∞
dζ

f(τ)− f(ζ)
|τ − ζ|1+α

, C1,α =
2αΓ

(
1+α

2

)
π

1
2 |Γ

(
−α

2
)
|
, (6.5)

for all f ∈ S . The principal value operation P.V. is defined by the corresponding integral
over the punctured one-dimensional disk Iξ(τ) = (τ1, τ − ξ) ∪ (τ + ξ, τ2) centred in τ and
of radius ξ > 0. The principal value is introduced to guarantee the existence of the inverse
of the Fourier symbol |σ|α for α ∈ (0, 2], and the continuation of (−∆τ )

α
2 from negative

to positive values of α.
The third definition regards (−∆τ )

α
2 as a distribution. For any f ∈ S , we define〈

(−∆τ )
α
2 f, φ

〉
=
∫
R

dτφ(τ)(−∆τ )
α
2 f(τ) =

∫
R

dτf(τ)(−∆τ )
α
2 φ(τ) , (6.6)

for all test functions φ ∈ C∞
0 (R). In the equation (6.6), the factor (−∆τ )

α
2 f(τ) can be

defined as in the equation (6.2). It is important to observe that the singular integral and
the distribution definitions also hold on the space L1(R) obtained by relaxing the regularity
and infinity conditions on the functions

L1
α (R) =

{
f ∈ L1

loc (R) :
∫
R

|f(τ)|
1 + |τ |1+α

dτ < +∞
}

. (6.7)
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The definition in terms of Fourier transform can be applied to functions from L1(R), too, since
||f̃ || ≤ ||f || by the triangle inequality. Thus, we can always consider functions that are locally
integrable and have a suitable growth at infinity to avoid divergences. For a deeper discussion
of the definitions and mathematical properties of the fractional Laplacian, see [39, 40].

Third definition (6.6) elucidates that the fractional Laplacian acts as a pseudo-differential
operator. This is manifested in its operation within the Fourier domain via multiplication, as
opposed to differentiation within the spatial domain. By introducing the following first-order
fractional operator (

−∆(1)
τ

)α
2 f(τ) = c(1)

α

∫ ∞

0
dζ

f(τ + ζ)− f(τ − ζ)
ζα

, (6.8)

for 0 ≤ α < 2, where

c(1)
α = 2α−1

√
π

Γ
(

1+α
2

)
Γ
(

2−α
2

) , cα = αc(1)
α , (6.9)

the fractional Laplacian can be associated to
(
−∆(1)

τ

)α
2 through a conventional first-order

derivative
(−∆τ )

α
2 ≡ d

dτ

(
−∆(1)

τ

)α
2 . (6.10)

The details of this correspondence were given in equations (2.11) through (2.13). The
operator

(
−∆(1)

τ

)α
2 has the following spectral form
(
−∆(1)

τ

)α
2 f(τ) = − i√

2π

∫ ∞

−∞
dω ω|ω|α−2F [f ](ω) e−iωτ . (6.11)

The fractional Laplacian is considered equivalent to the Riesz derivative RZDα
τ on R

and on Rn, see, for example, [40] and [63]. In the one dimensional case discussed in this
work, the Riesz derivative is defined as

RZDα
τ f(τ) = −Ψα

(
RLDα

−∞,τ + RLDα
τ,∞

)
f(τ) , (6.12)

where the left- and right-sided Riemann-Liouville derivatives of order α are defined as follows

RLDα
−∞,τ f(τ) = 1

Γ(m − α)
dm

dτm

∫ τ

−∞

f(ζ)
(ζ − τ)α−m+1 dζ, (6.13)

RLDα
τ,∞f(τ) = (−1)m

Γ(m − α)
dm

dτm

∫ ∞

τ

f(ζ)
(ζ − τ)α−m+1 dζ , (6.14)

and
Ψα = 1

2 cos απ
2

, (6.15)

for α ̸= 1, 3, . . .. Then, according to the Theorem 3.2 from [63], the following relation holds

−(−∆τ )
α
2 f(τ) = RZDα

τ f(τ), α ∈ (0, 2)/1 . (6.16)

For more information on the properties of the fractional Laplacian, refer to [40]. For
further details on the relationship between the fractional Laplacian and the Riesz derivative,
consult [63].

– 29 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
8

α Eα
vac(λB, ωB)

0 nπ2

2 ω2
B

1/5 n25(
√

5−1)π
18

5
√

λBω9
B

1/4 n32π
7 sin

(
π
8
)

4
√

λ3
Bω5

B

1/3 n3π
5

3
√

λBω5
B

2/5 n625(5−
√

5)π
256

1
5 !×

4
5 !

5
√

λ2
Bω8

B

1/2 n4
√

2π
3

√
λBω3

B

3/5 n25(1+
√

5)π
42

5
√

λ3
Bω7

B

2/3 n9
√

3π
8

3
√

λ2
Bω4

B

3/4 n8
√

2π
15 csc

(
π
8
)

4
√

λ3
Bω5

B

4/5 n25
√

2π
24

√
5+

√
5

2
5
√

λ4
Bω6

B

1 n2πλBωB

4/3 n9
√

3π
8

3
√

λ4
Bω2

B

3/2 n4
√

2π
3

√
λ3

BωB

7/4 n32π
7 sin

(
π
8
)

4
√

λ7
BωB

2 nπ2

2 λ2
B

Table 1. Boundary vacuum energy for selected values of fractionality parameter α.

7 Boundary vacuum energy

In this appendix, we firstly present the boundary vacuum energy for several values of the
fractionality parameter α obtained from the formula (4.41) in table 1.

Next, in figure 1 below, we plot the curves that describe the vacuum energy denoted here
E(α,ΛB) for ωB = ΛB and n = 4. The energy scale is chosen for computational convenience
and the values of ΛB run from 0.15÷ 7.0. For lower target space dimensions, the plots are
flattened, while for high dimensions the curves are amplified. Since the vacuum energy goes
as Λ2−2α

B , the curves form a symmetric set with respect to E(α,ΛB = 1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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