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1 Introduction

For self-adjoint operators present in non-dissipative systems, the spectral theorem guarantees
the stability of the spectrum under perturbations, meaning that small-scale perturbations of
the operator will lead to a small movement of the operator’s eigenvalues on the complex plane.
In contrast, in the case of dissipative systems such as black holes, the spectral theorem is not
applicable leading to lack of completeness in the set of eigenfunction and their orthogonality,
potentially giving rise to instabilities. Such instabilities will manifest themselves as strong
sensitivity of the eigenvalues (i.e. large eigenvalue migrations) to small-scale perturbations
of the operator.

Mathematical tools for detecting such instabilities without the need to compute eigen-
values have been extensively used in the literature, including fields like quantum mechanics
and hydrodynamics. One such tool is the pseudospectrum [1]. A particularly interesting
application of the pseudospectrum comes from the study of the stability of fluid flows [2]. It is
well known that fluid flows that are laminar (stable) at low speeds become unstable and then
turbulent at higher speeds. This phenomenon was traditionally investigated by linearising the
Navier-Stokes equation and testing for unstable eigenvalues of the linearised problem, but the
results agreed poorly in many cases with experiments. Considerations of the pseudospectrum
of the linearised problem resolved this tension [2], by suggesting that small perturbations
of the smooth flow may be amplified substantially by linear mechanisms. Motivated by
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the seminal work of Nollert and Price [3, 4] (see also [5]), the pseudospectrum was recently
introduced in the context of black hole physics in asymptotically flat [6–11], in asymptotically
anti-de Sitter (AdS) [12] and in asymptotically de Sitter (dS) geometries [13, 14], aiming to
provide a better understanding of the structural stability of quasinormal modes (QNMs).

In the case of asymptotically flat spacetimes, other than a conceptual problem in black
hole physics, the study of the pseudospectrum also has implications for the black hole
spectroscopy program: given that, in the near future, high-precision gravitational wave
observations from binary black hole mergers will allow for a detailed inspection of the spectra
of astrophysical black holes during the ringdown phase [15, 16], it is necessary to understand if
the QNM spectrum itself is affected by the astrophysical environment, quantum corrections, or
other generic modifications. The pseudospectrum analysis for the Schwarzschild and Reissner-
Nordström (RN) black holes was carried out in [6] and [8] respectively, and found spectral
instability of scalar and polar gravitoelectric quasinormal modes in subextremal and extremal
black holes. The response of the Schwarzschild black hole spectrum to specific potential
perturbations was studied in [6, 17, 18]. It was shown that overtones generically deviate at an
increasing rate from their non-deformed limits, while the fundamental mode is stable under
deformations localised close to the horizon [6, 18] but unstable under perturbations that are
localised further away [6, 17]. This raised concerns about the robustness of the spectroscopy
program, which let to a detailed study of the physical behaviour of time-domain signals [19].
The pseudospectrum was also studied for exotic horizonless objects [20].

In the case of asymptotically AdS black branes in 5 dimensions, the pseudospectrum
for neutral scalar and transverse electromagnetic perturbations of the planar Schwarzschild
black hole was studied in [12]. The aim of [12] was to shed a new light on the behaviour
of strongly coupled quantum many-body systems modelled by the gauge/gravity duality.
Compared to the asymptotically flat case, dissipation in AdS is reduced given that the AdS
boundary works as a box not allowing energy to escape to infinity. However, due to the
presence of the event horizon, the system is still dissipative and the spectral operator is
still non-self adjoint. As such, similarly to the asymptotically flat case, the pseudospectrum
revealed spectral instability.

While the computation we perform in this paper follows the computations already done
in the literature, an important difference is the coordinate basis used. In asymptotically flat
spacetimes the pseudospectrum computation is carried out in hyperboloidal coordinates [6, 8,
20]. Other than compactifying the domain, this set of coordinates has the added benefit of
making manifest ingoing boundary conditions at the horizon and outgoing boundary conditions
at future null infinity. In asymptotically AdS, [12] used a set of “regular compact coordinates”
that asymptote to ingoing Eddington-Finkelstein coordinates close to the horizon. This made
manifest the ingoing boundary conditions at the horizon, while at the boundary of AdS they
imposed that the source for the scalar field vanishes. In both of these cases, the equations
of motion for the perturbations were second order in time and a time-reduction procedure
was employed to cast the spectral problem as a regular eigenvalue problem. In contrast, our
calculation employs Eiddington-Finkelstein coordinates throughout the spacetime leading to a
problem that is first order in time and produces a generalised eigenvalue problem when solving
for the quasinormal frequencies. Note that in [12] the authors also considered formulating
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the problem in purely ingoing Eddington-Finkelstein coordinates, but ultimately decided
to proceed using the above coordinate system.

In this work, we expand the previous work done for asymptotically AdS black holes by
(i) considering perturbations of a massless scalar as well as electromagnetic and gravitational
perturbations around the Reissner-Nordström (RN) black hole and (ii) formulating the pseu-
dospectrum computation as a generalised eigenvalue problem in ingoing Eddington-Finkelstein
coordinates. The QNM spectrum for black holes/branes in AdS has been extensively studied
in the literature [21, 22], including more mathematical work [23]. Thanks to the coordinate
system used, ingoing boundary conditions at the horizon become manifest.1 Moreover, the
equations of motion for the perturbation are now first order in time and in fact the time
derivative appears as a mixed (v, z) derivative, where v in the ingoing Eddington-Finkelstein
coordinate and z is a compactified radial coordinate. Solving for the spectrum can then be
recast as a generalised eigenvalue problem instead of a standard one [1]. Computations of
the pseudospectrum in the case of generalised eigenvalue problems are less developed in the
literature [1, 9]. In particular, there are different definitions of the pseudospectrum depending
on which operators are perturbed and one needs to resort to physical arguments in order to
select the definition most suitable to the problem at hand. In our case, we perturb only the
physically meaningful part of the operator. After this work appeared on the arXiv, recent
work on the convergence of the pseudospectrum in AdS [10] showed that the pseudospectrum
convergence properties present a better behaviour in null coordinates than in hyperboloidal
slicing and they are consistent with Warnick’s theorems [23] for AdS black hole QNMs (when
an appropriate norm is considered). It is currently not understood what is the underlying
reason behind the lack of convergence in the case of hyperboloidal coordinates.

Our results for the scalar field are presented in section 4.1 as function of the momentum
k and charge Q (or equivalently, the temperature T ). In particular, we see that all modes in
the spectrum are unstable for sufficiently large perturbations, with the fundamental mode
being the least unstable. A novel observation for these spectra, seen also in the gravitoelectric
case, is that the pseudospectral contour lines cross in the upper half plane when subject
to perturbations of size < O(1). This translates into an unstable perturbed spectrum and
suggest the existence of transient instabilities and the possibility of pseudo-resonances [20, 24],
both of which are mechanisms that give rise to non-linear instabilities.

The pseudospectrum for metric and gauge field perturbations is computed in section 4.2.
Note that in the case of the AdS-RN black hole the gravitational and electromagnetic
perturbations do not decouple from each other. However, it is well understood that they
can be split into three sectors: the scalar, vector and tensor2 sectors, depending on how the
perturbations transform under rotations on the plane transverse to the momentum. Each
of the scalar and vector sectors contain two channels: in the scalar sector these are the
sound and charge diffusion channels; in the vector sector these are the shear and transverse
gauge channels. The tensor sector, on the other hand, only includes one channel and in
fact behaves as a neutral massless scalar. Thus, its pseudospectrum is captured by the

1In addition to ingoing boundary conditions at the horizon, we also need to ensure the absence of sources
at infinity.

2The tensor channel is present only in bulk dimensions D ≥ 5.
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computation of section 4.1. Our pseudospectral analysis demonstrates generic instability
in all channels, with higher overtones more sensitive to perturbations. Particular attention
is given to the channels that contain hydrodynamic modes, namely modes that reside at
the origin of the complex frequency plane at zero momentum; these are the shear, sound
and charge diffusion. We find that these modes require very strong perturbations in order
to be pushed to instability. Just like for scalar perturbations, we also observe that the
pseudospectral contour lines cross to the upper half plane, suggesting possible transient black
hole instabilities as well as pseudo-resonances [20, 24].

The following two comments are now in order. With regards to the potential transient
instabilities mentioned above, further analysis is required to check if these actually correspond
to exponential growth of the evolution operator along the lines of [20, 24, 25]. It should
be noted that previous pseudospectrum computations in hyperboloidal coordinates do not
present any such indications [12]. This highlights the need to understand the dependence of
the pseudospectrum on the spacetime slicing. With regards to the nature of the instabilities
observed, in order to understand this better we have also studied the response of the spectrum
to specific potential perturbations. This indicated similar behaviour to asymptotically flat
spacetime [6, 18], namely that it is a “high-wavenumber” phenomenon.

We have also investigated the asymptotic behaviour of pseudospectral contour levels at
large real values of the spectral frequency, finding universality to be generic across different
sectors. Similar universality was seen in 4-dimensional asymptotically flat spacetimes with
either Schwarzschild [6, 7] or RN black holes [8]. Crucially, our preliminary analysis indicates
that the pseudospectral contour levels exhibit polynomial behaviour in the real part of the
frequency, in contrast to the logarithmic behaviour noted in asymptotically flat spacetimes.
This difference may arise from the imposition of reflective boundary conditions on the AdS
boundary, as opposed to the Dirichlet conditions employed in asymptotically flat backgrounds.
However, as we will discuss, asymptotic analysis of the pseudospectrum in AdS is complicated
by the necessity of additional terms in the energy inner product to ensure regularity in the
complex plane as the distance from the real axis is increased [10]. In order to draw a firm
conclusion, further examination of these effects is required.

The rest of the paper is organised as follows. In section 2 we give the formal definition for
the spectrum and pseudospectrum for a standard eigenvalue problem as well as a generalised
eigenvalue problem and in section 2 we motivate our choice of the energy norm as the funda-
mental scale of the system. In section 3 we describe details of our numerical implementation,
including the discretisation method used and the matrix representation of the energy norm in
terms of the Gram matrix. Our results for the pseudospectrum of the 5-dimensional planar
AdS-RN black brane in ingoing Eddington-Finkelstein coordinates are then presented in
section 4. In particular, in section 4.1 we discuss the pseudospectrum of a neutral, massless
scalar field, while in 4.2 we consider gravitoelectric perturbation in all three channels. The
universality of the asymptotic behaviour of the pseudospectral contour lines is discussed
in 4.3. Finally, we conclude with an outlook and future directions in section 5. There are
also two appendices. In appendix A we study the scalar spectrum of global AdS4, where we
find spectral stability associated with the lack of energy dissipation, while in appendix B
we discuss the numerical convergence of our QNM computation.
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2 Spectra and pseudospectra

The notion of spectrum of an operator is a familiar one in many areas of Physics, Mathematics
and Engineering. It can be understood as a generalisation of the set of eigenvalues of a matrix.
Recall that for a matrix A, its eigenvalues are the values of λ that satisfy the equation

det(A− λ1) = 0

where 1 is the identity matrix. If λ is an eigenvalue of A, the operator A−λ1 is not one-to-one
and therefore its inverse (A− λ1)−1 is not defined. We then define the spectrum of A as

σ(A) = {λ ∈ C : λ1 −A is not invertible}. (2.1)

It is also useful to define the resolvent RA(λ) = (λ1 −A)−1 of the operator A and note that
if the spectrum σ(A) is empty RA(λ) is defined everywhere in the complex plane.

The spectrum is an intrinsic property of an operator, and it is an incredibly useful
concept. Nevertheless, there are classes of problems where the associated methods may
fail to give a useful answer. In particular, it is only for normal operators N satisfying
NN † = N †N , where † denotes the adjoint, that one can show that the spectrum of the
operator is stable. For non-normal operators, in general, small perturbations to the operator
can drastically alter its spectrum.

To study such problems, Trefethen and collaborators [1, 26] introduced the concept of
pseudospectrum. To motivate its definition let us start by noting that, from definition (2.1),
whenever λ is an eigenvalue of A, the operator λ1−A is singular. Equivalently, the resolvent
RA(λ) = (λ1 − A)−1 is not defined.

Let us then define the ϵ-pseudospectrum as the set of points in the complex plane
such that [1]

σϵ(A) = {λ ∈ C : ∥RA(λ)∥ = ∥(λ1 −A)−1∥ > 1/ϵ} (2.2)

for some choice of norm ∥ · ∥. Note that ∥RA(λ)∥ = ∞ whenever λ is an eigenvalue of A
and thus, with this convention, σ0(A) = σ(A).

It can also be shown [26] that the definition (2.2) is equivalent to

σϵ(A) = {λ ∈ C, ∃ δA with ∥δA∥ < ϵ : λ ∈ σ(A+ δA)}, (2.3)

which means that the points in σϵ(A) are the eigenvalues of an operator A+ δA, that is, of
some ϵ-perturbation of the operator A. Note however that, while the spectrum is an intrinsic
property of the operator, the pseudospectrum is not, as it depends also on the choice of the
operator norm. Indeed, the choice of norm is crucial since it quantifies how large are the
perturbations δA, and thus a small perturbation in a given norm could actually correspond
to a large perturbation under another norm — see also the relevant discussion in [6, 11].

A related measure of the stability of a spectrum is the condition number κ of each
eigenvalue. Let us consider a matrix A ∈ CN×N with a set of distinct eigenvalues {λ1, . . . , λN},
which implies the existence of a set of right eigenvectors (vj) and left eigenvectors (uj)
that satisfy

Avj = λjvj and u∗jA = λju
∗
j . (2.4)
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Under the perturbation A→ A(t) = A+ t δA for3 ∥δA∥ = 1 and t ∈ C, |t| < 1, the perturbed
eigenpair (λ1(t), v1(t)) satisfy

A(t)v1(t) = λ1(t)v1(t) . (2.5)

Expanding λ1(t) and v1(t) as Taylor series in t [1],

λ1(t) = λ1 + α1t+ α2t
2 + . . . (2.6)

v1(t) = v1 +
N∑

j=1

(
tβ

(1)
j + t2β

(2)
j + . . .

)
vj (2.7)

we can take the inner product of (2.5) with u∗1 and see that

λ1(t)⟨u∗1, v1(t)⟩ = λ1(t)⟨u∗1, v1⟩ = ⟨u∗1, A(t)v1(t)⟩
= ⟨u∗1, Av1(t)⟩ + t⟨u∗1, δAv1(t)⟩
= λ1⟨u∗1, v1⟩ + t⟨u∗1, δAv1(t)⟩ .

Thus, the perturbation of A has moved the eigenvalue λ1 by

|λ1 − λ1(t)| = |t| |⟨u
∗
1, δAv1(t)⟩|
|⟨u∗1, v1⟩|

≤ |t|∥u1∥ ∥v1(t)∥
|⟨u∗1, v1⟩|

= |t|∥u
∗
1∥ ∥v1∥

|⟨u∗1, v1⟩|
+ O(t2) , (2.8)

where we have used the Cauchy-Schwarz inequality and the fact that ∥δA∥ = 1. Defining
the condition number of the j-th eigenvalue by

κj = ∥uj∥ ∥vj∥
|⟨u∗j , vj⟩|

(2.9)

we see that the magnitude of κj gives us an indication of the stability of λj as it determines
whether the shift in the eigenvalue remains of the order of the size of the perturbation |t|.
Indeed, for normal operators with A† = A, uj is colinear with vj and so κj = 1. However,
non-normal operators, i.e. unstable operators, may have non-colinear (uj , vj), resulting in
arbitrarily small values for |⟨u∗j , vj⟩| and arbitrarily large values of κj .

2.1 Pseudospectra for matrix pencils

The definitions (2.2) and (2.3) stem from an eigenvalue problem of the form Av = λv. As we
will see, the computation of the spectrum (and, correspondingly, also of the pseudospectrum)
for black holes in AdS becomes more natural in ingoing Eddington-Finkelstein coordinates.

This coordinate system naturally leads to a generalised eigenvalue problem, in the form

Av = λBv. (2.10)

The matrix A − λB is also known as a matrix pencil (A,B).
3The definition of the matrix and vector norms will become central to our discussion in later sections. For

now we leave the definition of || · || general.
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When considering the pseudospectrum in the form of a generalised eigenvalue problem, as
we will do in this work, the available techniques are not as well-developed as for the standard
eigenvalue case. Herein we will follow the approach of reference [27], which we now outline.

Take the generalised eigenvalue problem, equation (2.10), with B potentially singular.
The (generalised) eigenvalues of the matrix pencil (A,B) are the set of complex numbers
λ for which det(A − λB) = 0. This set of eigenvalues, as usual, is called the spectrum
and is denoted by σ(A,B). Analogously, the ϵ-pseudospectrum of the matrix pencil (A,B)
is defined as [27, 28]

σϵ(A,B) = {λ ∈ C : ∥(λB −A)−1∥ > 1/ϵ} (2.11)

for some choice of norm, which naturally reduces to (2.2) when B = 1. Furthermore, it is
shown in [27] that definition (2.11) is equivalent to

σϵ(A,B) = {λ ∈ C, ∃ δA with ∥δA∥ < ϵ : λ ∈ σ(A+ δA,B)}. (2.12)

In other words, σϵ(A,B) is the actual spectrum for some ϵ-perturbation of A, and we recover
the (usual) definition (2.3) for the pseudospectra of an operator A when B = 1. This
definition does not consider perturbations to the operator B and is therefore not as general
as others considered in the literature [1]. However, as we will argue later on, for our present
purposes this is the definition of interest since all relevant physical perturbations will be
fully contained within the operator A.

The notation of the condition number also extends to matrix pencils. While defining a
condition number in the case of a singular B matrix is more subtle (see [29, 30] for discussions
on this topic), when B is non-singular the definition of a condition number follows from
applying the mechanism outlined in section 2 to the matrix product B−1A.

2.2 Energy norm

Following the discussion of the previous section, we need to define an appropriate norm ∥ ·∥ to
quantify the size of perturbations. A natural definition is to use the energy norm associated
with the energy of each mode present in the spectrum [6, 11].

An intuitive way to obtain such a norm is as follows.
We start by considering the equation governing the spectrum of interest, which in a

wide range of cases (and in particular for all cases we will consider) reduces to a complex
scalar field that obeys the wave equation in 1+1 Minkowski spacetime with a potential V .4

In Cartesian coordinates (t, y) this reads

(□2 − V )ϕ(t, y) = 0, (2.13)

where □2 = −∂2
t + ∂2

y . Multiplying the latter by ∂t ϕ̄, where ¯ denotes complex conjugation,
and summing with its complex conjugate, we obtain [32]

∂t

(
∂tϕ̄ ∂tϕ+ ∂yϕ̄ ∂yϕ+ V ϕ̄ϕ

)
= ∂y

(
∂tϕ̄ ∂yϕ+ ∂tϕ∂yϕ̄

)
.

4In the context of black hole physics, it can be shown that a wide class of perturbations around a black
hole background take this form. The coordinate y is identified with the tortoise coordinate y = r∗ and the
potential depends, among other things, on the concrete black hole solution being perturbed and the specific
type of perturbation [31].
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Integrating both sides in y, we find that solutions of equation (2.13) obey

d

dt
E(t) = 1

2∂tϕ̄ ∂yϕ
∣∣∣y=b

y=a
+ 1

2∂tϕ∂yϕ̄
∣∣∣y=b

y=a
(2.14)

where
E(t) = 1

2

∫ b

a

(
∂tϕ̄ ∂tϕ+ ∂yϕ̄ ∂yϕ+ V ϕ̄ϕ

)
dy (2.15)

and a, b are the boundaries of our domain. E(t) can be interpreted as the “total energy”
contained in a spatial slice t = constant, and we see from equation (2.14) that the energy is
conserved if there are no modes entering or leaving the physical domain at y = a, b.

Another way of obtaining the energy norm that does not rely on a coordinate system
was introduced in [6]. There one starts by defining the usual stress-energy tensor of the
scalar field ϕ

Tab = 1
2∇aϕ̄∇bϕ+ 1

2∇aϕ∇bϕ̄− ηab

2
(
∇cϕ∇cϕ̄+ V ϕϕ̄

)
, (2.16)

where ηab is the 2-dimensional Minkowski metric (in arbitrary coordinates). We can then
define the energy on a hypersurface Σ through

E =
∫

Σ
Tab ξ

aκb dΣ . (2.17)

ξ is the timelike Killing vector associated with stationarity and κ is the normal vector to the
hypersurface Σ. In (t, y) coordinates and when the hypersurface Σ is chosen to correspond to
a t = constant slice, ξ = ∂t and it is easy to show that (2.17) reduces to expression (2.15).

It is illuminating to also consider (2.17) on a null hypersurface.5 In particular, let us
consider the coordinate system (v, Y ) where

v = t+ y , Y = y (2.18)

and the metric element reduces to

ds2 = −dv2 + 2dv dY .

Let us also choose the hypersurface Σv to correspond to v = constant. In this case, ξ = ∂t = ∂v

and κ is the normal vector to Σv. Since κa = −∂av, we have κ = −∂Y . We then have
Tab ξ

aκb = −TvY = 1
2∂Y ϕ∂Y ϕ̄+ 1

2V ϕϕ̄. Finally, since dΣv = −κvdY = dY , we obtain (2.19).

E[ϕ] = 1
2

∫
Σv

(
∂Y ϕ̄ ∂Y ϕ+ V ϕ̄ϕ

)
dY. (2.19)

This expression motivates the definition of the scalar product

⟨ϕ1, ϕ2⟩E =
∫ b

a

(
∂Y ϕ̄1 ∂Y ϕ2 + V ϕ̄1 ϕ2

)
dY, (2.20)

where a, b are now the boundary points in the Y coordinate.
5In the context of black holes, a natural choice for a null surface is a v = constant slice, where v corresponds

to the ingoing Eddington-Finkelstein coordinate defined as v = t + y, where y = r∗ is the tortoise coordinate.
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3 Matrix formulation

In this section we give details about the discretisation approach we follow in order to construct
the spectrum and the pseudospectrum of our systems. Sections 3.1 and 3.2 follow the approach
of [6], which we reproduce herein for completeness.

3.1 Choosing the grid

Based on the geometry of the problem, different choices of abscissa are available [33]. The
most common choices are the Gauss-Chebyshev points, given by xN

i = cos(π(2i− 1)/2N),
i = 1, . . . , N , and the Chebyshev-Lobatto points, xN

i = cos(πi/N), i = 0, . . . , N . Note that
the Chebyshev-Lobatto abscissa includes the endpoints x = ±1 while the Gauss-Chebyshev
do not; this is relevant whenever the functions being evaluated are singular at the ends
of the grid. In this work we choose to use the Chebyshev-Lobatto points (denoted x̄i) in
part because we have specific boundary conditions that must be enforced and also because
of a convenient overlap between a grid of N points, x̄N

i , and a grid of x̄2N
i that allows for

easy interpolation. This will be important during the numerical evaluation of the energy
inner product, as we will explain below.

First, for completeness, we note that there are known expressions for the discretised
first and second derivative operators in terms of simple functions of the gridpoints x̄i when
using Chebyshev collocation methods. In particular, the first and second derivative matrices
for the Chebyshev-Lobatto abscissa are

D(1) =



−2N2 + 1
6 if i = j = 0

2N2 + 1
6 if i = j = N

− x̄j

2(1 − x̄2
j )

if 0 < i = j < N

κi

κj

(−1)i−j

(x̄i − x̄j) if i ̸= j

(3.1)

and

D(2) =



N4 − 1
15 if i = j = 0, N

− 1
(1 − x̄2

i )2 − N2 − 1
3(1 − x̄2

i )
if 0 < i = j < N

2
3

(−1)j

κj

[
(2N2 + 1)(1 − x̄j) − 6

(1 − x̄j)2

]
if i = 0, 0 < j ≤ N

2
3

(−1)N+j

κj

[
(2N2 + 1)(1 + x̄j) − 6

(1 + x̄j)2

]
if i = N, 0 ≤ j < N

(−1)i−j

κj

[
x̄2

i + x̄ix̄j − 2
(1 − x̄2

i )(x̄j − x̄i)2

]
if i ̸= j, 0 < i < N

(3.2)

where

κi =
{

2, i = 0, N
1, 0 < i < N
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3.2 Chebyshev integration

Numerical evaluation of the energy inner product defined in (2.20) involves evaluating
integrals of the form

I(f) =
∫ 1

−1
f(x)dx . (3.3)

To do so, we first expand the function in a basis of Chebyshev polynomials,6

f(x) ≃ fN (x) = c0
2 +

N∑
i=1

ciTi(x) , (3.4)

and then, using properties of the Ti(x), find that

∫ 1

−1
f(x)dx ≈ c0 −

⌊N/2⌋∑
k=1

c2k

4k2 − 1 . (3.5)

More practical, however, is the writing of the coefficients ci in terms of the function values
at the collocation points x̄:

ci = (2 − δi
N )

2N

f(x̄0) + (−1)if(x̄N ) + 2
N−1∑
j=1

f(x̄j)Ti(x̄j)

 . (3.6)

Combining these expressions, the integral I(f) can be written as

I(f) ≈ IN (f) =
∫ 1

−1
f(x)dx = fT (x̄) · C(x̄) (3.7)

where fT (x̄) is a row vector of the function evaluated on the x̄ abscissa and the vector
C has entries

Ci = 2
κiN

1 −
⌊N/2⌋∑
k=1

T2k(x̄i)(2 − δN
2k)

4k2 − 1

 . (3.8)

When the integrand is a product of functions, each of which is described in terms of an
interpolation over the basis of Chebyshev functions, the integral

I(f(x)g(x)) =
∫ 1

−1
f(x)g(x)dµ (3.9)

with respect to the weight dµ = µ(x)dx is a simple extension of the integral of a single function,

I(f(x)g(x)µ(x)) ≃ fT (x̄) · Cµ(x̄) · g(x̄) (3.10)

where Cµ(x̄) is now a diagonal (N + 1) × (N + 1) matrix with components

(Cµ)ii = 2µ(x̄i)
κiN

1 −
⌊N/2⌋∑
k=1

T2k(x̄i)(2 − δN
2k)

4k2 − 1

 . (3.11)

6Exact equivalence is achieved in the limit N → ∞, but at finite N the relation remains approximate.
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Thus, an inner product of the form in (2.20) can be approximated by the discrete expression

⟨ϕ1, ϕ2⟩G = (ϕ∗1)iGij (ϕ2)j = ϕ∗1 ·G · ϕ2, (3.12)

where ϕ∗ = ϕ̄t. The matrix G is known as the Gram matrix, corresponding to the inner
product of interest.

Finally, we address an important technical note regarding integral quadrature and grid
interpolation: integral quadrature over two functions — each of which are approximated by
polynomials of degree N + 1 — requires a grid of 2N + 2 points to be spectrally accurate [34].
Therefore, when evaluating an inner product of the form (3.12), where ϕ1 and ϕ2 are
each approximated by N + 1 Chebyshev polynomials, the Gram matrix G containing the
quadrature weights must be of size (2N + 2) × (2N + 2). Practically speaking, we achieve
this by evaluating (3.11) at double the spectral resolution and then interpolating down to
(N + 1) × (N + 1) by the application of an interpolation matrix I via It ·G · I. The form of
I can be determined by evaluating the expression for the spectral coefficients in (3.6) at the
double-resolution collocation points, thereby giving the elements of the (Chebyshev-Lobatto)
interpolation matrix

Iīi = 1
κiN

(
1 +

N∑
k=1

(2 − δk,N )Tk(x̄ī)Tk(x̄i)
)
, (3.13)

where ī ∈ [0, 2N + 1].

3.3 Reduction of energy norm to the ℓ2 norm

Once discretised and interpolated by the methods described above, we arrive at the Gram
matrix G for the energy inner product described by (3.12). Since G will be Hermitian and
positive definite, it admits a Cholesky decomposition of the form G = F ∗F . We can then
follow [1, 35] to express the (discretised) energy norm ∥ · ∥2

G
= ⟨·, ·⟩G (which we will refer

to as the G norm) as an ℓ2 norm:7

∥M∥2
G

= max
x∈Cn

∥Mx∥2
G

∥x∥2
G

= max
x∈Cn

⟨Mx,Mx⟩G

⟨x, x⟩G

= max
x∈Cn

x∗M∗F ∗FMx

x∗F ∗Fx

= max
y∈Cn

y∗F−1∗M∗F ∗FMF−1y

y∗y
= max

y∈Cn

∥FMF−1y∥2
2

∥y∥2
2

= ∥FMF−1∥2
2 . (3.14)

When applied to the norm of the resolvent RA,B(λ) ≡ (λB −A)−1 used in equation (2.11),
we can straightforwardly see that∥∥∥(λB −A)−1

∥∥∥
G

=
∥∥∥∥(λB̃ − Ã

)−1
∥∥∥∥

2

(3.15)

with B̃ = FBF−1, Ã = FAF−1, and thus the ϵ-pseudospectrum (2.11) in the G norm σϵ
G

can be expressed as the “usual” ϵ-pseudospectrum in the ℓ2 norm σϵ
2 ,

σϵ
G

(A,B) = σϵ
2(Ã, B̃). (3.16)

7For completeness, note that the ℓ2 matrix norm (induced by the vector ℓ2 norm) is given by the largest
singular value of the matrix, i.e. the spectral norm.
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The advantage of this is that it can be shown (see, e.g., [1, 27]) that the ϵ-pseudospectrum
can then be computed from

σϵ
2(Ã, B̃) = {λ ∈ C : smin(λB̃ − Ã) < ϵ} (3.17)

where smin denotes the smallest singular value.8 This is the definition that we will be using
for practical computations of the pseudospectrum, since it can be readily obtained from the
singular value decomposition of the matrix M ≡ λFBF−1 − FAF−1.

4 Scalar, electromagnetic and gravitational perturbations for planar
AdS-RN

Let us now consider our physical setup, consisting of Einstein-Maxwell theory in D = 5
spacetime dimensions with action given by

S = 1
16πG5

∫
d5x

√
−g

(
R− 2Λ − 1

4Fµν F
µν
)

(4.1)

where F ≡ dA and Λ = −6 is the cosmological constant. The variation of the action (4.1)
gives rise to the following field equations

Rµν − R

2 gµν − 6gµν − 1
2

(
FµρFν

ρ − 1
4 gµνFλρF

λρ
)

= 0 ,

∇µF
µν = 0 .

(4.2)

The above equations admit what is known as the AdS Reissner-Nordström (RN) black-brane
solution. Concretely, the metric and gauge field, in Poincaré coordinates, take the form

ds2 = −r2f(r)dt2 + dr2

r2f(r) + r2
(
dx2

1 + dx2
2 + dx2

3

)
A = µ

(
1 − r2

h
r2

)
dt

f = 1 − r4
h
r4 (1 +Q2) + r6

h
r6Q

2 ,

(4.3)

where rh is the black hole horizon, Q is the electric charge carried by the black hole and
µ =

√
3 rhQ is the chemical potential. Without loss of generality, we will henceforth fix units

where the horizon radius is at rh = 1 — the explicit dependence can be reinstated through

r → r

rh
, t→ t rh, xi → xi rh, µ→ µ

rh
. (4.4)

We can now perform the following coordinate transformation

t = v − r∗ , Y = r∗, (4.5)

8Numerically, this is achieved by using the randomized subspace method outlined in [36] to compute only
the smallest value rather than the entire set.
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where dY = dr∗ = dr
r2f(r) . For convenience, we also compactify the radial coordinate r

by introducing

z = 1
r

so that our physical domain spans z = 0 (the AdS boundary, r → ∞) to z = 1 (the black
hole horizon, r = 1). To fix notation, we will refer to this coordinate system (v, z) as the
ingoing Eddington-Finkelstein coordinates.

Overall, we obtain

ds2 = 1
z2

(
−f(z)dv2 − 2dv dz + dx2

1 + dx2
2 + dx2

3

)
,

A = µ(1 − z2)
(
dv + dz

f(z)

)
,

(4.6)

where
f(z) = 1 − z4

(
1 +Q2

)
+ z6Q2.

The (dimensionless) temperature of the black hole is given by

T

µ
= 1

2π µ
[
2 −Q2

]
. (4.7)

When Q = 0 the system is neutral and the bulk solution (4.6) reduces to the AdS-Schwarzschild
black brane, while Q = Qmax =

√
2 corresponds to the extremal limit T/µ → 0.

4.1 Massless neutral scalar perturbations

We now consider a neutral, massless scalar field Φ, in the background of the 5-dimensional
planar AdS-RN solution described above. Such a perturbation obeys the Klein-Gordon
equation

□Φ = 0 , (4.8)

which can then be tackled in different coordinate systems.

Poincaré coordinates. It is not difficult to show that, in Poincaré coordinates (t, r), the
above equation takes the form (2.13). To see that, we decompose the scalar as [37]

Φ = 1
r

3
2
ϕ(t, r) eik⃗·x⃗

and we substitute in equation (4.8) to find(
−∂2

t + ∂2
r∗ − V (r)

)
ϕ(t, r) = 0, (4.9)

V (r) ≡ f(r)
(
k2 + 3

4f(r) + 3
2r
df(r)
dr

)
and ∂r∗ = r2f(r)∂r. These coordinates are not horizon-penetrating, however, and are therefore
unsuitable to perform the pseudospectrum analysis. This fact has been noted also in [12].
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Ingoing Eddington-Finkelstein coordinates. We consider instead ingoing Eddington-
Finkelstein coordinates, which are regular at the black hole horizon and also allow one to
reach the AdS boundary. With these coordinates, one can naturally impose the required
boundary conditions at the two ends of the physical domain following surfaces of constant v.
Note that this is not possible in asymptotically flat spacetimes, where — due to the different
asymptotics — surfaces of constant v lead one to past null infinity I − instead. Indeed, that
is the major motivation for using the hyperboloidal coordinates originally developed in [6]
and used thereafter in the literature.9 See e.g. reference [38] for an overview of hyperboloidal
coordinates and their applications. In reference [12], the authors worked with “compactified
regular coordinates” — which is more similar to the hyperboloidal coordinates used in
asymptotically flat cases. We find this to be unnecessary, and prefer to keep the elegance
and simplicity of the ingoing Eddington-Finkelstein system, at the expense of dealing with a
generalised eigenvalue problem (as opposed to a standard eigenvalue problem). As discussed
in section 2.1, this poses no problems in practice.

With the ansatz

Φ = z
3
2ϕ(v, z) eik⃗·x⃗ ,

the Klein-Gordon equation (4.8) becomes[
−2 ∂vz + ∂z (f(z)∂z) − V̂ (z)

]
ϕ(v, z) = 0, (4.10)

V̂ (z) ≡ V (z)
f(z) = k2 + 15

4
f(z)
z2 − 3

2
f ′(z)
z

= k2 + 15
4z2 + 9

4
(
1 +Q2

)
z2 − 21

4 Q
2z4

where the prime ′ denotes derivative with respect to z.
Since solutions to equation (4.10) behave as ϕ ∼ z5/2 close to the AdS boundary z = 0,

we proceed to redefine

ϕ(v, z) = z
5
2ψ(v, z). (4.11)

With this redefinition, the required boundary conditions reduce to demanding regularity
of the fields at the two boundaries. The equation of motion now takes the form[

−2 ∂vz −
5
z
∂v + ∂z (f(z)∂z) + 5f(z)

z
∂z − Û(z)

]
ψ(v, z) = 0, (4.12)

Û(z) ≡ U(z)
f(z) = k2 − 4f

′(z)
z

= k2 + 8z2(26(1 +Q2) − 3Q2z2) .

The latter can be rewritten in the form of a generalised eigenvalue problem

L2 ∂vψ = iL1ψ (4.13)

where

iL1 =
[
∂z (zf(z)∂z) −

(
k2z − 4f ′(z)

)
1
]

+ 4f(z)∂z, (4.14)

L2 = 2z∂z + 51. (4.15)
9We thank Rodrigo Panosso Macedo for clarification of these points.
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Note that the iL1 operator contains the full physics of the problem (thus justifying our
definition (2.12) for the pseudospectrum) and that the term in square brackets has the
structure of a Sturm-Liouville operator.

Equation (2.19) now takes the form

E[ψ] = 1
2

∫ 1

0
dz

[
z5f(z)∂zψ̄ ∂zψ + 5

2z
4f(z)

(
ψ̄ ∂zψ + ∂zψ̄ ψ

)
+ z3

(
10f(z) − 3

2zf
′(z) + k2z2

)
ψ̄ ψ

]
. (4.16)

We note that every term in L1, L2 and E[ψ] is explicitly regular for z ∈ [0, 1]. This contrasts
with the approach of [12], where divergent terms at z = 0 need special care. We can now
define the scalar product

⟨ψ1, ψ2⟩E = 1
2

∫ 1

0
dz

[
z5f(z) ∂zψ̄1 ∂zψ2 + 5

2z
4f(z)

(
ψ̄1 ∂zψ2 + ∂zψ̄1 ψ2

)
+ z3

(
10f(z) − 3

2zf
′(z) + k2z2

)
ψ̄1 ψ2

]
(4.17)

as well as the energy norm ∥ · ∥2
E

= ⟨·, ·⟩E . Following section 3.2, we can also build its
discretised counterpart

⟨ψ1, ψ2⟩G = ψ∗
1 ·GE · ψ2, (4.18)

with the Gram matrix

GE = 1
2
(
CV + C1 · D + Dt · C1 + Dt · C2 · D

)
(4.19)

and (Ca)ij = µa(zi)Wi δij (no summing on i). Wi are the quadrature weights introduced
in section 3.2, δij is the Kronecker delta, and

µV (z) = z3
(

10f(z) − 3
2zf

′(z) + k2z2
)
, µ1(z) = 5

2z
4f(z), µ2(z) = z5f(z).

4.1.1 Results

With the operators L1, L2 and the Gram matrix GE just defined, we are now ready to
compute the ϵ-pseudospectrum σϵ of this system following the approach outlined in section 3,
in particular equation (3.17).

Our results are displayed in figure 1 for a choice of Q, k, while a zoomed-in and a
zoomed-out plot of the pseudospectrum for the uncharged k = 0 case are shown in figure 2.
The crosses correspond to the locations of the QNMs, where ϵ = 0. In figure 1 we also
display the condition numbers10 κ for each case, as defined in section 2. Recall that the
condition number gives an indication of the relative size of the change in an eigenvalue
with respect to the magnitude of a perturbation: quantitatively, for a completely stable
spectrum κ = 1 for all modes; for non-conservative systems typically the condition number
increases with increasing overtone, while for severely unstable spectra κ≫ 1 for all modes.
Thus, the condition number can be used along with the pseudospectrum to understand the
degree of instability of a spectrum.

10Except for figure 1(d) where κ0, κ1 are the condition numbers for the fundamental mode, κ2 is for the
eigenvalue with ℜ(ω) = 0, and κi, i ≥ 3 are for the overtones.
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(c) k = 10, Q = 0.1.
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(d) k = 10, Q = 0.99Qmax.

Figure 1. The ϵ-pseudospectrum σϵ for various planar black hole solutions coupled to a massless
scalar field. Recall that the extremal solution is obtained for Qmax =

√
2. Above each plot, the

condition numbers κ of the eigenvalues are plotted with increasing overtone number. The red crosses
mark the spectrum points.

As can be observed from these figures, although the pseudospectrum still forms circular
sets if we zoom arbitrarily close to the spectrum, its large scale global structure present open
sets. These extend into large regions of the complex plane, indicating spectral instability.
Interpreted through the gauge/gravity correspondence, this indicates spectral instability
of the dual strongly coupled system —see section 4.4 for a discussion on the holographic
interpretation. More specifically, we see that for modes that reside further from the real axis,
the value of ϵ needed in order to move the mode in the open set region reduces. This signals
that the strength of instability increases with the overtone.Conversely, this also means that
the fundamental mode is the most stable of the QNMs. For the fundamental mode shown in
figure 2, one needs to perturb the system by ϵ ∼ 10−2.12 to see instability.11

Given the correlation between the distance from the real axis and the strength of the
instability, we find that as the momentum k increases and the modes move closer to the real

11In order to extract this number in a meaningful way, the pseudospectrum must be convergent in that
region of the complex frequency plane. Following [10], this requires the use of an H2 norm.
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Figure 2. Zoomed-in and zoomed-out view of the ϵ-pseudospectrum σϵ for the k = 0, Q = 0 case
from equation (4.6). Left: a wide view of the pseudospectrum demonstrates the “open set” behaviour
of contour lines away from the quasinormal modes. Right: a zoomed view of the pseudospectrum near
the fundamental mode ω0 = 3.119 − 2.747i shows that small perturbations around this mode remain
close to the ω0 value. The highlighted contour line indicates the transition from circular to “open set”
contour lines.

axis, their stability increases. In a similar spirit, as the charge Q increases, the modes move
marginally further away from the real axis and thus their stability marginally decreases.

We also observe that the pseudospectrum contour lines cross in the upper half plane.
This corresponds to an unstable perturbed spectrum signaling the possibility of transients.
In order to determine whether these transient instabilities indeed manifest themselves, one
would need to compute the pseudospectral and numerical abscissa [20, 24, 25], which bound
the norm of the evolution operator of the system from below and from above, respectively. If
no exponential growth is observed, then the transients are not physical. We leave this for
future work. However, we can already argue for the presence of pseudo-resonances [20, 24] at
the points where pseudospectrum contour lines cross the real axis into the upper half plane.

In view of [10], comparison of our results with those of [12] for Q = 0 is difficult. This is
due to the different convergence behaviour of the pseudospectrum in null and hyperboloidal
slicing. But even modulo the convergence issue, we do not expect to see a precise quantitative
agreement since we are using a different definition for the pseudospectrum. Having said
the above, a notable difference between the two computations is that the pseudospectrum
contour lines in [12] do not cross in the upper half plane, implying absence of transients. It
would be interesting to understand better the origin of this difference, and more generically
the dependence of the pseudospectrum on the slicing.

Finally, in the near-extremal limit we observed the existence of a series of equally-
spaced quasinormal modes with zero real part, i.e. non-oscillatory modes. In figure 1(d)
we can see the first of these modes. Unlike the spectrum of the vector and scalar channel
of gravitoelectric perturbations (see for example figure 4(d)), where non-oscillatory modes
collect from −i∞ to form a branch cut, these modes do not accumulate as we approach
extremality. Curiously, they remain stable against both infrared and ultraviolet perturbations,
as we will show in the next section.
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4.1.2 Testing the stability of scalar QNMs

While the pseudospectrum allows us to visualize the stability of the QNM spectrum to general
perturbations of order ϵ, we may also be interested in how specific perturbations to the
background affect the spectrum [17]. These perturbations occur in the potential and can be
of any form in general, although perturbations informed by physical processes are particularly
important. For example, changes to the potential due to deviations from pure Schwarzschild
geometry in the near-horizon region are expected to manifest as changes in the first few
overtones [18]. With this in mind, we consider changes in the potential in (4.12) of the form
Û → Û + δÛ with δÛ(z) = ϵ cos(πω(z − 1)). In terms of the generalised eigenvalue problem

(L1 − λL2)ψ = 0,

this corresponds to a perturbation of the form L1 → L1 + δÛ .
It is important to note that adding a perturbation of size ∥δÛ∥E ∼ ϵ relies on the definition

of a norm just as the pseudospectrum does. Thus, to ensure that the size of δÛ remains of
order ϵ relative to L1 we must convert the energy norm to the 2-norm via the procedure
outlined in subsection 3.3, normalise ∥δÛ∥2 , and finally add the overall perturbation to L1.

In figure 3, we show the effects of adding a sinusoidal perturbation of magnitude ϵ = 10−8

(left column) and ϵ = 10−6 (right column) to the potential. In each plot, the unperturbed
spectrum is denoted by red dots; the spectra resulting from L1 → L1 + δÛ are overlaid in
circles (ω = 1) and crosses (ω = 100). Contour lines of the ϵ-pseudospectra are included
for reference, with the magnitudes indicated in the plot. We observe that for ω = 1 both
the fundamental modes and the first few overtones that we can resolve numerically are
stable. For ω = 100 we see that higher overtones are more prone to instability than the
fundamental modes or lower overtones. Note that the shifted spectrum follows the contours of
the ϵ-pseudospectrum. We thus conclude that the instabilities we find are “ultraviolet”. This
is in agreement with previous work in the literature in flat spacetime [6, 18] and in AdS [39].

In the case of the near-extremal black hole, we can see that the non-oscillating mode
is more stable against both short- and long-wavelength perturbations than the overtones,
despite being located further from the imaginary axis. As shown in figure 1(d), this mode has
a condition number several orders of magnitude less than the other QNMs in the spectrum.
Hence, the increased stability of this mode is to be expected.

4.2 Metric and gauge field perturbations

We now move on to study gravitational and electromagnetic fluctuations around the back-
ground configuration (4.6). Gravitational QNMs for the AdS-Schwarzschild and AdS-RN
black branes were discussed previously in the literature [21, 22]. In particular, for non-zero
charge the electromagnetic and gravitational perturbations couple to each other. However, it
is well known that these split into 3 sectors, depending on how they transform under the
rotation group transverse to the momentum of the fluctuations: the tensor (for D > 4),
the vector and the scalar sectors.

In what follows we will use the formalism of master equations, which was first derived
for AdS-RN in [40] and later generalised in [41]. The idea is to construct gauge invariant
combinations of the perturbations, and then combine them into master scalars that satisfy
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Figure 3. The perturbed scalar spectrum when δÛ = ϵ cos(πω(z − 1)) for various AdS-RN con-
figurations. Columns, left to right: ϵ = 10−8; ϵ = 10−6. Rows, from top to bottom: k = 0, Q = 0;
k = 10, Q = 0.99Qmax.

Klein-Gordon equations with certain potentials. The tensor sector contains a single master
scalar Φ2. The vector sector contains two, whose equations can be decoupled by taking certain
linear combinations that we denote Φ1±: these correspond to the shear channel (positive
sign) and the transverse gauge field (negative sign). Finally, the scalar sector contains two
more master scalars that can be decoupled, which we denote Φ0±: these correspond to
the sound channel (positive sign) and the diffusion channel (negative sign). Out of these
5 types of fluctuations only the shear, sound and diffusion contain hydrodynamic modes,
meaning modes that obey dispersion relations such that the frequency approaches zero as
the momentum is decreased.

Each of these master scalars satisfy a master equation of the form

□Φi − Zi(z)Φi = 0 , (4.20)

where □ is the Laplacian on the spacetime (4.6). Without loss of generality, we decompose
the master scalars into plane waves with the momentum pointing in the x1 direction

Φi(v, z, x1) = ei kx1Φi(v, z) , (4.21)

where k is the momentum in the x1 direction.
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The potentials for the tensor, vector and scalar sectors can be written respectively as

Z2(z) = 0

Z1±(z) = 1
2(Z(1)

11 + Z
(1)
22 ) ± 1

2

√
(Z(1)

11 − Z
(1)
22 )2 + 4(Z(1)

12 )2

Z0±(z) = 1
2(Z(0)

11 + Z
(0)
22 ) ± 1

2

√
(Z(0)

11 − Z
(0)
22 )2 + 4(Z(0)

12 )2

(4.22)

where
Z

(1)
11 = zf ′ − 3f + z4a′2

Z
(1)
22 = 3zf ′ − 3f

Z
(1)
12 = |k|z3a′

(4.23)

and

Z
(0)
11 = a′2z2

D2

(
18fa′2z2 − 9F

(
2f + zf ′

)
+ 36k2f + 4k4z2

)
− 2(2f − zf ′)

Z
(0)
22 = 2

D2

(
12k2z2fa′2 + 12k2F

(
nf − zf ′

)
− 8k4 (f − zf ′

))
Z

(0)
12 = |k|za′

D2
2√
3

(
18z2fa′2 + 9F(z)(2f − zf ′) + 12k2f + 4k4z2

)
F = f ′/z , D = 2k2 − 3F .

(4.24)

Note that the tensor sector corresponds to a massless scalar with no potential, which
is precisely what we studied in the previous subsection. Hence, in what follows we will
focus only on the vector and scalar sectors. It is also important to emphasise that the two
channels within the vector and the scalar sectors decouple from each other precisely because
the following combination is constant

Z
(i)
11 − Z

(i)
2

Z
(i)
12

= −ci
1 +Q2

|k|Q
, i = 0, 1, (4.25)

with c0 = 2, c1 = 4√
3 .

Following the same methodology as for the scalar field perturbations, we consider the
following rescalings. First, we rescale the master scalars as

Φi(v, z) = z
3
2ϕi(v, z) (4.26)

to bring the equations into the form (4.10)

− 2f∂vzϕi + f∂z(f∂zϕi) − Vi(z)ϕi = 0 (4.27)

Vi(z) ≡ fV̂i(z) = f

z2 (Zi(z) + k2z2) + 3
2
f

z2

(
−zf ′ + 5

2f
)
.

However, as before, for the purposes of the numerical implementation we also consider
the redefinition

Φi(v, z) = z∆iψi(v, z) where ∆2 = 4, ∆1± = 3, ∆0± = 2 (4.28)
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so that, given the absence of a source, the leading UV behaviour is ψ = VEV + O(z). In
this case the equations for the master scalars become

− 2f∂vzψi − (2∆i − 3)f
z
∂vψ + f∂z(f∂zψi) + (2∆i − 3)f

2

z
∂zψ − Ui(z)ψi = 0 (4.29)

Ui(z) ≡ fÛi(z) = f

z2 (Zi(z) + k2z2) + ∆i
f

z2
(
−zf ′ + (4 − ∆i)f

)
.

The next step is to bring the above equation in the form

L2 ∂vψi = iL1ψi (4.30)

where

iL1 = zf∂2
z + zf ′∂z + (2∆i − 3)f∂z − zÛi(z) (4.31)

L2 = 2z∂z + (2∆i − 3)1 . (4.32)

We again note that the tensor channel corresponds to a massless scalar and one can easily
check that the above expressions agree with those in the previous subsection.

For the energy norm, our starting point is equation (2.19). After performing the
redefinition ϕi = z∆i−3/2 ψi, we obtain the following expression in terms of ψi,

E[ψi] =
∫
dz
z2∆i−3

4

((
V̂i + (2∆i − 3)2 f

4z2

)
ψ2

i + f

z
(2∆i − 3)ψi∂zψi + f∂zψ

2
i

)
(4.33)

We can now, in a matter entirely analogous to that of the previous subsection, extract our
Gram matrix GE and compute the pseudospectrum.

4.2.1 Results

The pseudospectrum for the shear, transverse gauge, charge diffusion and sound channels are
shown respectively in figures 4, 5, 6, 7 and 8 for different values of the momentum k and the
charge Q. The red crosses correspond to the locations of the QNMs for the respective sector.
Just like for the scalar field discussed in section 4.1, the pseudospectra form circular sets if
we zoom arbitrarily close to the spectrum, but their large scale global structure present open
sets signaling spectral instability in all channels. We also observe that instability increases
as the imaginary part of the QNM frequency increases, with implications for the various
modes as the momentum k and the charge Q are tuned. For a discussion on the holographic
interpretation of these results see section 4.4.

With the exception of the transverse gauge, all other sectors contain hydrodynamic
modes, namely modes that reside in the origin of the complex frequency plane for zero
momentum, i.e. ω → 0 as k → 0. A zoomed-in version of the pseudospectrum for the shear
mode for Q = 0, k = 0 and Q = 0, k = 4 are shown in figure 5 — similar behaviour appears
for hydrodynamic sound and charge diffusion modes. In the left panel, the hydrodynamic
shear mode is sitting at the origin on the complex plane and we see that even the circular
contour line cross in the upper half plane. The change from circular contour lines to open
sets occurs at ϵ ∼ 100.64, signaling that one needs a fairly large perturbations in order to
destabilise the hydrodynamic mode. In the right panel, the hydrodynamic shear mode is still
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(d) k = 1, Q = 1 = 0.7Qmax.

Figure 4. The ϵ-pseudospectrum for various values of momentum k and charge Q in the vector
channel, shear sector. Recall that the extremal solution is obtained for Qmax =

√
2. Above each plot,

the condition numbers κ of the eigenvalues are plotted with increasing overtone number. The red
crosses mark the spectrum points.

the dominant mode but it has now moved further down the imaginary axis. In this case,
it is only the “open set” contour lines that cross to the upper half plane (as we saw in the
previous subsection for scalar perturbations), corresponding to ϵ ∼ 10−0.19, which is again
fairly large. Note that we have confirmed that the values of ϵ quoted above do not change
with the numerical resolution, i.e. the pseudospectrum (associated with the energy norm)
is convergent in this region of the complex frequency plane.

Just like for the scalar case studied earlier, the fact that the pseudospectral contour
levels cross to the upper half complex plane signals an unstable perturbed spectrum for
large enough perturbations and potentially connecting with transient instabilities [2, 20, 24].
Further analysis is needed to establish whether these are physical or not. A similar behaviour
was observed in 4-dimensional asymptotically flat RN black hole in the extremal limit [8],
where a zero-frequency QNM exists associated to the Aretakis instability [42]. Regardless of
the fate of transient manifest, we can already argue for the existence of pseudo-resonances
at the points where the pseudospectrum crosses the real line [20, 24] —these also give rise
to non-linear dynamical instabilities.
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Figure 5. Zoomed-in plot of the ϵ-pseudospectrum in the shear sector of two Q = 0 black branes
possessing hydro modes. The red crosses mark the spectrum points.

Particular attention was also given to the extremal limit T/µ → 0 (or equivalently
Q→ Qmax, where Qmax =

√
2). In terms of the spectrum for the scalar and vector channels,

we see an accumulation of poles along the negative imaginary axis that moved upwards from
−i∞; the consensus is that these modes will give rise to a branch cut at T = 0 [43, 44]. We
see that the pseudospectrum is deformed in that region to reflect the existence of these new
QNMs, while its qualitative behaviour away from the negative imaginary axis remains mostly
unchanged; note, in particular, that the asymptotic behaviour of the contour lines at large
real part of the frequency stays the same. No other significant features appear.

The pseudospectrum in the extremal limit of asymptotically flat RN black hole was
studied in [8]. A significant difference there is that the spectrum contains a branch cut at
all values of the temperature and at extremality a zero-frequency mode, associated to the
Aretakis instability [42], appears. It was observed that the pseudospectral contour levels
cross to the upper half plane around the origin of the complex frequency plane, where the
Aretakis mode lives. The extremal limit of Kerr was considered in [45] for energetically
infinitesimal perturbations finding instability of the zero-damping modes. Interestingly, [45]
found stability of zero-damping modes in near-extremal RN-de Sitter black holes under
energetically infinitesimal perturbations.

4.2.2 Testing the stability of gravitoelectric QNMs

Just like the scalar case discussed in the previous subsection, we consider the response of
the spectrum under specific perturbations in the potential. In figure 9, we show the effects
of adding a sinusoidal perturbation of magnitude ϵ = 10−8 (left column),ϵ = 10−6 (right
column) to the potential in the sound and charge diffusion sectors (scalar channel). We
see that the hydrodynamic mode remains stable within this class of perturbations as the
perturbation frequency increases up to and including ω = 100 for all values of k,Q that we
have considered. Note that in all cases the hydrodynamic modes have smaller condition
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(d) k = 1, Q = 1 = 0.7Qmax.

Figure 6. The ϵ-pseudospectrum for various values of momentum k and charge Q in the vector
channel, transverse gauge sector. Recall that the extremal solution is obtained for Qmax =

√
2. Above

each plot, the condition numbers κ of the eigenvalues are plotted with increasing overtone number.
The red crosses mark the spectrum points.

numbers compared to the non-hydrodynamic modes, hence their increased stability is to be
expected. The non-hydrodynamic overtones are progressively more sensitive as the frequency
and the overtone number increase. Note that, once again, that the shifted QNMs follow
the contours of the ϵ-pseudospectrum.

4.3 Universality of the pseudospectrum

In this subsection we comment on the behaviour of resonance-free regions: these are regions in
the complex frequency plane where no resonance can appear for given potential and boundary
conditions and arbitrary perturbations. Following a mathematical analysis of scattering
resonances over general potentials and boundary conditions, it was formally shown that
resonance-free regions should belong to one of following four “universality” classes depending
on the regularity properties of the potential and boundary conditions [46]

ℑ(ω) ∼ F (ℜ(ω)) , ℜ(ω) ≫ 1 (4.34)
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Figure 7. The ϵ-pseudospectrum for various values of momentum k and charge Q in the scalar
channel, charge diffusion sector. Recall that the extremal solution is obtained for Qmax =

√
2. Above

each plot, the condition numbers κ of the eigenvalues are plotted with increasing overtone number.
The red crosses mark the spectrum points.

where

F (x) =



eax (i)
C (ii)
B ln(x) (iii)
γ xb (iv)

where a > 0, b, γ > 0, B and C are constants and are controlled by the qualitative
properties of the underlying system. Typical behaviours in our setting belong to case (iii)
or (iv) [46], with logarithmic asymptotics (case (iii)) appearing when considering potentials
and/or boundary conditions allowing low regularity and polynomial asymptotics (case (iv))
in settings with enhanced regularity.

Figure 10 displays the asymptotic structure of the pseudospectrum, for the scalar and
vector channels for Q = 0.5, k = 1. We see that the pseudospectral levels coincide with
each other at large ℜ(ω), demonstrating asymptotic universality. This observation is in
agreement with the analysis done in 4-dimensional asymptotically flat spacetime for the
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Figure 8. The ϵ-pseudospectrum for various values of momentum k and charge Q in the scalar
channel, sound sector. Recall that the extremal solution is obtained for Qmax =

√
2. Above each plot,

the condition numbers κ of the eigenvalues are plotted with increasing overtone number. The red
crosses mark the spectrum points.

Schwarzschild [6, 7] and RN black holes [8], where universality was also seen. This can be
understood intuitively by re-framing the computation as a “scattering of a perturbation off a
potential in the presence of an obstacle”:12 for sufficiently large frequencies, the potential
becomes negligible and thus we expect results that are actually independent from it.

Given the universality observed, it is natural to try to fit the pseudospectrum contour
line in an attempt to extract this asymptotic behaviour. Analysis of the asymptotic struc-
ture of pseudospectral contour levels (computed in hyperboloidal slicing) in 4-dimensional
asymptotically flat spacetime for both Schwarzschild [6] and RN [8] revealed a logarithmic
function. A preliminary analysis of the contour lines in our case (computed in null slicing)
seems to hint towards a polynomial behaviour (case (iv))

ℑ(ω) ∼ C1 + C2ℜ(ω)α (4.35)

where C1, C2, α are constants, with α > 0 —this behaviour seems to persist even in the
extremal limit.

12An “obstacle” differs from a “potential” in the sense that the scattered field cannot penetrate it.
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Figure 9. The perturbed spectra of QNMs in the scalar sector, for both the sound and charge
diffusion channels for various AdS-RN configurations. Red dots denote the unperturbed spectra. Left
column: perturbations of order ϵ = 10−8. Right column: perturbations of order ϵ = 10−6. Rows, from
top to bottom: sound sector, k = 1 Q = 0; charge diffusion sector, k = 1, Q = 0.8.
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Figure 10. Overlay of asymptotic pseudospectral contour levels for the Q = 0.5, k = 1 AdS-RN
black hole. The levels correspond to σϵ = {100, 1, 0.005, 0.0005, 0.00001} level curves. Left: for the
sound (red) and charge diffusion (black) sectors. Right: for the shear (blue) and transverse gauge
(green) sectors.
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In asymptotic flatness the logarithmic behaviour at large ℜ(ω) is supported by a well-
motivated conjecture for the existence of logarithmic QNM branches under infinite-frequency
perturbations [11] (see also [46]). Given that QNMs can reach logarithmic branches, then
necessarily pseudospectrum contour lines must be logarithmic. These results are less robust
when considering reflective boundary conditions (such as in AdS spacetimes) making the
deviation from logarithmic asymptotics plausible. More analysis is required to reach a stronger
conclusion. Note that, given the different convergence properties in null and hyperboloidal
slicing, comparison with the literature should be done with care.

4.4 Implication for the dual theory

Other than shedding light on the properties of AdS black branes and on the pseudospectrum
itself, this calculation is also relevant for strongly coupled systems via the gauge/gravity
correspondence. According to the duality, QNMs correspond to the spectrum of collective
excitations of the dual strongly coupled system. Therefore, the spectral instability seen in
this work can be interpreted as instability of the excitation spectrum of the dual strongly
coupled holographic field theory under small modifications of the theory. The significance of
this is twofold. On the one hand, it implies that the frequencies and damping rates computed
through an idealised model (such as holography) will potentially differ from those observed
in experiments. On the other hand, it indicates that transport properties in these systems
(since they are holographically extracted from QNM dispersion relations) could potentially be
heavily model dependent, with a small deformation of the original theory leading to potentially
very different transport coefficients. Rephrasing the above in terms of correllation functions, it
is well known that QNMs correspond to poles of the retarded Green’s function (in momentum
space) of the dual strongly coupled theory [22, 37]. The spectral instability observed here
signals sensitivity of the location of these poles given external perturbations to the system.

The pseudospectra also indicated possible transient instabilities. This means that under
small perturbations of the theory, a quasinormal mode may move into the upper half plane,
signaling an instability of the background. From the dual theory perspective, this means
that a small error in the theory may lead in a completely different equilibrium state. Put
differently, carrying out our computations in idealised set-ups may lead to a very different
equilibrium state than what is seen in practice.

Two more comments are in order. Firstly, in our results we see that the strength of
the spectral instability increases with the overtone; for the dual theory, this implies that
short-lived excitation are more unstable, i.e. more sensitive to perturbations of the theory.
Conversely, we also see that the hydrodynamic mode, residing closest to the real axis, is the
most stable, meaning that a stronger perturbation of the model is required to destabilise
it. Secondly, and in relation to the hydrodynamic modes once again, we have carried out
pseudospectrum calculations at zero momentum (see figure 5(a) for the shear mode), where we
see that the hydrodynamic mode can be pushed in the upper half plane indicating a potential
transient instability of flow patterns. Note that instabilities in shear flows are know to exist
in hydrodynamics and it has been argued that they explain the early onset of turbulence [2].
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5 Conclusions and outlook

In this work we have studied the spectral stability of AdS RN black branes as a function
of momenta and charge (or equivalently, T/µ) by means of the pseudospectrum [1]. We
considered perturbations corresponding to a neutral, massless scalar field as well as grav-
itoelectric perturbations in all sectors [22, 41]. For all the perturbations considered we
find spectral instability for large enough perturbations, including the channels that contain
hydrodynamic modes —the implications of the spectral instability is that the equilibration
process of perturbed black branes is sensitive to external perturbations of the system. We
observe that the strength of the instability increases as one moves further away for the real
axis. Conversely, this means that the fundamental modes/hydrodynamic modes are the most
stable. In fact, we find that the perturbations needed to destabilise them can be of order 1.
We also see that the pseudospectral contour lines cross to the upper half plane indicating
possible transient instabilities — further analysis is required to establish if these are physical
or not. Such analysis will involve bounding the evolution operator from above and from
below in order to determine whether or not exponential growth takes place. In the case
of standard eigenvalue problem these ideas have been explored in [7, 20, 24]. However, for
generalised eigenvalue problem, defining the evolution operator is non-trivial, and thus the
study of transient is not as developed; a definition for the evolution operator was put forward
in [25]. The existence of potential transients is absent in hyperboloidal slicing [12]. Note
that transients are in fact known to arise in hydrodynamics and it has been argued that
they explain the early onset of turbulence [2].

Regardless of the outcome of the analysis outlined above for transient instabilities, given
our results we can already argue about the presence of another mechanism that can give
rise to non-linear instabilities: pseudo-resonances [20, 24]. The latter can be triggered by
external forces when the Fourier decomposition of these forces gives frequencies close to values
where pseudospectrum contour lines cross the real axis into the upper half plane. This is
particularly relevant for the non-linear interactions, since the first order perturbation acts
as a source at second order. The formal solution at second order is obtained by convolving
the source with the Green’s function, which is given by the resolvent of the linear operator.
Thus, at the crossing points, where the resolvent is infinite, the second order perturbation
exhibits growth which breaks down the perturbative expansion and leads to the non-linear
dynamical instabilities.

We have also investigated the asymptotic behaviour of pseudospectral contours and we
find universality across different perturbation sectors. This extends the universality observed
for asymptotically flat black holes [6, 8]. Some preliminary analysis indicated that our curves
may be fitted better by a polynomial at large real frequency, rather than a logarithmic
function as an asymptotic behaviour; further analysis is required in order to reach a solid
conclusion, however, this result is substantially different from what has been seen in the
pseudospectrum literature in general relativity so far. The difference might be due to the fact
that we are considering a “scattering problem over a potential and with an obstacle”, rather
than a “scattering problem over a potential” as in the case of asymptotically flat black holes.

In this work, we have formulated the pseudospectrum calculation in ingoing Eddington-
Finkelstein coordinates for the first time. The equation of motion for the perturbations become
first order in time and the time derivative appears in a mixed derivative term, which naturally
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leads to a formulation of the pseudospectrum in terms of a generalised eigenvalue problem [1].
This choice of coordinates together with a suitable rescaling of the field not only substantially
simplifies the problem and the imposition of boundary conditions, and significantly reduces the
condition number of the associated matrices (defined as the ratio of the largest and smallest
eigenvalue) making the numerical implementation less demanding. Crucially, using these
coordinates was shown to have superior convergence properties, making the results shown in
this paper stronger and more reliable than other results on the pseudospectrum in general
relativity. Comparing our results with those of [12] is difficult due to the different convergence
properties in the two types of spacetime slicing [10] (their results do not exhibit convergence).
A notable difference is that, unlike [12], we find that the contour lines cross in the upper half
plane indicating the possibility of transients. This difference highlights the need for a better
understanding of the dependence of the pseudospectrum on the particular slicing chosen.

It would be interesting to investigate the implications of spectral instability in the context
of the phenomenon of pole-skipping [47]. Holographically, pole-skipping has been studied
for the AdS-Schwarzschild black brane [47], AdS-RN [48] as well as for a neutral black hole
that explicitly breaks translation invariance [49]. This phenomenon is now understood to
be generic, manifesting itself in all hydrodynamic and non-hydrodynamic channels [49, 50],
and it has been associated with absence of a unique ingoing solution close to the black
brane horizon [49]. Pole-skipping is particularly interesting in the case of the hydrodynamic
sound mode, where it was shown that when the sound mode is driven to instability by a
choice of a specific value of imaginary momentum k = ik∗, then the retarded two-point
function exhibits an exponential growth related to chaos; the frequency and momentum are
given by the holographic Lyapunov exponent and the butterfly velocity [47]. If spectral
instability persists for imaginary k, we expect the physical relevance of this phenomenon
to be substantially reduced and one would need to understand the implications of this in
the context of quantum chaos. In any case, it would be interesting to study the contour
lines of the pseudospectrum slightly before and slightly after the pole-skipping point. A
technical complication here is that the momentum k is taken to be imaginary, but one needs
to ensure that the energy norm remains real.

In addition, it would also be interesting to investigate the impact of these results in the
context of the radius of convergence of the hydrodynamic expansion, within the framework
of holography. Strictly speaking, in order to compute the radius of convergence one needs to
perform a perturbative expansion of the dispersion relations in small momenta to a very high
order [48, 51], extract the coefficients and then perform a fit. In [48] it was found that the
radius of convergence for a charged holographic fluid extracted this way agrees quantitatively
with the locations of the branch points obtained by considering the analyticity properties of
the dispersion relations of the hydrodynamic modes on the complex frequency and momentum
plane. Understanding how the two computations are modified given the instability of the
spectrum and how they compare will be valuable.

In this work we have also probed the extremal limit of the RN black brane, by considering
T/µ → 0 [43, 44]. We found that the pseudospectrum was sufficiently deformed along the
negative imaginary axis to accommodate for the additional modes that appear there. It would
be interesting to repeat the pseudospectrum analysis starting directly at zero temperature.
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A Massless scalar perturbations in global AdS4

To contrast with the cases presented in the main text, it is illuminating to analyse a system
where there is energy conservation. One such example is that of pure AdS with reflecting
boundary conditions. Since there is no black hole horizon, and the (timelike) AdS boundary
acts like a box, no energy is lost through the boundaries of the domain.

Let us then consider the familiar case of global AdS4, with metric

ds2 = −f(r)dt2 + dr2

f(r) + r2(dθ2 + sin2 θ dφ2), (A.1)

where f(r) = r2 + 1.
As before, the equation to solve is

□Φ = 0. (A.2)

In this case, the ingoing Eddington-Finkelstein coordinates used in the main text are
not particularly helpful, so we will proceed with the global (t, r) coordinates instead. With
the ansatz

Φ = 1
r
ϕ(t, r)Y m

ℓ (θ, φ)

and coordinate transformation

dr

dx
= f(r) ≡ r2 + 1, (A.3)

the Klein-Gordon equation reduces to(
−∂2

t + ∂2
x − V (r)

)
ϕ(t, r) = 0, (A.4)

V (r) ≡ f(r)
(

2 + ℓ(ℓ+ 1)
r2

)
.

We can explicitly solve equation (A.3) to find

r = tan(x), (A.5)

so that x = 0 at r = 0 and x = π
2 at r = ∞.

Due to the lack of energy dissipation, this spacetime features normal modes, and in fact
the spectrum for scalar perturbations is given by [31]

ω = 2n+ 1 + ℓ, n = 0, 1, 2, . . . (A.6)

To write equation (A.4) in a first-order (in time) form, we introduce Π ≡ ∂tϕ. It is also
convenient to have the compact x-domain spanning the interval x ∈ [0, 1], so we further
do x → π

2x. Equation (A.4) then becomes

∂t

(
Π
ϕ

)
=
(

0 4
π2∂

2
x − V 1

1 0

)(
Π
ϕ

)
. (A.7)
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Defining u = (Π, ϕ)T , we can write this as

∂tu = iL̂ u, iL̂ ≡
(

0 4
π2∂

2
x − V 1

1 0

)
(A.8)

where

V ≡ (r2 + 1)
(

2 + ℓ(ℓ+ 1)
r2

)
, r = tan

(
π

2x
)

(A.9)

V becomes singular at x = 0 and x = 1, but note that V ϕ is regular (and indeed zero)
at these points since

ϕ ∼
r∼∞

1
r2 , ϕ ∼

r∼0
rℓ+1. (A.10)

As in section 2.2, we can define an energy norm given by

E = π

4

∫ 1

0

(
∂tϕ̄ ∂tϕ+ 4

π2∂xϕ̄ ∂xϕ+ V ϕ̄ ϕ

)
dx (A.11)

which motivates the definition of the scalar product

⟨u1, u2⟩ = π

4

∫ 1

0

(
Π̄1 Π2 + 4

π2∂xϕ̄1 ∂xϕ2 + V ϕ̄1 ϕ2

)
dx . (A.12)

With this definition and our choice of boundary conditions u(x = 0) = 0 = u(x = 1), we
can check that ⟨u1, L̂u2⟩ = ⟨L̂u1, u2⟩, and so L̂† = L̂ as expected.

We now follow the approach outlined in section 3, where we define the Gram matrix
GE for the discretised scalar product. In particular, we define

⟨u1, u2⟩G = u∗1 ·GE · u2 = (Π̄1 ϕ̄1)
(
GE

1 0
0 GE

2

)(
Π2
ϕ2

)
(A.13)

where

GE
1 = π

4C1, GE
2 = π

4
(
CV + Dt · C2 · D

)
(C1)ij = Wi δij , (C2)ij = 4

π2Wi δij , (CV )ij = V (xi)Wi δij

(no sum in i) and Wi are the quadrature weights introduced in section 3.2. Finally, note
that the end points where the potential V diverges contribute to zero to the integration due
to the boundary conditions used. Therefore the corresponding rows and columns can be
removed from the GE matrix. We can now proceed as outlined in section 3.3 to compute
the pseudospectrum, using equation (3.17).

In figure 11 we observe an example of this computation. In sharp contrast with the case
of figure 2, the contour levels are now perfectly spherical, indicating stability of the spectrum.
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Figure 11. The ϵ-pseudospectrum for the ℓ = 2 case of global AdS4. The contour lines correspond
to level sets of ϵ, as defined in equation (3.16), and the red crosses mark the spectrum points from
equation (A.6). Left: a wide view of the pseudospectrum. Right: a zoomed view of the pseudospectrum
near the mode ω0 = 3.

B Convergence

Convergence of quasinormal modes. To measure the convergence of the QNM spectra λj

with increasing resolution N , the drift ratio δr was adopted as defined in [52]. This measures
the weighted distance between eigenvalues at spectral order N1 and N2 with N1 < N2 via

δ(j)
r = min(|λj |, σj)

|λj − λ̄2|
(B.1)

where λ̄2 is the nearest eigenvalue in the N2 set to the current eigenvalue λj of the N1 set
based on min |λj − λ2|. The weights σj are given by

σj =


|λj − λ1| if j = 0

|λN−1 − λj | if j = N

1
2 (|λj−1 − λj | + |λj+1 − λj |) if 0 < j < N .

(B.2)

In figure 12, we demonstrate this measure of convergence when applied to the scalar field
spectrum shown in figures 1(a) and 1(d). We plot the logarithm of the inverse of the drift
ratio against the mode number for several choices of spectral degree, N . Each set of points is
compared with the spectrum of the next-largest spectral degree, i.e. when N1 = 30, N2 = 40,
etc. Convergent eigenvalues have large inverse drift ratio compared to the background. In the
uncharged case, eigenvalues appear as complex conjugate pairs while in the near-extremal case
there is a single non-oscillating mode before the appearance of conjugate pairs. The benefit of
the drift ratio measure is that it is robust against spurious modes arising from numerical errors,
as these will never remain close to meaningful eigenvalues as the spectral degree changes.

Convergence of the pseudospectrum. To ensure the convergence of the pseudospectrum
with increasing spectral resolution, we calculate a set of contours σϵ for fixed values of ϵ with
increasing resolution and superimpose the results. Figure 13 demonstrates the convergence of
these contours in a region close to the fundamental mode ω0 = 3.119 − 2.747i in the massless,
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(a) Convergence of the spectrum for the k = 0,
Q = 0 planar black hole in AdS5.
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(b) Convergence of the spectrum for the ex-
tremal k = 0, Q = 0.99Qmax planar black
hole in AdS5.

Figure 12. Convergence of QNM spectra for different planar black holes in AdS5 in terms of the
drift ratio, δr. In each case, 96 bits of precision were used. Here Qmax =

√
2.

2.8 3.0 3.2 3.4 3.6
<(ω)

−3.2

−3.0

−2.8

−2.6

−2.4

=(
ω

)

10−4

10−3

10−2

10−1

100

2.66 2.68 2.70 2.72 2.74 2.76

<(ω)

−3.2

−3.1

−3.0

−2.9

−2.8

=(
ω

)

10−4

10−3

10−2

10−1

100

Figure 13. Convergence with increasing spectral resolution N of the ϵ-pseudospectrum σϵ with
respect to the H2 norm for the massless, neutral scalar around a k = 0, Q = 0 black brane. The
contour lines are calculated with N = 20 (dash-dot-dot), N = 30 (dash-dot), N = 40 (dashed) and
N = 50 (solid) Left: the fundamental mode ω0 = 3.119 − 2.747i is represented by the red cross;
evenly spaced contours are shown in white. Right: a zoomed view of the contours demonstrates
clear convergence.

neutral scalar spectrum of a k = 0, Q = 0 black brane. Note that the fundamental mode
lies outside the convergent part of the pseudospectrum when using the energy norm [14].
For this reason, figure 13 has been produced using the H2 norm which ensures convergence
up to 0 ≥ ℑ(ω) ≥ −4.

– 34 –



J
H
E
P
0
5
(
2
0
2
4
)
2
0
2

Acknowledgments

It is a pleasure to thank Valentin Boyanov, Jose Luis Jaramillo, Rodrigo Panosso Macedo and
Benjamin Withers for discussions. C.P. thanks the Princeton Center for Theoretical Science
for hospitality during the programme “Workshop on Nonlinear Aspects of General Relativity”.
C.P. and B.C. acknowledge support from a Royal Society — Science Foundation Ireland
University Research Fellowship via grant URF/R1/211027. M.Z. acknowledges financial
support by the Center for Research and Development in Mathematics and Applications
(CIDMA) through the Portuguese Foundation for Science and Technology (FCT — Fundação
para a Ciência e a Tecnologia) — references UIDB/04106/2020 and UIDP/04106/2020 —
as well as FCT projects 2022.00721.CEECIND, CERN/FIS-PAR/0027/2019, PTDC/FIS-
AST/3041/2020, CERN/FIS-PAR/0024/2021 and 2022.04560.PTDC. This work has further
been supported by the European Horizon Europe staff exchange (SE) programme HORIZON-
MSCA-2021-SE-01 Grant No. NewFunFiCO-101086251.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices
and Operators, Princeton University Press (2005) [DOI:10.1515/9780691213101].

[2] L.N. Trefethen, A.E. Trefethen, S.C. Reddy and T.A. Driscoll, Hydrodynamic stability without
eigenvalues, Science 261 (1993) 578.

[3] H.-P. Nollert and R.H. Price, Quantifying excitations of quasinormal mode systems, J. Math.
Phys. 40 (1999) 980 [gr-qc/9810074] [INSPIRE].

[4] H.-P. Nollert, About the significance of quasinormal modes of black holes, Phys. Rev. D 53 (1996)
4397 [gr-qc/9602032] [INSPIRE].

[5] R.G. Daghigh, M.D. Green and J.C. Morey, Significance of Black Hole Quasinormal Modes: A
Closer Look, Phys. Rev. D 101 (2020) 104009 [arXiv:2002.07251] [INSPIRE].

[6] J.L. Jaramillo, R. Panosso Macedo and L. Al Sheikh, Pseudospectrum and Black Hole
Quasinormal Mode Instability, Phys. Rev. X 11 (2021) 031003 [arXiv:2004.06434] [INSPIRE].

[7] J.L. Jaramillo, R. Panosso Macedo and L.A. Sheikh, Gravitational Wave Signatures of Black
Hole Quasinormal Mode Instability, Phys. Rev. Lett. 128 (2022) 211102 [arXiv:2105.03451]
[INSPIRE].

[8] K. Destounis et al., Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode
instability and universality, Phys. Rev. D 104 (2021) 084091 [arXiv:2107.09673] [INSPIRE].

[9] L.A. Sheikh, Scattering resonances and Pseudospectrum: stability and completeness aspects in
optical and gravitational systems, Ph.D. thesis, Institut de Mathématiques de Bourgogne,
F-21078 Dijon, France (2022) [INSPIRE].

[10] V. Boyanov et al., Structural aspects of the anti-de Sitter black hole pseudospectrum, Phys. Rev.
D 109 (2024) 064068 [arXiv:2312.11998] [INSPIRE].

– 35 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1515/9780691213101
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1063/1.532698
https://doi.org/10.1063/1.532698
https://arxiv.org/abs/gr-qc/9810074
https://inspirehep.net/literature/478262
https://doi.org/10.1103/PhysRevD.53.4397
https://doi.org/10.1103/PhysRevD.53.4397
https://arxiv.org/abs/gr-qc/9602032
https://inspirehep.net/literature/416012
https://doi.org/10.1103/PhysRevD.101.104009
https://arxiv.org/abs/2002.07251
https://inspirehep.net/literature/1781301
https://doi.org/10.1103/PhysRevX.11.031003
https://arxiv.org/abs/2004.06434
https://inspirehep.net/literature/1791165
https://doi.org/10.1103/PhysRevLett.128.211102
https://arxiv.org/abs/2105.03451
https://inspirehep.net/literature/1862671
https://doi.org/10.1103/PhysRevD.104.084091
https://arxiv.org/abs/2107.09673
https://inspirehep.net/literature/1889326
https://inspirehep.net/literature/2667880
https://doi.org/10.1103/PhysRevD.109.064068
https://doi.org/10.1103/PhysRevD.109.064068
https://arxiv.org/abs/2312.11998
https://inspirehep.net/literature/2738718


J
H
E
P
0
5
(
2
0
2
4
)
2
0
2

[11] E. Gasperin and J.L. Jaramillo, Energy scales and black hole pseudospectra: the structural role of
the scalar product, Class. Quant. Grav. 39 (2022) 115010 [arXiv:2107.12865] [INSPIRE].

[12] D. Areán, D.G. Fariña and K. Landsteiner, Pseudospectra of holographic quasinormal modes,
JHEP 12 (2023) 187 [arXiv:2307.08751] [INSPIRE].

[13] S. Sarkar, M. Rahman and S. Chakraborty, Perturbing the perturbed: Stability of quasinormal
modes in presence of a positive cosmological constant, Phys. Rev. D 108 (2023) 104002
[arXiv:2304.06829] [INSPIRE].

[14] K. Destounis, V. Boyanov and R. Panosso Macedo, Pseudospectrum of de Sitter black holes,
Phys. Rev. D 109 (2024) 044023 [arXiv:2312.11630] [INSPIRE].

[15] H.-P. Nollert, TOPICAL REVIEW: Quasinormal modes: the characteristic ‘sound’ of black holes
and neutron stars, Class. Quant. Grav. 16 (1999) R159 [INSPIRE].

[16] LISA Consortium Waveform Working Group collaboration, Waveform Modelling for the
Laser Interferometer Space Antenna, arXiv:2311.01300 [INSPIRE].

[17] M.H.-Y. Cheung et al., Destabilizing the Fundamental Mode of Black Holes: The elephant and
the Flea, Phys. Rev. Lett. 128 (2022) 111103 [arXiv:2111.05415] [INSPIRE].

[18] R.A. Konoplya and A. Zhidenko, First few overtones probe the event horizon geometry,
arXiv:2209.00679 [INSPIRE].

[19] E. Berti et al., Stability of the fundamental quasinormal mode in time-domain observations
against small perturbations, Phys. Rev. D 106 (2022) 084011 [arXiv:2205.08547] [INSPIRE].

[20] V. Boyanov et al., Pseudospectrum of horizonless compact objects: A bootstrap instability
mechanism, Phys. Rev. D 107 (2023) 064012 [arXiv:2209.12950] [INSPIRE].

[21] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics,
JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

[22] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005)
086009 [hep-th/0506184] [INSPIRE].

[23] C.M. Warnick, On quasinormal modes of asymptotically anti-de Sitter black holes, Commun.
Math. Phys. 333 (2015) 959 [arXiv:1306.5760] [INSPIRE].

[24] J.L. Jaramillo, Pseudospectrum and binary black hole merger transients, Class. Quant. Grav. 39
(2022) 217002 [arXiv:2206.08025] [INSPIRE].

[25] M. Embree and B. Keeler, Pseudospectra of Matrix Pencils for Transient Analysis of
Differential-Algebraic Equations, arXiv:1601.00044.

[26] S. Reddy and L. Trefethen, Lax-stability of fully discrete spectral methods via stability regions
and pseudo-eigenvalues, Comput. Methods Appl. Mech. Eng. 80 (1990) 147.

[27] J.L. Van Dorsselaer, Pseudospectra for matrix pencils and stability of equilibria, BIT Numer.
Math. 37 (1997) 833.

[28] K.S. Riedel, Generalized Epsilon-Pseudospectra, SIAM J. Numer. Anal. 31 (1994) 1219.
[arXiv:1803.10765].

[29] B.G.W. Stewart, Gershgorin theory for the generalized eigenvalue problem, Math. Comput. 29
(1975) 600.

[30] J. Demmel and B. Kågström, The generalized Schur decomposition of an arbitrary pencil A-λB —
robust software with error bounds and applications. Part I: theory and algorithms, ACM Trans.
Math. Software 19 (1993) 160.

– 36 –

https://doi.org/10.1088/1361-6382/ac5054
https://arxiv.org/abs/2107.12865
https://inspirehep.net/literature/1893657
https://doi.org/10.1007/JHEP12(2023)187
https://arxiv.org/abs/2307.08751
https://inspirehep.net/literature/2678172
https://doi.org/10.1103/PhysRevD.108.104002
https://arxiv.org/abs/2304.06829
https://inspirehep.net/literature/2651487
https://doi.org/10.1103/PhysRevD.109.044023
https://arxiv.org/abs/2312.11630
https://inspirehep.net/literature/2738589
https://doi.org/10.1088/0264-9381/16/12/201
https://inspirehep.net/literature/502903
https://arxiv.org/abs/2311.01300
https://inspirehep.net/literature/2717996
https://doi.org/10.1103/PhysRevLett.128.111103
https://arxiv.org/abs/2111.05415
https://inspirehep.net/literature/1965373
https://arxiv.org/abs/2209.00679
https://inspirehep.net/literature/2146279
https://doi.org/10.1103/PhysRevD.106.084011
https://arxiv.org/abs/2205.08547
https://inspirehep.net/literature/2163848
https://doi.org/10.1103/PhysRevD.107.064012
https://arxiv.org/abs/2209.12950
https://inspirehep.net/literature/2157279
https://doi.org/10.1088/1126-6708/2002/09/043
https://arxiv.org/abs/hep-th/0205052
https://inspirehep.net/literature/586454
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1103/PhysRevD.72.086009
https://arxiv.org/abs/hep-th/0506184
https://inspirehep.net/literature/685770
https://doi.org/10.1007/s00220-014-2171-1
https://doi.org/10.1007/s00220-014-2171-1
https://arxiv.org/abs/1306.5760
https://inspirehep.net/literature/1239817
https://doi.org/10.1088/1361-6382/ac8ddc
https://doi.org/10.1088/1361-6382/ac8ddc
https://arxiv.org/abs/2206.08025
https://inspirehep.net/literature/2097072
https://arxiv.org/abs/1601.00044
https://doi.org/10.1016/0045-7825(90)90019-I
https://doi.org/10.1007/bf02510354
https://doi.org/10.1007/bf02510354
https://doi.org/10.1137/0731063
https://arxiv.org/abs/1803.10765
https://doi.org/10.2307/2005580
https://doi.org/10.2307/2005580
https://doi.org/10.1145/152613.152615
https://doi.org/10.1145/152613.152615


J
H
E
P
0
5
(
2
0
2
4
)
2
0
2

[31] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes,
Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

[32] R. Bartnik, The wave equation, in Instructional Workshop on Analysis and Geometry. Part 2, T.
Cranny and J. Hutchinson eds., Australian National University, Mathematical Sciences Institute,
(1996), pp. 185–195.

[33] P. Grandclement and J. Novak, Spectral methods for numerical relativity, Living Rev. Rel. 12
(2009) 1 [arXiv:0706.2286] [INSPIRE].

[34] J. Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition, Dover Books on
Mathematics, Dover Publications (2013) [ISBN: 9780486141923].

[35] S.C. Reddy, P.J. Schmid and D.S. Henningson, Pseudospectra of the Orr-Sommerfeld Operator,
SIAM J. Appl. Math. 53 (1993) 15.

[36] N. Halko, P.-G. Martinsson and J.A. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev. 53 (2011) 217
[arXiv:0909.4061].

[37] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to
thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [INSPIRE].

[38] R. Panosso Macedo, Hyperboloidal approach for static spherically symmetric spacetimes: a
didactical introductionand applications in black-hole physics, Phil. Trans. Roy. Soc. Lond. A 382
(2024) 20230046 [arXiv:2307.15735] [INSPIRE].

[39] R.A. Konoplya and A. Zhidenko, Overtones’ outburst of asymptotically AdS black holes, Phys.
Rev. D 109 (2024) 043014 [arXiv:2310.19205] [INSPIRE].

[40] H. Kodama and A. Ishibashi, Master equations for perturbations of generalized static black holes
with charge in higher dimensions, Prog. Theor. Phys. 111 (2004) 29 [hep-th/0308128] [INSPIRE].

[41] A. Jansen, A. Rostworowski and M. Rutkowski, Master equations and stability of
Einstein-Maxwell-scalar black holes, JHEP 12 (2019) 036 [arXiv:1909.04049] [INSPIRE].

[42] S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for
Linear Scalar Perturbations II, Annales Henri Poincaré 12 (2011) 1491 [arXiv:1110.2009]
[INSPIRE].

[43] M. Edalati, J.I. Jottar and R.G. Leigh, Shear Modes, Criticality and Extremal Black Holes,
JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].

[44] M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010)
058 [arXiv:1005.4075] [INSPIRE].

[45] H. Yang and J. Zhang, Spectral stability of near-extremal spacetimes, Phys. Rev. D 107 (2023)
064045 [arXiv:2210.01724] [INSPIRE].

[46] M. Zworski, Mathematical study of scattering resonances, Bulletin of Mathematical Sciences 7
(2017) 1.

[47] S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys.
Rev. Lett. 120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].

[48] A. Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum,
JHEP 10 (2020) 121 [arXiv:2007.14418] [INSPIRE].

[49] M. Blake, R.A. Davison and D. Vegh, Horizon constraints on holographic Green’s functions,
JHEP 01 (2020) 077 [arXiv:1904.12883] [INSPIRE].

– 37 –

https://doi.org/10.1088/0264-9381/26/16/163001
https://arxiv.org/abs/0905.2975
https://inspirehep.net/literature/820791
https://doi.org/10.12942/lrr-2009-1
https://doi.org/10.12942/lrr-2009-1
https://arxiv.org/abs/0706.2286
https://inspirehep.net/literature/753263
https://doi.org/10.1137/0153002
https://doi.org/10.1137/090771806
https://arxiv.org/abs/0909.4061
https://doi.org/10.1103/PhysRevD.62.024027
https://arxiv.org/abs/hep-th/9909056
https://inspirehep.net/literature/506964
https://doi.org/10.1098/rsta.2023.0046
https://doi.org/10.1098/rsta.2023.0046
https://arxiv.org/abs/2307.15735
https://inspirehep.net/literature/2683632
https://doi.org/10.1103/PhysRevD.109.043014
https://doi.org/10.1103/PhysRevD.109.043014
https://arxiv.org/abs/2310.19205
https://inspirehep.net/literature/2715706
https://doi.org/10.1143/PTP.111.29
https://arxiv.org/abs/hep-th/0308128
https://inspirehep.net/literature/626243
https://doi.org/10.1007/JHEP12(2019)036
https://arxiv.org/abs/1909.04049
https://inspirehep.net/literature/1753393
https://doi.org/10.1007/s00023-011-0110-7
https://arxiv.org/abs/1110.2009
https://inspirehep.net/literature/931179
https://doi.org/10.1007/JHEP04(2010)075
https://arxiv.org/abs/1001.0779
https://inspirehep.net/literature/841873
https://doi.org/10.1007/JHEP10(2010)058
https://doi.org/10.1007/JHEP10(2010)058
https://arxiv.org/abs/1005.4075
https://inspirehep.net/literature/856117
https://doi.org/10.1103/PhysRevD.107.064045
https://doi.org/10.1103/PhysRevD.107.064045
https://arxiv.org/abs/2210.01724
https://inspirehep.net/literature/2159898
https://doi.org/10.1007/s13373-017-0099-4
https://doi.org/10.1007/s13373-017-0099-4
https://doi.org/10.1103/PhysRevLett.120.231601
https://doi.org/10.1103/PhysRevLett.120.231601
https://arxiv.org/abs/1710.00921
https://inspirehep.net/literature/1628396
https://doi.org/10.1007/JHEP10(2020)121
https://arxiv.org/abs/2007.14418
https://inspirehep.net/literature/1809177
https://doi.org/10.1007/JHEP01(2020)077
https://arxiv.org/abs/1904.12883
https://inspirehep.net/literature/1732250


J
H
E
P
0
5
(
2
0
2
4
)
2
0
2

[50] S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, The complex life of hydrodynamic
modes, JHEP 11 (2019) 097 [arXiv:1904.12862] [INSPIRE].

[51] B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP 06 (2018) 059
[arXiv:1803.08058] [INSPIRE].

[52] J.P. Boyd, Traps and Snares in Eigenvalue Calculations with Application to Pseudospectral
Computations of Ocean Tides in a Basin Bounded by Meridians, J. Comput. Phys. 126 (1996)
11.

– 38 –

https://doi.org/10.1007/JHEP11(2019)097
https://arxiv.org/abs/1904.12862
https://inspirehep.net/literature/1732227
https://doi.org/10.1007/JHEP06(2018)059
https://arxiv.org/abs/1803.08058
https://inspirehep.net/literature/1663557
https://doi.org/10.1006/jcph.1996.0116
https://doi.org/10.1006/jcph.1996.0116

	Introduction
	Spectra and pseudospectra
	Pseudospectra for matrix pencils
	Energy norm

	Matrix formulation
	Choosing the grid
	Chebyshev integration
	Reduction of energy norm to the l**(2) norm

	Scalar, electromagnetic and gravitational perturbations for planar AdS-RN
	Massless neutral scalar perturbations
	Metric and gauge field perturbations
	Universality of the pseudospectrum
	Implication for the dual theory

	Conclusions and outlook
	Massless scalar perturbations in global AdS(4)
	Convergence

