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1 Introduction

A crystalline solid is a phase of matter characterized by translational long-range order: the
spontaneous breaking of translational invariance, possibly down to a discrete sub-group [1].
Holographic solids [2, 3] are not different in this perspective, as they are also built upon the
same symmetry breaking pattern. The long-range order endows solids with their rigidity and
with their ability to respond elastically to mechanical deformations.1 Phonons, or sound-waves,
are the corresponding emergent Goldstone modes [4]. Despite the behavior of crystalline solids
under infinitesimal mechanical deformations is well described by linear elasticity theory [5],
their mechanical response beyond the linear regime, i.e., for finite deformations, is more
difficult to be rationalized. Nonlinear elasticity [6] is then usually constructed in terms of
empirical models based on phenomenological assumptions and a unifying picture is still
missing. These problems become even more severe in presence of finite temperature and
dissipative effects, which render the response of the material viscoelastic rather than purely
elastic [7]. On top of that, irreversible plastic deformations are inevitable for sufficiently
large deformations, and they are indeed fundamental to describe the failure of solid materials.
Once again, apart from phenomenological elasto-plastic models [8], a complete understanding
of the non-linear behavior of complex solids has not been achieved yet.

From a material science and engineering perspective, understanding the mechanical
failure of solid materials is a question of primary importance. The main concern of material
failure theory [9] is to predict under which conditions a solid fails under external loads.
Failure is necessarily connected to some sort of instability of the system and it is inevitable
for large enough deformations. The instability, and therefore the failure, could be either

1To be precise, this statement is correct only for crystalline ordered solids. In amorphous systems, the
emergent rigidity and the associated elastic response have a more complex, and still not well understood, origin.
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Figure 1. A visual representation of different types of mechanical failure in solid materials.

microscopic or macroscopic. We define an instability macroscopic if it can be derived from
the macroscopic effective equations of the medium, i.e., when it concerns the collective
long-wavelength dynamics. A macroscopic failure is global and it could in principle be derived
from simple arguments related to thermodynamics, energetic considerations or even nonlinear
elasticity theory. On the other hand, a microscopic instability, usually associated to crack
initiation and propagation, pertains to the structure of the material at short scales, and could
be somehow invisible within the homogeneous effective description.

In addition to the above classification, which is based on the length-scale of interest,
mechanical failure can be also divided into brittle and ductile (see figure 1 for an illustration).
Brittle failure is usually accompanied by an extremely rapid propagation of cracks, so quickly
that no plastic deformation has time to take place. Brittle failure causes a catastrophic fracture
which destroys the structural integrity of the whole material. On the other side, ductile
materials deform plastically and they have the ability to support more stress, slowing the
fracture process and avoiding a catastrophic failure. Their failure is anticipated by a necking
instability in which the cross-sectional area of the sampled diminishes when undergoing
deformation. Necking and ductility are also often associated to yielding, the breakdown of
the elastic response in a solid and the onset of plastic deformation.

All in all, whether a material displays a ductile or brittle behavior, and which is the
stress/strain at which the failure appears, depend on several factors related to the composition
of the material and to the external conditions as well (e.g., temperature). A long list of criteria
have been proposed in the literature, but it is hard to encompass such a vast and complex
phenomenology under a few simple assumptions. Nevertheless, a perhaps naive differentiation
of the two phenomena can be anticipated looking at the behavior of the stress-strain curve
for finite deformations (see figure 2). Brittle materials are characterized by a quick increase
of the stress which suddenly ends at the breaking point. Ductile materials, on the contrary,
are able to support larger strains. The induced stress diminishes with increasing the strain
and the stress-strain curve bends down approaching a plateau-like form. The yielding point
usually appears right before that regime and it marks the end of the elastic response. After
the yielding point, the response is purely plastic and the stress becomes almost independent
of the strain up to the breaking point, which in ductile materials is located at much larger
values of the strain than in brittle ones.

– 2 –
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Figure 2. A cartoon of the stress-strain curves for ductile and brittle materials. The black dots
indicate the breaking strength and the black square the yielding point, defined as the maximum of
the stress-strain curve.

Holographic models with spontaneously broken translations, i.e., holographic solids, have
attracted great interest in the last years [3], as a possible novel route to tackle the notoriously
hard problem of strange metals and spontaneous orders in strongly correlated phases of
matter. A particularly simple sub-class of models is given by the so-called “homogeneous
holographic solids”, in which translational symmetry is spontaneously broken while retaining
homogeneity, owing to the existence of an internal global symmetry. Among the various
possibilities, the holographic solid axion model [10, 11], which was found as an extension
of the same model for momentum dissipation [12] (see [13] for a review), is the only one
which provides an analytical solution, and therefore allows for extensive computations. The
holographic model displays propagating phonons as dictated by elasticity theory [2], and its
low-energy effective description is in perfect agreement with viscoelasticity [14, 15], both at
zero and finite charge density [16–18]. The linear viscoelastic dynamics [19, 20] and nonlinear
elastic response [21–23] of this holographic model have been studied in detail in the past.

In this work, our task is to make a step further and perform a failure analysis of these
holographic solids under large static shear deformations. From a more technical perspective,
this amounts to investigate the instabilities of these holographic models upon applying a
background external static shear strain. In [22, 24], some general criteria based on the
stress-strain curves and the dispersion relations in the decoupling limit have been provided.
Nevertheless, a full-fledged analysis is still missing. Here, we study the dynamical stability of
the model based on a quasi-normal mode analysis in presence of large background shear strain.
In other words, we linearly perturb our system around a state with a large shear strain and
check its linearized dynamics. Since the background shear strain breaks rotational symmetry,
the dispersion relation of the low-energy modes will depend on the angle of propagation. In a
way, this is similar to the case of a holographic superfluid model with superfluid velocity [25],
where the latter plays the role of our external shear strain.2

2In this analogy, the failure of the solid corresponds to the instability of the superfluid phase, i.e., the
Landau criterion.
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The concept of ideal strength of a material, which defines the onset of mechanical
instability, is indeed closely related to the dispersion of the phonon modes in the solid, and
possible phonon instabilities. Those happen whenever the energy of one mode becomes
negative, or more in general when the imaginary part of its frequency ω(k) becomes positive.
In the case of an “elastic instability”, the instability appears for small values of the wave-vector
k, and can be in principle detected by inspecting the elastic moduli of the system or looking
at its hydrodynamic (or even thermodynamic) description. Nevertheless, instabilities can
appear for arbitrary, and even large, values of the wave-vector, and in that sense being more
microscopic (e.g., holographic charge density waves [26–29] or pair density waves [30–32]).
Phonon instabilities under mechanical deformations have been explored in several materials
(e.g., [33–39]). Interestingly, these elastic instabilities often appear before the peak in the
stress-strain curve [33], at which the elastic response is completely destroyed into the plastic
flow regime. Also, these instabilities are frequently related to soft modes and structural
phase transitions [40–43], the classical example being the Kohn anomaly precursor of the
formation of charge density waves [44].

In the rest of this work, we will observe that holographic homogeneous solids display a
complex structure of instabilities which can be nevertheless classified into two types:

1. Sound instability (or gradient instability). This instability manifests itself in a speed
of sound which becomes complex, i.e., v2 < 0.

2. Diffusive instability. This second type corresponds to a diffusion constant which
becomes negative, i.e., D < 0.

In both cases, the instability occurs when the imaginary part of the frequency of a certain
mode becomes positive, destabilizing the initial background solution. As we will see, the
diffusive instability will always be the first to appear (i.e., the one with the lowest critical
strain) in the holographic models considered in this work. In other words, the sound instability
will appear only beyond a specific threshold for the background shear strain.

As a general remark, the mechanical failure of a solid material involves the creation, and
proliferation of inhomogeneous structures such as defects, cracks and voids. Mechanical failure
is often the result of complex microscopic inhomogeneous processes. In an effective description,
that is agnostic of the microscopic physical processes, and it is natural to assume that those
inhomogeinities correspond to inhomogeneous instabilities as the ones just mentioned.

The manuscript is organized as follows. In section 2, we describe the homogeneous
holographic solid models considered in this manuscript and briefly recap their viscoelastic
linear dynamics and their static nonlinear elastic properties. In section 3, we study the
mechanical stability of the simplest of these models under background finite shear strain.
In section 4, we generalize our analysis to a larger class of models and display a complex
structure of instabilities. We end up this section by drawing a phase diagram for the dual
solid system. Finally, in section 5, we summarize our results and conclude with a few
comments for the future and some analogies with the instabilities appearing in superfluids
with finite superfluid velocity.

– 4 –
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2 Holographic setup and its viscoelastic description

2.1 Axion model and homogeneous solids

We start with the most general 4-dimensional Einstein-axion action [11],

S =
∫

d4x
√
−g

[
R − 2Λ− m2 V (X, Z)

]
, (2.1)

with
XIJ ≡ ∂µϕI∂µϕJ , X ≡ 1

2 Tr (XIJ) , Z ≡ det (XIJ) , I = 1, 2 . (2.2)

Here R is the Ricci scalar, m2 is a parameter related to the graviton mass, V is an arbitrary
scalar function and Λ is the cosmological constant. The action in eq. (2.1) is invariant under
global internal shifts ϕI → ϕI + cI , since it only involves derivative terms. The general
equations of motion are given by

∇µ

(
VX∇µϕ1 + 2VZ∇µϕ1X 22 − 2VZ∇µϕ2X 12

)
= 0 ,

∇µ

(
VX∇µϕ2 + 2VZ∇µϕ2X 11 − 2VZ∇µϕ1X 21

)
= 0 ,

Rµν − 1
2Rgµν + Λgµν = m2Tµν ,

(2.3)

with Tµν the energy-momentum tensor

Tµν = −1
2gµνV (X, Z) + VX

2

2∑
I=1

∂µϕI∂νϕI

+ VZ(X 22∂µϕ1∂νϕ1 + X 11∂µϕ2∂νϕ2 −X 12∂µϕ2∂νϕ1 −X 21∂µϕ1∂νϕ2) , (2.4)

and

VZ = ∂V (X, Z)
∂Z

, VX = ∂V (X, Z)
∂X

. (2.5)

Remarkably, many previous studies [13] have shown that this large class of holographic
models allows to break spatial translations while retaining the homogeneity of the dual
boundary system as long as the bulk profile of the axions is chosen to be

ϕI = M I
i xi, (2.6)

where M I
i is a 2× 2 matrix whose physical meaning will appear clear later. Previous studies

made the simplest choice

M I
i = α δI

i, (2.7)

which fully preserves the SO(2) rotation in the x-y plane. Within the isotropic setup, the
background metric of the black hole takes the following form,

ds2 = L2

u2

[
−f(u)dt2 + 1

f(u)du2 + dx2 + dy2
]

, (2.8)

– 5 –
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where the square of the AdS radius L2 = −3/Λ. Here, u is the radial coordinate ranging
from the AdS boundary, u = 0, to the black hole horizon, u = uh. The blackening factor f(u)
can be easily calculated by inserting (2.8) into the Einstein equations, and it is given by

f(u) = u3
∫ uh

u
ds

(
3
s4 − m2 V (X̄, Z̄)

s4

)
ds, (2.9)

where the “bar” denotes the background value of the respective functions. For the simplest
case (2.7), we have X̄ = α2u2 and Z̄ = α4u4. Furthermore, the Hawking temperature
is given by

T = −f ′(uh)
4π

= 3− m2 V (X̄h, Z̄h)
4πuh

, (2.10)

and the entropy density reads

s = 2π

u2
h

. (2.11)

Considering the case of a monotonic power law function,3 V (X, Z) = XN ZM , the asymptotic
behavior of the axion fields near the boundary takes the general form

ϕI(u, x⃗, t) = ϕI
(0)(x⃗, t) · · ·+ ϕI

(1)(x⃗, t)u5−2N−4M + . . . , (2.12)

where (x⃗, t) denote the space-time coordinates on the boundary. In the standard quantization
scheme, the coefficient of the leading order term in the expansion is interpreted as the external
source for the boundary operator OI , while the other corresponds to its expectation value,
⟨OI⟩. Therefore, by tuning the exponents, N and M , we can achieve different scenarios [2]:

• If 5 − 2N − 4M > 0, ϕI
(0)(xµ) is the leading term in the above expansion and the

profile (2.6) corresponds to source the dual field theory with a space-dependent coupling
which breaks translations explicitly. This leads to momentum dissipation in the dual
field theory [12, 45].

• If 5− 2N − 4M < 0, ϕI
(0)(xµ) is now the subleading term in the above expansion and

the same profile (2.6) should be interpreted as a space-dependent expectation value
⟨OI⟩ ∝ xi, in absence of any source, which corresponds to the onset of spontaneous
symmetry breaking (SSB) in the boundary field theory [2]. This second route is
analogous to introducing a boundary kinetic term for the scalar fields [14], and therefore
dynamical elastic interactions in the boundary field theory. In this sense, it is very similar
to the procedure to introduce dynamical electromagnetism and Coulomb interactions
in holography using mixed boundary conditions (see, e.g., [46, 47]).

In the rest of this paper, we will focus on the later case. The holographic renormalization
of axion models with spontaneously broken translations was already considered in previous
studies. All the models corresponding to the SSB case (in the standard quantization) are
less UV relevant than the standard linear axion model. Therefore, no extra counterterms
are needed. For more details about the holographic renormalization for this type of models,
please refer to the appendices in [17, 48].

3It is sufficient to have this power-law behavior close to the boundary u → 0 and not in the entire bulk.

– 6 –
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2.2 Viscoelasticity and linear response

In order to compute the linear response of the system upon external deformations, we
introduce the fluctuating fields

δχA(u, t, x⃗) =
∫ +∞

−∞

dω d2k

(2π)3 ei (k⃗·x⃗−ω t) δχA(u, ω, k⃗) (2.13)

on top of the background solution described in the previous section. Here, A is just a collective
label. We remind the reader that the boundary has two spatial dimensions, and therefore
k⃗ ≡ (kx, ky). Because of isotropy, one can always divide the complete set of the fluctuating
modes into longitudinal and transverse sectors which include respectively,

δχL := {δgtt, δgtx, δgxx, δgyy, δgtu, δguu, δgux, δϕx}, (2.14)
δχT := {δgty, δgxy, δguy, δϕy}. (2.15)

Without loss of generality, the wave vector k⃗ has been taken along the x-direction, k⃗ = (k, 0).
Then, the dispersion relations (which are poles of retarded correlators) of long-lived excitations
on boundary can be extracted from the low-lying quasi-normal modes of the black hole in
the bulk.

In linear response theory, and in absence of finite background shear deformations, the
homogeneous solids (in absence of finite charge density) exhibit the following hydrody-
namic modes:

transverse sector: ω = ±vT k − i

2 ΓT k2 , (2.16)

longitudinal sector: ω = ±vL k − i

2 ΓL k2 , ω = −i Dϕ k2 , (2.17)

where k is the magnitude of the wave vector k⃗. In the transverse sector, one obtains a
pair of propagating shear sound modes with speed vT and attenuation constant ΓT . In the
longitudinal sector, one has a pair of longitudinal propagating sound modes with speed vL

and attenuation constant ΓL and a diffusive mode with diffusion constant Dϕ. For more
details, see [14, 15, 17].

For a relativistic neutral conformal solid, the various transport coefficients appearing
in the dispersion relations are given by [14, 17]:

v2
T = G

χππ
, v2

L = 1
2 + v2

T , ΓT = η

χππ
+ G

σ

s2T 2

χ2
ππ

,

ΓL = η

χππ
+ T 2s2G2

σχ3
ππv2

L

, Dϕ = Ts2/σ

s + ∂TP
B + G − P
χππ + 2G

. (2.18)

The relation between the transverse and longitudinal sound speeds is a result of conformal
invariance [49]. Here, χππ = ε + p + P is the momentum susceptibility and other coefficients
are derived in terms of the following thermodynamic relations and Kubo formulas,

ε = ⟨T tt⟩ , p = −Ω , P = ⟨T xx⟩+Ω , χππv2
L = lim

ω→0
lim
k→0

ReGR
T xxT xx ,

G = lim
ω→0

lim
k→0

ReGR
T xyT xy , η = − lim

ω→0
lim
k→0

1
ω
ImGR

T xyT xy ,

B = (3P − T∂TP)/2 ,
(ε + p)2

σχ2
ππ

= lim
ω→0

lim
k→0

ω ImGR
ΦxΦx , (2.19)

– 7 –
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Figure 3. Dispersion relation of the lowest excitations at zero background strain ϵ = 0. The rest of
the parameters are fixed to mL = 1 and T/α = 0.8. The bullets are the numerical data and the solid
lines the predictions from hydrodynamics of eq. (2.18).

where Ω is the free energy density, T µν the boundary stress-energy tensor and Φi the Goldstone
operator associated with the spontaneously translation symmetry breaking. Notice that the
shear modulus G,4 the shear viscosity η, and the dissipative parameter σ can be obtained
from the Kubo formulas. Finally, the lattice pressure P quantifies the difference between
the thermodynamic and mechanical pressures and represents an additional contribution to
the mechanical pressure as a result of working around a state which does not minimize
the free energy [3, 50].

In figure 3, we show a concrete example of the dispersion relations of the hydrodynamic
modes for the simplest potential which implements the SSB of translations, V (X, Z) = X3.5
We observe a pair of sound modes in the transverse channel, a pair of sound modes with
larger speed and a single diffusive mode in the longitudinal channel. Furthermore, one can
verify quantitatively that, at long distances (small k), the dispersion relations are in perfect
agreement with the analytic relations (2.16)–(2.19) shown with solid lines in figure 3.

2.3 Beyond linear response

Whenever the external strain applied to an ideal solid (with no dissipation) is infinitesimal,
linear elastic response theory implies a simple relation between the strain Ekl and the induced
stress σij

σij = Cijkl Ekl + . . . , (2.20)

where Cijkl is the elastic tensor, determined by the elastic constants of the material. However,
when the system undertakes a finite, and eventually large, strain, a richer behavior emerges

4It was found that, in the axion model, there is no well-defined melting temperature, intended as a first-order
thermodynamic phase transition between a liquid phase and a solid phase. Instread, the shear modulus just
decreases smoothly to zero as T/α → ∞ [2].

5In the simple case of monomial potentials, only one of the dimensionful parameters, m or α, is necessary
to characterize the strength of the spontaneous breaking of translation. In the rest of this paper, we always fix
m = L = 1 and treat α as a free parameter.

– 8 –
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and the stress-strain relation is in general no longer linear,

σij = Σ(Ekl). (2.21)

In this case, the system enters into the nonlinear elastic regime, where the perturbative
linear approximation in eq. (2.20) breaks down. Recently, the nonlinear response within the
holographic axion model has been studied [22] (see also [23, 48, 51]).

In order to introduce a finite and static background shear strain in the holographic model,
one can choose a more general profile for the bulk axion fields,

M I
i = α

(√
1 + ϵ2/4 ϵ/2

ϵ/2
√
1 + ϵ2/4

)
. (2.22)

From the perspective of effective field theory [24], α characterizes the variation of the volume
(or area in two spatial dimensions) of the system, hence corresponding to a background bulk
strain. On the other hand, ϵ corresponds to an anisotropic mechanical deformation which
preserves volume, but not angles, i.e., an external shear strain.

Because of the introduction of off-diagonal terms in (2.22), the background solution has
to be modified into the more general form

ds2 = 1
u2

[
−f(u)e−χ(u)dt2 + 1

f(u)du2 + γij(u)dxidxj
]

, (2.23)

where γij(u) = δij in the absence of shear deformation. For later convenience, we further
introduce the following notations,

γ =
(

cosh h(u) sinh h(u)
sinh h(u) cosh h(u)

)
(2.24)

and

M I
i = α

(
cosh (Ω/2) sinh (Ω/2)
sinh (Ω/2) cosh h(Ω/2)

)
(2.25)

with the unstrained reference configuration corresponding therefore to Ω = 0. Then, the
background shear strain can be expressed as

ϵ = 2 sinh
(Ω
2

)
. (2.26)

We refer to [51] for a detailed discussion about the meaning and the interpretation of the
holographic setup in comparison to standard non-linear elasticity theory.6

For the above ansatz, the background equations of motion read

2χ′ − u h′2 = 0 , (2.27)

f (u χ′ + 6 ) +
[
m2 V (X̄, Z̄)− 2u f ′ − 6

]
= 0 , (2.28)

h′′ + h′
(
− f ′

f
− 2

u

)
− 1

4 u h′3 − α2 sinh (Ω− h)m2VX(X̄, Z̄)
f

= 0, (2.29)

6One can also choose a base that diagonalizes the matrix MI
i in eq. (2.22) as well as the spatial components

of the spatial metric γij in eq. (2.24). This new coordinate system is nothing but the one aligned with the
principle axis of the shear. This alternative choice is equivalent to the one presented in this work.

– 9 –
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where the background values of X and Z are given by X̄ = α2 u2 cosh (Ω− h) and Z̄ = α4 u4.
Finally, the Hawking temperature and entropy density now read

T = −f ′(uh)e−χ(uh)/2

4π
= 3− m2 V (X̄h, Z̄h)

4πuh
e−χ(uh)/2 (2.30)

and s = 2π
u2

h
, both evaluated at the event horizon u = uh.

To solve the equations above, we need to impose additional boundary conditions. At
the black hole horizon, one has that f(u = uh) = 0 and h(u = uh) = hh. Close to the
UV boundary u = 0, we impose that f(u = 0) = 1, χ(u = 0) = 1 together with the
asymptotic expansion,

h (u) = H0 + · · ·+H3 u3 + . . . . (2.31)

Following the holographic dictionary, H0 is identified as the source of the stress tensor operator
Txy in the dual system and will be set to zero hereafter i.e., H0 = 0, H3 corresponds to its
VEV ⟨Txy⟩. Within this setup, the source of Txy is solely contributed by the mechanical strain
deformations induced by the axion fields. After solving the equations of motion numerically,
one can analyze the nonlinear response by looking at shear stress [48]

σ ≡ ⟨Txy⟩ =
3
2 H3

as a function of the external mechanical strain (2.26).
In the case of monotonic potential V (X, Z), the nonlinear elastic regime and its main

properties (e.g., associated scaling behaviors) have been first explored in [22]. For illustration,
we show the stress-strain curves for shear softening (red) and hardening (blue) cases in
figure 4. For the potential V (X, Z) = XN ZM , the non-linear stress-strain scaling law is given
by σ ∼ ϵ3N/(2M+N) for large ϵ. Furthermore, the thermodynamic and mechanical properties
of strained holographic systems have also been computed and compared with the results from
effective field theory and numerical simulations of amorphous solids in [23], which unveiled
some remarkable similarities between the two systems. The real-time nonlinear viscoelastic
response has also been studied in [21, 52]. Finally, the DC thermoelectric transport properties
of the normal phase and the dynamics of superfluid/supersolid phases under finite strain
have been discussed respectively in [48] and [51].

Despite all the aforementioned efforts, a systematic and complete stability analysis of the
nonlinearly strained background is still missing. This will be the primary task of this work.

3 A simple holographic solid evading mechanical failure

In the following, we consider linear perturbations around backgrounds with a finite shear
strain for different holographic models. As a consequence of the breaking of the SO(2)
rotational symmetry induced by the external shear strain, the dispersion relations of the
low-energy modes now become angle-dependent. In order to capture this effect, we replace
the ansatz (2.13) for the fluctuating fields with the more general form,

δχA ∼ exp (−i ω t + i k x cos θ + i k y sin θ ) , (3.1)
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Figure 4. The nonlinear elastic stress-strain curve for monotonic potential V (X, Z) = XN ZM . Here
we choose T/α = 0.2. The blue curve exhibits shear hardening as evidenced by a rapid increase in the
shear modulus G ≡ dσ/dϵ, while the red one corresponds to the shear softening cae characterized by
the decrease of G as the shear deformation is increased. For sufficiently large shear deformation ϵ, a
non-linear stress-strain scaling law of the form σ ∼ ϵ3N/(2M+N) emerges.

where θ denotes the angle between the wave vector k⃗ and the x-axis. In this more complicated
case, the fluctuations cannot be decomposed anymore in two decoupled longitudinal and
transverse sectors and we need to solve all linearized equations at once. The resulting
equations of motion for perturbations are obtained by substituting (3.1) into (2.3). They are
too lengthy to be presented here.7 To compute the quasi-normal modes, we impose ingoing
boundary conditions at the horizon and turn off all source terms at the AdS boundary.

Our numerical analysis indicates that, at least qualitatively, the dispersion relation of the
hydrodynamic modes is not modified by the background strain. In particular, we verify the
existence of two pairs of sound modes and one diffusive mode in the hydrodynamic regime
(small k limit) whose dispersions can be expressed as follows,

sound modes: ω = ±v1,2(θ, ϵ) k − i

2 Γ1,2(θ, ϵ) k2 , (3.2)

diffusive mode: ω = −i Dϕ(θ, ϵ) k2 . (3.3)

Here, we have denoted the sound mode with larger speed by the subscript “1” and the
one with lower speed by the subscript “2”. Following our notations, in the limit of ϵ → 0,
the mode number “1” becomes the longitudinal sound mode, and the “2” the transverse
one. Finally, let us notice that all the hydrodynamic coefficients (sound speed, attenuation
constant and diffusion constant) depend explicitly on θ and ϵ. The same phenomenon appears
in zero temperature field theory as well [24]. Clearly, in the limit of ϵ → 0, the angle

7There are twelve coupled complex equations, ten of which come from the Einstein equations and two from
the axion scalar sector.
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Figure 5. Top panels. The real part of the dispersion relations upon increasing the shear strain
ϵ = 1.28, 2.05, 3.01 from left to right in the simplest model V (X) = X3. Bottom panels. The
corresponding imaginary parts. Here, we have set T/α = 0.8 and θ = 0.

dependence disappears and the dispersion relations recover the well-know results presented
in the previous section, eqs. (2.16)–(2.17).

For the simplest model with V (X) = X3, the dispersion relations of the low-lying modes
along the x-direction (i.e., θ = 0) have been depicted in figure 5. For small values of the
background shear strain ϵ (top left panel), the sound mode number “1” and the diffusive
mode remain almost unaffected. On the contrary, the sound mode number “2” presents a
strong softening at an intermediate value of the wave-vector. This softening becomes stronger
and moves to larger k by increasing the background strain ϵ. The softening of a phononic
mode is typically a precursor for a structural instability and has been investigated in many
situations, see e.g. [33–39]. Notice that despite this softening mechanism, the low-k regime of
the sound dispersion remains linear, even if with modified sound speed. Furthermore, we
observe a strong interaction between the sound mode number “2” and the diffusive mode
in the region below the softening.

Beyond a critical value of the strain (see central panel in figure 5), the interactions
between these two modes become very complex and give rise to a propagation gap in the
real part of the sound mode number “2”. The “propagation gap” is a known phenomenon in
the context of liquids and has been experimentally observed in liquid argon [53, 54], neon
and in molecular dynamic simulations of Lennard-Jones liquids [55]. Interestingly, it arises
because of the strong intereference between elastic forces and dissipative effects [56], which
is at least qualitatively similar to what we observe.

Finally, for very large values of the strain (right panels in figure 5), the propagation gap
closes and we see that the dispersion relations greatly simplify and return to a shape similar
to the case with zero strain. Importantly, we see that all the modes in the system (including
the non-hydrodynamic ones which are not shown in figure 5) have negative imaginary parts
independently of the strength of the background strain ϵ. This implies that this simple HHS
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Figure 6. Left: v2
1 − v2

2 as a function of the shear strain ϵ for θ = 0 and different values of the
temperature T/α. Right: the angular dependence of v2

1 − v2
2 for different values of the background

shear strain ϵ with T/α = 0.8.

is stable upon linear perturbations even when subjected to a very large background shear.
Notice that this does not guarantee the stability of the system beyond linear order.

In the long-wavelength limit (small k), we can compare our numerical results for different
values of θ and ϵ with the dispersion relations presented in eqs. (3.2)–(3.3). Doing so, we
can extract all the hydrodynamic coefficients whose behavior is shown in figures 10–11 of
appendix A. As anticipated, we find that

v1,2 > 0, Γ1,2 > 0, Dϕ > 0 (3.4)

for all θ’s and sufficiently large ϵ. A detailed analysis of the various coefficients as a function of
the angle θ and ϵ can be found in appendix A. Here, we limit ourselves to one single important
observation. As a consequence of the conformal symmetry of our system, in absence of
background strain, the two speeds of sound are related to each other by the following identity:

vL
2 = vT

2 + 1
2 , (3.5)

which has been derived in [49] and confirmed numerically in several instances. Here, we are
interested in examining how this relation is modified when the velocities v1,2 are considered
and when the longitudinal and transverse excitations mix with each other.

The results are shown in figure 6. For simplicity, let us start from the behavior at
θ = 0 (left panel). We observed that for small values of the shear strain ϵ, the identity (3.5)
still holds. With the increase of the strain, the difference deviates from the 1/2 value in
a non-monotonic way. For very large strain, it becomes very anisotropic. As shown in
appendix A, the effect of the background strain is to render the system anisotropic, by
increasing one of the two speeds of sound and decreasing the other one. Furthermore, we
observe that the effects of background strain are stronger for smaller temperatures. The
larger the temperature, the larger the background strain which produces noticeable deviations
from the ϵ = 0 state. Looking in more detail into the angular dependence of this difference
(right panel of figure 6), we observe that the anisotropy created by the background shear is
of quadrupolar form corresponding to a discrete rotational invariance (see [48] for similar
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Figure 7. Dispersion relation curves for the V (X, Z) = X2 Z1/2 model with ϵ = 2 (left panels) and
ϵ = 6.5 (right panels). Here, we have fixed T/α = 0.158, θ = 0. It is found that critical values of the
strain corresponding to a zero diffusion constant and a zero sound speed along the x-direction are
given by ϵ

(d)
0 (0) ≈ 1.75 and ϵ

(s)
0 (0) ≈ 5.55.

results regarding thermo-electric transport coefficients) and it is most pronounced in the
diagonal direction θ = π/4, θ = 5π/4. This is simply a consequence of the geometric structure
of the shear deformation and it is independent of the strength of the latter. This discrete
rotational symmetry, which also defines the principle axis of shear, is the only symmetry left
in the problem since continuous rotational invariance is broken by the shear deformation.
Interestingly, for the class of models with potential of the form V (X) = XN (N > 3), we
find that they are all linear stable independently of the value of the background shear strain.
One common feature for V (X) = XN from the stress-strain curve is that the shear modulus
G ∼ ϵ3 for large shear deformation.

4 A holographic solid exhibiting mechanical failure

In this section, we turn to considering HHS with a more complex potential of the form
V (X, Z) where an explicit dependence on the scalar quantity Z is added. The main reason to
do so is twofold. First, following an effective field theory logic, there is no argument to avoid
such a dependence. Indeed, there is no symmetry principle which protects the potential not
to depend on Z (while there is one for having a V (Z) without X dependence, i.e., volume
preserving diffeomorphisms). On the other hand, from a more phenomenological perspective,
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Figure 8. The angular dependence of ϵ
(d)
0 and ϵ

(s)
0 for T/α = 0.158 (left) and T/α = 0.025 (right).

The critical strain that the system can sustain can be defined as the minimum of ϵ
(d)
0 .

it is necessary to add such a dependence to encompass a broader spectrum of stress-strain
curves including both strain hardening and softening behaviors.

Explicitly, we will consider the benchmark model V (X, Z) = X2Z1/2. We will comment
at the end about another choice which gives qualitatively similar results. We have performed
a detailed analysis of the quasi-normal mode spectrum as in the previous section. A complete
report of such analysis can be found in appendix A. Differently from the previous simpler case,
we have found that this setup exhibits two types of instability. The first type, which we denote
“diffusive instability”, is signaled by the diffusion constant Dϕ becoming negative. And the
corresponding critical strain is denoted as ϵ

(d)
0 (θ). An example of that sort is shown in the left

panels of figure 7 for the case θ = 0. There, we observe the presence of a mode with dispersion:

ωunstable = +i|Dϕ|k2 , (4.1)

which signals the appearance of a hydrodynamic instability for arbitrarily low values of
the wave-vector k. As we will see in more detail later on, this type of instability is the
dominant one for small values of the background shear strain ϵ.8 We notice that the QNM
spectrum presents five gapless modes as mentioned in (3.2) and (3.3). Each sound mode
has two branches of dispersion relation that are mirror symmetric, i.e. one Γ corresponds
to two real parts with ±v, see (3.2). To avoid clutter, in figure 5 and figure 7, we only
show the Re[ω] ≥ 0 branch.

For larger values of the background shear strain, a second type of instability appears
in the spectrum. We denote this second case “sound instability” since the dispersion of the
unstable mode is given schematically by:

ωunstable = +i|v|unstablek − iΓunstablek
2. (4.2)

This second situation is shown in the right panels of figure 7 and it appears as the dominant
instability for very large values of the background strain ϵ. Intuitively, it corresponds to a
speed of sound squared becoming negative. And we denote this critical strain as ϵ

(s)
0 (θ).

8Note, however, that this instability was not observed in the previous effective field theory analysis at
T = 0 [24].
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Figure 9. Left: The difference between the diffusive critical strain and the sound, ∆ϵ0 ≡ ϵ
(s)
0 − ϵ

(d)
0

as a function of temperature for different angles θ. The dashed lines illustrate the low temperature
scaling ∆ϵ0 ∝ (T/α)3/2 as T/α → 0. Right: The phase diagram as a function of temperature T and
background shear strain ϵ for the HHS model with V = X2Z1/2. The instabilities are determined by
the most unstable mode as a function of the angle θ.

In figure 8, we study in more detail the onset of these two instabilities by tracking the
corresponding critical strain as a function of the angle θ for two characteristic temperature
values, representing the low and high temperature regimes respectively. At high temperatures
(left panel), we observe that the critical strain for the diffusive instability is always lower
than that for the sound instability. The two approach each other only for large values of the
angle, θ → π/4. Interestingly, for the leading diffusive instability the most unstable angle is
θ ≈ −π/36. As shown in the right panel, the critical strain for the diffusive instability depends
very mildly on the temperature. On the contrary, the one for the sound instability is strongly
affected by thermal effects. In particular, by decreasing T we see that the critical strain for
the sound instability becomes smaller and approaches the one for the diffusive instability.

In order to investigate the temperature dependence of the critical strains, in the left
panel of figure 9 we show the difference between the critical strain corresponding to the
sound instability, ϵ

(s)
0 , and that corresponding to the diffusive one, ϵ

(d)
0 , for different values

of the angle θ. There, we observe that independently of the angle θ, the difference between
the two critical values approaches zero following a power-law which is extracted numerically
to be ∆ϵ0 ∝ T 3/2.

We are now in the position to draw a phase diagram for our HHS at finite temperature
T and with background shear strain ϵ. We show a representative result for the potential
V = X2Z1/2 in the right panel of figure 9. At low temperatures and low background strain
(blue region), the holographic solid is stable and all excitations decay in time. By increasing
the background strain ϵ, the system becomes unstable since the diffusive mode moves in the
upper half of the complex plane. This diffusive instability becomes more and more pronounced
at large temperatures where dissipative effects are more important. As a consequence, the
unstable diffusion region (pink color) is very thin at small T and becomes larger and larger
for higher T . By increasing the background shear strain ϵ further, the dominant instability
is not anymore related to a diffusive mode but rather to a sound mode (red region). This
instability is the dominant one at low temperatures and the only one surviving at T = 0.
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By increasing the temperature, larger values of the strain are necessary to make this second
instability the dominant one.

Interestingly, our phase diagram shares strong similarities with that obtained in [57] for
a relativistic superfluid with background superflow and weakly broken translations (figure 2
therein). The background shear strain ϵ plays the role of the superfluid velocity ζ as it
similarly acts to destabilize the long-range order of the initial system. This analogy might
suggest that also in our case the origin of the instability might be thermodynamics — a
thermodynamic susceptibility becomes negative at a critical value of the background strain.
Qualitatively similar results are observed for V (X, Z) = XN ZM with 5 − 2N − 4M < 0
and M ̸= 0. In contrast to the previous case with M = 0, at large strain deformation,
the stress-strain relation now displays a rich power law behaviour G ∼ ϵν with ν = 3N

2M+N .
Therefore, our work shows that the same instability pattern emerges both in the shear
softening ν < 1 and shear hardening ν > 1 cases.

5 Outlook

In this work, we have performed a numerical study of the linear excitations in holographic
homogeneous solids with background shear strain ϵ. We have considered a large class
of systems [13] and analyzed in detail the behavior of the quasi-normal modes at finite
temperature, zero charge density and finite ϵ. Surprisingly, we have found that the simplest
HHS with potential of the form V (X) = XN (N > 3) [2] are stable under linear perturbations
independently of the value of the background shear strain. This suggests that instabilities
under mechanical deformations can arise only at nonlinear level and would require a more
sophisticated analysis which goes beyond the linearized equations of motion and quasi-
normal modes.

On the contrary, for more complicated potentials of the form V (X, Z) = XN ZM we have
found a rich structure of instabilities which can be either diffusive or sound-like. The first
type corresponds to a diffusion constant becoming negative; the second, to a speed of sound
becoming complex. For small values of the shear strain ϵ, we observed that the diffusive mode
is the most unstable excitation and this becomes more prominent by increasing T , which
naturally enhances dissipative effects and diffusive processes. On the other hand, for larger
values of the shear strain, the dominant instability concerns a sound mode, as previously
envisaged in the zero temperature field theory analyses [24].

Interestingly, the phase diagram constructed in this work (right panel of figure 9) shares
intriguing similarities with that of a relativistic superfluid with weakly broken translations and
background superflow [57], where the superfluid velocity ζ plays the role of the shear strain ϵ.
It is feasible that also the instabilities revealed in this work have thermodynamic origin, and
correspond to a thermodynamic susceptibility getting negative at a critical value of the strain ϵ.

There are several open questions and point which deserve further attention and future
investigation.

• Our analysis has been mainly focused on the numerical study of the quasi-normal mode
frequencies. In order to understand in more detail the origin of the revealed instabilities,
it is necessary to write a hydrodynamic theory for systems with spontaneously broken
translations under background shear strain. This would represent a generalization
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of the hydrodynamic framework reviewed in [3] in presence of a background shear
strain ϵ which breaks the underlying rotational symmetry. Such analysis would clarify
whether the aforementioned instabilities have a thermodynamic origin as in the case of
superfluids with superflow [57].

• We have limited ourselves to the study of the linear dynamics. This does not allow to
identify the endpoint of the instabilities and the resulting final equilibrium phase, which
is expected to be inhomogeneous. In the same direction, we do expect that the linearly
stable models V (X) = XN will develop nonlinear instabilities which are not visible
in the linear regime. In this sense, the XN models could be driven to inhomogeneous
phases by the background shear strain but only under finite, and eventually large
perturbations. It is plausible that the unstable dynamics related to these models are
similar to bubble nucleation processes [58–61], with a finite activation energy, while
those related to the linearly unstable models (with either diffusive or sound instabilities)
are more akin to spinodal decomposition (see for example [62–64]).

• A physical interpretation for these instabilities is still missing. In particular, the
question whether these instabilities are related to any emergent plasticity or to the
formation/dynamics of defects in these solids is still open. Here, we limit ourselves
to notice that the same unstable dynamics are observed for holographic potentials
corresponding to brittle and ductile stress-strain curves. This suggests that these
instabilities do not depend on the UV microscopic physics (which is certainly very
different for brittle and ductile materials) but only on some more universal IR features.

• In this work, we have limited our discussion to a benchmark potential of the form
V (X, Z) = XN ZM . This gives a monotonic stress-strain curve that has a linear regime
for small shear deformation and displays a power law behaviour G ∼ ϵν with ν a
constant for large strain deformations. It would be interesting to consider more complex
mechanical responses, such as mixed effects of shear softening and shear hardening
and a case with a “yielding” point, characterized by a maximum on the stress-strain
curve. Moreover, our study can be extended to the case of three-dimensional materials
by introducing three massless axions and extending the effective theory description
appropriately. Despite we do not foresee fundamental difficulties, from a technical point
of view the analysis is expected to be more cumbersome.
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A Extended analysis

It is manifest that the effect of the background strain is to render the system anisotropic.
For completeness, in this appendix we show in more detail how sound speeds v1,2, sound
attenuation constants Γ1,2 and diffusion constant Dϕ in (3.2) and (3.3) depend on the shear
strain ϵ as well as the propagation angle θ.

A.1 Model 1

For the simplest model V = X3 that evades mechanical failure, all the hydrodynamic
coefficients as functions of θ and ϵ have been plotted in figures 10–11 with a fixed T/α = 0.8.
One finds that the anisotropy created by the background shear is of quadrupolar form and
it is most pronounced in the diagonal direction θ = π/4, θ = 5π/4. This could be simply
a consequence of the geometric structure of the shear deformation.

In figure 10, we find that v1 is enhanced in all directions and v2 is enhanced in most of
the directions as the strain increases. More precisely, v1 is enhanced most along the diagonal
direction, i.e., θ = π/4, 5π/4. On the contrary, v2 is only reduced close to the diagonal
direction. The attenuation constants Γ1 and Γ2 depend on ϵ and the θ in a more complicated
way. But anyway, we conclude that v1,2 and Γ1,2 are always positive, and therefore the system
evades the sound instability no matter how large the strain is.

For the diffusion mode, the behavior is similar to the attenuation constant Γ1 (see
figure 11). Importantly, the system also evades the diffusive instability.

A.2 Model 2

For the model with V = X2Z1/2, all the hydrodynamic coefficients in this model as a function
of θ and ϵ are presented in figures 12–13 with a fixed T/α = 0.158. Similar to the case above,
the anisotropy has a quadrupolar form and is most pronounced along the principal axis due
to the geometric structure of the shear deformation. Nevertheless, the angle dependence of
those hydrodynamic coefficients are quite different from the previous model.

For the sound mode labelled as number “1”, we find that v1 and Γ1 are both positive in
all cases. For the sound mode number “2”, it is found that, when ϵ ≈ 4.91, v2 approaches
to zero firstly along θ ≈ 24◦, 66◦, 204◦ and 246◦, suggesting the development of the sound
instability. Whereas, Γ2 always retains positive (even though it becomes very small when
the applied strain is large).

The diffusion is strongly affected by the shear strain. When ϵ ≈ 1.74, the diffusion
constant vanishes firstly along θ ≈ 95◦, 175◦, 275◦ and 355◦, which indicates the onset of
the diffusive instability.

– 19 –



J
H
E
P
0
5
(
2
0
2
4
)
1
9
8

Figure 10. The simplest solid model with V = X3 at T/α = 0.8: sound speeds v1,2 (top panels) and
sound attenuations Γ1,2 (bottom panels) for different values of strain and angle. In all cases, it is
found that v1,2 > 0 and Γ1,2 > 0, which means that there is no sound instability.

Figure 11. The simplest solid model with V = X3 at T/α = 0.8: diffusion constant Dϕ for
different values of strain and angle. In all cases, we find that Dϕ > 0 which implies that there is no
diffusive instability.
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Figure 12. The solid model with V = X2Z1/2 at T/α = 0.158: sound speeds v1,2 (top panels) and
sound attenuations Γ1,2 (bottom panels) for different values of strain and angle. It is found that, when
ϵ ≈ 4.91, the sound mode number “2” becomes unstable along θ ≈ 24◦, 66◦, 204◦ and 246◦ firstly.

Figure 13. The solid model with V = X2Z1/2 at T/α = 0.158: diffusion constant Dϕ for different
values of strain and angle. It is found that, when ϵ ≈ 1.74, the diffusive mode becomes unstable along
θ ≈ 95◦, 175◦, 275◦ and 355◦ firstly.
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