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1 Introduction

In the last decade there has been growing interest in special overlaps between particular
spin-chain states called boundary states [1, 2] and wavefunctions of integrable spin chains.
These overlaps are important in two parts of the theoretical physics. In statistical physics
these quantities appear in the context of non-equilibrium dynamics of the integrable models
and the overlaps play a central role in the study of the quantum quenches [3]. One of the main
methods for the investigation of the steady states is the so-called Quench Action method [4],
where the knowledge of the exact overlaps is an important input [5-10].

The other area of applications is the AdS/CFT correspondence. The boundary states
and the corresponding overlaps appear for various setups: the overlaps describe one-point
functions of the N' = 4 super Yang-Mills and ABJM theories with domain wall defects [11-13]
and the three-point functions of two determinant and one single trace operators [14-16],
they also relevant for the correlators between the 't Hooft line and chiral primaries of the
N = 4 super Yang-Mills [17] and for the correlation functions of a single trace operator and
a circular supersymmetric Wilson loop in ABJM theory [18].

In recent years, overlap functions have been determined for many boundary states [19-24].
In the most cases, these are only conjectures based on the observation that the overlaps are
proportional to the ratio of the so-called Gaudin determinants. There exist exact proofs
for the XXX and XXZ spin chains [25-28], but it is not clear how they can be extended to
arbitrary representations or nested systems. The first method which applied the algebraic
Bethe Ansatz for the derivations was published in [29]. The method is based on the so-
called K'T-relation which allows us to derive a recursion for the overlaps in a representation
independent way. This method was generalized for gl(N) spin chains in [30]. So far, this is
the only precise proof of boundary state overlaps in nested systems. This method was also
generalized for the proof of overlaps with crosscap states [31]. However, the results of [30]
only include a subset of possible boundary states. In this paper we extend the procedure
and determine the on-shell overlap formulas for all possible integrable boundary states which
are built from two-site states.

In [30] it was showed that we can distinguish between untwisted and twisted boundary
states. For untwisted or twisted boundary states the Bethe roots have achiral or chiral pair
structure. The possible residual symmetries § for the untwisted states can be h = gl(M) ®
gl(N — M) and for the twisted states they are h = so(N) or h = sp(N). The derivations in [30]
could be applied for the h = gl( {%J )@ gl( {%b and h = so(IV) symmetric cases. In this paper
we extend the results for the remaining symmetry classes. We now list the possible overlap
functions for the gl(/V) spin chains. For h = gl(M) ® gl(N — M) the on-shell overlaps are

(Wlu) [M bm1ru1 Qu(a) det G+ .
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For h = so(N):

way  [& . A (@00 det G+
V) _Lgly” HI:[ QD] Ve (1.2)

and for h = sp(N):
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k=

The a, by, x, y, are parameters of the boundary state, the Q,-s are the usual Q-functions,
r,-s are the number of Bethe roots and det G* are the Gaudin-like determinants. The proof
for (1.1) when M = [%J and for (1.2) can be found in [30]. In this paper we extend the
derivation of (1.1) for general M. We also give strong arguments for the correctness of (1.3),
but leave the precise proof to a later work.

The formulas can be applied for any representations of gl(/N) therefore they give the
overlaps of the SO(6) and the alternating SU(4) spin chains which describe the scalar sectors
of the N = 4 SYM and the ABJM theories. We show that our formulas agree with the
conjectures of the overlaps appeared in [16-18].

The paper is organized as follows. In section 2 we briefly recall the definitions of
the gl(/V) symmetric spin chains. In section 3 we show the properties the untwisted K7T-
relation and derive a sum formula for the off-shell overlaps which gives the proof of the
on-shell formula (1.1). In section 4 we continue with the twisted KT-relation and derive
the corresponding sum formula for the off-shell overlaps of the sp(N) symmetric boundary
states. We show that the sum formula has the same embedding rules as the Gaudin-like
determinants which allows us to conjecture (1.3). In section 5 we apply our on-shell formulas
for the states which appeared earlier in the AdS/CFT correspondence.

2 Definitions

In this section we review the definitions of the gl(N) symmetric spin chains. Let us start
with our conventions for gl(/V) algebra and its representations. Let Ej; j-s be the N x N unit
matrices which have components (E; j)q = i,40;5 and they are satisfy the gl(/V) Lie-algebra:

[Eij, Exg] = 06 Eig — 051 B 5. (2.1)

For the N-tuples A = (Ay,...,Ay) we can define a highest weight representation V2. Let
ElA] € End(V*) and [0*) € VA be the corresponding generators and highest weight state
for which

ENI0Y) = Aij0Y),  for i=1,...,N,

2.2
E}0Y) =0, for 1<i<j<N. 22)

Let us continue with the definition of the corresponding Yangian algebra Y (N) [32]. We
use the notations of [30, 33-36]. The Yangian algebra Y (V) is generated by the monodromy
matrix T'(u) = 2%21 E; j®T; ;(u) € End(CY)®Y (N) which satisfies the usual RTT-relation

ng(u — U)Tl (u)Tg(v) = TQ(U)Tl (u)ng(u — 1)), (2.3)



where we use the gl(N) R-matrix
R(u) =ul+cP, (2.4)

where c is a constant and I, P are the identity and the permutation operators in the vector
space CN @ CV. We can define representations of the Yangian Y (N) on a quantum space .
A representation is highest weight if there exists a unique pseudo-vacuum |0) € H such that

Tiil0) = Ai(w)[0),  for i=1,...,N, (2.5)
T;.|0) = 0, for 1<i<j<N. '

The A;(u)-s are the vacuum eigenvalues. The irreducible representations of gl(IN) can be
generalized for representations of Y (IV). We can define the matrices (Lax-operators)

N
LMu)=1+ g S Eij® E) € End(CY) ® End(VY), (2.6)
i,j=1

which are solutions of the RTT-relation.

Let us consider the following tensor product quantum space H = HH) @ #?) and define
monodromy matrices on each sub-spaces T (u) € End(CY) @ H® for i = 1,2. We can define
a monodromy matrix (which satisfy the RTT-relation) on the tensor product space as

N
Tig(u) =3 T (w) © T2 (w). (2.7)
a=1

The consequence of this co-product property is that we can build more general monodromy
matrices using the elementary ones (2.6):

To(u) = Lé‘,(j) (u—=&y)... Lf)\ff) (u— &), (2.8)

where &; € C are the inhomogeneities. We can series expand the monodromy matrix around
U = 00 as

Tiy(w) = 855 + — A(Bji) + Ou™?), (2.9)
where we introduced the co-product of the gl(/N) generators

A(By) =Y (BN, (2.10)
k

where the operators (EZAJ(k))k act non-trivially only on the site k. For this monodromy

matrix (2.8) the pseudo vacuum is

0) = 0" @ - @ |02, (2.11)
for which
A(Ei3)]0) = As]0), (2.12)
where A; = 3]:1 Agj ) are the gl(N) weights of the pseudo-vacuum.



We can also define the transfer matrix

T (u) = trT(u), (2.13)
which gives commuting quantities
[T (u), T (v)] =0. (2.14)
For a given sets of complex numbers t* = {t}}}*,, p = 1,...,N — 1, following [33], one
can define off-shell Bethe vectors
B(t) = B(#*,..., V1. (2.15)

The recursion for the definition of the off-shell Bethe vectors can be found in the appendix A.
The Bethe vector is on-shell if the Bethe roots t# satisfies the Bethe Ansatz equations

Aulty)  ft ) F 8

oy, (t) = = — = , 2.16
w0 = X W) R ) (210
where we used the following notations
__C f(u,v)
g(uav)*u_va h(u,v) g(U,U),
uU—v-+c -
=1 = th =i\t
f(’LL,U) +g(u,v) U—1 ’ k \ 9 (217)
f(uﬂ?l) = H f(uvt;ﬁ)v f(fz7u) = H f( i:au)a f(fl>fj) = H f( }c’p)
k=1 k=1 k=1
The on-shell Bethe vectors are eigenvectors of the transfer matrix
T (u)B(t) = 7(ult)B(?), (2.18)
with the eigenvalue
T(ult) = > Ni(w) f(Fu) f(u, 1), (2.19)
i=1
where ro = rny = 0.
One can also define the left eigenvectors of the transfer matrix
CH)T (u) = 7(ult)C(), (2.20)

and the square of the norm of the on-shell Bethe states satisfies the Gaudin hypothesis [34]

— — Hl],\[:_ll Hk;él f(tzjv tll;)

C(t)B(t) = —————————=det G, (2.21)
H]VV:12 f(t”+1, tu)
where G is the Gaudin matrix given by
0log o
(wv) _ J
G = e (2.22)



where we defined the expressions

f(t t) f(t, 1)
Ft ) F#th )

We can also define another monodromy matrix which satisfies the same RTT-algebra [35].

ol — (1) (2.23)

This transfer matrix can be obtained from one of the quantum minors as
e3 ] i ]‘7"'7/:7"'7N -
Tna—jin+1—i(u) = (=1)"7¢ 0 0 (u — c)adet(T'(u) ™, (2.24)
by o o (u) = Z se(P)Ta,b, ) (W Tap, (w—c) o Top, ., (uw—(m—1)c),  (2.25)
P
adet(T'(w)) = 1157y (u). (2.26)

Here ¢ and j mean that the corresponding indices are omitted. We call T as twisted monodromy
matrix. The twisted monodromy matrix 7" is also a highest weight representation of Y (N), i.e.,

7,510 = Ai(u)]0), for i=1,...,N,
T,400) = Au(w)l0) . .
Tj’i‘0>:(), for 1§’L<]§N,
where the pseudo-vacuum eigenvalues are
N—i
« 1 A (u — ke)
Ai(uw) = - 2.28
i(w) AN—it1(u = (N = i)c) ;= A(u— (k= 1)c) (2:28)
The ratios of the vacuum eigenvalues have the following form
s
di(w) = 2 o = (V= i)o). (2.29)
Ait1(u)

The twisted monodromy matrix T is similar to the inverse of the original monodromy matrix 7"
VT w)VT(u) = 1, (2.30)

where V is an off-diagonal N x N matrix of the auxiliary space with the components
Vij = i, N+1—; and the superscript ¢ is the transposition in the auxiliary space, i.e. [Tt(u)} =

o~ A~ /L’]
Tji(u). Applying this equation to the RTT-relation we obtain the RTT-relation
Ry 2(u — )Ty (u)Ta(v) = To(v)T1 (u) Ry 2(u — v), (2.31)
where we used the crossed R-matrix
Ry p(u) = VaRZ)(—u)Va. (2.32)
One can also define the corresponding twisted transfer matrix as
~ A~ N A~
T(u) =T (u) =Y T;(u). (2.33)



From the RTT-relation (2.31) on can derive that the original and twisted monodromy
matrices are commuting

[T(u)> ?(U)] =0, (2.34)

therefore they have common eigenvectors. Let ]ﬁ%(t_) be the off-shell Bethe vector generated
from 7; ;. In [35] the connection between the Bethe vectors B(¢) and B(t) was determined

-1

B(?) = (—1)#t<]:[ f(ts“,ts)) B(u(t)), (2.35)

where
pt) =Nt — e, N2 =2, 1t — (N = 1)c) (2.36)
The eigenvalue of the twisted transfer matrix
T (w)B(f) = 7(ult)B(?) (2.37)
has the following form
F(ult) = Z)\ FEVTI 4 (N —d)e,u) fu, 2V 4 (N =i+ 1)c). (2.38)

From the co-product form of the monodromy matrix (2.8), we can obtain the co-product
form of twisted monodromy matrix using (2.30)

~

To(uw) = L35 (u—&5) .. I8 (u — &), (2.39)
where .
~ ~ —1\ to
Ly = Vo (T w) ) Vo (2.40)

For rectangular Young diagrams where A; = s for j < a, Aj =0 for j > a let us introduce
the notation L) (u) for the Lax-operators. For these representations the Lax-operators
satisfy the unitarity property

(u+ cs)(u— ca)

LD )L = s ) = S (2.41)
therefore .
G = (e an) "o (242)

3 Exact overlaps for untwisted boundary states

In this section we review the so-called KT-relation which serves as the defining relation for
the integrable boundary states [30]. One can introduce the KT-relation in two different ways,
and we analyze the untwisted and the twisted K'T-relations, separately. The main advantage
of these relations is that we can replace the creation operators in the Bethe vectors with the
annihilation ones, which opens the way to calculate overlaps between Bethe and boundary
states by recursion. In this section we concentrate on the untwisted case. In [30] the formulas
for on-shell overlaps were derived for a subset of integrable boundary states. In this section
we review these results and generalize them for all integrable boundary states.



3.1 Definition of the untwisted integrable states

The untwisted integrable boundary states (V| are defined by the following untwisted KT-
relation

Ko(u)(¥[To(u) = (¥|To(—u)Ko(u), (3.1)

where K (u) is an invertible N x N matrix of the auxiliary space.! We define the twisted KT-
relation in the next section. In [30] it was showed that the consistency of the definition (3.1)
requires the reflection equation for the K-matrix

RLQ(U — v)Kl(—u)Rl,g(u + ’U)Kg(—’l)) = KQ(—'U)RLQ(U + U)Kl(—u)RLQ(u — 1}). (3.2)

In the following we analyze the K'T-relation in more detail. We investigate the properties
of the possible K-matrices, show the relation between K-matrices and boundary states and
also show the consequences of the KT-relation for the on-shell overlaps.

3.1.1 Integrable K-matrices and their regular forms

The most general solution of the reflection equation (3.2) is well known [37]:
K(u) = %1 +Uu, (3.3)
where U is an N x N involution matrix, i.e.,
u*=1. (3.4)

The constant a € C is a free parameter of the K-matrix. We note that there is another type
of solutions of the reflection equation for which 42 = 0, and we call them singular solutions.
Since the monodromy matrix has gl(/N) symmetry

To(u) = GoA(G)To(w)Gy ' A(G™), (3.5)

(where G € GL(N) and A(G) € End(H) is the co-product of G which acts on the quantum
space and G acts on the auxiliary space) we can obtain transformed K-matrices and
boundary states

K%u) = Gy Ko(w)Go,  (WE] = (V[A(G), (3.6)
which also satisfy the untwisted KT-relation:
KO () (W Ty () = (€| Ty (—u) K (u). (3.7)
One can diagonalize the involution U as

GUG = diag(—1,...,—1,+1,...,+1), (3.8)
M N-M

!Since the defining equation of the monodromy matrix (RTT-equation (2.3)) is homogeneous on T, the
renormalized monodromy matrix T(z) = A(2)T(z) is also a solution of the RTT-relation. However this
renormalized monodromy matrix satisfies only a renormalized KT-relation therefore using the definition (3.1)
we partially fixed the normalization freedom to the symmetric functions A(—z) = A(z).



where the numbers of —1-s and 1 are M and N — M, respectively. We say that the matrix U
has signature (M, N — M) and we call it type (N, M) involution. We can see that the K-
matrix commutes with a gl(M) @ gl(N — M) subalgebra of the original algebra gl(N) therefore
we call this K-matrix and the corresponding boundary state (¥| the gl(M) @ gl(N — M)
symmetric K-matrix and boundary state. Without loss of generality we can assume that
M < &, We also call the K-matrix and boundary states with signature (3.8) as type (N, M)
K-matrix and boundary states.

At the end of the day, we are interested in on-shell overlaps (¥|B(¢). We know that the

on-shell Bethe states B(t) are highest weight states, i.e.,
A(E%])IB(E) =0, fori<y. (39)

Applying this property we obtain that the on-shell overlaps are invariant under GL(N)
transformations corresponding these generators

(TEIB(T) = (TIA(G)B(?) = (V[B(D), (3.10)

where G = exp(pFE; ;) for i < j. In the following let us try to apply such transformations,
which leave the on-shell overlap invariant, to obtain a fixed form for different K-matrices
and involutions U/ with the same type.

Let us define GL(NN) transformations which contains only generators E;; where i < j
(rising operators):

N-1 N-1

G= exp(Z gchl,c> exp(Z ¢cEc,N> exp(®E N), (3.11)
c=2 c=2

where the angles are fixed by

Un,c Ue UnnN — s
Do = ——25, =9 d=-—""""_" 5=+l 3.12
¢ Un 1 7 Una Un ( )

We saw that the transformation (V|A(G) does not change the on-shell overlaps. The
corresponding transformed U-matrix is

U =ac'ua, (3.13)

which has the following components

il = s, Uy =0, Ui =0,
Up il
Ul =o, U = Uyp — 20 U =0,  (3.14)
’ ’ Un 1 ’
Ot U0 uD—s

)

where a,b = 2,..., N—1. Without limiting the generality, let us choose the convention s = +1.

. (2) . . (2) N-1
We can see that the new matrix &' has a block diagonal form and the matrix {Umb} s

in the N — 2 dimensional invariant subspace is a type (N — 2, M — 1) involution matrix.



Applying the analog transformation on the N — 2 dimensional invariant subspace, we obtain
an N — 4 dimensional invariant subspace. Reaping this method, we obtain a series of matrices

YD) — (G(k))flu(k:)G(k)’ UV =y, (3.15)

where the GL(N) transformations are

N—k
G = GXP( Z oM Ey, c) eXP( > ¢£k)Ec,N+1—k) exp(@ W By ni1-1), (3.16)

c=k+1 c=k+1
with (®) (k) (®)
k) _ _uN+1—k,c (k) _ Uep, k) _ uN—i—l kN41-k L
Spc - (k) ) ¢c - ( ) ) q) - (k) (317)
U U U
N+1—kk N+1—kk N+1—k,1
The components of the matrices %) have the following recursion
Uy = ~bas, Ul = o, U =,
(k) (k)
U, U
u{gﬁ;l) =0, ugcbﬂ) U(k) ( )N+1 kb ua262 —0. (3.18)
UNka,k ’
Ul =uonias, Ul =0, U = +o, 5,

where o, =1,...,k,a,b=k+1,...,N—k,a B=N—k+1,...,N. We can see that the
N—k

matrix {LIC(LT_I)} N in the N —2k dimensional invariant subspace is a type (N —2k, M — k)
) a,b=

involution matrix. We can use this definition as long as U 1(\;21—1« i 7 0, which is equivalent to

N+1-k
that the N — 2k + 2 dimensional matrix {M(Ekb)} - is not a type (N — 2k +2,0) involution
) a,b=

matrix which is the identity, i.e. for the type (N, M) involution the recursion stops at the
k = M + 1 step and we have the involution matrix

UMY = 5,5, Ul =, UM =,

Uy ) =0, USY = +0us, Uttt =, (3.19)
M+1 M+1 M+1

Mé,ﬁ ) = bgdn+1-a,8 Z/lo(zb ) = =0, Méﬁ ) = —|—5O—C’B,

where o, =1,...,M,a,b=M+1,.... N—M,a,=N—-M+1,...,N and

by = UL, 54 (3.20)

Hereafter, we call the matrix 4™+ (and the corresponding K-matrix KM+1)(z) = 1+
UMD and boundary state (FM+D]) the regular form of the type (N, M) involution U
(and K-matrix K(z) and boundary state (¥|). Since the GL(V) transformations (3.16)
contain only rising operators, the on-shell overlaps with the regular and the original boundary
states are the same

(EMHVIB(D) = (¥ H A(GW)B(E) = ((B(D). (3.21)
k=1

During the calculation of the overlaps, we concentrate on K-matrices with regular forms.

,10,



3.1.2 Solutions of the untwisted KT-relations

During the derivations of the overlaps, we do not need to specify (|, it is enough to require
the constraint (3.1). In the following we demonstrate that there exist non-trivial boundary
states (W[ for all K-matrix and we show the connections to the solutions of the reflection
equations in different representations.

We can build integrable boundary states using the co-product property (2.7). For the
tensor product quantum space H = HM) @ H?) | if the (T € HM) and (¥P)| € H?) are
integrable boundary states with the same K-matrix K(u), i.e., the KT-relations are satisfied

Ko(u) (O T8 (u) = (0O T (—u) Ko (u), fori=1,2, (3.22)
then the tensor product state
(0] = (¥W] @ (¥?] e H (3.23)

satisfies the K'T-relation (3.1) with the same K-matrix K (u) (see [30]). The consequence of
this co-product property is that we can build integrable boundary states as tensor products
of integrable two-site states.

Elementary two-site states for the defining representations. The simplest example
is that where the quantum space is the tensor product of the defining and its contra-gradient
representations for which the monodromy matrix is

To(u) = Loa(u+ 0) Lo (u — ), (3.24)

where L(u) is Lax operator (2.6) for A = (1,0,...,0) and L(u) is Lax operator for A =
0,...,0,—1), ie.

N N
C = C
L(u) =1 + a Z E@j & Ej,i, L(’LL) =1- E Z E’i,j (%9 EN+17i,N+17j- (325)
i,j=1 i,j=1

For this “elementary” monodromy matrix the KT-relation reads as
Ko(u) (¢(9)|E0,2(u + 9)L071(u - 9) = (¢(9)\E072(—u + 0)L071(—u — Q)K()(u) (326)

The “elementary” two-site state (¢(6)| acts on the sites 1,2. We can use the natural basis
vectors e; in CVV for which E; jer, = 0jre;. The “elementary” two-site state can be expressed
as (Y(0)] = 4 j(0)(e;) @ (e;)". Using the equivalent matrix form of the two site state
P(0) = > 1;i(0)E; ; the KT-relation reads (3.26) as

Ko(u)Lo1(u+0)"41(0)Lo1(u—0) = Lo1(—u+ 0)"41(0)Lo1(—u — 0)Ko(u).  (3.27)

Since
_ c XN e N
Lo(u)* =1 - " > (Eij)g® (Ens1—int1—j); =1— " Y (Bij)o® (Ent1-jN+1-i)
i,j=1 i,j=1
= V1L071(—U)V1, (328)

— 11 —



the KT-relation simplifies as
K()(U)LOJ(—U — G)Vlwl (9)L071(u — (9) = L071(u — 9)‘/11/}1(9)110’1(—'& — G)Ko(u) (3.29)

Since the permutation operator has the form P =}~ ; E; j ® Ej; the Lax operator is just
the R-matrix L(u) = 1 R(u) therefore the KT-relation is simplified as

Ko(u)Ro’l(—u — 9)V11,Z)1(0)R0,1(u — 9) = RO,l (u — G)Vvﬂﬁl (H)Ro’l(—u — Q)Ko(u) (3.30)

We just obtained the original reflection equation (3.2) therefore the two-site satisfies the
“elementary” KT-relation (3.26) if

Vy0) =K0) — 9;i0)=Kni1-i;(0). (3.31)

Elementary two-site states for general representations. We can generalize the
two-site states and the corresponding KT-relation for any representation A as

Ko(u) (@™ (0)| L5 (u+ 0) L (u — 0) = (™ (0)| Lo (—u + O) L (—u — 0)Ko(u),  (3.32)

where A = (Aq,...,Ax) and A = (—Ap, ..., —A;). For representations A (even for infinite
dimensional ones) for which there is a non-trivial solution of the above equation, we can
build general integrable two-site states as

(U] = (™ (01)] @ (™2 (02)| @ -+ @ (h*/2(052)] (3.33)

In the following we demonstrate that there exist two-site states for any finite dimensional irreps.
A A

t
At first, let us choose a basis e in VA and their co-vectors are (ei ) . We can express

o\
the two-site state 1" (0) = Zwﬁi(ﬁ)ef\ ® (eé\) , the KT-relation (3.32) reads as

t t
the two-site state as (Y(0)| = 3 1;.;(0) (eé\) ® (eA) . Using the equivalent matrix form of

Ko(u)LE (u+ 0) () L1 (u — 0) = Ly (—u+ ) M (O) LYy (—u — 0)Ko(u).  (3.34)

Let us look at the Lax operator LA in more detail. It contains the highest weight representation
ElAJ Let us define the following sets of operators

A A

Ei,j = _EN+1fj,N+17i7 (3.35)
which is also a highest weight irrep of gl(/V) and the highest weights are (—Axn, ..., —A1)
therefore we can choose the convention for the generators EZA] as EzA] = -EY H1—j N41—i- Ve

t
also choose the convention (EZA]> = E]Al therefore
_ e
A A
Ly (u)t =1— " > (Eij)y® (EN+17j,N+1fi)1' (3.36)

ij=1

The set of operators EZAJ = EJ/\\f—f—l—i,N—i-l—j is also an irrep of gl(N) but the state [0) is now a
lowest weight state i.e. E; ;|0%) = 0 for i > j and the lowest weights are (Ay,...,A1). Since
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every finite dimensional irreps are highest weight reps therefore there exists a highest weight
state |0") with highest weights (A1,..., Ax). Since the highest weight irreps are unique there
exists a similarity transformation V? for which EZA] = VAE{}]-VA, ie.,

N
A C
Loy ()" =1—== 3" (i) ® (VAERVY) = VLY (—u) Vit (3.37)

Wii=
Substituting back to the equation (3.34), we obtain that
KO(U)L(/)\J(—U - e)lew{\(e)L(j]\,l(u —0) = L(/)\J(u - 9)‘/1/\1/1{\(9)1;6&,1(—“ —0)Ko(u), (3.38)
which is equivalent to the reflection equation
Ko(—u) L1 (0 + w) K (—=0) LG, (0 — u) = L1 (0 — w) K1 (—0) L3 1 (0 + u) Ko(—u),  (3.39)
where we used the notation

KMNO) = VAR0) —  wi0) =D VAKL; ). (3.40)
k

Since the reflection equation has non-trivial solution for any finite dimensional representation
A (e.g. it can be obtained from the original K-matrix K (u) using the fusion procedure [38])
we just showed that the two-site states exist for any finite dimensional irreps. However, it
is worth to note that the original equation (3.32) also has infinite dimensional solutions
and our later derivations are independent from the quantum space therefore the results are
valid even for the infinite dimensional integrable two-site states. In section 5.3 we show an
example for infinite dimensional boundary state.

Symmetric properties of the vacuum eigenvalues. We showed that we can build
general integrable states as

(@) = "7 (01) © WA (B2) @ - @ WA (8))], (3.41)

where the monodromy matrices are defined as

1)

AL AL V(- 0y). (3.42)

A(2)
To(u) = Logy(u+07)Logy_1(u—=0)... Lf)\a (u+ el)L(l},
We can see that untwisted final states exist only for alternating spin chains where the
representation of site 2j is the conjugate representation of site 25 — 1. For these alternating
chain the pseudo-vacuum eigenvalues are

M) = ﬁ w0k + AP w0 + AP i w— 0+ AP w0 — Al 5.13)
e _k:1 u_ek U+9k _kzl u—@k u—|—9k ’ '
therefore we have the following properties
M) = Avgioi—u), () = —— (3.44)
i\U) = AN+1-i\—U), a;(u) = aN?i(_u), .
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3.1.3 Pair structure

In this paper our goal is to calculate the overlaps between boundary states and on-shell

Bethe states: (¥|B(t). There is an important property of these on-shell overlaps. From the
KT-relation (3.1) we can easily show that

(W[(T(w) = T(—u)) =0. (3.45)
Applying it on an on-shell Bethe vector we obtain that

(T(ult) — 7(—ult))(¥|B(¢) = 0, (3.46)

therefore the non-vanishing on-shell overlaps ((¥|B(¢) # 0) require that

T(ult) = T(—ult). (3.47)

It can be shown that it is equivalent to that the Bethe roots have achiral pair structure
tN=Y = ¥ ie.,

F—nt@), 7o) = {—FN1 V2 7, (3.48)
We introduce some notations. For odd N or even N where ry is even, we can decompose
2

N
the set of Bethe roots as ¢ =t U™, where t+ = {ti”’},gjlj and tY =, 17 =tV for
N N TN/Z NYTX _ _
v< S andth? = {t,f } ot = {t,f } ? . In the pair structure limit t~ = —¢T.
k=1 k=r /241
2

For even N where 7n is odd, we can decompose the set of Bethe roots as t = t+ Ut~ U,
2

ry—1
2

_ _ N _ _ _ _ N 2
where t£ = {t¥¥}2 | and t" = ¢, t " = t" ¥ for v < § and iy = {t,f} ,
k=1

NY7TN L N _ _

= {t,f } QTEH, v = {t,?,\,}. In the pair structure limit ¢~ — —¢* and t° — {0}.
k=—2%

We will show that the on-shell overlaps are proportional to the Gaudin-like determinant

det GT. When #° = (), we have the decomposition ¢ = ¢+ U ¢~ and we can also make
the corresponding decomposition of the set ® = {®}}, (which are defined by (2.23))
as ® = ®T U ®~. Due to this decomposition, the original Gaudin matrix (2.22) has the

following block form
A+t A+
G = 3.49
(1:1) -

N
2

E_

where we defined the following matrices

- 0
A;_]:'v(lh'/) = —(C T log @j’(iu') , A;’:k. 7(“71’) — _Ci_’y ].Og @;’-7(“) ,
atk; ———f+ 8tk -+
(3.50)
A‘—-‘r’(#,l/) — ¢ lo (I)'_v(:u‘) ’ A.__’(#’V) — % 1 (I)-_’('LL) ’
J:k 6tz’” gL - j.k o g, -

— 14 —



It is easy to show that ATt = A=~ and AT~ = AT~. Using these identities, one can show
that the original Gaudin determinant factorizes in the pair structure limit as

det G = det G det G, (3.51)

where

det G* = det(ATH + A7), (3.52)

For odd ryy/s, i.e, when ¢ = {tny//QQ}, we have the decomposition ¢ = t+ U’ U{~ and

® = &+ U P U Pd~. Due to this decomposition, the original Gaudin matrix (2.22) has
the following block form

AT+ A0 g+-
G=| A0+ A% 40— | (3.53)
A=+ A0 A

where we defined the following matrices

+0,(1) _ 9 ) 40 _ 9 — (1)
A; =—C N7 log®; """, A, =—C N7 log @, ™,
at'rN/Q atrN/Q
0+,(v) _ N/2 0—,(v) _ N/2
A = —c Z’y og 7(nN//2), A = _c(?t,;’y log @,QN//Q), (3.54)
0
00 _ N/2
AV = —c N/ log <I>7(HN{2).
TN/2

In the r.h.s. we took the pair structure limit =¥ — —t¥ #¥ — {0} after the derivation.
It is easy to show that

AT = A AT =4,

A0+ — 70— A0— — A0+ (355)

therefore the original Gaudin determinant factorizes also as (3.51) with the definitions

ATt 4 At— A0

Joh g0 detGT=2JAtt AT, (3.56)
2

det Gt = ‘

3.2 Overlaps for the type (IV, {%J), (NN, 0) and singular K-matrices

In this subsection we review the results of [30] for the untwisted overlaps. In [30] the on-shell
overlap formulas were proved for the type (N, {%J) boundary states. In the next subsection
we use this result to prove the on-shell overlap formulas for all untwisted boundary states.

3.2.1 On-shell overlaps for type (IV, {%J) K-matrices

Let us choose the type (IV, {%J) K-matrix with its regular form

a—z N a+z L%J
K(z) = —Eept+ ) Erp+ > bkEnyi—kp. (3.57)
k=1 =& |+1 k=1

,_
w2
[
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In [30] it was proved that the normalized on-shell overlap has the following simple form

N

M: _o9 ® A o1 —rFlY ] (7Y det Gt
C@HB() (2c> 11 e N dera

v=1

where we introduced a quantum number r’ = #t° and the one-particle overlap functions
N
Fl3] read as

R P
SV e Coan) .
F(%)(u) . (Cl— Z)(Cl-i-z) ’

VA2 2) (/2 )

In the apphcatlons it is common to use the ¢ = i convention and redefine the Bethe
()

roots as u, £+ 51 + x for which the Bethe equations read as
. r ) (pt+1) 47 ( -1) )
o (u,(f) b, x) 1 IO H o)t o T Y
. 1 D,
2 ik u’(cu) _ ul(u) S i ulgu) _ ul(u+ ) 4 i i u}(ﬁu) l(u ) 4 +i
For z = —i&¥ 1 the pair structure limit tl = —¢l! becomes ul(NﬂL) = —ul(f). Introducing
the @Q-functions
T
Qulu) = H(u —uly), (3.59)
k=1
and
. Quu), it 0¢al,
Qu(u) = " I (3.60)
EQM(U), if0eu “),

the overlaps simplify as

WBO [y gn | 2@ W -
C(H)B() 1 Qs 0Qu(y Ve (361

for even N and

(V[B(#) prv-1 T Qup (e %) et 3.62
COBEO H e (R VG -

for odd N.

3.2.2 On-shell overlaps for the singular K-matrices

The result of [30] can be also applied for singular K-matrices. For simplicity, let us choose
the singular K-matrix in the regular form

%]
1
K(z) = ;1 + > bkEN {1k (3.63)
k=1
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You can see that this singular K-matrix differs from the type (N, {%J) (3.57) only in its
diagonal elements. The corresponding on-shell overlaps read as

n L2]
M — prv—1Tv F&%J) *+,L%J \/M 364
C()B(?) VH:1 Y ( W aera— (3.64)

where
P () = L
’ V (_Z)(C/2 - Z), (365)
P2 () = L

/=22(c/2-2)(c/2+ 2)

In the next section we will use these overlap formulas in the limit by — 0 for s > M.
The limit of this formula is not well defined and the reason is that we fixed the normalization
of the final state (¥| as (¥|0) = 1 but in by — 0 limit this cannot be done. Let us choose
the normalization in a bg dependent way:

<\I/‘O> :A(bM—H,---ab{%J)y (3.66)

where A is a function of b-s and it can also depend on the quantum space i.e. the gl(N)
weights of the pseudo-vacuum: A = (Aq,...,Ay). Using this normalization the overlap
formula is modified as

3 1]
<W‘B(t) = ry_1—Ty (L%J) T+, % det G+
W = A(bMJrl,...,bL%J) 1/1;[1 b, Fs (t+ I J)\/;. (3.67)

There is also a novelty in the KT-relation in this limit. Applying the limit by — 0 for s > M
for the untwisted KT-relation, we obtain that

(W|T;5(u) = (V|T; 5 (—w), (3.68)

for M < i,j < N+1— M. Using the asymptotic expansion of the monodromy matrices (2.9)
in the KT-relation (3.68) we obtain that

(U|A(E;;) =0, for M <i,j<N+1—M, (3.69)

therefore the final state (U| is a singlet for a gl(N — M) subalgebra. To obtain non-vanishing
overlaps, the Bethe states also have to be singlets for this subalgebra. The gl(N) weights
of the Bethe states are

A(Epr)B(t) = (Ag + 7111 — 71)B(1), (3.70)

therefore the non-vanishing overlaps require that

Ap=rp—rp_1, for M<k<N+1-M, (3.71)
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i.e., we can fix the quantum numbers as

k
N
T = TN+ E Ay, fork:M—i—l,...,{J, (3.72)
2
I=M+1

in the limit by — 0 for s > M. Returning to the on-shell formula, let us choose the
normalization as

A(bM'H’“"bL%J): H b,l}” (3.73)

Substituting back to (3.67), the renormalized overlap formula reads as

r 4]
_(WB(E) _ [M b} ohvtri-r | pULED 74 5] W -
C®)B(1) 1’1;[1 ’ V:IJ\_JIH ' ( ) det G~ (3.74)

We showed that the non-vanishing overlap have the selection rule (3.71) therefore the overlap

formula simplifies as

M _ [M brul_Tu‘|F(L];J) —+,L%J \/@ .
C(H)B(?) 1;[1 ’ U e (3.75)

which has a well defined limit.

3.2.3 Sum formula for M =0

For the M = 0 case, where the K-matrix is just the identity K (u) = 1, the KT-relation
simplifies as

(V|T5,5(u) = (V|T; ;(—u), fori,j=1,...,N. (3.76)

We can see that we obtain the M = 0 case from any M in the a — oo limit. In [30] we
also derived a sum formula for the off-shell overlaps of the type (N, {%J) boundary states
and taking the a — oo limit we can also obtain the sum formula for the off-shell overlaps
of the M = 0 case. See the details in appendix B.

A special property appears in the M = 0 case. Using the asymptotic expansion of the
monodromy matrices (2.9) in the K7-relation we obtain that

<\I"A(E1J) :0, for ’i,j = 1,...,N, (377)

therefore the boundary state (V] is a sum of singlet states. Repeating the arguments of the
previous sub-subsection, we obtain that the Bethe states with non-vanishing overlaps have
to be gl(N) singlets, i.e. we have the selection rules

Ap =71k — 7K1, (3.78)
ie.,
k
re=rp =Y A (3.79)
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Since the functions a-s depend on A, the sum formula does not give off-shell overlap for
arbitrarily a-s only for the a-s which correspond to correct Ag-s. If we first fix the quantum
numbers 7 then we have constrains on the representation of the quantum space therefore the
only remaining freedom is to choose the limited number of inhomogeneities 6;-s independently.
The consequence is that the a, (})-s are not algebraically independent variables anymore.
Anyway, for proper a-s we have a sum formula for the (IV,0) type off-shell overlaps:

r 0/ H (tilv_;/) 70/ _a/y ~0 /1 Rl inZ
(VB(T) = Sa(H) = > — - (t,,ﬂ EV)Z (r(6)) 2% () T] ew (@), (3.80)
part 11 v=1

where the recursion for the highest coefficients (HC) Z° is given in (B.6).

3.3 Recursion for the off-shell type (N, M) overlaps

In this section we show a recursive method for evaluation of the off-shell overlaps where
the K-matrix has type (N, M) regular form

M N
=Y bkEni1kk + O Kpr(2)Ep- (3.81)
k=1 k=1

Choosing the diagonal part as

a—z =1.....M
Kp(z)={ 7 K= bl (3.82)
’ otz k=M+1,...,N

z

we obtain the type (N, M) K-matrix and choosing
1
Kyp(z) ==, k=1,...,N, (3.83)
z

we obtain a singular K-matrix with the type (N, M) form. The calculations below can
be used for both cases.
Our method starts with the recurrence relation of the off-shell Bethe vectors (A.1)

B({zf},{} ) ZTLJ Y .)B(fl,{fﬁ};;;{fk}it;). (3.84)

part(t)
Now we only want to sketch the method therefore we concentrate on the operator content of
the recurrence relation (A.1), the explicit form of the numerical coefficients are not important,
we use the notation (...) for them. We also concentrate on changes of the quantum numbers
7. therefore we introduce the shorthanded notation

B(t) — BTN, (3.85)

where r; = #tJ. Using this notation, the recurrence relation can be written as

Britlre..rv_1 _ ZTLJZ IB%Tl’TZ WIN=1 (3.86)
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where 7, < . We also use the action formula (A.3)

Z( . )BTl7--~7'i+1’7'i+1+17--~7Tj71+1,7'j,~~-7'N—17 i <7,

riyeeri—Lrivi—1,. i1 =17, rN—1 . . (387)
>(...)B =L i

T, jBT’177’27---77"N71 — {
9

We can see that the operators T; ; for i < j increase the quantum numbers therefore they are
the creation operators and analogously, the operators T; ; for ¢ > j decrease the quantum
numbers therefore they are the annihilation operators. We also use the (N, j) components
of the KT-relation

(91Tig0) = 20T () + B () — E22 i), for < 0,
(3.88)
W75 () = 238 (g gy () - BB gy ), for > (3.89)

bl bl

We can see that using this relation we can change the creation operators 77 ; in (3.86) to
annihilation operators Ty y41—;,Tn . Using the recurrence relation, the K7T-relation and
the action formula, we obtain a recurrence equation for the off-shell overlap:

M
<\II‘BT1,T2,..-7TN—1 — Z Z( N )<\I/‘Erl—17...,7“]',1—1,rj,...,rN_j,rN_]-+1—1,...7rN_1—1+
j=2

+ Z( B )<\I,’Br1—1,...,r1\;,1—1. (3‘90)

We can see that this recursion decreases r; and ry_1 by 1 therefore the non-vanishing
off-shell overlaps requires

'N—1=T1. (391)
Using this recursion one can eliminate all ' and #¥~! which leads to a gl(N — 2) overlap

(DB TN = $7 (L) (W[BOTE TN 20, (3.92)

part

We can see that this recursion leaves the differences ry41 — ry = 7r41 — 7 invariant for
k= M,M+1,...N — M. The Bethe states B%™-~"~-2:0 in the gl(IN — 2) subsector are
generated by {Ta,b}i\,{b_:lz- Since Kng = Kqn = K1, = K1 =0 fora=2,...,N — 1, the
K'T-relation is closed in this subsector, i.e.

N-1 N-1
> Kao(w)(U|Top(u) = Y (W Tye(—u)Kep(u), (3.93)
c=2 c=2

for a,b = 2,...,N — 1. The K-matrix {K,(u)}),_}, of this subsector has type (N —
2,M — 1) form.
Repeating the recursion we obtain type (N — 2M,0) overlaps as

<\II‘BT1,7‘2,...,T’N_1 — Z( . )<\I]|]BO,~~-707F]M+1:--~7FN—]M—1»O:~-~70_ (394)

part
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Since the differences are invariant we can express 7i-s with ri-s as
To=ry—7ryny, fork=M+1,...N—M—1. (395)

Since the type (N — 2M,0) K-matrix requires the selection rule (3.79), for non-vanishing
overlaps we obtain that

S
Fe=rh—ry= Y Ay, fors=M+1... N-—M-1, (3.96)
k=M+1

we can also invert this formula
N
Ay =1 —rs_1, fors:M—i—lj...,{QJ. (3.97)

3.4 Sum formula and the on-shell limit

In this section we show the sum formula of the off-shell overlap for the K-matrices with the
form (3.81). This sum formula can be applied simultaneously for a type (N, M) K-matrix
and a singular K-matrix for which the on-shell overlap was already derived (3.75). We
show that the two off-shell formulas are proportional to each other therefore specifying the
proportionality factor and using the on-shell formula of the singular case, we also obtain
the on-shell formula for the type (IV, M) boundary states.

For these types of K-matrices the off-shell overlaps have the following sum formula

Sa(F) = ([B() Z ) TSR S ) S )
¢ w+1 Y N—-M-1 s+1 Is S Ts—1
(tH U ) HS:M-H f( tIII)f(tIIU ty )
X Z(El)Z_(ﬂI)S{ s (B 50 H a, (&), (3.98)

where sum goes through the partitions t =1 Uty Uty where #1V =5 = #15, #1V5 = #15,
#tIII #tnla #EM = #EM—H = = #EN_M, #EM = #t_lj\IJ—H = = #t_H and
#Hth = #12, = = #tM = 0, tN-M = = #tN=1 = 0. The sum formula contains an
overlap function SO of a gl(N — 2M) spin chain with the identity K-matrix i.e. the type
(N — 2M,0) overlaps which were previously calculated, see (3.80). The proof of the sum
formula can be found in appendix D.1.

In appendix F we show that the HC-s Z and Z are proportional to universal HC-s which
are independent from the diagonal element of the K-matrix:

_ = 3.99

2(0) = 6(™)2°(0), (599
where | Kyn(2)
2

G(2) = N.N 3.100

(2) e — (3.100)

The universal HC-s 2% and Z° are given by recurrence equations (F.13) and (F.19).
Substituting back (3.99) to the sum formula (3.98) we obtain that
Sal) = G(#)S3 (), (3.101)
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where we introduced the universal off-shell overlap

— — N_M_ — — —
SQ(E) _ Z Hl]y:ll (th,t) H5:M+11 (0 ton) f (0, 1)
* IS8 fE ) TS S FE ) f (6
N—-1
7\ 20(F 7s \N—M— v
X ZO(tI)ZO(tn)S?as}iv:—A%—ll({tfn e T ew @), (3.102)

v=1

which does not depend the diagonal part of the K-matrix. In the following, let SM (f) and

SE(t) be the off-shell overlaps of the type (N, M) and the singular K-matrices i.e.

a—z a+z
K1,1(u)="'=KM,M(U)=7, Ky (uw)=-=Kyn(u)=——, for S, (3.103)

z
1
Kij(u)=-=Kymu) =Kyt m+1(u) ==Ky n(u)= P for S3.  (3.104)

Using (3.101) and (3.100) we have

SM(f) = lﬁ (a+t,¥)]8§(f). (3.105)

k=1
In the previous section we already proved the normalized on-shell overlap for the singular
K-matrix (3.75). Substituting back, we obtain the normalized on-shell overlap for the type
(N, M) K-matrices

B0 [ ] (o ) el G
CE)B(Y) 1;[1 v kl;[l( a k) 0o~ ( W qera= (3.106)

For ¢ = i convention, using the @-functions (3.59) the overlaps read as

(UMBE) M 1Qu(-a+5(M-5)  [qecqr
( det G—

Ty—1—Tv < B
C({)IB%(_)__VI;Ile I /Qx(0Qx(3)

)

X Y
RO [ o] Qe (M- 5)) JEE
DB Lo 1 fQaa(—DQaa(f) -V detGo

(3.107)

|z
N[

for odd N.

4 Exact overlaps for twisted boundary states

In this section we investigate the overlap formulas for twisted boundary states. In [30] we saw
that there are two classes of twisted boundary states, the so(/N) and the sp(N) symmetric
ones. In [30] the so(/N) on-shell overlaps were already derived and now we calculate the
remaining overlaps for the sp(/N) symmetric case. At first, we specify the twisted integrable
boundary states and the corresponding K-matrices which satisfy the twisted KT-relation.
Using this relation we show a recursive method which allows the calculation of the off-shell
overlaps. After that we show a sum formula for the off-shell overlaps. The sum formula has
useful properties that are the same as the embedding rules of the Gaudin-like determinants.
These allow us to assume the on-shell overlap formula, but further work is needed for a
precise proof, which we will postpone to later.
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4.1 Definition of the twisted integrable states

Let us consider the boundary states (V| which satisfy the twisted KT-relation
Ko(u){(W|To(w) = Xo(u) (W] To(—u) Ko (u), (4.1)

where K (u) is an invertible N x N matrix of the auxiliary space. In [30] it was showed that
the consistency of the definition (4.1) requires the twisted reflection equation for the K-matrix

RLQ(U — U)Kl(—u)Rl,g(u + ’U)KQ(*U) = KQ(*’U)RLQ (U + U)Kl(—u)RLg(u — U). (42)

We note that for N = 2 the twisted monodromy matrix is equivalent to the original one
(see equation (A.7))

-1 c A(u) 4 ( c)
=——"—¢ Tolu—=)eo= ——=0, To|lu— = |og, 4.3
Ao(u—5)° 0( 2) 07 Nw— g% " g) (4.3)

where we used (2.28) and

Substituting back to the twisted KT-relation, we obtain that

~ Ao(w)Ai(—u)

(o0 i) (1T () = 3 (U1 (—u = § ) (0 Ka(u). (4.5)

Choosing the normalization for which Ag(u) = %, the shifted version of the mon-

odromy matrix

To(u) = Ty (u - g) (4.6)
satisfies the untwisted KT-relation
Ko(u) (] Th(u) = Mo(u)(¥|Th(—u)Ko(u), (4.7)

where

K(u) = oK (u - g) (4.8)

We just showed that the untwisted and twisted KT-relations are equivalent for N = 2. In
the following we concentrate on N > 2.

4.1.1 Integrable K-matrices and their regular forms

For N > 2 the most general solution of this equation is well known [37]:
K(u) =K =VU, (4.9)
where K and U are N x N matrices with the following constraint

K'=+VKV, U'=+U. (4.10)
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Since the monodromy matrices have gl(N) symmetry
Ty(u) = GoA(G)Ty(w)Gy ' AG), (4.11)
To(u) = (VGy V)" A To(u) (VGV) P A G, (4.12)
(where G € GL(N)) we can obtain transformed K-matrices and boundary states as
K¢ =VGVKG, U°=GcUG (3% = (T|A(G) (4.13)
which also satisfy the twisted KT-relation
K (WE| Ty ) = Do(uw) (UE| Ty (—u) KE. (4.14)

We can determine the subgroups which leave the K-matrices (and equivalently the boundary
states) invariant. Rearranging (4.13), the defining equation for the subgroups is

U=GUGaG, (4.15)

therefore G € SO(N) for U' = +U and G € Sp(N) for U' = —U, thus we call these K-matrices
and the corresponding boundary states the so(N) and sp(N) symmetric K-matrices and
boundary states, respectively. In [30] it was demonstrated that the twisted KT-relation is
very efficient tool to calculate the overlaps (¥|B(t) for so(N) symmetric K-matrices. In the
following we concentrate on the sp(/N) symmetric case for which the N is always even.

At the end of the day, we are interested in on-shell overlaps (U|B(¢). We know that the on-
shell Bethe states B(t) are highest weight states, therefor the transformations G = exp(pE; ;)
leave the on-shell overlap invariant for 7 < j (rising operators). In the following let us try
to apply such transformations, which leave the on-shell overlap invariant, to obtain more
simple K- and U-matrices for the sp(N) symmetric case.

Let us define GL(V) transformations which contain only rising operators as

N N
G = exp <Z Qchl,c + Z ¢CE2,C> > (4~16>

c=3 c=3
where
Uy T Usq' .

We saw that this transformation does not change the on-shell overlaps. The transformed
U-matrix is

u? = cua, (4.18)
which remains anti-symmetric and the components read as
U = Uy,
U 1 U
Z/{ﬁ) — Uy + a2 0,
’ Uz
U, U 4.19
u[§22) —Uys — 2U21 0, (4.19)
’ Uz
2) UaaUpo  Ua Uy
Z/{ :ua + - )
b b Uz Uz 1
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where a,b = 3,...,N. We can see that the new matrix &(?) has block-diagonal form and we
can repeat the method on the NV — 2 dimensional invariant subspace. Reaping this method
we obtain the series of matrices

gkt — (G(k)> uPg® gy =y, (4.20)
where the GL(N) transformations are
N N
G = exp Z @f;k)Ezk—l,c + Z ¢£k)E2k,c ) (4.21)
c=2k+1 c=2k+1
with ) (k)
U U
k) _ _Te2k k) — _ Tc2k=1
or) = O o) = O (422)
2k,2k—1 2%k, 2k—1

The matrices have block diagonal forms

Uty = ZUQJ 2j— 1(E2] 2j—1—Eaj— 12] + Z

(B) (k) g (R) 5 ()
Us Uyl Uy
(Z/{gcb)_F 2k—1Yp 2k 2kUb 2k 1) -

(k) (k)
- a,b=2k+1 Upy ok —1 Uy, ok—1
(4.23)
The recursion stops at the step N/2 and we have the involution matrix
N
u'z) Z% Egjaj-1 — Eaj125), (4.24)
where
k
Tk = MQ(k?%—l' (4.25)
The corresponding K-matrix is
N
&) vy — s
K2 =vu's) =3 wj(BEn-gjii2i-1 — En—2j42.2)). (4.26)

7=1

Hereafter, we call the matrix () (and the corresponding K-matrix and final state <\Il(%)|)
the regular form of the original ¢/ (and K-matrix and final state (¥]). Since the GL(N)
transformations (4.21) contain only rising operators, the on-shell overlaps with the regular
and the original final states are the same

(U2 [B(1) = (T| ﬁ A(G = (U|B(?). (4.27)

During the calculation of the overlaps we will concentrate on the regular K-matrices (4.26).

4.1.2 Solutions of the twisted KT -relations

Similarly as for the untwisted case, we can build twisted integrable final states using the
co-product property (2.7). For the tensor product quantum space H = H) @ H?) | if the
(@MW) € HM and (@] € H?) are twisted integrable final states with the same K-matrix
then the tensor product state

(0] = (¥W] @ (¥?] e H (4.28)
satisfies the twisted KT -relation (4.1) with the same K-matrix (see [30]).
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Elementary two-site states. The consequence is that we can build integrable final states
as a tensor product of “elementary” two-site states where the quantum space is the tensor
product of two rectangular representations

To(w) = LG5 (w0 — (s —a) L5 (w=0),  To(w) = LE3" (ut0 - (s = a)) LG (u—0),
(4.29)
where the twisted Lax-operators are
u(u+c(s —a))
(u+cs)(u—ca) (4.30)
E(s,a) -V L(s,a) . t Ve
0,1 (u) 0{£0,1 (—u) 0-

L () =

Using this identity, the twisted KT-relation reads as
Ko (0)| L5 (u+ 0 — es = a) L§}" (u — 0)
= X0(u) W (0)| LG5 (—u+ 0 — e(s — a) L§{” (~u — 0) Ko, (4.31)
which simplifies as
Ko(*(0)|L53" (u+ 0 — efs — a)) LG} (u — 6)
= (D O)| LS5 (—u+ 0) LS (—u — 0 + (s — a)) Ko, (4.32)

where we defined the \g as

(u? — (0 — cs)?)(u? — (8 + ca)?)

Ao(u) = (W2 — 62)(u? — (0 — c(s — a))?)

(4.33)

The “elementary” two-site state acts on the sites 1,2. Let us choose a basis egs’a) in V(&)
t t t
and their co-vectors are (egs’a)) for which (1(5) ()] = 32 4; ;(0) (62(3@)) ® (egs’a)> . Using
the equivalent matrix form of the two-site state (%% (g) = Zl/}j,i(G)Ei(;’a) , the K'T-relation
reads as
KoL (ut 60 — c(s — a))" 41" (O) LG} (u — 6)

= LS (—u+ 01 P () LY (—u — 6 + e(s — a)) Ko. (4.34)
Let us look at the Lax operator LA in more details. It contains the highest weight repre-
sentation EZA] Let us define the following sets of operators

A A

Ez',j = _EN+1—j,N+1—i> (4-35)
which is also a highest weight irrep of gl(N) and the highest weights are (—Ay,...,—A1)
therefore we can choose the convention for the generators ElAJ as ElA] = —E]‘}, H1—jN+1—i- We

t
also choose the convention (E,f\j) = EJAl therefore

N
= c
L(()fia) (W) =1~ " > (Eig)y® (EJ(\?fifj,NJrlfi)l?
i,j=1
- N - (4.36)
s,a s,a
LEP " =142 3 (B @ (BGY)
4,j=1
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The set of operators EZAJ = Elj\\/+1—i,N+1—j is also an irrep of gl(IV) but the state IOA) is now a
lowest weight state i.e. E; ;|0%) = 0 for i > j and the lowest weights are (Ay,...,A1). Since
every finite dimensional irreps are highest weight reps therefore there exist a highest weight
state |0*) for which the highest weights are (A1, ..., Ay). Since the highest weight irreps are

unique there exists a similarity transformation V(%) for which EZ-(Z-’G) = V(S’“)EZ-(E’G)V(S’“) ie.

N
T(S8,a c s.a s,a s.a s,a S,a s,a
Lé,l )(u)t1 =1— a Z (Ei,j)[) ® (V( ) )Ej(,z )V( ) ))1 — Vl( )Lé),l )(_u)vl( )’
ij=1
(s,a) c o (s,a) (s,a) 7 (s,a) (s,a)
Lofi‘l (u)tl =1+ 5 Z (EN+1—i,N+1—j)O ® (V(S,G)Ei;;a V(Sﬂ))l — ‘/'1841 Lof,la (—u)Vl s,a :
wI=t (4.37)

Substituting back, the KT-relation simplifies as (v; = —0 + c*5%,v2 = —u + c*5%)

KoL§i" (v1 + Uz)K{S’a)(—Ul)Léfia) (v1 —wa) = Lgfia) (v1 — Uz)K{s’a)(—Ul)E((fia) (v1 + v2) Ko,
(4.38)
where we used the notation

s,a s,a)  (s,a s—a s,a s,a s,a s—a
K& () = >yl )<vc . ) = P (0) =YV )K,g7j)<v+c2). (4.39)

k

We just obtained the twisted reflection equation for the rectangular representation (s,a).
Since the reflection equation has solution for any rectangular representation (e.g. it can be
obtained from the original K-matrix using the fusion procedure) we just showed that the
“elementary” two-site state exists for any rectangular representation. However, it is worth
to note that the original equation (4.1) also has infinite dimensional solutions and our later
derivations are independent from the quantum space therefore the results are valid even for
the infinite dimensional integrable two-site states.

Symmetric properties of the vacuum eigenvalues. In summary, we can build general
integrable states as

(] = (@)@ - ® (e (6,)], (4.40)
where the monodromy matrices are defined as

To(u) = L35 (ut0—c(s1—ar) LS55 (u—05) ... L™ (utf—c(s1-ar)) LT (u—6)).

(4.41)
We can see that twisted final states exist for spin chains where the representation of site 2j
is the same as 25 — 1. For these chains the pseudo-vacuum eigenvalues have the following

properties
1

Me(1) = Xo(u)Anp1-k(—u), ag(u) = ar(—u— ko)’

(4.42)

Elementary one-site states. For the sp(/N) symmetric K-matrices there exists another
type of “elementary” integrable state which are one-site states. In the following we show an
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example where the quantum space is a rectangular representation for which s = 1,a = 2.
The monodromy matrix is

To(2) = L3P (2 + ¢/2) = 1 + (Eij)y ® (E](”))1 (4.43)

c
z+c/2
We show that there exists a non-trivial solution of the twisted KT-relation

Ko(h[To(2) = Ao(2) (9| To(—2) Ko (4.44)

We know that the representation s = 1,a = 2 can be obtained from the tensor product
of the defining representation by antisymmetrization. If ej-s are the basis vectors of the
defining representation (i.e. I e = J;e;) then let e, for 1 <i < j < N be the basis
vectors of the representation s = 1,a = 2 with the identification e(; ;) = €; ® e; — €; ® €;.
The generators has matrix elements:

(E(}J 2)) (a1,b1),(az2,b2)

= 0ay,i0az,50b1 b2 — b1 i0a2,j0a1 b2 —0ay,i0bs,j0b1 az +0b1,i0bs,j0ar - (4.45)
The twisted monodromy matrix reads as

To(2) = )\ol(z) (1 2 —Cc/2 (Eii)o @ <E5V1fi—ivN+1‘j)1>' (4.46)

For these chains the pseudo-vacuum eigenvalues are

z+3c¢/2 for k — 1.2

() = { e/ PR S (4.47)
1, for k > 2,

“ 1_z=3c/2 fork=N-1N

Ak(u) = A01<Z> 2=e/2? T (4.48)
W, for k > 2

The pseudo-vacuum eigenvalues have the same properties as before (4.42).
We can fix the )¢ from the defining equation of the twisted monodromy matrix

~ 1 c
To(2)Vo T (=) Vo = Ao(2) (1+z+0/2 ZEZ]@EJ(lZz)) (1_Z /24 ZEkl@E( ))

1 (1,2) 12) 1,2)
_)\O(z)(l 2/4ZE,]®E 2/4213 @B ELY

7]7

(4.49)
Using the identity
N
SN B ELY =051 - B (4.50)
7j=1
we obtain that
~ 1 22-9c%/4
To(2)VoT o () Ve = F o9/, (4.51)

Ao(2) 22 —c?/4
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therefore the \g(z) function reads as:

22 —9c%/4

Ao(2) = 22— c2/4

(4.52)

Fixing the K-matrix to the regular form (4.26). Substituting back to the KT-relation, we

have four types of equations

2a (| T2a,26(2) = Mo(2) (Y| Tiv-42—20, N+2-20(
~ 20 (Y| Toa,20-1(2) = Ao (2) (Y| Tiv-42-20,N+1-26(
20 (| Toa—1.2(2) = Mo (2) (| T 41-2aN+2-2(
Ta (| Toa—1,20-1(2) = Mo (2) (Y| Tiv41-20,N+1-26(

which are equivalent to

wa<¢!E§i§a W‘E;ll?)mz; 170>
20 (U1 Egy?) 50 = (1B, oy
~2a (0| By o1 = (15
For a = b we have

1,2) 1,2
<w| (Eéa 2a Eéa—)l,Qa—l) = 0.

—Z)Tp,
—Z )Ty,

—Z)Tp,

)
)
)
)

—Z )Ty,

The following ansatz for the one-site state solves the equation above:

Y| = Z Ya€(2a—1,2a)-

Substituting back to the equation (4.57) for a # b we have

2b,2a 2a—1,2b—1

<¢| (xa (1 2) be(l 2) ) — (‘T@yb - $bya)(2b - 1, 2(1)7
(TvYa — Ta¥p)(2a,2b — 1),

These equations are satisfied iff

Ya = Zq-

One can also show that the one-site state
= Z La€(2a—1,2a)
a

satisfies the remaining equations (4.58) and (4.59), too.

4.1.3 Pair structure

for b < a,

for b > a.

(4.62)

(4.63)

(4.64)

The on-shell overlaps have an important property. From the twisted KT-relation we can

easily show that

(¥|(T () = do(w)T (~u)) = 0.
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Applying it on an on-shell Bethe vector we obtain that
(7 (ult) = Ao(u)#(—ult))(¥[B(t) = 0, (4.66)

therefore the non-vanishing on-shell overlaps require that

T(ult) = No(uw)7(—ult). (4.67)

It can be shown that it is equivalent to that the Bethe roots have chiral pair structure
Y = —t¥ —vc ie.,

t=7(t), 7é(t) = {—t' —¢,~t* = 2¢,...,—t" L — (N = 1)c}. (4.68)

We introduce some notations. Let v be a set for which v = {v|r, is odd}. We can
decompose the set of Bethe roots as t =t Ut Ut~ , where t+ = {fi’”}N 0 = {1}, for
_ || - 2| 22| 0 . T -
o ={th 2 e = {t%}k:i%J Ly and £ =7 . In the pair structure limit ¢~ = Te(ttY)
and " = —cv/2.

In the following, we argue that the on-shell overlaps are proportional to the Gaudin-like

determinant det Gt. Due to the decomposition ¢ = ¢+ U Ut~ and ® = &t U DY U P, the
original Gaudin matrix has the following block form

v=1’

A+t A0 g+-
G=| A0 A% 40— | (4.69)
A=+ A0 A

where we defined the following matrices

Aj,j’(“’y) = _Cat;:"/ log @j’(“), A;f];’(“’y) = _Cat,;’l’ log @j’(“),
AT = 815(;” log @0 AT — (Z log®;®),
ATOE) = afg log @l W, 470w = _Cé’fﬁ log @;", (4.70)
A0 ) _ C?ru log @0’(“), A0=r) ‘2” log (1)0,(/1)7
t E
A00,(1v) _CatV log D)

Ty

In the r.h.s. we took the pair structure limit after the derivation. It is easy to show that

ATt =A—, AT =47
A0+ — A0 A0— — A0+ (4'71)
therefore the original Gaudin determinant factorize as
det G = det G det G, (4.72)
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with the definitions

ATt 4 At— A0

A0+ 10| detGT=27TATE AT
2

det G+ = ’ , (4.73)

where 10 = #0 = #rt.
The Gaudin-like determinant det G depends on the Bethe roots t,j’“ and the derivatives
X : # X0 which are defined as

d
. XOn = —E—loga(z)

4.74
20z (4.74)

0
X = —c5 log a(z)

Z:t;ﬁu z=—pc/2

Let us introduce the number of X;* (which is equal to the number of /") as r* =
SO #Et# =200 | 5|, The set of functions F %) (X+| X0+ equals to the Gaudin-like

v=1

determinant, i.e., FO ) (X+|X0|fT) = det G* iff it satisfies the following Korepin criteria:

1. The function FC"r) (X XO0#T) is symmetric over the replacement of the pairs
+7 +7 +7 +7
(Xj u7tj ,u) « (Xk u7tk 'u)‘

2. It is linear function of each X;““ and XO#,
3. F(l,O)(X;‘7V|®|t1|-,V) _ Xii-,l/ and F(O’l)(@|XO’V|®) — X0V
4. The coefficient of X;’“ is given by the function F" 1) with modified parameters

R0 (X+| X0|11)

aX—f—,u _ F(r+71,r0) (XJr,mod\X]jl—,u,mod‘Xo,mod‘Fr\t;r,u)’ (4.75>
J

where the original variables should be replaced by

+mod _ yt, d +,
X, rmet = X V—c% log By (ult; ")

_ 4t
u=t,

(4.76)

d
0w 0 o L iog g

vc

u=—5

The coefficient of X%# is given by the function FEr'=1) with modified parameters

OF (T (X +| X0)¢H)
X O0n

where the original variables should be replaced by

= F(,.+’1.0,1) (X+’m0d|X0’m0d\X0“u’m0da t_+)7 (4'77)

v v d
le_, ,mod _ Xl;fﬂ _ C% lOg"Yu(u)

)
_ 4t
u=t,

(4.78)

d
Xo,y,mod — XO:V — c% log 'Vy(u)

—_ e
Uu=-—%3

5. FO(XH|XO[F) = 0, if all X7 =0 and X% = 0.
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The definitions of the (§-s are

f(t;—“uvu) f(_t;—’#_ucvu)

f(u,tj”“) f(u,—tj’»#_lw) for v = p,
+,u +1,u +,i for v=p—1,
Bu(u|tj ) = f(tj ) f(_tj _pcu) (479>
f(u,t;“”)f(u’ _t;'h# —pe) forv=p+1,
1 for v # p—1, p, p+1.
The ~ functions are defined as
f(—pc/2,u) B
1 = [R—
'YV(U) = F(=pc/2,u) for v = 1 1’ (480)
Fu, —pe/2) forv=p+1,
1 for v#p—1,ppu+ 1.

4.2 Recursion for the off-shell overlaps

In [30] a recursion was introduced for the off-shell overlaps of the so(N) symmetric K-matrices.
The recursion assumed that K1 # 0 which could have been prescribed in the so(/N) case
but for the sp(/N) symmetric K-matrix we have K; ; = —Kn41-j N+1—: therefore Ky = 0.
It means that the recursion of [30] cannot be used here in the twisted case. Now we use
an alternative recursion for the Bethe states

B(# (=8 {2, ) - ZTQ,J 3

part(t)

+ZT1J > Cor(ie fih {#h ) wsy

part(t)

where the dots denote some coefficients which can be found in appendix C. Using the
simplified notation we have

IBT1J“2+1 T'3yees TN — I_ZTQJZ ]]337“177“277“2 TN — 1+ZT1]Z Bh Lro, o, FN— L (4.82)

part part

where 7; < r;. In the following we show that the twisted KT-relation can be used to replace
the creation operators in B(t) to annihilation ones therefore we can obtain a recursion for
the off-shell overlaps. We use the regular form of the sp(/V) symmetric K-matrix (4.26). We
need the following components of the twisted KT -relation

Kno2(¥[T52q-1(2

2a—1(

2a(

Kn- 12(‘1’|T12a 1(
Kn-12(V|T224(2

Mo (W) (9| TN N 201 (—2) KN 2011201,

(u)

z) = Ao(u)
(u)
(u)

\ (4.83)

Xo(w)(¥|Tn—1 N—20+2(—2) KN 244224

V U

)= (

)= (Y|TN N—2a+2(—2) KN—2a+2,2a:

)= (V|TN-1,N-2a+1(—2) KN-2a+1,2a—1,
)= (
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Using the recurrence relation (4.82) and the KT-relation we obtain that

(UBE, {0} {15
N/2 R
S5 ST (W aeen (— B B {2 ()

a=2part(t)
N/2

+Z Z <\IJ|TN,N72a+2(_Z)IB%(tlv£27{tfl}giglv{ts s= Qa)( )
a=2 part(t)
N/2

£ S W e (—2)BE B AL ),
a=2part(t)
N/2

303 (T N-2at2(—2)B(E, 2 {81205 {E 50, (4.84)

a=2part(t)

Applying the action formula (A.5) with the simplified notations

s N1 LN ot L PN i F LN i1 PN S
T TRT1,T2y e TN —1 Zpart("')Brl TN-jtt LN 2t TN—it LN —i41, TN o 1<y,
T; ;B = . . . (4.85)
1y ’N 11— L, N_jao—1,co PN i— L PN _i1,... TN . :
Zpart("')]B 1) TN—i41 N—i+2 N—j N—j+1 N 17 1> 7.
the recurrence equation (4.84) for the off-shell overlap reads as
N/2
(B|Br1r2TN-1 = ZZ ) (B Lir2—=2,r3=2,..72a—2=2,72a—1 = 1,720, TN -1 _ (4.86)
a=1 part

We can see that we just obtained a recursion which decrease the quantum number 7y by
2. We also note that this recursion leaves the combinations 2rq,_1 — rop_9 — 7rop invariant
for k =1,...,N/2. Applying this recursion iteratively we can eliminate all of the second
Bethe roots as

(T|BrLr2erN -1 = Z( B )<\I]|]B":170,7:3~~:7~’N71. (4.87)
part

Since recursion decrease the quantum number 72 by 2, we obtain non-vanishing overlap only
when rj is even. The Bethe states with ry = 0 are generated by the operators T, g and T, ,
for a,f < 2 and a,b > 3. The {Tu s}, 505 and {Top}, -5 are closed Y(2) and Y(N — 2)
subalgebras of the original Yangian Y (N), furthermore, they are commuting subalgebras
[To,p(u), Ty p(v)] = 0. We recall that the operators {Ta‘vé}a,,éz]v—l or {Td’g}&,ESN—Q generate
the same subalgebras as {Taﬁ}a, <z OF {Tab}a,bz?ﬂ respectively. In summary, we have traced
back the off-shell overlaps of gl(N) spin chain to gl(2) & gl(N — 2) spin chain, i.e.

<\IJ|B7*1,O,F3...,?N,1 _ (<\I,/|Bf1> < (<\I,//|BF3...,7*N,1)’ (4.88)

where the boundary states (U’|, (U”| correspond to the K-matrices of the gl(2) and gl(N — 2)
subsectors. Repeating the recursion, the overlaps can be expressed as

N/2
(U[BrT2e Nt = $7 (L) (B0 0 s 0N = S () T (B2, (4.89)
part part a=1
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which is a product of gl(2) overlaps. The boundary states (¥’| of these gl(2) subsectors

10
(1) o0

We showed that the twisted and untwisted KT-relations are equivalent for the gl(2) spin

correspond to the K-matrix

chains and the K-matrix in the untwisted convention reads as

N 10
K:aK:<01>, (4.91)

which is a type (2,0) K-matrix. We saw that only the gl(2) singlets have non-vanishing

Ao 1—Agy

overlaps for these boundary states therefore we have the selection rules 7op_1 = 5

Since the combinations

Top—2 + Tk

5 , fork=1,...,N/2, (4.92)

Tok—1 = Tok—1 —

are invariant under the recursion we can express 7i-s with ri-s, therefore the non-vanishing
overlaps require that
Top—2 + 1ok Aog—1 — Agy

Top—1 — 5 = 5 , fork=1,...,N/2. (4.93)

4.3 Sum formula and the pair structure limit

The recursion described in the previous subsection provides a systematic way to compute
the overlaps. It turns out that combining this method with the co-product property of
the Bethe states and the boundary states (¥|, we can derive the following sum formula
for the off-shell overlaps:

T P G0 ) | Pt i Vi )
Salt) = <\P’B(t)_znfj:1 @) Y2 (za 1201

111 ) (t—QII(Il+1’ tIQa)

N/2 N—
Z(tn) H S (@) H (4.94)

where sum goes through the partitions ¢ = #; Ut;; Uty where #t2% = 0 and #t2¢, #t2% are even
fora=1,...,N/2—1; and #2e~1 = P —#E° ypa-1 - #0T#" ypract _ Asaci—ho
2

111 2
(2a

for a = 1, ...,N/2. The sum formula contalns the overlap functions Sa%jl) of the gl(2)
spin chain

SEN(F) = S, (t_—i— c;)

)

a2q—1(2)—a2q¢—1(2—c3) (495)
Salt) =Y f(#, 1) 2° (1) 2°(—tu)a(t),

where

=s() [[ f(~trt)),  K(z)=—. (4.96)

k<l
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The proof of the sum formula can be found in appendix D.2. The HC-s Z, Z are determined
by the recursions (F.26) and (F.30). There is also a connection between the HC-s

_ 1 = e
Z(t) = H;ij(fsﬂ,fs)z(” @)). (4.97)

Since the on-shell overlaps are non-vanishing only when the Bethe roots have chiral pair

structure (4.68), we need to take the pair structure limit ¢t — —t; — sc of the off-shell overlap.
It turns out that the HC-s have poles in this limit. The recurrence relations of HC-s can
be used to derive the residue of these poles at the pair structure limit ¢tj — —t — sc. For
even s i.e. in the limit t%“ — —t%‘l — 2ac we obtain that

- C La+1 2a 2a 2a ,2a f(7t2aa t%a)f(ijav tl2a)
Z(t) — h(t:%, tr Y h(t7%,t - =
*) 79+ 320 4 2ac[ Zq USURUCAL: )} J(T2e ) f(72arL 47)
—2a—1 =2a—1 —2a+1 =2a+1
" Z Z(%)f(Tia 7Tiiia )f(71a+ 77'iiia+ )><
1 — — — — —
f(r2e,707Y) f(72e42, i

_ _ T
part(TQa—l 7.1-211-',-1)

(4.98)

iii

1 —2a+1 42 —2a+1 42
~ [h(tza T %m_l)] oG R 6] + reg.
koo liid [

iii

where 7 = £\{t3%,t%}. The summation goes thought the partitions 7¢ = 7 U 7, where
#78 = 0s2a-1 + 0s24+1. For odd s i.e. in the limit £7*~! — —2*~1 — (24 — 1)c the HC-s
are regular. These properties are derived in the appendix G.

There is another difference between the even and odd s. For s = 2b there is no extra
selection rule for the a-functions agp(2) i.e. it can contain arbitrary number of parameters
(inhomogeneities) therefore we can handle the expressions t3°, cgp(t2°) and also the derivatives
oy (t2) (or equivalently X?° = —ca/(#2°)/a(t)) as independent variables. On the other
hand we have extra selection rules for s = 2b — 1 since the numbers of Bethe roots restrict

the possible quantum spaces, such as (4.93)

Ay — Ay Top—2 + T2

' =1 4.99
b 5 T2h—1 5 (4.99)
Since the a-functions ag,_1(z) reads as
o1 (2) = mﬁl 2 — 95'21;71) + S§2b—1)c 24 e(2b— 1) + 0§2b71) w100
2-1(%) = 7 .
aie] 5 9]('21;71) Z4e(2b—1) + 0;211—1) B S§2b71)c

where mgp,_1 is the number of rectangular representation (s,2b— 1) in the quantum space and

Agp—1 — Agp & (21
D s, (4.101)
j=1
. . e A(26—1) (26-1)

For a fixed np the maximum number of inhomogeneities Qj appear when the all s, =1
therefore (2-1) 1)

o2 —0" T+ z+ce(20—-1)4+07

ag—1(2) =[] J J (4.102)

=1 oz — 0§2b71) z4+c(2b—1) + 9§~2b71) —c
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0%21)_1),0%%_1) in the function

agp—1(z). Taking a Bethe root tzb_l for a fixed k, we can handle the expressions tib_17

For np > 2 we have at least two independent parameters

agb_l(tib_l) and also the derivatives O/Qbil(tzb_l) as independent variables however the other
expressions ag,_1 (£~ ") and aébfl(t?b_l) are not independent any more and for n, = 2 we
can express them as a function of t3° 1, ag 1 (t2°71) and aby, | (t7°1).

It turns out that taking the 7 — —t7 — sc limit (for s = 20 — 1 we assume that n; > 2
and we handle the expressions 2, ag,_1(t2°7!) and X?*~* as independent variables) of
the sum formula we obtain that the X} dependence of the off-shell overlap is

: (F) — Y38 () (48 f(%sth)f(%stf) ~ — G
polm | Sa(0) = Xp < FO) 2 T +17lfls)samd(7) + 8, (4.103)

where 7 = £\{t{,7} and S is independent from X;. We also used the following functions:
2
FD(2) = Sg(z, =2 = (2= De)g(—= = (2b = e, 2),
5 (4.104)
F@)(z) = To1 e (z,—2z — 2bc)h(—z — 2bc, z),
x, 4
and the modified a-s are

i (2) = as-1(2)

s

mod = .z f(
s (z) = asl )f( z,—t5 — sc)’ (4.105)

Al (2) = asn(2) f (2,

ad(2) =, (z), forv#s—1,ss+1.

The derivation can be found in appendix H.

We saw that for non-vanishing overlaps the quantum numbers 79, are even, however the
quantum numbers 79,_; can be odd, for which the limit ¢3! — —(b — 1/2)c is relevant. Tt
turns out that taking the 2! — —(b — 1/2)c limit (we assume that n; > 2 and we handle
the expression X%?*~1 = —ca/(—(b — 1/2)c) as independent variable) of the sum formula,

we obtain that the X%2~1 dependence of the off-shell overlap is

- oy yoze1 2\ (T (b —1/2)c) L
tib’l—}ir(rz—l/mcsa(t) - ( c) fEst —(b—1/2)c) Semoa(7) + 5, (4.106)

where 7 = £\ {7 '} and the modified a-s are

mo _ 1
) = 00 G ey
amod (Z):Odb 1(Z)f(_(b_1/2)c7z)
2b-1 N (b= 1/2)c)’ (4.107)

ag(z) = am(2) f(z, —(b—1/2)0),
ad(2) = oy (2), forv#2b—2,26—1,2b+1.

v

The derivation can be found in appendix H.
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4.4 On-shell limit

Let us renormalize the overlap function as

0

_ c\* 1
@(t) = <_> — I v v v v v v
2) TS F®) (t+"’)Hk¢zf(tg+’ ) et & =t —ve) (=60 —ve, t)
1 _
X yy y Sa(t). (4.108)
HVEYka(_VC/27tk;7 )f(tk;, ,—VC/Q)
We can easily show that
lim  Ng(t) = XiNgmoa(7) + N, (4.109)
iy ——tj —sc
and
lim Na(t) = X927 IN_moa (7) + N, (4.110)

2071 —(b—1/2)c

which agrees with the embedding of the Gaudin-like determinant (4.75), (4.77). However it
is not enough for the proof our conjecture. We can see that the Gaudin-like determinant
is defined for every set of quantum numbers r*, r’ however the overlap function is defined
only for rop_1 > W therefore we should use more complicated initial condition then
property (3). Another problem is that we have constraints for the functions ag,—1(z) and

their most general form is

ez — 0]2.1’_1 +c z4c2b-1)+ 0]2-1’_1

aop_1(2) = Agy_1(2|62071) = , 4.111
2-1(2) 2-1(2] ) 1:[1 20271 o4 e(20—1)4 621 —¢ ( )

j= J J
which contain only n, = rop_1 — M;sz number of free variable G?b_l for j =1,...,n

therefore the expressions o/ (tib_l) are not independent, i.e., the pair structure limit can not
handle as a function of the variables X ,j . We can only define functions

N N
NH@EH (X212 Tggre—Tie y— lim Nga(f 4.112
(K Yam1 {077 3al) o201 @) (4.112)

where the second limit is the formal on-shell limit with replacement

St 1) FER e
St th) f(th tn=1)

gy () — FEb = (4.113)

The expression N* (4.112) depends only on the “half” of the X variables X ,j 2 and the
inhomogeneities 932.“_1. Our conjecture is

N
2

g+ (71 w20~ a2a-1% \ _ pt) o+ 7
N t |{X }a:1 |{9 }a:1 =F (X 7t )

Xt = —c0. log Agp1(2(6201)

— 37 —



for on-shell Bethe roots. We postpone the precise proof to a later work. Nevertheless, we
believe that the proof of the recursion rules (4.109) and (4.110) sufficiently establishes the
correctness of the statement.

Applying our conjecture, the on-shell overlap can be written as

0N-1
_ 2\ F _
(W|B(t) = (—) [T 1 FY T s o) TP =68 —ve) f(—t0" —ve,ti)
A= k£l k<l
<] [H Fl—ve/2, 65V F(EEY, —VC/Q)] detGT, (4.115)
veel k

and the normalized on-shell overlap has the following simple form

U|B(# NN det G+
% = (—) [1 F¥ ) = A (4.116)

C(D)B(?) ¢/ o det G

The one-particle overlap functions F®*) read as

F¥)(2)

M) () =
F(z) VIz,—z—ve)f(—z—ve,2)

(4.117)

therefore

FON(:) = (22 ) /(e b0 /4 = (= - b0)?),
. (4.118)

Fk=1)(5) — .
¥ Ve + 251022/ — (2 + (b 1/2))?)

For ¢ = ¢ convention, using the Q-functions the overlaps simplifies as
N/2— .
122 Qo1 (0)Qaia(i/2) 1 det G-

5 Applications for AdS/CFT correspondence

(UBEO (T roee-ra
CEHB(D)

k=1

In this section we apply our formulas for states which are relevant for the AdS/CFT corre-
spondence. In the N'=4 SYM and the ABJM theories the scalar sectors can be described
by gl(4) spin chain where the quantum spaces are the tensor product of the six dimensional
A = (1,1,0,0) representation and the alternating tensor product of the defining A = (1,0,0,0)
and its contra-gradient A = (0,0,0, —1) representation. For the untwisted case the possible
residual symmetries are gl(2) @ gl(2) or gl(3) and for twisted case the possible residual
symmetries are s0(4) and sp(4). The gl(2) @ gl(2) and so(4) symmetric boundary states were
handled in the previous paper [30]. Now we take the remaining gl(3) and sp(4) symmetric
boundary states which appeared earlier in the context of defect AdS/CFT correspondence.
We show that the previously conjectured formulas agree with our general result. We would
like to emphasize that in the untwisted case our formula is precisely proven.
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5.1 sp(4) symmetric boundary state

In this section, we reconstruct the overlap formula of [17, 21] for the sp(4) = s0(5) symmetric
boundary state of the scalar sector of the N' = 4 SYM which can be described by an
50(6) spin chain. Now we take a homogeneous spin chain with the representations s; = 1,
r = 2 of gl(4) which is isomorphic to the defining representation of the s0(6) algebra. The

monodromy matrix is

(1,2)

Tu(u) = LD (w+ ¢/2) .. L (u+ ¢/2). (5.1)

This monodromy matrix is built from Lax-operators (4.43) for which the one-site state (4.64)
satisfies the elementary twisted K T-relation (4.44) therefore the homogeneous tensor product
states satisfy

(O] = ([, (5.2)

the twisted KT-relation. We can use the notation (Z,Y, X, XY, ) for the basis vectors
of the six dimensional representation as

7z — (1, 1,0,0) = €(1,2) — (0,0, 1, 1) = €(3,4)>
Y = (1,0,1,0) = ez, Y —(0,1,0,1) = e(a4), (5.3)
X = (1,0,0,1) = ey, X —(0,1,1,0) =e(a3).

Using these notations the elementary state reads as
Wl=2+72. (5.4)

for 1 = x2 = 1 which agrees with the sp(4) = so(5) symmetric boundary states in [21].
This state is also relevant for defect CFT defined by a 't Hooft line embedded in the N' = 4
SYM [17]. We can apply our on-shell overlap formula (4.119) as

COUNPBGD _  Qu0)@(i/2)  derGr 655
COBO  QOQi(/2Q(0)Qai/2) det G |

We can see that this result is in complete agreement with the conjecture of [21].

5.2 Boundary states in the ABJM theory

In this section, we reconstruct the overlap formula of [16] and [18] for the scalar sector
of the ABJM theory which can be described by an alternating gl(4) spin chain. In [16]
a gl(3) symmetric boundary state appeared in the context of three-point function of two-
determinant and one single trace operator. In [18] a gl(2) @ gl(2) and a gl(3) symmetric
boundary state corresponds to correlation functions of single trace operators and a circular
supersymmetric Wilson loop.

Now we take a alternating spin chain with the defining representations A = (1,0,0,0)
and its contra-gradient A = (0,0,0,—1) one. The monodromy matrix is

To(uw) = La2j-1(u~+¢)Lg2s—1(u—c)...Loa(u+c)Lgi(u—c). (5.6)
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This monodromy matrix is built from the elementary monodromy matrices (3.24) (6 = ¢),
for which the two-site state (3.31) satisfies the elementary untwisted K7T-relation (3.26)
therefore the tensor product states

(W] = (W(e)|* (5.7)

satisfy the untwisted KT-relation. We can use the notation (Y1, Y2 Y3 Y4) (Y1,Ys,Y3,Y))
for the basis vectors of the representations A = (1,0,0,0) and its contra-gradient A =
(0,0,0,—1), respectively, as

' —(1,0,0,0), Y; — (—1,0,0,0),
= (0,1,0,0), Y2 (0, 100>, 58)
3 —(0,0,1,0), —>( ,0), '
*—(0,0,0,1), Y3 — (0 0,0, —1).
5.2.1 Three-point functions
Let us choose a gl(3) symmetric K-matrix as a = —c and
0 00-1
1
u=| 0100t (5.9)
0010
—-100 0
for which the explicit form of the K-matrix is
= (l 0 -1
0 =¢tv o 0
Kw=|, % et g | (5.10)
-1 0 0 =
The two-site state (3.31) reads as
ZKBA WAQYp =Y +YhH @ (Y1 + Ya), (5.11)

which agrees with the boundary states of the maximal giant graviton in [16]. To apply our
overlap formula we need to calculate the regular form of the U-matrix (3.14), which is

—-1000
0 100
0 010
-1001

U = (5.12)

The parameter b; can be calculated from (3.20), i.e
by = —1. (5.13)

Now, we can apply our on-shell overlap formula (3.107) as

<‘I’|B(_) yr Q1(%) det G+
= (-1)" — X 4/ —. (5.14)
NG Q2(0)Qz(3)  V detG

We can see that this result is in complete agreement with the conjecture of [16].

— 40 —



5.2.2 Wilson loop one-point functions

Overlap of 1/6 BPS Wilson loops. Let us choose a gl(2) symmetric K-matrix as

= 0 and
-1 000
0 -100
K =U = 5.15
(u) 0 010 (5.15)
0 001

The elementary two-site state (3.31) reads as

<1/)|_hmZKBA YA Yp=-Y'oy - Yo+ Y)Y+ Y eV, (5.16)

U— 00

which agrees with the boundary states of the of 1/6 BPS Wilson loops in [18]. We derived
the overlap for the regular form K-matrix

~1000
a 0 —100
K'(u) = - ) 5.17
W=+ by 10 (5.17)
b, 0 01

therefore we can obtain the overlap corresponding to K-matrix (5.15) by taking the by, by, a —
0 limit. However this limit of our overlap formula is not well defined since we fixed the
normalization of the boundary state as (¥|0) = 1, however when b; = 0 the overlap with the
pseudo-vacuum is zero (¥|0) = 0. It can be seen from the explicit form of the corresponding
two-site state (given by (3.31)) as

('] = lim ZKBA WWARYE = b1 Y @Y +b,Y 20— YIQY —Y20Ye+ Y30 Ys+YiQY,.

(5.18)
To obtain the two-site state (5.16) in the limit by, by — 0, we have to fix the normalization
in a by dependent way: (¥|0) = b{. Using this normalization, our overlap function for the
regular K-matrix (3.107) modifies as

(\l}"|]B§() bJ 7"1b7“1 ) det G+ 5.19
C(£)B(?) - I~ \/Qz “ Vet 19

Now we can take the limit. Since J > r1 and r1 > 79, we obtain non-vanishing overlaps

only when J = r; = r9 and the final formula simplifies as

<\I/‘IB3(7) lim \I/T|IBB 2(0) [det G+ (5.20)
(C(E)B(E bl,bg,aHO /C % det G— '

We can see that this result is in complete agreement with the conjecture (4.29) in [18].
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Overlap of 1/2 BPS Wilson loops. Let us choose a gl(3) symmetric K-matrix as
= 0 and

-1000
0 100
0010
0 001

K(u) =U= (5.21)

The elementary two-site state (3.31) reads as

(W= lim Y Kpa(@Y'eYp=-Y' eV +Y’oh+Y’ oY +Y'aY, (5.22)
A,B

which agrees with the boundary states of the of 1/2 BPS Wilson loops in [18]. We derived
the overlap for the regular form K-matrix

1000
a 0100

K () = & 5.23

W=+ 9010 (5.23)
by 001

therefore we can obtain the overlap corresponding to K-matrix (5.21) by taking the by, a — 0
limit. Applying the previous argument we need to fix the normalization as (¥|0) = b{. Using
this normalization, our overlap function for the regular K-matrix (3.107) modifies as

(WBE .  [detc
Vﬁ__b Q2 Q227 et (5.24)

2

where we have the selection rule r; = r5. Now we can take the limit. Since J > rq, we obtain
non-vanishing overlaps only when J = r; and the final formula simplifies as

AAE@KL,_ i (VB Qi(-3) VG“GH_ (5.25)
COB® o0 JCBD) Q0@ ) AtE

We can see that this result is in complete agreement with the conjecture (5.7) in [18].

5.3 Boundary state with infinite dimensional representation

One of the main advantages of our results is that they are representation-independent, i.e.
they can be applied to infinite dimensional quantum spaces. Here is a concrete example
that is relevant for correlators between the 't Hooft line embedded in N'= 4 SYM theory
and non-protected bulk operators [17]. The SL(2) sector can be described by homogeneous
gl(2) spin chains where the quantum spaces are tensor products of infinite dimensional
representation with highest weight A = (—1/2,1/2). The monodromy matrix is

To(u) = LS 77 (w) ... L5,77 (w), (5.26)
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and the Lax-operator L(u) has a usual form

2 11 2
L) =145 3 Bue B, = 3 By, (5.27)
k=1 kl=1

_11
Let us choose the representation E,i l2’2) as

)

By P in) = (0 + 3 ),
’ 2 (5.28)
_11

ES, 2 n) = —i(n + 1)n + 1),
_11

E£22’2)|n> = —in|n — 1).

The boundary state which describes correlators for the 't Hooft line embedded in N = 4
SYM theory can be written as

(v] = (B|*, (5.29)

where the elementary one-site state is

(B| = (i(—l)”Pn(COSG)m\). (5.30)

n=0

Now we have to find the corresponding K-matrix of the one-site state which satisfies the
untwisted KT-relation?

Ko(u){B|To(u) = (B|To(—u) Ko (u), (5.31)

for J = 1. Let us parameterize the K-matrix in the usual way

_1-uRy
K ="1+u, uy=|"1the=m") (5.32)
u Uz Uz o = —Ui;

In the auxiliary space we have four equations:

K11 (w)(Bll1(u) + Ki2(u) (B2, (u) = (Bltia(—u) K11 (uw) + (Bllr2(—u) K21 (u), (5.33)
K1 (u) (Bl 2(uw) + K1 ,2(w)(Bll22(u) = (Bll1,1(—u) Ki2(u) + (Bll12(—u) K22(u), (5.34)
K1 (u)(B|l11(u) + Kap(u)(Blla,1(u) = (Blloa(—u) K11 (u) + (Bllao(—u)Ka,1(u), (5.35)
Ko 1(u)(Bll12(u) + Ko o(u)(Blla2(u) = (Blla1(—u) K1 2(u) + (Blla2(—u)K22(u). (5.36)

Since . .
By n) = — By ), (5.37)

2For the gl(2) spin chains the untwisted and twisted KT-relations are equivalent. For simplicity, we prefer
to use the former notation.
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for all n we have the identity
(Bllap(—u) = (Bll1,1(u).
Let us apply this identity in the third equation (5.35). It simplifies as
Koo (u)(Bll21(u) = (Blla, (—u) K11 (u),

i.e.,
11
(Kaa(u) + Kua(w) (BIE; 7 = 0.
11
Since <B|E£22’2) # 0, we obtain that
Kypo(u) = —Ki1(u),

therefore
a=0.
Let us continue with the first equation (5.33). It simplifies as
~3:3) ~3:3)

Wty 1 (BIE > + 1 5(BIE,> + (BIES, sy = 0.

Let us multiply with the state |n):

—2(n 4 ;)u1,1<3|n> ~inthy (Bln — 1) — i(n + 1)lyy (Bln + 1) = 0,
therefore we obtain that

Uz 1(n+1)Ppy1(cost) = —ilhy 1(2n + 1) Py (cos 0) — nly 2 Pp—1(cos ).
Using the defining relation of the Legendre polynomials

(n+1)Py41(cosf) = (2n+ 1) cos P, (cos ) — nP,_1(cosb),

we can fix the unknowns as

Uio=Us .,

Ui =icosOlUs ;.
The involution property of U fixes the normalization freedom as

1—U? 1 OUs 1) 1
Ly = + (c;/){s 2.1) Uy = £
2,1

Urp =
’ Uz

sin @

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.49)

Without loss of generality, choose the positive sign for which the U/-matrix and K-matrix

read as

; 1
K(z) =t = <zc?t9 e )

i —jcotf
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This K-matrix satisfies the remaining two equations (5.34) and (5.36) therefore the elementary
KT-equation (5.39) is satisfied. Using the co-product property of KT-relation, the tensor
product boundary states (5.29) satisfy the KT-relation for any J. The existence of the
K-matrix proves the integrability of the boundary state (5.29). To use our overlap formula,
we need to calculate the regular form of the U-matrix (3.14):

3@ — ( ! 0>, (5.51)

sin 0

and the variable b; is defined by (3.20), i.e.,

by = — (5.52)

sinf’

Now we can apply our on-shell overlap formula (3.107)

LB(E): sin @)™ Ql(o) \/@
C(t)B(t) (i) Ql(%)x det G— (5.53)

We can see that this result is in complete agreement with the conjecture of [17].

5.4 Boundary state in the gluon subsector

In the N' = 4 SYM there is the gluonic spin-1 su(2) subsector which is formed by the self-dual
components of the field strength. The one-loop mixing matrix of the gluon operators is
the Hamiltonian of an SO(3) spin chain which is a homogeneous gl(2) spin chain where the
quantum space is a tensor product of the representation A = (1,—1).

We can define the monodromy matrix as

To(u) = L5 V(). L8V (w), (5.54)

and the Lax-operator L(u) has a usual form

2 2
C —
L0 @) =1+ 3 Bu® By V= Y B ® lulu). (5.55)
k,l=1 k=1

We can choose the convention as

EN V=5, EYLV=5,+is,
(’1 1 (’1 ) (5.56)
E‘277 - _SZ7 E271’ - Sﬁ - ZSy,
where
000 00— 0—i0
Se=10074 |, Sy=[0001], S.=14 00| (5.57)
0—:0 i00 000
The pseudo-vacuum is
1 1
o=y = 1| i |. 5.58
| ) v1W (5.58)
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The boundary state which describes correlators for the 't Hooft line embedded in N = 4
SYM theory can be written as

(U] = (B|*, (5.59)

where the elementary one-site state is

T
1
(Bl|=| 2o | =x". (5.60)
3
Let us introduce the notations
z =z + iz, p? = 2% + a5+ 3. (5.61)
The vacuum overlap is
L

Now we have to find the corresponding K-matrix of the one-site state which satisfies the
untwisted KT-relation

Ko(u){B|To(u) = (B|To(—u) Ko (u), (5.63)

for J = 1. The calculation is completely analogue as was in the previous section. We use the
same ansatz (5.32) for the K-matrix. Solving the equations (5.33)—(5.36) we obtain that

a=0, U= —@Uzl’ Uz o = ﬁ“&la U2 = MUQ,L (5.64)
2z 2z z
From the normalization 42 = 1 we obtain that
z
Uz = —. (5.65)
p

The existence of the K-matrix proves the integrability of the boundary state (5.59). To use
our overlap formula, we need to calculate the regular form of the Y-matrix (3.14):

~10
U@ — ( R 1>, (5.66)
p

and the variable by is defined by (3.20), i.e.,

y4
by = —. 5.67
1= (5.67)

Now we can apply our on-shell overlap formula (3.107)

(UB() 1 2/ Q1(0) det G+
copa 2o Vel \/E' (568)

We can see that this result is in complete agreement with the conjecture of [17].
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6 Conclusion

In this paper we determined the on-shell overlap functions of the gl(/N) symmetric spin
chains for the sp(N) and gl(M) & gl(N — M) symmetric boundary states (see (3.107), (3.108)
and (4.119)). Combing them with the results of [30], the on-shell overlap formulas are
available for every integrable boundary states of the gl(N) spin chains which are built from
one- or two-site states. We gave a complete proof for (3.107) and (3.108), however the precise
derivation of (4.119) is positioned to a later work.

It would be interesting to generalize our method for K-matrices with extra boundary
degrees of freedom, i.e., when the boundary states are given by matrix product states
(MPS) [39]. This generalization would be very important since these MPS appear in the
context of defect AdS/CFT correspondence [12, 13, 19-21, 40].

Another interesting direction could be the generalization to supersymmetric gl(N|M)
spin chains. Applying our methods one might be able to find the overlap functions for every
grading, which could provide an alternative proof of the previously discovered fermionic
duality rules of the on-shell overlaps [41, 42].
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A Off-shell Bethe vectors

In this section we review the recurrence and action formulas of the off-shell Bethe vectors
which are used in our derivations of the overlaps. These formulas can be found in [33-36].
The off-shell Bethe vectors can be calculated from the following sum formula [33]

(0012

Tis0) s~ g (P gy Baben @)oo/ )
Z ( ) pazt%t)B< {t } _2’{1: }kz_j> Hljjzll f(fy+1,flu) 5 (A]_)

where the sum goes over all the possible partitions ¥ = t* Ut¥ for v = 2,...,j — 1 where
tV, 4 are disjoint subsets and #t” = 1. We set by definition #} = {2z} and t" = 0.
There is another sum formula

B({tk}::f, (-, tN1}>

N N— w+l v sy
; 1 N-2 _ = 9t/ ) f(E T
DK R (R N L L e
Z 0w 2 e=t Uiy [0S, (.
where the sum goes over all the possible partitions ¥ =t Ut4 for v = j,..., N — 2 where

tV t4 are disjoint subsets and #t¥ = 1.
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We also use the following action formula for the off-shell Bethe vectors [36]

1—1 ] )wfn
T; 5(2)B(t) = An(2) Z B(wy) ijgjf( : )

e
part(w) s=j f(wf 7wISII)

N-1

- f(wy, wy) as (i) f (W, wyy)
1;[ ) 11 m (A.3)

h(w§, wr™ )f(wl LW ' s=j wlslfamnl)f(wlsﬁrl ﬂ)ign)’

where w” = {z,t”}. The sum goes over all the partitions of w” = w” U w4 U w}, where
wy, wh, wh, are disjoint sets for a fixed v and #w! = O(i — 1 —v), #w}, = O(v — j). We also
set W) = wiY = {z} and @} = w9, = W = w) = 0. We also used the unit step function

O(k) which is defined as ©(k) = 1 for k£ > 0 and O(k) = 0 for k£ < 0.

We can see that the diagonal elements T;;(u) do not change the quantum numbers r;.
The creation operators i.e. T; j(u) where ¢ < j increase the quantum numbers r;, 7j41,...,7j-1
by one. The annihilation operators i.e. T} ;(u) where i < j decrease the quantum numbers
TiyTi41y o5 T5—1 by one.

We also use the co-product formula of the off-shell Bethe vectors. Let H(®), H2) be
two quantum spaces for which H = 1) @ H® and the corresponding off-shell states are
B (#),BA)(f). The co-product formula reads as [43]

- 5 B O Do) 050 (A
part(f) v= 1

where the sum goes over all the possible partitions t¥ = t Ut where t¥, t¥ are disjoint subsets.

We also need the action of the twisted monodromy matrix on the off-shell Bethe vec-
tors [30].

_ —a_ — N—j _
Z IB ,w HéV:21 (ts ! ) ts) Hs:]\]ffiJrl f(wls7 wIsII)
II

1 i — N—j
part(w) [Ts=2 (W~ —c,w§) ngj\j[_i+2 f(wl —c, W)
N-1 _s N—j _ e -
% f(wisawfl) HJ as(wlsll)f(wlsnwign)
— — )
s=N—i+1 h(wy ,wf“—kc)f(wl 7wISI+1+C) s=1 h(wiy ! —c, wiy) f (i ! — ¢, Wiy)
(A.5)

where w” = {z — sc,”}. The sum goes over all the partition of w” = w” U w} U w", where
wy, w, wh; are disjoint sets for a fixed v and #wy = O(v — N — 1+ z) #Hwy, =O(N —j—v).
We also set w0, = {z}, W) = {z — Nc} and @° = @) = @) = w) = 0.

There are gl(2) subsectors which are spanned by the Bethe vectors B((#**—1 % *N-1-F)
and the generators {Tj ; }* i 1, and {T”}ivjilj\?f . leave this subspace invariant. We can compare
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the actions (A.3) and (A.5) on this subspace and we find the following identities

fN—k,N—k( ) (@Xk 1 tk @XN 1— k) Tkk( kc) (@Xk—l t—k (Z)><N—1—k)

AN+1-k(2) Me+1(2 — ke) 7
TN k,N— k—&-l(z)B(@xkfl Ekvq)folfk) _ _M (q)xkq Ltk7@><Nflfk)’
~ AN+1-k(2) M1z = ke) (A.6)
TNA—k—H,N (Z)B(kaqjkj PxXN-1-k)y — _MB(mxkq,Ek’ pxN=1-ky
AN41-k(2) Akt1(z = ke)
T k+1,N— k+1(z)]B(®><k717tfk7(Z)folfk) _ Tt 1,p+1(2 — kC)B(@xkq {k,@folfk)j
Ant1-k(2) Ak+1(2 — ke)

therefore the original and the twisted monodromy matrices are equivalent in the gl(2)
subsectors, i.e.,

1 Afok,ka(Z) ATka,kaJrl(Z)
ANt1-8(2) \IN—k41,N—k(2) TN k41,8 —k+1(2)

~ 1 Tk’k(z — kc) _Tk,k+1 (Z — kC) (A 7)
Met1(2 — ke) \ —Tg1 k(2 — k) Tyt py1(z — ke)

B Untwisted off-shell overlap of M = 0 case

Let us take the following singular K-matrix

3]
1 1
K(u) = ~1+U=—1+b, > Enii-j- (B.1)
7j=1

We can apply the result of [30] for the off-shell overlaps. The off-shell overlap has the
sum formula

v v N-1
sa(l6) = 4 WSO 200200 T ool 5.2

part

where we introduced a non-trivial vacuum overlap
A= (V|Q). (B.3)
The HC has the recursion relation (see [30])

Z({z,PL{t‘S}T)
N—-2 -5 - s N—1 fN-—1 TN—1
N—2 7N—1 f(wf,a5) J Lty )Y —2)
gtz =1t )81;[1 h(@s,wf N f@s,wi ) h(EN 1 N 2 fEN L ol ) £(£2,2)
B f@lwl)  f@e) GRS,
;ﬁz o (B h(wl,2) h(E2,w!)f (8, o) E[?, h(tg, 6 (B

(B.4)
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Let us renormalize the HC as

A e — 10} (B.5)
H 2 ) [37'5—7'9 1

Using the renormalized HC-s, the recursion will be independent on parameters of the K-matrix

Oz, 3, {815

N—-2 _ TN—1 TN— TN —
_ ~0/(-s1N—2 7N—1 flwf,wp) FENTLANY N —2)
_gtz (it )g h(ws,ap N fl@g, @i ) AE Lol ) FE T on ) f(E, 2)
0 N—-1 f(u_]117u_}1) f(igaflzl) Nt f(gigfl)
PTG =) w2 @ e Wi e ey 09

part
The by dependence appears only in the sum formula as
_ A _
Sa(t[b) = N—Sg(t), (B.7)

Ts—Ts—1
< bs

where we defined the bs independent quantity

tIVUtV) 70/ _a/y ~70 (1 Rl v
Z =7 (ﬂ' (tl))Z (tn) H Oz,,(tl). (B.8)
v=1

part 11 (tﬁ“ ty)

It is clear that we obtain the M = 0 K-matrix in the limit b; — 0. We saw that the
non-vanishing overlaps require the selection rules 1, = 7 = Y7, Ay (see (3.79)). For
these quantum numbers, the limit b; — 0 of the overlap is non-singular only if the vacuum

N OLA_LA N
expectation value scales as A ~ J[ 2, by = [1.2, bAs. Let us choose the normalization
of the two-site state as
N
2
A=T] b2, (B.9)
s=1
therefore the off-shell overlap reads as
N
2
Sa(t[b) = [ oietme17T52(%). (B.10)
s=1
Now we can take the by — 0 limit as
Sa(t|b = 0) = S2(1). (B.11)
r=rf

We just derived that the non-vanishing off-shell overlaps for M = 0 is S3(¢) with the
recursion (B.6).

There is a significant simplification in the N = 2 case. In this case we have only one set
of Bethe roots t = ¢! and a-function o = ;. The sum formula simplifies as

Zf tIhtI tI ZO( EII)Q(EI)7 (B.12)

part
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and we can give the HC in a closed form:

~ 1
= k(t) H f(=tx, ty), k(z) = —. (B.13)
k<l
We also need some limits of the gl(2) overlaps. The HC-s have formal poles in the limits
t; — —tj and tp — 0. For the first limit let us introduce the notation 7 = #\{ty,#;}. Taking
the limit ¢; — —t; we have

Sa(t) — (B.14)
g(—tk,tl) k Z f 7'H>tk 7'117 )f(_tka,]_—l)f(tka%I)f(’]_—lla%I)ZO(’FI)ZO(_%H)@(,FI)
part(7)
+g(ty, — " —5 > [T F(—te, T f (R —tw) f (R te) f (7, ) Z°(7) Z° (= 7)o (7) +-reg.
part(T)

After simplifications we have

SO(t) = g(—tg, t) (alty)a(t;) — 1) (B.15)
1 _ _ - _ - S, ) f(—te, )
x —= f(7,t 7, —t T, ) Z0 () Z0 (=7 | (7)) 222 7 + reg.
_tzf( k) f( k) pa%%.)f( i, 7) 2 (1) 27 (=7u) | af I)f(Tlatk)f(le_tk‘) g
Introducing the modified a-s as
mod f(tkaz)f(_tkaz)
« z) =a(z , B.16
S (AT O (10
and using the sum formula (B.12) we obtain that
_ 1 ~
Sa(B) = Xk — f (7, te) (7, —t) Sgmoa (7) + 5, (B.17)
U
where S does not depend on X, which is defined as
o (tr)
li -1)=- = Xk. B.1
i, 9(=tk, tr)(alte)a(ty) — 1) ©altn) k (B.18)
Taking the other limit ¢, — 0 we have
SOt) — —a (te) Y. (7w, 0)£(0,7) f (7, 71) Z°(7) Z°(— ) u(ty) (B.19)
part(7)
—tg — > fOR)f(Fn, 0)f (7, ) Z2°(7) Z2°(=Fu) () + reg.,
part(7)

where we introduced the set 7 = t\{tx}. After simplifications we have

f(O 7'1)
f(7,0)

= o (alt) = A0 Y S0 7) 20250 alh)

k part(7)

Sa(t)

} +reg. (B.20)

Introducing the modified a-s as

(B.21)
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and using the sum formula (B.12) we obtain that

Sa(t) = X° (—2> F(7,0)8% 04 (7) + S, (B.22)

C

where S does not depend on X which is defined as

lim —(a(ty) — 1) = a/(0) = (—Q)XO. (B.23)

tr—0 tk C
C A new recurrence relations for the Bethe vectors

In section A we show recurrence relations for the off-shell Bethe vectors (A.1) and (A.2)
which are recursions on the quantum numbers 71 and rx_1. In this section we derive two

other recurrence relations for the off-shell Bethe vectors which decreases the quantum number
r9 and Tn_g.

Recursion in ro. In this subsection we derive the recurrence relation

B(t', {z,2°},{t° Ngl)

N j— ¥S 18 48— 1S 18
Z Z TQJ {t } 3 {ts ) 17 Hé:éas(tl)g(tlﬂfl 1>f(t117t1)
=S ® . (=) [Ty f (B 8)
+Z Z {t } 3 {ts ) ( ,t;l)f(t:l,t?)ns 3048( ) (tls7t5 1)f(£flagf)
H’ s$=3’ 1 Y
J=3part( E) ) f(Z,tl) Hi:éf(tﬁ_latf)
(C.1)
where the sum goes over all the possible partitions tV =t/ Ut" forv =1and v =3,...,j— 1

where ¥,/ are disjoint subsets and #t” = 1. We set by definition > = {2} and ¢V = 0.
During the derivation we use the action formula (A.3). Applying it for i = 2 we obtain that
T5,(2) 7
#(Z)B(tlat?:{t }s 37{t8 ) = Z ]B 117{2 }7{2 t }s 37{w11 )

S 3 as( )part(w)

L oh) T - s (@) f (@5, @) ©2)

h(wllaz) i wls;rl’wm)f(wlsﬁrl 2DHI),

where w” = {z,#} and the sum goes over all the partitions of w! = w! Uw} and w” = w}UwY,
forv=y4j+1,...,N —1. Wealsosetwfl\i—{z}andwﬁ:@.
We can do the summatlon for the partitions of w!

TQJ( )
/\3(2) ( {t }s &{t )_ Hi\]:z)} OLS(Z)X (CB)
71 N 1 71 = O‘S(wnl)f(wuawm)
pam({%{/l)m SERA R A pHEAD 1] R
N-—-1 _
_ — S( 111)f( 11 111)
. {Z}N § B((= ) ) = R, (1500, 970 T .
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In the second line the sum goes over all the partitions of t = t! Utl and w” = w% U wY,
where #t! = #w4, = 1for v =j,7+1,...,N — 1. Let us concentrate on the summation
of the first line. We can do the summation for the partitions using that if w?, = {2} than
the term 1/f(wk+!, wk ) = 0 for the partitions where z € wh*! therefore if wk, = {z} then
wptt = {2z}, wk+1 = ¢**! for non-vanishing terms. We can repeat this argument and we
obtain that if wk, = {z} then wf, = {z},w; = t* for s > k, i.e.,

N-1

Z B tl Azt } {2, }s Sa{wn ) (2751) H h( Og‘i(lwlsn)f<wlsn:ffn)

H323 Ozs( )part (@) s=j 1MW Wi f(wi™, wiy)

= mﬁ(ﬂ{z b Az B AP NS f (2 8) f(#2) (C4)

+ Z =1 . Z B(Ela{z RN Sv{ts ) (val)f(t_kaz)
H S(Z) part({fs}l;;;)
1) a B FELE) gz 1)
I @R P S

In the third line the sum goes over all the partitions of ¥ = ¢V U ¢/ where #t’ = 1 for

v=j,7+1,...,k —1. We can repeat the analogous calculation for the second line of (C.3)
and we obtain that

ASB@ 2, E ) 1)
=Hj_1la<z)18%<f%{z,£2},{z BV S () (B 2)

+ Z Y. BE {22 {2 655 N5 (8 F(E2)

k=j+1 5 3 (Z) part({fs}k:l)

as(E)f(E5L1) gz, th )
= 2h( L) FETE) fER T

——— > Bzt (=P {2 B AP g 2) F (L B F(E ) (C.5)
HS=3 Oés(Z) part(t!)

! ST B R (B B g 2) £ L) 2)

z .
s @) L Gy

Hkijl O‘s(t_f)f(tflats) g(th_fC_l)

H’“ ChETLE) &) AR AT
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We can repeat the analogous calculation for

(@, 2 Y 1S ()

:rp'—11<)<{zt}{z b= B FYSDAE 2)

IR e ID SR (R SIA R ARG
2

part({£°}5=})
[ as(B) f(B 8 g(z, 01
i 2R(ET ) FET ) FER BT

Let us introduce the following notation
Iy s T27 ( ) s
Ty 82 B oy YY) o= 2B, 2 {8 Y0, (15 (C.7)
A3(2)

_ T1(2) g y L4
pa%(:tl) )\3(2) (117 {t }s 37{t ) ( )f(t17t11)7

where the sum goes over all the partitions of ' = ¢} Ut} for #t! = 1. Using the previous
results (C.5) and (C.6) we obtain that

ICIANER G S G Sy
= B (= P = BV ) £ P 2) (C8)
[[i=5 as(2)
N
1 _ o
+ Trk—1 /N B(tl,{z,t } {Z t 5= 7{ts ) (Zatl)f(tkvz)
k=j+1 HE:?& as(z) part({tZS]»f::}) =
) 0, B)F (B E) gz 1)
L7 h(E 8) F(ET 6) f(ER, 87

We can see that the 7;-s are expressed with B(!, {2, #?}, {z, £ }S 3 {5}V ) forj=3,...,N.
We can invert these equations and express B(t', {z,#2}, {*}V5) with T -s as

B(t', {=, 2}, {*}.5)

l . U155 s (B)g (8, 6 F (B 8)
= T 7t17£2 s=3> ts s =3 L 5 Cg
;,Zo e =l )f<z,t1> IThs f(B,57) (€9

where the sum goes over all the partitions of ¥ =t Ut} for v = 3,4,...,k — 1 and #t¥ = 1.
Substituting the definition of 7; (C.7) we obtain what we wanted to prove (C.1).
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Recursion in rn_2. In this subsection we derive an alternative recurrence relation
TN—27 FN-2
({t }s 1 7{2 t } )

({t }s 1’{ts é\f 37tN 2 tN 1)
Yy b ;

DS gt o) fE. ) 1
D57 fd, ) f(tN12)

Jj=1 part(t)

N-3 v+l v\ (v v

N—3 7N—2 7N-—-1 Hy:j g(tl atl)f(tlatn)
+ Z Z B(E Y (B 2 ) TR (C.10)

J=1 part( ) v=j 19
oy (Y )g (BN, 2) f N, 8 )

FEN1,2) ’

where the sum goes over all the possible partitions t = t*Ut} forv = N—landv = j,...,N—3

where 1,1/ are disjoint subsets and #t” = 1. We set by definition £V =2 = {2} and #* = 0.
The derivation is analogous to the previous subsection. We start with the action
formulas (A.3):

Tin-1(2) g

B YL B E2Y

)\N,l( ) =
FN—2 —N-1
OéN 1( ) Z B({wy = 17{tm }s =j 7{t 2hwy ) (C.11)
part(w)
1:[ (@f,wﬁ) an—1(@h ") flwy i)
o1 hwg, wf ™) f(wp, w1 h(z, o) ’
and
TN (2) N-3 7N—-2 yN-1
L B({E° ts t , b C.12
AN—l(z) ({ }8 17{ s=j ) ( )
! o s
= B({@) 2y, {8, 23050 APV 72, 21 {8 2))
~ ava( pa;w) Fomt, s Eh(wl,wf Y f(wg, w7t
where " = {z,#’} and the sum goes over all the partitions of W ~! = wIJIV LuwN-1 and
w” = w’UwY, where #w) ' = #w’ = 1forv=1,...,j—1. Wealso set w] = {2z} and w}, = 0.
We can do the summation for the partitions of w™¥~!:
Tjn-1(2) 7s s1N-3 FN—2 7N-1
——— —B({t t t , T
>\N—1( ) ({ }s 17{ s=j )
j—1 s
f(w187w181) tN—-1
B({@;} 2, (B, 23050 AFV 2, 20,87 — 7, 2)
pgm s oz W e ftaran

LS B B, Y ) L 2 (C.13)

ON-1 (Z) part({u’)}{'_l,fol)

X ]1:[1 f(wis’wﬁ) (EN—l) ( EN_l)f(t_N_l EN_l)
a — Z .
s=1 h‘(wl ) wls l)f(wl 9 wlsl 1) N=1 g (e 1I V1
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Let us concentrate on the summation of the first line. We can do the summation using the
same trick as in the previous subsection, i.e., if WF = {2} then w§ = {2}, w3 = t* for s < k:

Jj—1 e =
IN—2 N-1 f(w?, wy) N1
pa%w)B S R )51;[1 h(w;, i) f (o, wff 1)f(t %)
*W{ts}s LA 2P L N T F (e ) Y 2) (C.14)

+Z Yo BUEHD A, A 5 iV T f e N F(EY T 2)
F=1 part({2} )
g(t, 2) F(EF, 2F) ﬁ g(& & ()
fer ) fE5, 1)

Y

s=k+1

where the sum goes over all the partitions of ¥ =t/ Ut} and #t' =1forv==Fk,...,j — 1.
We can repeat the analogous calculation for the second line of (C.13) and we obtain that

j—1 e -
o N-2 1 N1 f(wy, wy)
pa§ )B{ Il}s 17{t117 }s =j 7{t } {t ) })s];[lh(ws U}f l)f(ws wfl 1)
BH{# Y1 AT, 23000 Y 2 21 {8 2D f (2,77 (C.15)

+i Z ({ts s= 1v{tnv }s k v{tN 2 .2}, {tN 1, Hf(z ,t_k_l)

F=1 part({7}; )

. 9 2) () ﬁ g8, 1) f(8,85)
f(@.7) fE 0

=k+1

Substituting back to (C.13) we obtain that

TiN-1(2) g g §
ﬁ G =R N—3 FN-2 gN-1)
‘B“ts}s G AN (A R VIR VI

s N2y e ST oy
+Z Z {t s= 17{t117 }s k 7{t Z} t )ff(t ,Z)

k= 1 part( ﬂj. 1

— 1 — —
g(tF, 2) f(tF, th) h g(Es B8 f(E5,85)

f({{c,tk 1 Ml (ts7ts—1)
BB AR ), B ) (Y (C.16)
O[Nil(z) part(tN—1)

+ Y BUEYIL G5 I T DS (T

part({£}] 1)

Ek‘ tk tk j—1 ts ts 1 {S ES _ B B B
g(tr, 2) f(t7, 1) H g( 17 Vf(E, ) aN_1(tfv_l)g(z,tfv_l)f(tf}f_l,tfv_l).

f(tk tk; 1 Ml ts7ts—1)

,56,



We can repeat the analogous calculation for

Tin(z)
AN()

= B Yoy {8, 215 A 2 o) B T 2D f (=, )

aN,()

B({t* Yy {2 2V 2 ) (C.17)

Z DR 16 ot et 08 IS A (e o (M D )

= Upart({f}, ")

(&, 2) f(2F, ) ﬁ g(B, &) (85, 8)

C.18)
tk tk— 1 s $s—1 (
f(t ¢ s=k+1 t b )
Let us introduce the following notation
S S T ( ) S S
T2y {8 éngth AR —W B({#*}_1, {E; N—ngtN 2,8V
T ( ) S S N — —N_ N1 —N_
> Py An-1(2) B Yoy TS 12 6 e (B D 8D FEHE,
part(tN-1)
(C.19)

where the sum goes over all the partitions of tN =1 = tN =1 U tV=1 for #t¥N~1 = 1. Using
the previous results (C.16) and (C.17) we obtain that

(Z|{ts}s 1’{1:8 N—]37tN 2 tN 1)

—B({ts}s LA 2 Y 2 N (2 B F(EV T 2) (C.20)
+Z Yo BEEYCL {8, 50 {2 T
k=1 part({t}; ")

o 9 2) () ]ﬁ gt &Y f(#, )
G I PR L)

k—1
f( f )f(t_N_l,Z)

We can see that the 7;-s are expressed with B(¢!, {2, #*}, {z, 3 s 31 {ts ) forj=1,...,N—
2. We can invert these equations and express B(t!, {z, 2}, {ts 3 ) Wlth Tj-s as

({ts}s P AT )

_ 5 s\N—3 FN—2 FN—1 5;39(58+1 &) f (5. 8) 1
Z Z {t }s 17{75 s=j ;b )t ) 1 IN—1 .\’
J=1 part(t) Hs =j f(ts ts= ) f(t %)

(C.21)

where the sum goes over all the partitions of ¥ = ¢ UtS for s = j,..., N — 3 and #t" =
Substituting the definition of 7; (C.19) we obtain what we wanted to prove (C.10).

D Proof of the sum formulas

In this section we prove the sum formulas (3.98) and (4.94). We deal the untwisted and
twisted cases separately.
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D.1 TUntwisted case

For the untwisted case, let us fix the K-matrix to the type (N, M) regular form:

ZbkEN—i-l kk+ZKkk ) Ek - (D.1)
k=1 k=1

We do not need the explicit form of the non-zero matrix entries therefore the result is
valid also for the singular K-matrices with the form (D.1). In section 3.3 we already saw
that the variables a4(t;) can be handled as independent variables for s = 1,..., M and
s=N—M,...,N — 1. Repeating the previous derivation of [30] (appendix (C.2)) we can
show that the off-shell overlap has the sum formula

Sal) = Y Wi, UG seat WY sest Y ses) TT (@), (D.2)
part ({5}, +) sest
where we defined the sets s = {1,... M}U{N—-M,... N—1}ands™ = {M+1,... N—M—
1}. The coefficients Wya,} _ ({#f bees+ [{ti}ses+ [{#°}ses-) do not depend on the a-functions

as for s € s7. For completeness, we present this proof.

D.1.1 Proof of (D.2)
We want to prove the sum formula (D.2) where the weights W{as}seﬁ do not depend on

as for s € s7. In the derivation we only care about as (s € s7) dependence of the overlap
therefore we use the notation (...) for the a; independent coefficients (s € s7). Using this
notation the sum formula takes the form
Z H as(t)(...). (D.3)
part(t) s€st
We prove this sum formula using induction on M. Let us start with M = 1. We use the

recurrence formula (A.1)

B ) ()5 - 3 Thal)
= M(2)

We saw that, for non-vanishing overlap, the numbers of the first and (N — 1)-th type of Bethe

3 BE BV Ha,, )y x(...). (D.4)

part(t)

roots are equal therefore we fix the quantum numbers as #t' = r; — 1 and #tV ! = ry.
Using the KT-relation (3.1) we obtain that

B =5 X parzt@fw“j( BE (P
ErEa ) ZZ() V(T (B {1 ()
+A21(z)WPM%O@!TN,N(—,Z)B(#,{@ Mo han (VY (L)
_Agl(z)wpar%)@”mw( B(E, {& ) Dan—1(E (...

(D.5)
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We can use the action formulas (A.3)

WB(E) = a1(2) I%;B((DII)QNl((DIJI\/;I) X (...), o
DG ) S Wy ) N1 x :
T(Z)B(t) B an-1(z) %B( wan—1 (g ) x (-..),

for j > 1, where w” = {2,t"}, @ = {—z,t"} and @w” = w’ Uw} U4, @ = & UK UXY,.
We can see that in these formulas the a-dependent terms are aN_l(t,iV_l) and a1(z), an—1(2)
therefore combining (D.5) and (D.6) we obtain the following recursion for the overlap

(OB, {E3 50 = Y (WB(@n)an-_1(E ) x (a1(2), an-1(2),...), (D.7)

part

where WY, C {z,—z,t4} and t = #; Uy, where w} = w)~! = r; — 1. Applying this recursion

for the overlap we can eliminate the Bethe roots t' and tV ! as

B0 = S B (0. (@}, 0 )aya@ ) x @lthavalth) (D)

part

where w¥ C {t!,—t!,#/}. Since the type (N — 2,0) overlap does not depend on «; or
an_1, we obtain that

t) = an (B ) x (aa(ty), an-1(th),- ), (D.9)

part

for M = 1. We can repeat this calculation for the other type of recursion of the off-shell
overlap (A.2):

N—
B({#) 7 ) = 3 & (2 @) 0 o)

Jj=1 part(t)

Using the KT-relation (3.1) we obtain that

<\I/\IB%<{E’“}§:_12, {2, £N1}>

N— 1 i1 9
- )\Nl(z) ; Iy ({tk}kl’{tﬁ};vj £ 1>( ) (D.11)

1 K11

e ;Z% B(8 (B 55 ).

We can use the action formulas (A.3)

Tjn(=2) o r

A2(z) B(t) = ai(z)an—1( %B on)on (@l an_1@N 1) x (...), -
Tja(z) ) '
Ao (2 ) g:rtB W) o (W )an—1 (why ) x (...
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We can see that in these formulas the a-dependent terms are aj(t}),an—1(ty ') and
a1(z),an—1(z) therefore combining the equations above we obtain the following recursion
for the overlap

(WB({z 8}, {F}115") = S (UB(@ar #)an 1 (5 7Y x (a1(2),an-1(2),...), (D.13)

part

where w" C {z,—2,#} and t = #; Ut; where w} = w} ' = r; — 1. Applying this recursion

for the overlap we can eliminate the Bethe roots t' and tV ! as

(U@ = (B (0 {of}, " 0)ar(@) x (e D avad D), (D)

part

where wY C {t',—t!,#/}. Since the type (N — 2,0) overlap does not depend on «a; or
an_1, we obtain that

Zal Oq tk ) OéN_l(tlivil),...), (D.15)

part

for M = 1. Combining the two properties (D.9) and (D.15) of the M = 1 off-shell formula
we obtain that

Zal OéN 1 tN_1> X (), (D.16>

part

which proves (D.2) for type M = 1.

Let us continue with general M. Let us assume that the type (N —2, M —1) overlaps have
the sum formula (D.2). Let us turn to the type (N, M) overlaps. Combining the recurrence
relation (A.1) with the K'T-relation we obtain the equation

(WIB({z 8, {215
M
(W[ T (—2) B {25 () I a@(.) 7

seg+m[2,...,j—1}

95
—2 b1

b X O S om0 T e
)\2(2) ; b1 N.j s= 2’ ag(ty)(. ..

Jj=2 ses+m[2,...,j—1}

- )\21( KNN Z S (W[ (DB, {7 Y () I e

ses+m[2,...,j—1]

We can also use the action formula (A.3)

C’Ww) —on(2) S B@) [ as®) x (),

) part sestNlg,...,N—1] (D 18)
Tni(2) . - 1 - '
%B(t) = Z B () H s (W) x (),

2(2) HSGL‘*W[J}--wN—l] as(z part sestn[j,....N—1]
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for j > 1. We can see that in these formulas the a-dependent terms are o(t}) for s €
st N[2,...,N —1] and a,(z) for s € sT therefore combining them we obtain the following
recursion for the overlap

(UB({z,1'}, {t_s}ivz_zl) = Z(\P\B(wn) H as(t) x (as(z),...), (D.19)

part sestn[2,...,N—1]
where w" C {z,—2,#} and t = #; Ut; where @} = w) ! = r; — 1. Applying this recursion

for the overlap we can eliminate the Bethe roots t' and tVN~! as

(W|B(F) = Z(xpuea(@, {at}" " @) [T o) x(as(th)....),  (D20)

part sestN[2,...,N—1]

where wY C {t', —t!,#4}. Since the type (N — 2, M — 1) overlap satisfies the induction
hypothesis, we obtain that

Sa®H =" I as®) x (as(th),...). (D.21)

part sestn[2,...,N—1]

We can repeat this calculation for the other type of recursion of the off-shell overlap (A.2).
Combining it with the KT-relation (3.1) and the action formulas (A.3), we obtain a sum
formula where the a-dependent terms are ay(t5) and as(z) for s € sT i.e.

(WB({z 1} {81050 = S (UB(@n) [T as@) x (as(2);.), (D.22)

part sest
where 0", C {z,—2,#} and t = #, U#; where @} = w) ! = r; — 1. Applying this recursion
for the overlap we can eliminate the Bethe roots t' and ¢V ! as

(\I/|IB%(E):Z<W|B(®,{wﬁ}N_2,®> I @) x (@ )...)., (D23

k=2
part sestN[l,...,N—2]

where w" C {t',—t',t%}. Since the type (N — 2, M — 1) overlap satisfies the induction
hypothesis, we obtain that

Sa®)=3"  JI  asl®) x (as(tdh),..). (D.24)

part sestN[1,..., N—2]

Combining the two properties (D.21) and (D.24) we obtain that

Sa(t) = I es(®) x (-..), (D.25)

part scst
which proves (D.2) for general M.

D.1.2 Proof of (3.98)

Now we derive some useful identities for the undetermined coefficients

Wiaoy,o, ({8} sest [t sest {2} ses-), (D.26)

SEST
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of the sum formula (D.2). Let us renormalize the overlap formula as

() TT Asta(®). (D.27)

For the renormalized overlap the sum formula (D.2) reads as

Sa@) = > Wy, (Bl B eest {E Y sea) TT AsE)Asir (@) T Asra ().
part ({5}, . +) sest s€s™
(D.28)
We can us the co-product formula (A.4)
N-14y©2) (D) 7 v
. AP @AY @) e _
s =y, Wt 2 ORI s a)s.0@).  29)

N—-2 +1
o IS )

Let us choose a fixed partition ¢ = t¥ U t¥ for every v € sT. Let us choose the vacuum
eigenvalues A\, (z) as

tv. forvest

ii»

A2 () =0, where t} €
oo § (D.30)
Ai1(ty) =0, where tj €tf, for v est

Using these conditions in the sum formula (D.28) we obtain that

Sa(t) = Wiagy., (B seot Wi bseot {E}oee) T As(@)Asia () T] Asta (). (D31)

s€sT SEs™

sEs™

Substituting to the co-product formula (D.29) we obtain that

) N—-1
Say (8)Sa@ (B) [T A2 @A) (@),  (D.32)

v=1

S (1 Hl/ 1 (t;jvti/
0= & W
part({ts}ses*) 1/:1 i Y

where the sum goes through to the partitions ¥ = ¥ U ¥ for v € 5~ and the partitions
for v € T are fixed. The overlaps are

Saon(B) =W, (B hses 01{8 Yoee) TT AD@) TT AL @), (D.33)
s€s s€st SEST

Senli) = Wy OB} seor Hiiher) TT AZLE) TT AZMGE) (D-34)
sest SEST

Substituting back we obtain that

t, 1
5 L5 (&)

(&)

Wiab,o,- ({8 sest i sest {E Fses-) = Sh
part ({5} .~ v=1

XM@MJ@&MW@MN%@}(WH@MHQ [T o®@). (0:35)

ses—
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Let us choose the quantum space H() as agl)(z) = 1 for s € s. The formula above
simplifies as

s ({B}sesr I{ffi}ses+ {t"}ses-)

5 FE8) 0
= 2 I > (t(H“ tz)/)z(ti)w{"s}
part({ts}sesf ) 1/:1 i M

Wi}

Ot ses+H{Eises) T as(®), (D-36)

s€s™

SEST

where we introduced the HC as

Z(t) == Wyayy, ., (T} sest 0{ }ses-) : (D.37)

as(z)=1
We can also choose the other quantum space H?) as agz)(z) = 1 for which

s€s— ({ts}s€5+|{t }s€5+‘{t }565 )

05 f(#,#) _
= Z U Wiay. (B et {8 oee ) 2(E),  (D.38)
part({#5} H (t +1 4 ) c ©

Wiag

where we introduced the other HC as
Z(t) == Wiayy,.,- (O} seo {E }ses) ~ (D.39)
as(z)=1
Substituting ¢ = () for s € sT to the second formula (D.38) we obtain that
5 | Ny (G

4 N—-M-1 (t§+1 ts) {045}@65 ({ts}ses )Z( 'i)y
pare({7}, ¢, ) L Ls=ar+1 ST

Wias

clses™

Ot }sest {E" ses-) =

(D.40)
where we used that

OIOHE Y ses-) = (UIB@, ..., 0,8, a0, 0) = ST,y ({Fhes)-

Wias)
(D.41)

SEST
We can substitute to (D.36):

)5 f (8, 1)
1
(&)

Wiast,eom (G sest {ibses {E se) = D0 T
part({t*}, ) 1 1v=1

N—-M-1
Hs:M+1 (tilatf)f(tfvtfn)
:]9\7:_]\9[/{1-_11 (ts 5= 1)f(ts+1 5. )

iii» “i » “iii

Z(Ei)g(fii)sgas} {tm}sés H as D42>

s€Es™
s€5~
Substituting back to the original sum formula (D.2), we obtain that
" N—M—
s= % H GO | vy (tiptf)f(ti,til)
(03
H

iiir “i

part(t s Uiii

X Z( ) ( )S{a Ys cs— {tlll}SGS H CYS ts (D43)

which is what we wanted to prove (3.98).
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D.2 Twisted case
For the twisted case let us fix the K-matrix to the regular form

N/2
K=Y 24ENi1-202a-1 — TaEN1+2-2a,2a-

a=1

In section 4.2 we already saw that the variables agq(t7) can be handled as independent

N

variables for a = 1,...,5 — 1. Using a similar derivation of [30] (appendix (C.1)) we can

show that the overlap has the sum formula

N/2-1
= N/2-1 N 2-1 N, 2
S = X W, e UERGTHESTHE L T e2®@)
part({2e},/77") -

(D.44)
For completeness, we present this proof.
D.2.1 Proof of (D.44)
We start with the proof of the sum formula (D.44) where the weights W n/2 do not

{a2”f* }a 1

N _ 1. In the derivation we only care about as, dependence of

depend on g, fora=1,...,5
the overlap therefore we use the notation (...) for the ag, independent coefficients. Using
this notation the sum formula takes the form

N/2—1
Sa®= 3 T az@)(..). (D.45)
part(t) a=l1

We prove this sum formula using induction on N. Let us start with N = 4. Using the
recurrence formula (C.1)

4
B@, (=217 =3 3 Tz”() PEYL YL

Jj= 3part(f)
Tl, .
+Z > 5 ] B B B AP F) ), (D.46)
J=3 part(t)
and the KT-relation
X ~ Tq ~
Tos(z) = =2 20(2)Tua(=2), Tra(z) = ~“ho(2)Tia(~2),
oy e ~ (D.47)
Ti3(z) = —Ao(2)T31(—2),  Tia(z) = ——Ao(2)T32(—2),
1 1
and the action formula (A.5)
Tij(=2)B() = (1) Vas(z) Y Bl@n)as@i)(...), (D.48)

part(w)

for j < 2, we obtain the following recursion for the overlap

(OB, {2,£%}, %) = > _(¥[B(@n)az(2)az(@n)(...), (D.49)

part
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where @Y, @, C {—z — ve, ¥} where @2 = #t? — 1 and @4 N @Y, = 0. We can prove (D.44)
for N = 4 by induction on ro = #t?. Let us start with #¢> = 2 for which

(UIB(E, {2, 82}, 1) = D> _{U[B(@y, 0, 0p)az(z)az(@h)(. .. ). (D.50)

part

Since the overlap with ro = 0 factorize as
(UB(@r, 0, &5) = S (@) SE) (@), (D.51)
which does not depend on as we obtain that

(U|B(t, {2, %}, Z s (2)az(@2)(...). (D.52)

part

We have two possibilities: if @2, = {—2 — 2¢} then the r.h.s. is ag(2)as(—z — 2¢) = 1 or if
w2 = {t?} then the r.h.s. is as(2)az(t?) therefore

(WBE, {2, 11) = > aa(z)aa()(...) + (...), (D.53)

part

i.e., we just proved that

(WIB(, 12, 8%) = D () (. (D.54)

part

for ro = 2. Now let assume that (D.54) is true for #t2 = ro—2. Let us apply the relation (D.49)
for #t> = r9 — 1. In this case the number of the second Bethe roots is 7o — 2 therefore we
can use the induction hypothesis (D.54):

(OB, {z,12},1%) = > aa (@) az(2)ag(@2)(. . .), (D.55)

part
where w” N4, = (. We have three possibilities
ZpartOQ(EI?)("')v —2—266@12,

(UIB(E', {2, 82}, 8) = ¢ Cpar a2 (B)(..), {2 -2} =@, (D.56)
Spart 2(2)aa(B)(...), {—2 -2} ¢ @202,

therefore we obtain that

(B, {2,2),8) = 3 as(2)as@)(...) + Y an(@)(....), (D.57)

part part

which proves (D.54) for any even 7, i.e we proved (D.44) for N = 4.
Let us continue with general N. Let us assume that the gl(N — 2) overlaps have the
sum formula (D.44). Let us turn to the type gl(N) overlaps. We can use the recurrence
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formula (C.1)

N/2
_ T
B, {z,},{F}C Z}:Q%l ﬁﬁiwswlnm
a=2part(t)
N/2
15 24( _
+Z Z GZ> {t }?a?’l’{ts s= 2a Ha%
a=2part(t)
N/2
+Z Z 11 2q-1( P2 (71202 {FY HO‘
3 ) Hv 5= 2a 1 26(1
a=2part(t)
N/2
/ Tl 20‘ t 2(1 ]. tS
+Z Z 117 { } { 5= 2a Ha2b ,
a=2part(t)
(D.58)
and the KT-relation
xr ~ x ~
To2a-1(2) = == X0(2)IN.N+1-24(—2),  To24(2) = = Xo(2)T N N+2—24(—2),
L . (D.59)
T 2q-1(2) = EAO(Z)TN—I,N—H—Qa(_Z)v T124(2) = —EAU(Z)TN—l,NJrz—za(—Z)’
and the action formula (A.5)
3/2
,'ZT%N*](_Z) Z ]B wII Ha2b IH (DGO)

part(w)

We can see that in these formulas the a-dependent terms are agp(t2) and agy(2) therefore
combining the equations above, we obtain the following recursion for the overlap

81
(UIB(E, {= &} {12551 = D _(UB@n) [ ax@)(an(z),. ), (D.61)
part b=1

where 0% C {—z —ve,t4} and ¢ = t, U t;;. Applying this recursion for the overlap we can
eliminate the Bethe roots ¢? as

(B = (B (a0, {ak ) )ﬁ@b <(an(@)) (D62

where w¥ C {—t'—ve,t%}. The overlaps in the r.h.s. factorize to gl(2) and gl(N —2) overlaps as

<W\IB%(@$7@,{@§};§> S )(wn)(\IJUB%(@ 0, {wn}kN 1). (D.63)

=3

The gl(2) overlap does not depend on ag, and gl(N — 2) overlap satisfies the induction
hypothesis therefore we obtain that

H s () x (az(f), . -.)- (D.64)
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We can repeat the previous calculation using the alternative recurrence formula (C.10)

B({#°} 257 {= 8721 V72
N/2

Toq— 1,N— () 7s12a— s\ N— IN—2 IN—
= Z Z (Z) ({t }§:12’{t11 éV:Q?z—l?tN zvtN 1)()
a=2 part(t) AN-
& T2N 7s12a—1 f3s\N—3 7N—-2 zN—-1
DY (z) SB(Eye ES PR )
a=2 part(t) -1
N/2
/ Toa-12N(2 ) 75120—2 (7s1N—-3  7N—2 iN-1
+Z Z (Z) ({t }szl 7{tII s:2a71?t 7tII )() (D65)
a=2 part(t) AN-1
N/2 N
+3 Z S B A Y A ),
a= 2part(t) )
and the KT-relation
TN . TN ~
Tog—1,N-1(2) = TQAO(Z)TNQaH,l(*Z), Toq,N—-1(2) = *?ZAO(Z)TNan+2,1(*Z),
TN ~ Ty ~ (D.66)
Tog—1,n(2)= _?QAO(Z)TN—Q(H—IQ(_Z), ToqN(2) = fAO(Z)TN—2a+2,2(_Z)7
a a

and the action formula (A.5). We can see that in these formulas the a-dependent terms are
auop(t32) and augp(2) therefore combining them, we obtain the following recursion for the overlap

81
({52 = Y 2182 = D (WB@n) [T an(@)(aw(2),- ), (D.67)
part b=1

where 0% C {—z —ve,t4} and t = t; U t;. Applying this recursion for the overlap we can
eliminate the Bethe roots tV =2 as

(B = S (wiB({ah}, " 0.l > [ (@) x (i) o). (DY

part k=
where &% C {—tV~1 — ve,#}. The overlaps in the r.h.s. factorize to gl(2) and gl(N — 2)
overlaps as
<\P]B<{wn}k_ 0w~ 1) <\1/\135<{wn}k 0, @) D (@) (D.69)

The gl(2) overlap does not depend on a9, and gl(N — 2) overlap satisfies the induction
hypothesis therefore we obtain that

¥
Z H Oégb Ong(tN72), S (D.70)

part b=1
Combining the two properties (D.64) and (D.70) we obtain that

J-1
t) = Z H agb(ffb) X (...), (D.71)

part b=1

which proves (D.44) for general N.
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D.2.2 Proof of (4.94)

Now we derive some useful identities for the undetermined coefficients

N/2—-1 N/2—-1 N/2
PIREVEIC Ut e i e [ G e (D.72)
of the sum formula (D.44).
Let us start with the overlap where ro =0 for b=1,..., % — 1. Since the corresponding

Bethe states are generated by commuting Y (2) subalgebras, these overlaps are factorized as

N/2
(UIB(E,0,25,0,...,0,8" 1) = [ s&-D 1), (D.73)
b=1
where
2b—1 26—2 32b—1 HxN—2b
SQTD(EPTY) o= (W[B(0X2072, 72071 XN, (D.74)

For N = 2 the untwisted and twisted KT-relations are equivalent but there are different
conventions for the monodromy matrices (there is a shift in the spectral parameter) and
the K-matrices. In the untwisted convention the K-matrix is the type (2,0) for which the
overlap is given by (B.12), (B.13):

= 3 S (B 20 20 () (). (D.75)
where )
= s [T -tet), )=~ (D.76)
k<l

Introducing the proper shifts (A.7), the overlaps in the twisted convention reads as

SE) () = Sa (5 + c;) , (D.77)
aga_1(z)~>a2a_1(zfc§)
therefore
N/2
Sa(t,0,82,0...,0,tV Y HSD?;; Dgze=1y, (D.78)

Let us renormalize the general overlap formula as

(1) T Asra (). (D.79)

For the renormalized overlap the sum formula reads as

SB= X W, eI AT L
part({i2e}2/37 1)
N/2-1 N/2
X H )\2a )\2a+1 H H)\Qa 1). (D.80)
a=1
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We can use the co-product formula (A.4):

= 3 IBEAENL @I EE) o

Sa (1) Sz (Hi)- (D.81)
N=2 pjv+1
part(t) HV=1 (tii+ ’tij) “ “
Let us fix a partition 2% = 2 U 2 for every a = 1, ..., % — 1. Let us choose the vacuum
eigenvalues A\, (z) as
)\(2) (t29) =0, where t3* € 2%, fora=1,...,— —1,
]%7 (D.82)
)\g}l)_kl(tz“) =0, where t2* €t fora=1,..., 5 L.
Using these conditions in the sum formula (D.80) we obtain that
N/2-1 N/2
5 (7 N, N N,
Sa®)=W,,, e {E T RS P H A2a (B Naa 1 (B Aaa (@71,
a=1
(D.83)
Substituting to the co-product formula (D.81) we obtain that
S_(F HV 1 (tijlﬁt;j) S I\ G S 2) vy (D)
Sa(t) = > N2 (v Sa (i) S5 (i) H NN (), (D.84)
part({EQE,l}le) HV:l (ii ’ i) v=1
where the sum goes through to the partitions £2¢~1 = 21 U #2*~! for ¢ = 1,...,N/2 and

the partitions of #?* are fixed. The overlaps are

S () = Wi v (B LA 011D H @ HAQ 7, (D85)
N/2-1

Saen () = Wi (O D) H Moo (B HAM i) (D86)

Substituting back we obtain that

. o [L5 f (8.
Wiagapa(ELETHERLTIE YD = 2 o (t(yﬂ ti)x
part({f2e=1} /3 =1
N/2
a N, a— N N a— N, a—
Wi o (B R LW e e OB D) TLes @),
a=lla= @ a=1

(D.87)
(M)

Let us choose the quantum space H( as a1 (%) = 1 for which the formula above simplifies as

Wi 2 (B B P o)

— Z H (t;/nty) Z(t_l)W

part({f2e-1}/2) I (tM )

N/2
e OB ) Hazal -1y,

{0420‘7

(D.88)
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where we defined the HC as

(PANE ey . (D.89)
a2q—1(2)=1

Z(t_) = W{a2a 1}N/2(

We can also choose the other quantum space H(?) as aéi)fl(z) = 1 for which we have

Wiz (B B P )

_ Z Hu (. &) W Nz({?a}Nﬂ 1|@H{2a 1}N/2) _(fi), (D.90)

N prtl v {O‘Qaf
V-2 feett
part({f2a—1}/2) Vfl GARN

where we defined the other HC as
Z(0) = W, e @P LT P L) . (D.91)
o2q—1(2)=1

Substituting #2¢ = () for a = 1,..., 4 — 1 to the second formula (D.90) we obtain that

a N, a— N
Wian iy OB LT P LD
a— a—1y N/2
a3 FE LB ™) TT camt) 20m1y 57
N Z N/2-1 ¢(j2a 7201 Hségafl)(ti )2 (tii), (D.92)
part({Pafl}iV:/f) HV:a f( i * Y )a:l
where we used that
N/2
Wi g2 QIO NNy = Sa(@,0,2,0...,0,iV 1) = Hs;’;; D). (D.93)

We can substitute to (D.88):

Wias- 1}N/2<{52“}N/2 1|{t o) V21 a1y N/
(tﬁ,ti’) H(]:LV:/% (iﬁ? 1,{?” 1)f(tua 1 5121(11 1)

-2 HN ? G TG fE 8o f@e i)

part({t2e— 1}N/2) v=1 tii i 0 Uiii
N/2 N/2
z (2a—1) _2 1 -
tll H SOQZ 1 11(11 H Q24— 1 . (D94)

Substituting back to the original sum formula we obtain that

-y LG I e S S VAU i)
part() H Iy ML @ B (e, )
N/2 N
Z(H)Z(E Hsaiif () H (D.95)

which is what we wanted to prove (4.94).
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E Elementary overlaps

In this section we derive some elementary overlaps for two- and one-site states.

Untwisted case. For the untwisted case we use the type (N, M) regular form K-matrices.
We derive the elementary overlaps where the quantum space is the tensor product of the
representations (1,0,...,0) and (0,...,0,—1) for which the monodromy matrix is

To(z) = EO’Q(Z + G)LOJ(Z — 9) (El)

In this convention the basis vectors e; ® e, have weights Agl) = 0jj — 0i N+1—k- The
pseudo-vacuum has weight (1,0,...,0,—1). The following Bethe vectors span the whole
quantum space

B({t'},... . {tF 10,0, (N0 (VYY) ~ep @, for k+1< N,

B({t'},..., {t"™'}) € span({er ® eny1-r}i1), (E.2)
B({tl}v ey {tkil}a {t]fv t]2€}7 ceey {tiv_la tév_l}7 {tN+1il}7 ey {tNil}) ~ EN+1-1 & EN+1—F;
for k+1 < N.

We already saw that the corresponding two-site state (¢(0)| has the form (3.31)

N
‘ = Z KN+1 — 7,0 9) 'L Z b e'L ei)t + Z Ki,i(ei)t ® (eN—l-l—i)t? (E?’)
i,j=1 i=1

therefore the non-vanishing overlaps are
San (Yot N2 {0 1) = WO BUE YL, 0N {0y Ty ), (E4)
for k = 1,...,M and
Sao({t'} - AT = OB}, {1V, (E.5)

Let us derive these “elementary” overlaps. We can us the recursion equation (A.1):

OB}z, 02 {1 )
1 1

:m<¢(9)|Tl,k( DB, ..., 0, { N k)Hk Thr 1) (E.6)
We also need the KT-relation
BOITAE) = PO Twav11(—2) + T ) Ta(—2) - F2XE o) T u(0)
(E.7)
Since
T (2)BO, ..., 0, {t* Y N1 =0, (E.8)
for k < M, we have
WO)B{t el 0N e T )
= b PO T k(B0 0 (Y e (B9)
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we can also use the other recursion formula (A.2):

1 1

B(O,...,0,{t N1 ) = s Ivei—en (Y ]0) =5~ ., (E.10)
NAL=RS Ay (V-1 7 ZJY=1\1/+271< h(tv,tv1)
therefore
b 1 1
B({t5 XN=2k+1 rrsyN-1 _ %
< ()| ({ }s 1?® { s=N+1—k) bl )\2(t1) )\N(tN_l)

1 1

X <¢(9)’TN,N+1fk(_tl)TN+17k7N(tN71)‘O> — — )
T2 h(t ) TN o g A(E 8771)

(E.11)

We can use the RTT-relation (2.3):

[TN,Nka(—tl), TN+17k,N(tN71)}

= g(—t' N (TN+1—k,N+1—k(tN_1)TN,N(_tI) - TN+1—k,N+1—k(—t1)TN,N(tN_1)>,

(E.12)
therefore
1 _ _ _
vk () Ty (Y 710) = g (<, 4V (aa (a1 (#V 1) = 1) o).
Ao(th)
(E.13)
Substituting back to the overlap formula (E.11), we obtain that
- b . -
OB LY R = gt V) (an a0V 1)
1 1
(E.14)

X )
k— - N— _
=3 h(t, =) TN g b, 171

Let us continue with the other elementary overlap (E.5). We can us the recursion
equation (A.1):

OB S (0)/Th B(@) @{tk}N_1> ! L
- 2 OIS0 O ) T o) 7@,
1 FN—1 1 1
+ )\2(t1)0éN—1(t (W (0) Ty, n (t )B(Q)ny:_zl h(r 1) (E.15)
Let us use the other recursion (A.2):
VY 1 (N1 1
B(@,...,w, {t }k:j) = AN(t]\,_l)Tj,N(t )[0) TR
therefore the elementary overlap simplifies as
(W(O)B({t"} 1)
1 1 = N1 1 1
- () An (N g O I0 105 h(tr, tv=1) g(#7, 971)
1 “N_1 1 1
+ 7)\2(t1)aN71(t (W (0)[T1,n(27)]0) I e, 1) (E.16)
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We can also use the KT-relation

(IT14(2) = 2 Tvvsaa(-2) + T2 im0 - EE D ), man
for £k < M and
0170 = PO i -0) - TV o), (E15)
for k > M. Since
Ty N+1-(=2)Tyn (Y 7)|0) = 0, (E.19)
for j < M, we have
av—1y _ Kyt S T (—t )TN (V) 1 1
<¢(9>’B({t s=1 )_ bl j:2< (‘9)| Ag(tl))\N(tN_l) ‘ >H1]/V:_21h(ty,ty_1)g(tj;tj_l)
_KNJV(tl N71<w(9)|TN,j(tl)TJ}N(tN_l)| ) 1 1
br Ao (AN (N TN a1y g (8,691
Ky n(th) 1 vo1y an—1 (B 1
L a1 (t)an-1 (") = a1 (6 )H,J,V:_th(tl/,tv—l)'

(E.20)

We can use the RTT-relation (2.3):

T (2), T (V)] = gt (T (N D Tww (2) = T ()T (), (B21)

therefore
1 1 _ _ _
5ol V) PO () T (Y HBW) = g(=#, 4% (an (w1 (V) - 1),
(E.22)
! L (T (VL _ o Ny (e (Y
Substituting back to the overlap formula (E.20) we obtain that
(W(O)BHt} 5"
_ _ 1 K 1
_ (41 N-1 1 N-1y _ ;
=g(—t',t )(al(t Jan_1(t ) 1) Hl]y:_21 h(tv, tr=1) ]22 ]él g(th,t3-1)

N1y 1 Nl 1

Ky (t) N-1y [ an—1(
by g(tl,t 1)( an_1(tY) o 1) H,]/V:_Ql h(tv, tv=1) JZZ:Q g(ts, ti—1) (E.24)

7?N—l)

Knn(th 1 -1y an—1( !
+ by <O{1(t )aN—l(t ) O[Nfl(tl) ) Hl]/\;*; h(tyjtufl) )
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We have the identity

N-1 1 1
B : E.25
2 G0~ gL (8:25)
therefore the overlap formula simplifies as
(W(O)B{t 110"
= g(~t' ¥ ) (aa(tay-1 (V) — 1) : ¥ )
BEAN He e 5 h(tr =1 o b (8,671
Knn(t) 1 IN—1 1
+ ———— (a1 (t")an_1(t —1 , E.26
o (@ Eena () — 1) e (E.26)

ie.
1
105 h(tv, 1)

x(g<—t1,tN—1>NZ_1Kj’j(tl) : +KN7N(“)). (B.27)

(OB = (ar(t)an—1 (V1) - 1)

R TR TN E I

We concentrate on two types of K-matrices.
1. For the singular K-matrix where Kn 1 = by, K11(2) =--- = Ky n(2) = % we have

Nil Kig(th) 1 Kyn(t) 1
Kna(th) g(td,t971)  Kya(th) g(tV=1,¢)’

(E.28)
j=2

for which the overlap reads as

N-1 _KNJV(tl) _ N2 1 g(—tl,tNil)
(1/)|IB%({tk}k:1 ) = Fa (Oél(tl)aN—l(tN 1)_1) 1;[1 h(ts+1,ts)< (VT +1>.
(E.29)

We also have the identity

g(=t', ") 1 ,N-1 ( 1 1 ) g(=t', N
— 2 1 1=gq(-t,t = E.30
gty =9 ey T T ey ) T gy o (B30

therefore the overlap simplifies as

s({th) = em({e)s)

_ 1 Knn(th _ _ N2
= (g(—tl,tl) Kt () )g(_tlth 1)(011(751)04N71(tN 1) - 1) i Rk
(E.31)
or equivalently
s
_ 1 Kyn@EY) _ _ N2
- <g(tM,tM) Ky (tM) )g(_tl’tN 1)(041(751)04]\,71@1\’ N - 1) S:rll h(tst1,ts)
(E.32)
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2. For the K-matrix where Kn1 = b, Ki1(2) = Kap(2) = -+ = Kuym(z) = 4,

Kysim+41(2) =+ = Ky n(z) = 2% we have
N-1 (K g(=th N Knn () (=t tN T
w’B({tk}k:l) a (Kzlv,ll(tl) g(tM,th) * Ky i(th) <g(tN1,tM) + 1>>
N—2 1 )
X Sl;[l W(Ozl(tl)aN_l(tN 1) — 1) (E33)

We can use the identity

4l $N-1 4l 4N-1
a N M)+1:g( T M) (E.34)
g(t lat ) g(_tlat )
in the following expression
Kia(th) g(=t1,e") Ky () (g(=t1e")
Kna(th) g™ tt)  Kna(th) \ g(tV=1,¢M)
Ky n(tM 1
_ Ky (t) —1 N, (E.35)

Ky (tM) g(—tM,tM)g(

therefore the overlap simplifies as

() =m({2)
M N-2
- g(—t]‘b,tM) If?ﬁ((fM))g(‘tl’tN_l)(al(tl)O‘N—l(tN_l)_l) 11 h(tsjl,ts)

s=

_ (M s 1 k N-1
= (tM +a)S; <{t bt }k:2 . (E.36)
We can see that there is a common form for the two types of the boundary states which is
V-1
<\I!\IB%<{t }kzl (E.37)
1 KN,N (tM) N2 1

= S oy oy D (a7 1) I 7y

Twisted case. In this section we derive the elementary overlaps where the quantum space
is the rectangular representation where s = 1,a = 2 for which the monodromy matrix is

To(z) = Ly (2 + ¢/2), (E.38)
for which
ai(z) =1,
z+ 3c¢/2
= 2T 2e E.
aa(s) = 22, (8.39)
ag(z) =1, for k > 2.
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We fix the K-matrix to its regular form (4.26). We saw that the corresponding one-site
state is (4.64)

N/2
(¥l = Z xaeﬁzaq,za)a (E.40)
a=1

where e(; jy are the basis in the quantum space for 1 <1 < j < N. The following Bethe
vectors span the quantum space

B(@» ®) = €(1,2)»

B(0, {tQ} Lt 0..,0) ~ ey, for 3<k <N, (E.41)
B({t'}, {tQ} L 0..,0) ~ ey, for k+1< N,

B({t'}, {t2, tZ},...,{t’f—l,t’g—l},{t’“*l}, L {ETIND L 0) ~ ey, for 3< k<1< N.

The non-vanishing overlaps are
Sa({t'}, 2, .., 292 {271 0, ... 0) = (WB{t'}, £2,..., 2972 {t* 11 0,...0), (E.42)
for a = 2,...,N/2 and #t° = 2 for s = 2,...,2a — 2.
Let us derive these “elementary” overlaps. We can use the recursion (C.1). For this

representation the non-vanishing Bethe vectors are listed in (E.41) therefore the recursion
of the off-shell Bethe vector simplifies as

B({t'}, {2, £}, 23, ..., 272 {t*7 11 0, ...0)

-3 T B (11}, (), A A0, D)
# D2 B0 (), A0, )
+ g (01 2, (Y0 01 et (E.49
# O (BT 0 i e 2ﬁ29tf’tzs?¥(f_§"ﬁ)'

We can use the KT-relation

<‘I’!T2,2b71(z):—/\0() (‘I’|TNN+1 an(—2), (V[Tr(2) = /\0() (‘I’|TNN+2 2b(—2),

(U|Ty 2p—1(2) = Xo(z ) <‘P!TN 1,N+1-26(—2), (V[T 25(2) = —Xo(2 ) <‘I’\TN 1,N+2-26(—2),
(E.44)
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therefore we obtain that

<W\B({t1},{z,t2},53,...,{2‘1‘2,{9'1—1},@,“_@):AO(Z) Ta

RO
—(W|Tw,N41-2a(—2) B} {82}, {851 2952, {12271 1,0,. (Z))f(zltl) f(tQall a2,
+<\Il|j:‘N—1,N+1—2a( ) (® {t2} {t }§a52>{t2a_1}7®a“'®> h(zltl) f(tQa—ll E2a—2)
. . 1 1
+(U| Ty N 220 (—2)B{E'}, {823, {51225°,0, ”@)f(z,tl) h(i2a1,2-2) (E.45)
1 1

_<qj|fN—1,N+2—2a( ) (® {tQ} {t §a52’ 7®) h(Z,tl) h(tQafl,E?a*Q)

20—2 (7s Fs— 7s
o i RUGHD)
b S (GRS

Let us use the identity (2.35) for the Bethe states of the r.h.s.:

N—
({ts}s 17 e 0) - (_l)j_l H f(ws+17 ’U)S)B(@, trt 07 {ws éV:_J\}—i-l—j)v (E'46>
s=N+1—j
. N72 A
BO, {t*} 5,0,....,0) = (=1) [ S w)BO,....0 {w}5,, ;0), (B47)

s=N+1—j

where w® = tN=% 4+ (N — s)c and the Bethe states B are built from the twisted monodromy
matrix entries T; j. We can use the recursion (C.10)

I@((Z) @ {ws N-1 ) _ fN-}—l—j,N(wNiZ) |0> 1 (E.48)
RERER 5 s=N+1—j 5\N71(1UN*2) HZJ/V:_]\%—‘,—I—‘]' h<wu+1,wy)>
- _ Tni1-jN-1 (wh=2) 1
B@®,...,0, {wN2 . 0) =" . E.49

Substituting back to (E.45) we obtain that

_ _ Ao(2) 1 g
(UIB({t'), {2}, 23, ..., 272 {>*71})0,...0) = _ Za
AS(Z) )\N—l(t2 + 20) Z1 pz%t)
+(U|T (—2)T (£ + 2¢)[0) L 1 1
N,N+1—2a N+1—2a,N f(z,tl) h<t2,t1) f(t2a_1,fl2a_2) h(tZa_l,tﬁa_Z)
. - 1 1
— (O[T —oa(—2)TN41—20 N—1(t% + 2¢)|0
(U|TN-1,N+1-2a(—2) TN+1-20,nN-1( )l >h(z,t1)f(t2“—1,ﬂz“_2)h(t2a—1,tﬁa_2)
~ - 1 1 1
— (0T —ou(—2)TNs9—2a. Nt + 2 E.
o a-anl =2 s an (2000 7 Gy i a1y e ) ()

1 1
Bz 1) h(2a1, 77

+ <\P\fN—1,N+2—2a(—Z)fN+2—2a,N—1(t2 +2¢)|0)

20—2 75 Fs— Is I
o T 9 BT fEE)
e Tg— — 9y
s fE BT DR
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where we used the identity
fw”* w)
h(wu—i-l’ wy)
Now we can use the RTT-relation (2.3)
[ T25(=2). Tjalt® +20)] = 92,8 +20) (T +20)Tio(—2) = Ty (=) Tia(t® +20)).
(E.52)

1

N—-v—1 N—v
=g(t —c,t =— — —.
( ) h(tN l/7tN v 1)

(E.51)

therefore we have

8 1(t12 +20) (UTN-18+1-20(=2) T2 (2 + 20)[0) - (E53)
1222 An 1(t12 +20) (| TN N12-20(—2) TN r2—2a.n (12 + 2¢)0)
:\\ZEZ 1(7512 +20) (‘I’|fN—1,N+2—2a(—Z)fN+2—2a,N—1(t2 + 2¢)|0)

— g(=2 12 1 20) (ag(t2)a2(2) - 1),

where we used the identity (2.29), the symmetry property (4.42) and the explicit forms (E.39).
Substituting back to (E.50) the overlap simplifies as

(UB({t1), {2, 12}, 85, ..., 12072 (12071} ¢, .. ()

a 1 1 1

= 22y = 20 (0a()ea) = V(50 ~ T ) (.51
- 1557 g (8 6 f (B B) 1 - 1 1
D e R N e A Ve o R T N i

Using the identities

1 B 1 1 . h(vl,vg)
h(u7vl) f(u,Ul) h(u,’Uz) B h(u,vl), h(uvv2)’
1 1 1 h(vg,vl) (E'55)

h(vi,u)  f(or,u) h(ve,u) — h(v1,u), h(v2,u)’

we obtain that
(B} L=, 1 8 P2 {271,0, . 0) = Sg(—2 — 26,8 (az(2)aa(t?) — 1)
1

h(t?, z) T2 (8, 67 F (B E) 902 2902
LLs T =2 {20-2) - (E.56
X h(z,tl)h(t2,t1) h(t2a 1 752@ 2 Z 2a 2 (ts’tlsfl)h(tlsl’tlsfl) ( » VI ) ( )

part t)

Let us try to simplify the sum. At first we try to do the summation for the partition on £222 as

3 12,7 g 5~ £ (0 B) p(20-2, 20-2) (E.57)
N G R R '

par -
[1295° g(&, 57 fEs, 1) gBE T ETI G 20-2 12a—2

- Z 2 [ — - Z T 2a—3 2a—2 EZ&*S h(tla 7tIIa ) °

2a—3 s—1 s 78—1
s, V) h(Es,t -
part({ts}za 3) HS:3 f( s U1 ) ( 1 b ) part(tQa_Q)
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We can do the second summation as

Z 9(512&_27%&_3).]0({%&_27%12&_2)
P R 2 )

part(t2e—2

g(tQa 2 EZa 3) (

f(t2a 2 ‘2a 3) (t2a72,1‘;121a73)
)h(
2

h(t?a—Q , tIQIa—2)

t%afZ t2a72)

2a—2 — 2a—2 ;2a—2

h(t2a72 t2a72)+g(t2a 7512(1 3)f(t1a 7t2a )h(t2a72 t2a72)
1 s Y2 f(t—2a72’t—12a73)h(t%a72’5121a73) 2 s 1
h(t2a 2 t%a 2 t%a—27t%a—2)

h (tQa t2a—3 )

h(t2973,¢2073), (E.58)

Substituting back to (E.57) we obtain that
3 gt 6 f (L ) h(F20-2, 20-2)
2a—2 rs—1 1 ) I
part({ts}Qa 2) HsiS (t87ti9 )h(tﬁ?tfl )
_ R TR 00 23 g, 6 (G 8)

sy T G )

(2(1 3 t2a 3).

(E.59)

In the second line we obtained the original sum with less partitions therefore we can finish
the summation by iteration and the result is
22 g, ) f(F ) 22 (1, t3)h(t5, 1)

s=3 9 ) U1 2a—2 2a—2 (17 5, 9,9
Z y h(t t )= H == h(t: t5).
||2 2 -1 1 o — 15t
part({£2}2257) 513 (ts’tf )h(tiglatfl ) 1 ' 3 h(ts,ts 1)

(E.60)
Substituting back to (E.56) we obtain that

(UB{t'}, {z, 2,83, ..., 2772 {22711 0,...0)

_ Ta h(t?, 2)h(z 2a" 2h h(t3,t]
1 —2g(—2z — 2¢,t%) (aa(2) o2 (t?) — 1)h((;t1))h((t2,t1)) -~ Hza gh(;)ts( 1)t1)

. (E.61)

ie.

o o 74 [125° h(t5, 13)h (15, 1)
(VB AP P10 0) = Teoltf = 20 ) (a() — 1) oy S,
(E.62)

F Recursion for the HC-s Z and Z

Untwisted case. Let us define the tensor product Hilbert space as H™d = H() @ H
where the H() quantum space is defined by the monodromy matrix (E.1) for which the

a-functions are

(1) (1) 1
ay (2) = f(2,0), ay_4(2) = —,
! Nt f(=2,0) (F.1)
oV(z)=1, fors=2,...,N—2.
On the tensor product quantum space the a-functions are

a™d(z) = alV(2)ag(z), fors=1,...,N—1. (F.2)
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Since the HC Z is independent on the a-functions, we can derive a recursion for the HC
Z from the co-product formula:

. e (#) f(#, B e
Samoa(t) = Y Hl ((t3+1( ) )Sa(l)(ti)sd(tii)- (F.3)
part(f) 1/:1 i o4

We fix some of the a-functions as as(z) =1 for s € s~ for which the sum formula simplifies as

> BT 22 TT as(®). .

+1
part (%) H (t” tV) sest

Substituting to the co-product formula (F.3) we obtain that

|G - (1) 1
> —N” L X Z(0)Z(E)on ) (o (8 ) T es(®) (F.5)
part(f) o=y FET )

Nf (4,8 f (s, 2 _ N { (10073 ISP - .
-y L DI gy | Lot U ) 50 20 TT as(@)| TT os(®).

v+1 v v+l 37 N—-2 v+l
)Hu 1 f(tu t )f(tm 7t1) H]/:l f(tlll ’tll) S€5+ S€5+

sest

part(t

In the Lh.s. and the r.h.s. the sum goes through to the partitions with condition #t; = #t,
#t8 = #tM and #t35 = #t for s € 5.
Let us get the coefficient for the term [] ..+ os(¢°). In the Lh.s. site we have to take
ti = for s € sT. We also have the condition #t} #t = () for the remaining s € 5.
Analogous way we have to take ¢; = () in the r.h.s. We obtain the condition
oY)

Z(B)ay ()o@ = Y HH (t(yi’l %

Sam (t) 2 (E), (F.6)

part(t

where the sum goes through all the subsets for which the overlap S;)(¢;) is non-vanishing.
In the previous section we derived these elementary overlaps. We obtain that the non-vanish
overlaps are

S*(l)(@, ceey (Z)) =1, (F7)

and (E.14)

s sYN— by - -
Sa (VL 0N L V) = gt eV (of (el (V) - 1)

b1
1 1

X , (F.8
3 D) Iy b )
for k = 2,...,M and
_ 1 Ky (M) _ _ G
sSYN—1y _ N,N 1 G N=1y (D)1 (L) G N=1y
S&(l)({t s=1 )_g(—tM,tM) KN,I(tM) g( it )(al (t )aN—l(t ) 1)};[1 h(terl,tS)'
(F.9)
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Using this result we obtain the following formula

— 1
Z(t): (1)(51) (1) (EN71)_1

(F.10)

N—-2

b N-1) (40 (F )0 (GN-1 1V f, ) .

k il F dIN=1N v=1 iisy g

(Z pzt:wg AT @ L@ 1) e 1 5grm 2
ark _

N—-1 I
M N—1 1 1) N-1 [[,-, f{E.&)
+ Z Gt )g( tll,tl )( ()(tl) () ()= 1) e 2f N H ts+1 ) i)>7
part(t) v=1 s=1
where in the first line the part;(¢) denotes the partitions ¢¥ = t§ U5 where #¢f =1 for s < k
or s > N —Fkand #tf =0 for k < s < N —k. In the second line the summation goes through
the partitions where #t; = 1 for s = 1,..., N — 1. We also used the notation

1 KN,N(Z)
9(=2,2) Kna(z2)

G(z) = (F.11)

This recursion can be used to eliminate all t,lv—s to obtain the HC for the type (N —2, M —1)
and continuing the recursion the HC is completely defined. It is interesting that the r.h.s.
of the recursive definition contain a parameter 6, but the HC is independent on 6. We can
choose special value to obtain 6 independent formula, e.g. choosing 8 — t,lg. However, the
present form of the formula is fully adequate from now on.

Let us renormalize the HC as

291 = Z(t). (F.12)

For the renormalized HC we have the following recursion

1

0=
2 (t) a(l)(tl) () (tN -1 (F'13)
M N-1 o N-2
Ay (1) N— 11, f(&.8)

(z; I G e Gl e ey U o 2 ()

2 party(t) =1 i s—1 L

(=2, (oD@ @al) (@1 —1 o @ i Z0(F..
2 alhg (@ Eal L (6 -1) s f@iyiﬂmgh(ﬁﬂﬁ) (@) ).

which is independent of the diagonal part of the K-matrix.
We can repeat this calculation for the other HC Z. Interchanging the o,-s with agl)

in the co-product formula (F.3) we obtain that

S&mod (E) _ Z H (tﬁ’ til)

T e oSz (Bu)or @i, 7). (F19
part(t ioon
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Using the sum formulas where ag(z) =1 fors =M +1,..., N — M — 1:

ti’l,tij) N /T 1 1 s
> n Wl iy (02 (En)o o (@)l @ IT as®)
part(t) sest
(tﬁn tij)f(tzn tﬁ) (tijﬂ t;/) N4
t Z « ts
Z n <tfu+1 ) F(# 1) HN 7l <t”+1 ) H o
x 5a<1>(tﬁi)a§1)(fil)a§ JE)a W @D @Y. (F.15)

In the Lh.s. and the r.h.s. the sums go through to the partitions with condition # =

t2 =t and 5, = t} for s € 5.
Let us get the a independent terms. In the Lh.s. site we have to take £ = () for s € sT.
We have the condition & = M = () for the reaming s € s~. Analogous way we have to take

t7 = () in the r.h.s. We obtain the condition

20 =3 HH (t(ei’l fma?)<t‘%>a$&ll<ffv—1>z<fi>sam<fn>7 (F.16)

where the sum goes through all the subsets for which the overlap S, (%) is non-vanishing.

part(t

Using the explicit overlaps we obtain the following formula
1 1 iN—
o ( )(‘1) ( ) (tN 1)
Z(t) =
11—l )(tl) (1 ) L(EN-1)

M b Oé(l)(t_l)Oé() (tN 1) 1 HN—l tﬁ)ti’ o
% (Zk Z,g( tlll’tﬁ[ 1) : (1)( )N(ll) (ﬁ\f 1) H (tu-i-l fy)h(tz)/-i-l tu)Z(ti)

ON_1q ) Vil

el @) 1 IS
(1)<ii) (1) (tN 1) HN 2 (tu—l-l tu)h(tu—f—l t”) i)y

+ > G-t Y

part () i

where in the first line the part; () denotes the partitions t* = ¢f Ut where #t = 1 for s < k
or s > N —k and #t5 =0 for k < s < N — k. In the second line the summation goes through
the partitions where #t% =1 for s = 1,..., N — 1. This recursion completely defines the HC
and it is depend on a parameter 6, but the HC is independent on it.

Let us renormalize the HC as

20(7) =

1 _
——Z(1). F.18
g 20 (F.18)
For the renormalized HC we have the following recursion
all )(ﬂ) (1 ) (tN 1)
1—a(1)( ) (1) (tN )

(Z b S g i) oD E)al) @11 Tt f (25, 8) 295

11’ ii (1)(51)0[5\1[) 1(thiV_1) HN 2 (tv—i-l tu)h(tu—H tV)

Z9(t) = (F.19)

k=2 1 part)C f) 2711

M (oD (gv=1y_ o
+ 3 g8 o (tg)oy (85 ) —1 H LF(Ey, ) )Zo(ti)>,

o “(ﬂ)aﬁ&h(tﬁ*) 07 F i i

» 1

part(t)

which is independent of the diagonal part of the K-matrix.
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Twisted case. Let us define the tensor product Hilbert space as H™°d = H(1) @ H where the
HD) quantum space is defined by the monodromy matrix (E.38) for which the a-functions are

Wiy =0 Wy
2 (2) fl=2=2¢,0) =1 (F.20)

oM(z)=1, fors=3,...,N—1.

Since the HC Z is independent on the a-functions, we can derive a recursion for the HC
Z from the co-product formula (F.3). Fixing some of the a-functions as ag,—1(2) = 1 for

a =1,...,N/2, the sum formula simplifies as
N/2—-1
(t"yt”) -
UL Z ()2 tu g . F.21
- H (t?*%t-”) 1L e (2
part (%) 1
Substituting back to the co-product formula (F.3) we obtain that
N/2—1
L5 £ ) TR a
> s x Z2(H) 20y (1) [T e2a(®)
part(t) H (t t ) a=1

SO ) f (5 B
_Z H WACT OGNS

1 1
oo TS > )

e p N/2 1 N/2-1
XSo_z(l)(ti) H]\Ifj 2 (tyn_;i ltll,) tll 111 H Oé2a 11 H Oéga (F22>

v=1 iii o i

In the Lh.s. and the r.h.s. the sum goes through to the partitions with condition #L?“*l =

F2a—2 Ra 2a—2 2a 72a—2 2a
M’#Pal Mand#fﬁ?l wforazlr"’]\f/z
Let us get the coefficient of the term H a4 (t?). In the Lh.s. site we have to
2a—2 2a
take t2¢ = ) for a = 1,...,N/2 therefore #t2~ 1 = M = 0 for the reaming sets.
Analogous way we have to take tf;, = () in the r.h.s. We obtain the condition

Z(t =2

part(t) H

L)

17 71

<t§+1,t5>

Sa(l)(t_)z(fl)v (F23)

where the sum goes through all the subsets for which the overlap S;a)(¢;) is non-vanishing.
In the previous section we derived these elementary overlaps. We obtain that the non-vanish
overlaps are

Sz (0,...,0) =1, (F.24)
and

S ({3, {FY2952, {122711,0, ...0) = [1325% h(ti, t3)h(t5, 1)

HQG Qh(ts-i-l ts)
(F.25)

“g(—t] = 2c,t3)(a2(%) - 1)

for a = 2,...,N/2. Using this result we obtain the following formula

PO 150 (U RSP (F.26)

—1 4= 2 part,, ( H (t”+1 tl/)
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where the part,(f) denotes the partitions £ = # U #} where #t! = #2971 = 1, ## = 2
for2§b§2a—2and#ﬂ’:0for2a—1 < b.

We can repeat this calculation for the other HC Z. Interchanging the o,-s with agl)
in the co-product formula (F.3) we obtain that

O(mod 5

part(t) HV 1

(t” )

17 71

(tu—i-l ty)

85[(1?1)8—(1)({11)049)({-2). (F.27)

e 1

Using the sum formulas where ag,—1(2) = 1:

N21
) /

DG -
Z x Z(#)Z(Er)al) (82) H a8

(tu—i—l ty)

part(t

B H,]L‘f (%, &) f (4, %)
- 2 () f e )

111 11 71

N
part(t) HV:l
N/2-1
i o . i}
LI 20260 T can(@)|Sun el @al @) (829

v=1

In the L.h.s. and the r.h.s. the sums go through to the partitions with condition #fi?“_l =

2a—2 Ra 2a—2 2a 2a—2
M’ Hp2o-1 M and #2071 M fora =1,...,N/2.

11

Let us get the o independent terms. In the l.h.s. site we have to take t2¢ = ) for
2a—2 2a
a=1,...,N/2 therefore #2*~1 = M = 0 for the reaming sets. Analogous way we

have to take 7 = ) in the r.h.s. We obtain the condition

WiGH) (D) 72\ 2(F -
ATy () Z(6) Sz (), (F.29)
pa;t‘) [ e (tii+1’tiy) ? 1

where the sum goes through all the subsets for which the overlap S, (i) is non-vanishing

therefore
N/2
- VISR 5o
Z(t) = 1 V“ —— Z(t:) S5 (tii), (F.30)
1-— azg pag( H (tnﬂ )

where part,(f) denotes the partitions #* = # U #% where #t = #1271 = 1, #t} = 2 for
2 <b<21—2and #t% =0 for 2a — 1 < b.
We close this section by the proof of the identity

_ 1 = e
2(1) = H;i?f(fsﬂ,fs)z(ﬁ ). (F.31)

Let us apply the recursion for

B _ () ? N/2 v Jv w+l vy _
2= of!) tQ(t—laz:Qpa;(t) (t“t;él;(ff) Atz s o),

(F.32)
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For the elementary overlap we have

1 2a—2

. “(t) = —= 5 1)S 0 (B). F.
Sa(l)(ﬂ' ( )) Oég(tz) g f( ’ )Sa(U( ) ( 33)
Substituting back we obtain that
’ T e “ L)
z(xe(t) = [I r@&*#) D 2 (8)Saw (i) (F.34)
1L TE o T, e
Interchanging the notation we obtain
. Ty L b S | e 19
20 = 11 r@ ) -y — T Sam () Z(F)
v=1 agl)(t )_ o= 2 part,, (t) H (t ! tl/)
N-2
= [ r@&*,t)2(), (F.35)
v=1

and that is we wanted to prove.

G Poles of the twisted HC-s

In this section we derive the residues of the poles at the pair structure limit t%" —|—tl2a +2ac — 0
in the twisted HC-s Z

Z(t) = g(t7*, —t3* — 2ac)

La+1 h(tQa t2a)h(t2a t2a) f(%2a7tza)f(7_—2a7tl2a)
g F TN R ] (Rt ) f (7R 30

B f(7_2a 1 %2a 1) f( 2a+1 7:2a+1) g(T2a+1 t2a)g(7:2a+1’t2a)

1 ’ 1 1 > 1 111 111

2(7) 2a—1 —2a+1 a1 o1y T €9~
part(72e—1,72a+1) f(T2a Tlna ) f(7-2a+27 111a+ )h(t%a7 111a )h(tlza7 111a )
(G.1)
where 7 = #\{t2,¢7}. The summation goes thought the partitions 7% = 7 U 75, where

# Tiii = 52@—1 + 65,2a+1‘
At first we derive the formula for a = 1. We start with the 7o = 2 case. We start with
the recursion for the off-shell Bethe state (C.1) for the spin chains where as,—1(2) = 1 which

is equivalent to the selection rules #t>¢~1 = w:

B({t'}, {= 1 {£°}.51) (G.2)

T2,] 2 s 1 Hs 3g(tf7£f_1)f(tfl7ts)
_]z:gpa%:{) ( ) {t } {t } {t }s 37{t Ha2a Z tl) Hizéf(fs+1’tf)

2 s I Y CRa AGRA)

J=3part(t ) @ {t } {t }s 3’{t H a2a Z tl) HéZ;f(Eerl’tls) ’

where 12 = {z}. From the sum formula (D.95) we can see that the ag, independent term in
the overlap is just the HC Z(f). In this calculation we want to derive the pole structure for
these quantities therefore we use the notation = for the equality up to a-dependent terms i.e.

(U[B(E) = Z(7). (G.3)
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Dropping the aa,(t2*) dependent terms we obtain that

B({t'}, {=, 2}, {*}15")

o1 75y N—
- W)Tz,g(zm({tl}, {1 A5

vt
fQ2th) f(22,2)

1 2 s1N—1 1 9(53 p)f(ﬁ}aig)
B T Y (CONGRATGR )
1 2y g N-1y 1 1
+ WTL?’(Z) (0, {t°}, {¢ s=3 )h(z,tl)m (G4)
1 2 s1N—1 1 g(ﬁ)’?EIQ)f(E?I’Ef)
N0 Z>T B0 e (P03 ) @ )
We can us the KT-relation
(U[T23(2) = —Ao(z)%@!fz\f,f\f—?)(—z), (U|T13(2) = AO(Z)%<qI’fN—1,N—3(_Z)a
R R (G.5)
(V[T 4(2) = )\0(2)%<\I’|TN,N—2(_Z)7 (U|T 4(2) = —)\O(Z)%(‘I’|TN—1,N_2(—Z)-
Therefore
(WIB({t'}, {z, ¢}, {#*} 5} =
Ao(z _
- 0 g Ty y-a-2 B (P PV T 7
)\o(z) T2 Ea 2 S 1 g(ﬁvf?)f({%’@)
) B 0 W b G.
BRI e R ROV GRACR T
A ~ _
DL 9y v-al-2 B RS ) 7
_ )\0(2)72 - _ 2 S 1 Q(E’,E)f(ﬁ,i?)
ale) oy 2o (VT2 (=B Y= Gy s ) . )y
We can apply the action formula (A.5)
igéjifN,N_x—z)B({tl}, {PyAry5) =
L5 fE T —et®) T f@f, @)
— (2(2 « wIII @ @ Wy S_ —o_ _ —o— —
2( )pa§ ) 2( ) ( { )Hévz4l (wlsl 1 ¢, wlsl) HEZQ f(wl 1 ¢, wISII)
1 1 N Fws, @)
% h(wi, w2 + c) h(w2, w3 + c) f (w2, w3 + c) 51;[3 h(ws, 0T 4 ¢) f(ws, it + ¢) (G.7)
1 1 f(wi, W)

X

h(_z -G 71)1111) h(wlln ) 12)1211) h‘(wIZH e wfgn)‘
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The s independent terms are where w2, = {—z — 2¢}, i.e.,

Ao(2) 5 1 27 s IN—1\ ~
)\3(Z)TN7N_3( Z)B({t }7 {t }7 {t s=3 ) -
f(t1 - t2 vony IS FE T = t%)
— B(0,0,{ g )= p — (G.8)
h( pag: (w) ’ Hé\/:41 (wH T &) wISI)
o s SR ad) e af) T f (w3, w5)
X g(t ¢, wl) h—n — H —s+1 —s —s+1 :
(=2 = 3¢, wij)) s—3 h(wg, wi™ + c) f(wf,wy" + ¢)

The pole at t> — —z — 2c appears only if w3 = {—z — 3¢} therefore

Ao(2) & 1 27 s IN—1
Tnn—s(—2)B{t },{t°}, {t° g ) =
(o) NN-3(—=2)B{t } {t°}, {t"}=5')
f(tl —ot) N1 Lo f(E ! — e t)
_g(tzv_z_2c) B® @ ) s= ) - S_ _ s _
h( ¢t pag:w) g ! f(t% -G wfll) HéV:E)l (wII ! -6 wﬁ)
y f(=z =3¢, 8}) Nﬁl f(w;, w) ©9)
h(*z - 4Ca ﬂ}fl)f(*z - 407 wn) s=4 h(wl ,U)IS—H + c)f(wl ,wfl-H + C) )

« f(—Z B 307 Eﬁl)f({?lvﬁgll)
h(—z — 3¢, t3,)

+ reg.

Since there is a f(—z — 4c¢,w?) term in the denominator, the residue is non-zero only if

—z — 4c¢ ¢ W therefore w! = —z — 4e. Since there are also f(w?, w5 + ¢) terms in the
denominator, repeating the previous argument, only the partitions w? = —z — sc, w5 = t*
are relevant for the residue:
)\0 2) = T —1\ ~
: )TN,H(—z)B({tI}, (1) 750 =
A3(2)
g(tz B s N—-1 f(—Z B 36753).]((7??1’ E?II)f(_?H — G, 54)
= B(0,0,t;, {t°}— +reg. (G.10
t2 tl) Z 11 { s=4 ) h(— 3C,tm) g ( )

part(£3)

Analogous way we can also derive that

O T2 (2B (), (5 % ~ X f e 8e B0 ()15 e
Ao(2) 35

e )TN LN—3(—2)B(0, {t*}, {1 2 g(t?, —2—2¢) f(—2—3c, 1) (G.11)
x> BO0E, ()5 LIS g,
part(¢3) >
)\o(z)’\

AB(Z)TN—LN—2(—Z)B(@,{tQ},{fS ) = —g(t?, —2=20) f(—2 =3¢, 8)B(0,0, {£°} 5 +reg.
Substituting back we obtain that
Z({t'} {= 17}, {fs ) =

2 73 s 1 o 1
g(t*, —2 20 o pag(:tS)Z 0,0, {5} )<h(z,t1) h(tQ,tl)f(z,t1)> (G.12)

f(t_BII’ 1_;3) f(*z - 36’53)
PO f(—2— 30, B) (B 2) (o=

2= 3,8) + g(F,2)) + reg.
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We can use the following identities

9(—2 = 3¢, 1})g(t}, 2)

g(—z =3¢, 1)) + g(},2) = 9=z =3¢, 2) (G.13)
1 1  h(t%,2)
h(z,tY)  h(2, ) f(z, 1) h(t2,tY)h(z, 1)’ (G.14)
therefore we have
Z({t"} {z 2115
— (2 —r — 20| B2 ) L
= g(1?, 2 )[wlh(t L 2)h(z,t )} FEBED (G.15)

Z S (b, £ Z(0,0,55, {#3 x [W} {9(53 t)g(t?, )] + reg.

| FE t3>

part(¢3

In summary

Z() B APV — o8, = 20) | 2nE DR D) S (10
f 53 E?H 3 s N-1 (?Hvt%) (HI7 )
pa%)fwtﬁl) O8RS )+

We prove the general formula (G.1) by induction in r9. Let us assume that the formula (G.1)
is true for #t2 = ry — 2. For #t? = ry we can use the recursion (F.30)

N/2
= (T H L) 5 :
Z Z(t;)S~a G.
(t) = L aZ;pa;( &) - (t;’i“,t;') (t1) S (tii)- (G.17)

Now we can take the t% + tl2 + 2¢ — 0 limit. The elementary overlaps S;.)(fi) have no
poles in this limit, the poles only appears in Z (t;) where #t? = ro — 2 therefore we can
use the induction assumption in the r.h.s.:

F(72,8) F(72,17)
FT3,6) f(73,17)

B(8) > gltf. ~ — 20)| bk (e D)

N

I S - 2 FEL T W (22 5
X > 2 L ob (R Z(R)S;0 ()| (G8)

1 2 2 v+1 Q9
1-— a( )( a= 2part t)/ H a— (T" 7T~U)

) ii i
( 111) ( 1} 77-1 ) (7—137 7—1?1)f(7—1?1)7 Tl?l)l) g( 1?1’ t2)g(7—111’ t2)
( 7_ ) f(T4 7—1?1) h(tz7 7111)h(tl ’ 111) '

Now we can use the recursion (F.30) again.

7 (T 2,2 Lo, 9 ov, 2 oy | SO (T2, 67)
Z(t) = g(ti, =ty — 2c) Eh(tkatl )h(t7, t) 17, 2) (7, )
> /(= f(%;? Tl ) f(%’3 77—3) (T >ti) (77_5 ) t )
Z 1 _1 _111 _1 _111 111 - 111 — , ‘1
X )T ) Fh ) W, T b o) (G.19)
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which proves (G.1) for a = 1. One can also do an induction on N and combining it with
the previous derivation we obtain the formula (G.1) for general a.
Now we can derive the pole for the other HC simply from the identity

. 1 S
Z(0) = ngf(fsﬂ,gs)z(” @)). (G.20)

Taking the 3¢ + t?* + 2ac limit we can use the pole formula (G.1) on the r.h.s.

Z(t) = g(~t]" — 2¢, )

:,Ua 1 a a a a f(t2a7 %Qa)f(t2a7 77_20/)
s h(t%‘ 7tl2 )h(t% 7t2 ):| f(tz,a,k%za_l)f(t%a 712[1—1)

(G.21)

a
- _ 1
X Z Z(WC(Ti))HN—z —st1 -5
part('?za_l 712a+1) s=1 (Ti 7Ti )
2a—1 =2a-—1 2a+1 =2a+1 2a—1 —2a—1
fEE L7 a7 [Q(Tma g (T 1)

FERETH 7272 L) [ AEET RO 1)

+ reg.,

using the identity (G.20) again we obtain that

Tai1 9 f(tZa *2a)f(t2a *Qa)
SO (e Lt h(t
T4 ( l ) (l s Yk )] f<t2a —2a— l)f(t2a —211—1)><
TN i o V. eV et et
7'.
1 f(%2a 1’7-2a 2) f(,r?(l-'rl 7-20,) h( 2a+1 t2a)h( 1?la+1 t2a)

part(f—QaflﬂtZa«kl) iii 111 U

Z(t) = g(—t7* — 2¢,139)

(G.22)

+ reg.

H Pair structure limit of the twisted overlaps

In this section we derive the pair structure limit ¢j — —tj — sc of the off-shell overlap. In
section 4.3 we saw that there is a significant difference between the even and odd s. For s = 2b
the there is no extra selection rule for the a-functions agp(z) i.e. it can contain arbitrary
number of parameters (inhomogeneities). On the other hand we have extra selection rules
for s = 2b — 1, see section 4.3 for the details.

In the following we calculate the pair structure limit tl% — —tib — 2bc of the off-shell
overlap (4.94):

s = S LSO Tl @ R A R
Oz( ) - Z HN* (t{/_Jrl t_u) N/2-1 ‘2a+1 a 2a _QIZ 1
part(f) 11lr=1 i o Ha:l f( 25 )f(t )

iii i » lll
N/2 N—

Z(t)Z (s Hsaii} Faa—l H (H.1)

We also take limits 2271 — —¢2=1 — (20 — 1)¢, 13! — —(b—1/2)c when ng, 1 > 2.

Pair structure limit tlzb — —t,zcb — 2bc. Let us calculate the limit tl% — —t%b — 2bc of the
overlap formula (H.1). Formal poles appear in the HC in this limit for the partition where
{t20 425} € £2° or {t2°,12} € 20, Let 7 = ¢\{t?*,¢?*} and let us get the partitions in (H.1)
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where 20 = {th t2b} U T;. We can take the limit th —t%b — 2bc as

g(t7", 1" = 2be)

Lo+1
oy GO 1)

X el (7 —2b+1 t2b)f(7_2b+1 t )f( 2b+1 120 f (72 —2b+1 12)

1 7)1 (03,72
FER, 7 _12” DI, _ff’ D
f(Ti%rb 1 7:.2b l)f(T-2b+1 %-2b+1)f(72b_1 —2b— 1)f(7t2b+1 72b+1)

> » i iv ! iv v i iv v i
FETL R R RY)
Hz]/V: f( 111/7 _1y) HZLV:/% (7—_3(1—1’ 7—_5;1—1) HiV:/? (7—_5;1—17 7_—i2a_1) (H 2)
LS @ A LA fEe me ) A e 72 |
N/2 N-1
2(%i HSazb (7D T es(®)
s=1
fE 1a712vb 1) FEL R 1 MQ(T%H 120)g (720 g2 )}
f(%j%bﬂ:j%b_l) f(Ti?b+2,7:i%b+1) h(t%b,z%b l)h(tl%, 73}) 1) v ’

where we used the pole formula (G.1) and the sum goes through the partitions 7 = 7, U

2a—2 2a =2a—2 —2a
T. +#£T T5 +H#T2
THUTmUTlV where #7’2a L= u, #T3 2a—1 — M fora=1,...,% and

)2
H720 — r2e — () and #7071 = #72 Sot1 _ | and #7271 = 0 for a # b,b + 1. Collecting
the terms we obtain that

g(tIva _tib - QbC)

Tp1 B(E20, 20 (12 tzb)] J(720,60) f(72130)
T k¥ L f(7:2b+17t%b)f(7:2b+l’tl2b)
N—l (

— — N/2 —2a—1 =2a—1 —2b—1 =2b—1 —2b+1 =2b+1
s LS 1073 p(r2e—t 7201y p(7201 72071) p(72041 72040
( V+1

> Tij Ny
part(T H ’TV)
f( —2b— 1 2b 1)f(7—_2b+1’ 2b+1)‘|

i 0 Ml 1 Y

! N/2 1f(7_'-2a 7__.29_1) f(’f?b 7:.2b71) f(7-.2b+2 7:2b+1)
N/2 ¢r-2a—1 2 1
% lna/1 (7 1 v

)
HN/2—1 f( 2a+1 *Qa) ( 2b 1’ 2b Q)f( —2b+1 —2b)

a=1 Tiii ) T Tiv 2 T

N—-1 _ _ _ _
-\ Z/= —s f(thaTi )f(tl vTi )f( 2ot th)f(Tiszvtlzb)
X Z(TI)Z(TH) |Jl;[1 Qg (Ti ) f(%i%v tib)f(ﬂ%tl%) f(t%b, —12b l)f(t%b, 7—_12b—1)
N/2

—2b—1 =2b—1 —2b+1 =2b+1 (2a—1) (=2a—1
X f(Tiv ) Tiii )f( * ) 111+ H Sazi 1 ma )

FELAR) FET ) 9(7%+1 g (T
f(t%b7_1?1b 1)f(t2b —l?lb 1) h(t2b —2b— 1)h(t2b —2b— 1)

Tiv 1Ty

=2b+1 t2b)

Now let us define a spin chain where the quantum space H(? is a tensor product two
rectangular representation (1,2b — 1):

2 1,2b—1 1,2b—1
T (2) = L5 V(2 + 0 — (1 = 20) LT V(2 — 130 — o), (H.4)
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for which the a-functions are
e (2) = 1 _ 1
-1 f(tzbaz)f(_t%b - chv Z) f(t%b7z)f(tl2b7z)’ (H5>
af)(z) =1, for k+#2b—1.

Defining the tensor product quantum space as H™4 = H ® H® | we can use the co-product
formula (A.4)

SED@Ey = 3 ol (@ 2SN @E s @, (H.e)

a ii 02p—1 a
2t part(£2b—1) 2b—1

where the elementary overlap is

g(2o-1) 2b—-1 1 @)
éi) . () = Saé?l(z—c%zl)({quc 2 }) - m(o‘zb 1(u) —1)
2 1
= (L, w)h(th, ) H.7
¢ h(th, u)h(th, u) (H.7)
Substituting back to the co-product formula (A.4) we obtain that
(20—1) (7201 2b—1) (72b—1
S“E%Odl Z f ) g@b 1)(ti )
part ®)
1 1
(H.8)

X
FE20 20 p(e25 20y (e, 20 DA, 20

10Vl

Repeating the calculation for the representation (1,2b + 1), we obtain the following co-
product formula

Symon (1)
2b+1
Z llGan ?b+1)S£v22l;i_1l) (20+L) (2L 426) F(F20HL 42) g (420, 20+L) (120 2041,
art(t)
(H.9)
Substituting back the co-product formulas (H.8) and (H.9) to (H.3) we obtain that
2 =20 42b) £(=2042b
i) f(T717)
20 20 _opo [ ToHL T o by b 2 [T, b i
g(t”, —tx c) z, 4 (ti s )Rt %) f(%%“,t%b)f(%%“,tl?b)
_ N/2 p-2a—1 ~2a—1\ T7N/2 p/~2a—1 ~2a—
Z Hu 1 f( 111/71 11/) Haz/l (Ti?a 17Ti?ia 1) Ha/l (Tl?la 177_12(1 1)
v+l - N/2-1 p/ 94 —2a—1y T{N/2—1 _
part(T) HV 1 (Tii ’Tiy) Ha—/l f(Ti%av 7—i?ia 1) Ha—/ f(Tl?la—iJ? 12(1)
F(£20, 720 F (420, 72b) f(72HD 420) p (72041 42D
x 202 lH as (7 ( k2;> 1%)f( 12; 5b)f( 2 2 1)f(T2b ~2b— 1) (H.10)
f(i’tk)f(itl)f(tk;al )f(tlal )

N/2
2a— 1 a—
H S( mod 1?1 1)
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—2a—2 —2a
where the sum goes through the partltlons T =7 UT; U T where #72“ 1 M,

2a—2 2a
#Tfa 1 w fora=1,..., 7 and #72% = 0. We also defined the modified a-s as
mod 1
a5 (z) = a2b_1(z)f(t2b z)f(tzb z)’
k> 1>
b (2) = a1 (2) f (2, 67) f (2, 17°), (H.11)
mod

a5t (2) = age—1(2), fora#0b,b+1.

Defining the remaining o™°d-s as

fUR ) f(#, 2)
F i) (2 87%) (H.12)

ag}z()d(z) - 042(1(2)7 for a # b,

agyd(2) = az(z)

we obtain that
11
f(7—-2b+1’ t%b)f(,]—_Qb—‘rl7 tlQb)
_ N/2 pr-2a—1 ~2a—1y\ p/~2a—1 -2a—1
Z Hu 1 f( i T) Ha=/1 (" m )f(E w5 (H.13)
l/+1 — N/2—1 _ —2q— _ :
part(7) Hl/ 1 (Tﬁ ’Tiy) Haz/l f(TiQiaﬂ 7-i%ia 1)f( 1?1a+17 Ti2a)

(2a—1) 2a 1 mod
X Z 7—1 Tll H mod 111 [H a

2
T C
g1 2be) | 221 L . 2

Repeating the previous calculation for the partition fi% = {t%b, t?b} U 7; we obtain the
following pole in the t%b + tl2b + 2bc — 0 limit

£ (1)

f(7—-2b-i-17 t%b)f(;ﬁb-i—l’ t?b)

2
Tprq C
g(—t320 — 2be, 17%) vgp (130 cugyy (12°) ll":‘lh(tib’ 20V (L3P, ti”)] X

> HN* G OI  A{Crt  VAG s ) (H.14)
porite) o=t ST TR P A )

~ N/2 N—
x 2(7)2(7) [T S5 (77 H G

a=1 “2a s=1

Applying the formulas (H.13) and (H.14) we obtain that the formal pole at the limit
tzb + tl% + 2bc — 0 reads as

Sal(B) = g(—t7 — 2be, ) (an (t) oy (1) — 1)
2 —2b t2b *2bt2b
. [xb“ch(tiﬂt?b)h(t%b,tzb)] e )

xp 4 f(f—QbJrl, tzb)f(%QbJrl, tl%)
Z (77—111/7 77_11/) H(]zvz/i (7:3(1—1’ 7ii?ia_l)f(%i?ia_l7 77_12a_1) (H15)
part(7) H ( 1V+1’ 7*-;/) Hfzvz/%_l f(%i?a7 7ti?ia_l)f(7_1?1a+1’ 7:i2a)
N/2
x Z(7)Z(7) [ Sipea’ (77 H A7) + reg.
a=1

— 02 —



Since aup(t3)agy(—t2° — 2bc) = 1, the limit #2° + t2* + 2bc — 0 of the overlap is finite and
the derivative of the ag, appears as

li ( t2b 2 t2b)( (t2b) (t2b) 1) O/Qb(tzb) X2b (H 16)
im —tz’ — 2bc, « « —1)=—c = . .
126 —12b_9pc A ! 200k JERbA cuop (t20) k

Using the sum formula (H.1) again we obtain that

_ —2b th)f( thQb) _
li Sa(t) = X2 x F0) (42 F(= 4, L S mod (T) + S H.17
tl2b—>—1%1b—2bc ( ) RS ( k )f(,]f_Qb,l’t%b)f(i_QbflvtlQb) a d(T) + 0, ( )

where S is independent from X ,%b and

2
FO () = D o 9be)h(—z — 2be, 2) (H.18)
xp 4
Pair structure limit t2b 1 —tzb_l — (2b — 1)e. Let us calculate the limit t2b -

tzb 1 —(2b—1)c of the overlap formula (H.1) when ng,—1 > 2. Let us notice that na,—1 =
#tu‘f Lfora=1,..., 2, therefore #tn‘f 1'> 2. We know that HC-s Z, Z are regular in

the limit 27! — —#2*71 — (2b — 1)c and the 7' — —2*=1 — (2b — 1)c limit of the gl(2)
overlaps are (B.17)

[0} mod
2b—1 %1

S(2b 1)( ) - X]?bfl XF(Qb—l) (tzbfl)f(%Qb—liibfl)f(%Qb—l’t?b*l)s((fbfl) (7:)+5', (ng)

where S is independent from X lfb*l, the modified « is defined as

FE (" 2)

b (2) = a2b_1(2)f(z,tzb_l)f(z,tl%_l)7 (H.20)
and
1 2
@1y — (> | ‘
F (2) (HC% 1) (H.21)

We can see that the X 2b=1 term appears only for the partitions where {tkb . tl% 1} et ?lll’ !

Let 7 = t\t:2>~1 20~ 1} and let us get the partitions in (H.1) where 27! = {t2b L1y

—2b—1
iii

111

Sa(t) _>ng71 « F(2b—1)(tzb—1) Z [f(ﬁ?lb 1 t2b 1)f(7_31b 1 t2b 1)
)

part(T
f(th 1 —2b 1) t2b 1 2b 1) f(Tl?b 1 th 1)f(7_2b 1 th 1)

1

[t
f(tib 1’—2b Q)f( 2b 1’—21) 2) f( 2b t2b 1)f( 2b t2b 1)

1 117 117

_ N/2 ;/-92a—1 =2a—1 2a—1 =2a—1
(7'1?’7'11/) Ha:/1 (T (T )

§ps
) I 1 2““, 72a) f (70, 720 )

a=1 111 i il
N/2

H G (@ H o (7

(H.22)
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where S is independent from X 21;-1' Collecting the terms we obtain that

7‘_2()717tzb—l)f(%Qbfl,tlQb—l)

- - 1) ,2h— f(
Sa(t) —» XD x pE=D 2=ty {3 S S A (H.23)
part(%) f(7_2b7t§;b l)f(T2b7tl2b 1)
_ N/2 p/-2q—1 —2a— —9%a—1 —2a— N/2
[0 /(7 Tt FEETLRDAETAETY 5 5T s ey
N— 1 = _ _ _ _ o, 1 11 mo iii
ISP 7) TR e w2 fae,me ) 1
]\i_[ f(th 1’7—_1217 1)f(t12b 17—12b l) f(—2b t?b—l)f(—Qb t2b_1) ]]+S
et f( i2b 17t%b 1)f( i2b 1,15[21) 1) f(th 1’—12b Q)f(th 17—12b 2)
Defining the remaining o™°d-s as
Q5% (2) = a-2(2) g
f(tk 7Z)f(tl ,Z)
O‘gll;Od(Z) = aQb(Z)f(Zvtibil)f(zat%bil)a (H24)
aPd(2) = a4(z), for s #2b—2,2b— 1,20,
the overlap formula simplifies as
_oph_ b— _op__ bh—
S*(E) —>X2b_1 % F(2b71)(t2b—1) f(7_2b 1ati l)f(sz 17tl2 1)
«a k k f(7—_2b t2b71)f(77_2(, 752b71)
'Yk ) Yl
- vV =V N 2 - - - - — - — -
« Z HN ! (7-1177—1 ) Haz/l (7_51(1 177—12(1 1)]('(7.5(1 17Ti?ia 1) (H25>
part(T) H ( V+l’ 7_-11/) Hi\]:/271 f( 31a+17 ‘2a)f(77—i%a7 7:1%{171)
N/2 N—
x Z(7)Z(7) H 2130(11 Faa—1) H mod(zsy| 4 G

Applying the sum formula again we obtain that

S@(E) N X2b71 « F(2b—1)(t2b71) - - - L
k k f(7'2b,tib 1)f(7'2bvt52b 1)

S&mod (77-) + g (H26)

Pair structure limit t2b ' —(b—1/2)c. Let us calculate the limit t2°~* — —(b—1/2)c
of the overlap formula (H.1) when ng, 1 > 1 or #1201 > 1. We know that HC-s Z, Z are
regular in the limit """ — —(b — 1/2)c and the #;*~' — —(b — 1/2)c limit of the gl(2)

overlaps are (B.22)

) - 1psil @ 5 @)

a2p—
2b—1 c b—1

S(2b—1)(7§2b—1) _, x02b-1 (_

where S is independent from X920=1 the modified « is defined as

f(=(b—1/2)c,z)
f(z,=(b=1/2)c)

d
ag’(2) =

agp-1(2) (H.28)
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We can see that the X%20~1 term appears only for the partitions where {tkb 1} et ?lll’ L Let

7 = 1\t2>"! and let us get the partitions in (H.1) where 2! = {#2*"'} U 7271

Sa(®) X0 (2) x 3 [ﬂn%f’ﬂ—(b—l/z)c)
)

part(T
F(=(b—1/2)c, 72" 1)f(‘2"‘1 —(b—1/2)c)
10172 752§ (7, —(b = 1/2)c) (H.29)
H (7-17?77—11/) H(]zvz/f (7—111 1’7*.12(1 1)f(7ii?a71’7:§ia71)
2 L) 1f<n?f“,%2a>f<ﬂ%a,ﬂ%?*)
N/2

(2a—1)
7-11 H S rr(llod 1?1a ! H aS
where S is independent from X%2—1 Collecting the terms we obtain that

=21 ‘
alf) - x021(-2) <> [f e (1.30)

a0 0 U A e VA A D
=’ @;ﬂ,m Mt e w2 f (e, 7 ) am
T aur LG Y2 S —(6-1/2)c)

T 01720 F—0—1/2e )

Defining the remaining o™°%-s as

mo — 1
() = 02 G ey
by (2) = am(2) f(z,—(b— 1/2)o), (H.31)
() = ay(z), for s #2b—2,2b—1,2b,

the overlap formula simplifies as

~ 2 72-1 _(h—1/2)c
Sul) 0y (2) o[£l

N/2 (72«171 72(171)]0(77_2(171 —2a71)

S HNfl (i, ) LI (T i Tiii (H.32)
partte) T SR T e w2 f e, 7 )
N/2 N—
x Z(7)Z (7 H S %Iilodl Faa—1) H mod(zsy| 4 G
Applying the sum formula again we obtain that
; i 2\ fERL—(b—1/2)c) A
S& t X072b 1 <—> ’ S—mo S H33
0= )R - 1/2) O (13
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