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1 Introduction

The low energy dynamics of UV free strongly coupled supersymmetric gauge theories can
be often be simplified by the existence of infrared dualities. The dual descriptions are in
general associated to (more) weakly coupled QFTs, described by a different set of fields and
interactions that share in the IR the same correlation functions for the physically observable
conserved currents of the original description. The prototypical example of such dualities
is the electromagnetic duality and for this reason the two dual models are usually referred
to as the electric and the magnetic phase.

Restricting to cases with four supercharges the basic example of these dualities was
discovered by Seiberg in [1] for SU(Nc) 4d SQCD with Nf > Nc + 1 flavors and vanishing
superpotential. This duality has also a limiting case, where the magnetic description does
not correspond to any gauge theory but to a WZ model consisting in a collection of mesons
and baryons of the electric description, in addition to a (classical) constraint among them.
In this case, corresponding to the choice Nf = Nc + 1, the electric gauge theory confines
without breaking the chiral symmetry (i.e. s-confines [2]), and the magnetic theory describes
the dynamics of the confined degrees of freedom, with a superpotential imposing the classical
constraint on the moduli space. There is also another confining case, corresponding to
SU(Nc) 4d SQCD with Nf = Nc flavors, where the low energy dynamics described by the
mesons and the baryons requires a quantum constraint on the moduli space. Such constraint
breaks the chiral symmetry and for this reason this case is referred to as confinement with
chiral symmetry breaking.

This idea of confinement as a limiting case of a supersymmetric duality was then extended
to various generalizations of Seiberg duality. Furthermore a full classification of s-confining
gauge theories with vanishing superpotential was worked out in [3] for theories with a single
gauge group. In this classification there are many models that do not correspond to any
limiting case of any known duality. Such models are characterized usually by the presence
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of matter fields in a rank-two tensor representation of the gauge group. Despite the fact
that gauge theories of this type do not have in general a Seiberg-like dual description, it
has been shown in [4] that the s-confining dualities can be derived using only Seiberg-(like)
dualities thanks to the rank-2 tensor deconfining technique originally proposed in [5] and
subsequently generalized in [6].

The technique consists of substituting a rank-2 tensor matter field with a bifundamental
field charged also under another (auxiliary) confining gauge group, such to recover the original
description once this new gauge group confines. After deconfining the rank-2 tensors it has
been possible to apply sequences of Seiberg dualities (see [7] for a general construction) and
than to recover the confined phase proposed in [3], using only the s-confining dualities of
SU(Nc) with Nc+1 flavors of [1] and USp(2Nc) SQCD with 2Nc+4 fundamentals of [8]. This
construction may require further refinements for models with a superpotential deformation,
due to the possible presence of an Higgsing that breaks partially or completely the gauge
group (see [9] for a general discussion).

Recently new confining gauge theories have been obtained for 4d models with rank-2
tensors and non-vanishing superpotential [10]. Furthermore the deconfinement techniques
have been applied to 3d N = 2 gauge theories [11, 12], where the zoo of confining gauge
theories is richer, because of the presence of a dual photon and of a Coulomb branch. New
confining dualities in this direction have been obtained in [13, 14].

In this paper we apply these techniques to a 4d and a 3d model that have been claimed to
be confining because of integral identities in supersymmetric localization. We find a physical
origin of these integral identities that allowed to state the new confining dualities, finding
a field theoretical explanation for them. The 4d duality under inspection corresponds to
SU(Nc + 1) SQCD, with a rank-2 conjugate anti-symmetric tensor, Nc + 3 anti-fundamentals
and 2Nc fundamentals. This theory is claimed to be confining if a cubic superpotential
between the anti-symmetric and the fundamentals is turned on. Such claim was originally
proposed in [15] based on the fact that the supersymmetric index1 on S3 × S1 [16, 17] of
this theory was computed exactly in [18]. The final result has a field theory interpretation
representing the low energy description of the baryons and mesons of the SU(Nc + 1) gauge
theory with the expected constraints from the truncation of the chiral ring and the moduli
space. This duality has been referred to as Spiridonov-Warnaar-Vartanov (SWV) duality
in [19], where it has been used in the study of 4d compactification of the 6d minimal (D,D)
conformal matter theories on a punctured Riemann surface (see also [20]).

Here we provide a physical derivation of the duality from the field theoretical perspective,
by deconfining the rank-2 anti-symmetric tensor and sequentially dualizing the gauge groups.
In the process we find that one of the steps requires a partial Higgsing, analogously to the
analysis recently performed in [10] for similar 4d confining dualities. The partial Higgsing is
triggered in our case by an USp(2Nc) gauge group with 2Nc + 2 fundamentals, that confines
breaking the chiral symmetry. Furthermore, following the various steps on the supersymmetric
index we provide an alternative derivation of the identity of [18].

In the second part of the paper we study a 3d confining duality recently obtained in [21],

1We refer to the supersymmetric index instead of the superconformal index because we focus on models
that are out of the conformal windows. In the conformal window the two quantities coincide.
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corresponding to USp(4) with two rank-2 anti-symmetric tensors and two fundamentals. The
existence of such a duality has been claimed by extending to the 3d bulk a boundary duality
constructed from N = (0, 2) half-BPS boundary conditions in 3d N = 2. Again we deconfine
the two rank-2 anti-symmetric tensors and then provide the sequential dualities leading to
the final description in terms of the gauge singlets of the original model.

2 The Spiridonov-Warnaar-Vartanov 4d duality

In this section we derive the SWV duality from a physical approach, by deconfining a rank-2
conjugate anti-symmetric tensor with an auxiliary symplectic gauge group and then by
sequentially applying IR dualities. Actually referring to the last step in such a sequence as a
duality is improper, because, as we will see in the following, it corresponds to the case of a
symplectic gauge theory that confines with a quantum constraint on the moduli space. The
crucial aspect of this constraint is that it forces a Higgs mechanism on the leftover unitary
gauge group, breaking it to a symplectic one, and assigning a superpotential mass term to
some of the fields in the spectrum. This leads to the final step of the construction, where one
is left with an s-confining gauge theory (namely USp(2M) with 2M +4 fundamentals). After
confining this theory we eventually find the expected WZ model, describing the magnetic
phase of the SWV duality.

The analysis is supported at each step by the relative (integral) identities matching the
4d supersymmetric index. On one hand this corroborates the validity of the results and on
the other hand it provides an alternative derivation of the integral identity discovered in [18].

Let us start the analysis discussing the gauge theory that can be read from the Spiridonov-
Warnaar identity [18]. It consists in SU(Nc + 1) SQCD with Nc + 3 anti-fundamentals Q1
and 2Nc fundamentals Q2. In addition there is a rank-2 anti-symmetric conjugate tensor
A. This is a non-anomalous asymptotically free theory and it becomes confining if the
superpotential deformation2

Wele = Q2
α
i J ij

2Nc
Q2

β
j Aα,β (2.1)

is turned on. This deformation is relevant for any value of Nc [19] and it breaks the SU(2Nc)
flavor symmetry group into USp(2Nc). The representations of the fields and their charges
under the gauge and the flavor groups are summarized in the following

SU(Nc + 1) USp(2Nc) SU(Nc + 3) U(1) U(1)R

Q1 T f 1 Tf 1 0
Q2 Tf Tf 1 −Nc+3

2 1
A T A 1 1 Nc + 3 0

(2.2)

The S3 × S1 supersymmetric index of this model has been explicitly computed [18]. The

2In the rest of the paper the explicit contractions will be mostly understood.
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identity is IE = IM with

IE = (p; p)Nc
∞ (q; q)Nc

∞
(Nc + 1)!

∫
TNc

∏
1≤i<j≤Nc+1

Γ(Sz−1
i z−1

j )
Γ((zi/zj)±1)

×
Nc∏
j=1

Nc∏
k=1

Γ(tkzj) ·
∏Nc+3

m=1 Γ(smz−1
j )∏Nc

k=1 Γ(Stkz−1
j )

dzj

2πizj

(2.3)

and

IM =
Nc+3∏
m=1

Nc∏
k=1

Γ(smtk)
Γ(Ss−1

m tk)
∏

1≤ℓ<m≤Nc+3
Γ(Ss−1

ℓ s−1
m ) (2.4)

with the constraint S =
∏Nc+3

m=1 sm imposed on the charges.
It is possible to read from this identity that there are two contributions arising from

the meson M = Q1Q2 and the baryon B = QNc+1
1 . The field content allows a non-vanishing

superpotential of the form [19]

Wmag = M2B (2.5)

In the rest of this section we provide the physical derivation of this confining duality. We
start by adding a singlet α in the electric theory, flipping the meson M through a superpotential

∆Wele = αQ1Q2 (2.6)

In this way the dual superpotential becomes

Wmag = αM + M2B (2.7)

that vanishes once we compute the F-terms of the massive fields α and M . The next step
consists in deconfining the field A. We distinguish two cases, depending on the parity of
Nc. Let us study them separately.

2.1 Deconfinement with odd Nc = 2k + 1

In this case we deconfine the rank-2 conjugate anti-symmetric tensor A of SU(2k + 2) We
depicted the model in figure 1 in terms of a quiver gauge theory. The superpotential for
the deconfined model is schematically

W = (BQ2)2 + αQ1Q2 + BLC + βL2 (2.8)

where the field β corresponds to the 2 × 2 antisymmetric matrix, i.e. it is a singlet. The
anti-symmetric tensor A is recovered by confining the USp(2k) gauge node in terms of the
field B, i.e. A ∼ B2, where the contraction is done on the USp(2k) indices.

The next step consists of Seiberg duality on SU(2k + 2). This gauge group is self dual
and the quiver is represented in figure 2. The superpotential of the dual theory is

W = (M2)2 + αM1 + M3L + βL2 + M1q1q2 + M2bq2 + M3bc + M4q1c (2.9)
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L

Q1

B

Q2

C

α

2k + 22k + 4 4k + 2

2k2β

Figure 1. Quiver description of the model after the deconfining of the SU(2k + 2) rank-2 conjugate
anti-symmetric tensor A. Gauge groups are represented as circles while flavor nodes are represented
with squares. Symplectic groups are depicted in blue and unitary groups are depicted in red.

L

M3

M4

q1

b

q2

M2
c

M1

α

2k + 22k + 4 4k + 2

2k2β

Figure 2. Quiver obtained after Seiberg duality on SU(2k + 2). The rank of the dual gauge group is
the same as above, but there are new mesonic degrees of freedom that modify the superpotential.

where b, c, q1, q2 are the dual quarks and the mesons M1,2,3,4 are associated to the quarks
of the previous phase through the dictionary

M1 ←→ Q1Q2, M2 ←→ BQ2, M3 ←→ BC, M4 ←→ Q1C (2.10)

By integrating out the massive fields this superpotential becomes

W = (bq2)2 + β(bc)2 + M4q1c (2.11)

Then we consider the USp(2k) gauge group with 2k + 2 flavors. This gauge theory
confines with a quantum constraint enforced on the moduli space. By considering the low
energy dynamics we are left with a single gauge group SU(2k + 2) and the field content
can be read from the quiver in figure 3.

The superpotential becomes

W = aq2
2 + βac2 + M4q1c + λ(Pf(a)− Λ2k+2) (2.12)
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M4

q1 q2

c

2k + 22k + 4 4k + 2

2β

a

Figure 3. Quiver obtained after confining the USp(2k) gauge node. The anti-symmetric field a gets
a vev from the quantum constraint on the moduli space.

The last term in (2.12) enforces the quantum constraint on the moduli space through the
Lagrange multiplier λ.

The constraint breaks the gauge symmetry to USp(2(k + 1)) and this Higgsing gives
mass to Q2 as well. The leftover superpotential is

W = βc2 + M4q1c (2.13)

This model s-confines and the final superpotential is

W = βγ + M4L + Pf
(

γ L

−LT U

)
(2.14)

where L, U and γ correspond to the USp(2k + 2) contractions q1c, q2
1 and c2 respectively.

Integrating out the massive fields we are left with just the meson L in the anti-symmetric
representation of the flavor symmetry group SU(Nc +3) = SU(2k+4). This field corresponds
indeed to the baryon B expected in the SWV duality.

In order to connect with the WZ superpotential of the SWV duality (2.5) we have to
flip the field α in (2.5). This turns off the field α in the derivation and keeps the meson M1
massless in (2.9). The superpotential (2.11) then becomes

W = (bq2)2 + β(bc)2 + M4q1c + M1q1q2 (2.15)

The other steps in the derivation are straightforward and in the final superpotential (2.14)
there is a further contribution ∆W ∝ M2

1 U . This terms survives after the massive fields
are integrated out and by the identification U ↔ B and M1 ↔ M we obtain exactly (2.5)
as expected.

This concludes the proof of the duality from the field theory analysis in the case with
Nc = 2k + 1. Before moving to Nc = 2k it is instructive to reproduce the analysis using
the S3 × S1 supersymmetric index.

– 6 –



J
H
E
P
0
5
(
2
0
2
4
)
1
8
8

M4

q1

b

q2

c

2k + 22k + 4 4k + 2

2k2β

√
pqz−1

i t±1
k

√
Ss−1

a zi

zix
±1
u√ pq

S
k+1

z
−1

i
ym

√
pqSksay−1

m

Figure 4. SU(2k + 4)×USp(2k) quiver before confining the symplectic node.

In order to have a better physical intuition of the duality from localization we start by
rewriting IE and IM by modifying the USp(2Nc) fugacities as t→ t

√
pq/S. This gives

IE = (p, p)Nc
∞ (q, q)Nc

∞
(Nc + 1)!

∫
TNc

∏
1≤i<j≤Nc+1

Γ(Sz−1
i z−1

j ; p, q)
Γ(z−1

i zj , z−1
i zj ; p, q)

×
Nc+1∏
j=1

Nc+3∏
m=1

Γ(smz−1
j ; p, q)

Nc∏
k=1

Γ(
√

pq

S
t±1
k zj ; p, q)

Nc∏
j=1

dzj

2πizj
,

(2.16)

and

IM =
Nc∏

k=1

Nc+3∏
m=1

Γ(smt±1
k

√
pq

S
; p, q)

∏
1≤ℓ<m≤Nc+3

Γ(Ss−1
ℓ s−1

m ; p, q), (2.17)

again with the balancing condition S =
∏Nc+3

m=1 sm.
Then we proceed to deconfine the rank-2 conjugate anti-symmetric tensors, to dualize

the SU(2k + 4) node and to integrate out the massive fields. These steps are done by using
the integral identities collected in [15] (which are reproduced in the appendix A) and the
reflection equation for the elliptic gamma functions Γe(pq/x; p, q)Γe(x; p, q) = 1. We skip
these standard elementary steps and focus on the quiver described in figure 4, where we also
highlighted in blue the fugacity of each field in the S3 × S1 supersymmetric index.

The S3 × S1 supersymmetric index for these models is given by formula

IE = (p, p)2k+1
∞ (q, q)3k+1

∞
2kk!(3k + 2)! Γ(Sk+1; p, q)

2k+4∏
a=1

∏
m=1,2

Γ(
√

pqSksay−1
m ; p, q)

×
∫
T2k+1

∫
Tk

k∏
u=1

dxu

2πixu

2k+1∏
i=1

dzi

2πizi

∏
1≤u<v≤k

1
Γ(x±1

u x±1
v ; p, q)

k∏
u=1

∏2k+2
i=1 Γ(zix

±1
u ; p, q)

Γ(x±2
u ; p, q)

×
∏2k+2

i=1
∏2k+4

a=1 Γ(
√

Ss−1
a zi)

∏
m=1,2 Γ(

√
pq/Sk+1z−1

i ym)
∏2k+1

k=1 Γ(√pqz−1
i t±1

k )∏
1≤i<j≤2k+2 Γ(ziz

−1
j , z−1

i zj ; p, q)
(2.18)
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We then consider the change of variables zi = e2πiϕi , where ϕi are real and the balancing
condition is

∑2k+2
i=1 ϕi = 0. With such a change of variables we can substitute in the index

the following terms

(p, p)k
∞(q, q)k

∞
2kk!

∫
Tk

∏
1≤u<v≤k

1
Γ(x±1

u x±1
v ; p, q)

k∏
u=1

∏2k+2
i=1 Γ(e2πiϕix±1

u ; p, q)
Γ(x±2

u ; p, q)

k∏
u=1

dxu

2πixu

= 1
(p; p)k

∞(q, q)k
∞

∑
(Φ1
⋃

Φ2)/Sk
2

∏
1≤i<j≤k+1

Γ(e2πi(±ϕ̃i±ϕ̃j); p, q)
∑

Sk+1(Φ2)

k∏
i=1

δ(ϕ̃i + ϕ̃k+1+i),

(2.19)

where we used the identity (A.6). This identity was derived in [22] and it represents the
evaluation of the superconformal index for USp(2M) SQCD with 2M + 2 fundamentals. The
fact that the models confines with a quantum superpotential that breaks the chiral symmetry
is reflected in the structure of the δ-functions in (A.6). In this way (2.18) becomes3

IE = Γ(Sk+1)
2k+4∏
a=1

∏
m=1,2

Γ(
√

pqSksay−1
m )(p, p)k+1

∞ (q, q)k+1
∞

(2k + 2)!

∫
T2k+1

2k+1∏
i=1

dzi

2πizi∏2k+2
i=1

∏2k+4
a=1 Γ(e2πiϕi

√
S

sa
)
∏

m=1,2 Γ(
√

pq
Sk+1 e−2πiϕiym)

∏2k+1
k=1 Γ(√pqe−2πiϕit±1

k )∏
1≤i<j≤2k+2 Γ(e2πi(ϕi−ϕj), e2πi(−ϕi+ϕj); p, q)∑

(Φ1
⋃

Φ2)/Sk
2

∏
1≤i<j≤k+1

Γ(e2πi(±ϕ̃i±ϕ̃j))
∑

Sk+1(Φ2)

k∏
i=1

δ(ϕ̃i + ϕ̃k+1+i), (2.20)

where Φ1 = (ϕ̃1, . . . , ϕ̃k, ϕ̃k+1 = ϕk+1) and Φ2 = (ϕ̃k+2, . . . , ϕ̃2k+2). Using the constraints
imposed by the balancing condition

∑2k+2
i=1 ϕi = 0, the delta functions and the reflection

equation we can simplify (2.20) to

IE = Γ(Sk+1)
2k+4∏
a=1

∏
m=1,2

Γ(
√

pqSksay−1
m )(p, p)k+1

∞ (q, q)k+1
∞

(k + 1)! · 2k+1

∫
Tk+1

k+1∏
i=1

dzi

2πizi∏k+1
i=1

∏2k+4
a=1 Γ(

√
Ss−1

a z±1
i )

∏
m=1,2 Γ(

√
pq/Sk+1z±1

i ym)∏
1≤i<j≤k+1 Γ(z±1

i z±1
j )

∏k+1
i=1 Γ(z±2

i )
,

(2.21)

that represents the s-confining USp(2k + 2) theory with 2k + 6 fundamentals and super-
potential (2.12). Using the limiting case identity associated to this confining duality (i.e.
formula (A.5) for Nf = Nc + 4) the identity between (2.16) and (2.17) is then correctly
recovered. This concludes the proof of the derivation of the identity of [18] from the physical
approach when Nc = 2k + 1

2.2 Deconfinement with even Nc = 2k

In this case we deconfine the rank-2 conjugate anti-symmetric tensor A of SU(2k + 1) We
depicted the model in figure 5 in terms of a quiver gauge theory.

The superpotential for the deconfined model is given again by formula (2.8). The next
step consists of Seiberg duality on SU(2k + 1). The dual gauge group is SU(2k + 2) and the
quiver is represented in figure 6. The superpotential of the dual theory is again given by (2.9).

3To make the formulae more concise we drop the p, q dependence in the Gamma functions Γ(x; p, q) ≡ Γ(x).

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
1
8
8

L

Q1

B

Q2

C

α

2k + 12k + 3 4k

2k3β

Figure 5. Quiver description of the model after the deconfining of the SU(2k + 1) rank-2 conjugate
anti-symmetric tensor A.

L

M3

M4

q1

b

q2

M2c

M1

α

2k + 22k + 3 4k

2k3β

Figure 6. Quiver obtained after Seiberg duality on SU(2k +1). Curiously in this case the dual gauge
group increases its rank becoming SU(2k + 2).

The fields b, c, q1, q2 are the dual quarks and the mesons M1,2,3,4 are associated to the
quarks of the previous phase through the dictionary spelled out in (2.10). By integrating
out the massive fields the superpotential becomes the one in (2.11). Then we observe that
USp(2k) with 2k+2 flavors confines with a quantum moduli space and after such confinement
we are left with a SU(2k + 2) gauge group with superpotential (2.12). The partial Higgsing
triggered by the quantum constraint enforced by the Lagrange multiplier reduces the theory to
USp(2k +2) with 2k +6 fundamentals and superpotential (2.14). Integrating out the massive
fields we are left with a single field L that correspond to the baryon B of the original theory.

The analysis for even Nc is then almost identical to the case of odd Nc. For this reason
we skip the derivation of the duality from the superconformal index. The interested reader
can reproduce it by following the stepwise procedure that we described for odd Nc.

3 The Okazaki-Smith 3d duality

In this section we study a 3d N = 2 confining duality recently proposed in [21]. The electric
model is USp(4) SQCD with two fundamentals and two rank-2 anti-symmetric tensors. The
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model has an U(2)2 × U(1)R global symmetry and the charges of the fields under these
symmetries are summarized in (3.1).

USp(4) SU(2)A SU(2)a U(1)A U(1)a U(1)R

A 6 2 1 1 0 0
Q 4 1 2 0 1 0

(3.1)

The model has vanishing superpotential and its low energy dynamics is described by the
gauge invariant combinations M = Q1Q2, ϕI = TrAI , ϕIJ = Tr(AIAJ), Bαβ = QαA1A2Qβ

and BI = Q1AIQ2. These fields interact through a superpotential with a singlet T4 that
corresponds to the minimal monopole of USp(4). The charges of the fields with respect to
the global U(2)2 × U(1)R symmetry are:

SU(2)A SU(2)a U(1)A U(1)a U(1)R

M 1 1 0 2 0
Bαβ 1 3 2 2 0
ϕIJ 3 1 2 0 0
ϕI 2 1 1 0 0
BI 2 1 1 2 0
T4 1 1 −4 −4 2

(3.2)

In the following we will derive this confining duality by deconfining the anti-symmetric
tensors and then by sequentially dualizing the gauge groups. We found that in order to
proceed it is very useful to make the rank-2 tensors traceless by adding the flippers β1,2
interacting through the superpotential

W =
∑

I=1,2
βI TrAI (3.3)

where the USp-invariant trace is defined as TrAI = Aij
I Jij with Jij the totally anti-symmetric

USp tensor.

3.1 Field theory analysis

In the following we will derive the duality using the field theory approach. We proceed by
representing the model in terms of a quiver gauge theory, using the same conventions of
the previous section: the blue circles refer to symplectic gauge groups while the red squares
identify the special unitary flavor groups.

We start by considering the model with the flip in formula (3.3)

4

2

Q

A1 A2

W = β1 TrA1 + β2 TrA2 . (3.4)

We then deconfine the two fields AI with two auxiliary USp(2) nodes with the assignment

Aij
1 = qα1i

1 qβ1j
1 ϵα1β1 , Aij

2 = qα2 i
2 qβ2 j

2 ϵα2β2 , (3.5)
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where the i-index refers to the USp(4) node and (α1,2, β1,2) are indices of the two USp(2)1,2
gauge groups. Therefore the deconfined theory is

4

2

2 2

Q

q1 q2
W =

∑
I=1,2

(
βI Tr q2

I + σIY
(I)

2

)
, (3.6)

where Y
(I)

2 are monopoles for the two USp(2) nodes. The central USp(4) node in this theory
has 6 fundamentals and therefore it confines [23]. The IR description has two USp(2)1 and
USp(2)2 gauge groups connected by a bifundamental field. There is still a manifest SU(2)
flavor symmetry associated to a node in the quiver and there are further fundamental fields for
both the USp(2)1,2 gauge factors. There is also a singlet Y4 identified with the monopole of the
USp(4) gauge group for the model in (3.6), that interacts through a superpotential with the
generalized meson of USp(4) itself. The quiver and the superpotential for this dual theory are

2

2 2

X13 X23

X12X11 X22

X33

α1 α2

α

W = Y4 PfX + β1X11 + β2X22

+ σ1Y
(1)

2 X2
23 + σ2Y

(2)
2 X2

13 ,
(3.7)

where the explicit superpotential is given by

W = Y4ϵα1β1ϵα2β2ϵαβ

(
−Xα1α2

12 Xβ2α
23 Xβ1β

13 + 1
8Xα1β1

11 Xα2β2
22 Xαβ

33 −
1
4Xα1α

13 Xβ1β
13 Xα2β2

22

−1
4Xα1α2

12 Xβ1β2
12 Xαβ

33 −
1
4Xα2α

23 Xβ2β
23 Xα1β1

11

)
+ σ1Y

(1)
2 ϵα2αϵβ2βXα2α

23 Xβ2β
23 + σ2Y

(2)
2 ϵα1αϵβ1βXα1α

13 Xβ1β
13 + β1X11 + β2X22.

(3.8)

The fields X11, X22, β1 and β2 are massive and can be integrated out. The final superpotential
in the IR is therefore

W = −Y4
4 ϵα1β1ϵα2β2ϵαβ

(
4Xα1α2

12 Xβ2α
23 Xβ1β

13 + Xα1α2
12 Xβ1β2

12 Xαβ
33

)
+ σ1Y

(1)
2 ϵα2β2ϵαβXα2α

23 Xβ2β
23 + σ2Y

(2)
2 ϵα1β1ϵαβXα1α

13 Xβ1β
13 .

(3.9)

The two USp(2) nodes have each 4 fundamentals and are therefore confining [23]. Here we
choose to confine the USp(2)1 group. The other choice is completely equivalent because of the
SU(2)A global symmetry that rotates the two anti-symmetric in the original description of
the model. After confining the USp(2)1 gauge group we are left with a USp(2)2 SQCD with
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four fundamentals and a non-trivial superpotential. The quiver and the operator mapping
are reported below

2 2

X23

X̃23

2X̃22

X33

X̃33

X̃α2α
23 = ϵα1β1Xα1α2

12 Xβ1α
13

X̃α2β2
22 = ϵα1β1Xα1α2

12 Xβ1β2
12

X̃αβ
33 = ϵα1β1Xα1α

13 Xβ1β
13

(3.10)

while the superpotential is

W = −1
4ϵα2β2ϵαβ

[
Y4
(
4X̃α2β

23 Xβ2α
23 + X̃α2β2

22 Xαβ
33

)
− Y

(1)
2 (X̃α2β2

22 X̃αβ
33 − 2X̃α1α

23 X̃β1β
23 )

]
+ σ1Y

(1)
2 ϵαβϵα2β2Xα2α

23 Xβ2β
23 + σ2Y

(2)
2 ϵαα′ϵββ′X̃αβ

33 X̃α′β′

33 .

(3.11)

The second block in the first line comes from the confining superpotential Y
(1)

2 PfX̃, where the
field Y

(1)
2 is the monopole of the USp(2)1 gauge group acting as a singlet in the confined phase.

We conclude the sequence by confining the USp(2)2 gauge group, that has indeed four
fundamentals. This leads to the final, confined, theory where the new mesons are mapped
to the fundamentals of USp(2)2 as

V αβ = ϵα2β2X̃α2β
23 Xβ2α

23 , Uαβ = ϵα2β2Xα2α
23 Xβ2β

23 , T αβ = ϵα2β2X̃α2α
23 X̃β2β

23 . (3.12)

Furthermore there is a singlet of USp(2)2 that we redefine as R = ϵα2β2X̃α2β2
22 . The super-

potential of this final WZ model is

W = −ϵαβ

4
[
Y4
(
4V αβ + RXαβ

33

)
− Y

(1)
2 (RX̃αβ

33 − 2T αβ + 4σ1Uαβ)

−Y
(2)

2 ϵℓm(UαℓT βm − V αℓV βm)
]
+ σ2Y

(2)
2 ϵαα′ϵββ′X̃αβ

33 X̃α′β′

33 .
(3.13)

The expression (3.13) needs some massage in order to simplify its interpretation. For
example some fields appear quadratically in the superpotential and they can be integrated
out. By writing

Vαβ = σµ
αβvµ, σµ = (1, σi) (3.14)

we see that the v3 field is massive. The singlet field ϵαβT αβ also acquires a mass and it can
be integrated out in the IR. By considering the various F-term conditions and rescaling the
fields appropriately, we get the final superpotential

W = Y
(2)

2

[
RUX̃33 + σ1U2 + σ2X̃2

33 + R2X2
33 − detVαβ

]
, (3.15)

where the squares are understood with the right contractions. We can then identify the
fields here with the ones in formula (3.2). Looking at the global symmetry structure the
explicit mapping is then

Y
(2)

2 ↔ T4

X33 ↔ M

(R, σ1, σ2) ↔ (ϕ12, ϕ11, ϕ22) (3.16)
Vαβ ↔ Bαβ

(X̃33, U) ↔ (B1, B2).
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Substituting this mapping into the superpotential (3.15) we obtain

W = T4
(
BIϕIJBJ + M2ϕ2

12 + detBαβ

)
, (3.17)

which is the same superpotential of [24], where this confining duality was anticipated. The
remaining fields ϕI map to free decoupled fields in the original theory associated to the
traces of the two anti-symmetric tensors TrAI .

3.2 3d partition function

We complete our analysis by reproducing the derivation of the duality from supersymmetric
localization on the squashed three sphere. Such procedure gives rise to the identity between
the partition function of USp(4) with two anti-symmetric and two fundamentals and the
partition function of the WZ model for the gauge singlets. The global symmetry enters these
identities in terms of real masses, that from the field theory side are associated to vevs of the
reals scalars in the vector multiplets of the weakly gauged background flavor symmetries.

Before studying the deconfinement of two rank-2 anti-symmetric tensors from the three
sphere partition function we briefly review the necessary definitions. The partition function
on the squashed three sphere S3

b , obtained from localization in [25] (see also [26–28] for the
round case) is a matrix integral over the reals scalar in the vector multiplet in the Cartan of
the gauge group. There is a classical term corresponding to the CS action (global and local)
and the matter and the gauge multiplet contribute with their one loop determinant. These
last can be associated to hyperbolic Gamma functions, formally defined as

Γh(z;ω1, ω2) =
∞∏

n1,n2≥0

(n1 + 1)ω1 + (n2 + 1)ω2 − z

n1ω1 + n2ω2 + z
(3.18)

The argument of such Gamma functions is physically interpreted as a holomorphic combination
between the real masses for the gauge and the global symmetries and the R-charges (or
mass dimensions). The purely imaginary parameters ω1 = ib and ω2 = i/b are related to
the squashing parameter of the three sphere S3

b .
Here we will only focus on the case of symplectic gauge group. Let us consider the

partition function of an USp(2Nc) gauge theory with 2Nf fundamentals. It is given by

ZUSp(2Nc),Nf
(µ) = 1

2nn!
√
(−ω1ω2)n

∫ Nc∏
i=1

dzi

∏2Nf

a=1 Γh(±zi + µa)
Γh(±2zi)

∏
i<j

1
Γh(±zi ± zj)

(3.19)

In our analysis we will use an identity involving this partition function and its dual Aharony
phase [23]. The identity is (see Theorem 5.5.9 of [29])

ZUSp(2Nc),Nf
(µ) = Γh

2ω(Nf −Nc)−
2Nf∑
a=1

µa


×
∏
a<b

Γh(µa + µb)ZUSp(2(Nf−Nc−1)),Nf
(ω − µ) (3.20)

with 2ω ≡ ω1 + ω2. Observe that the identity (3.20) remains valid for Nf = Nc + 1, that
corresponds to the confining case of Aharony duality [23], where only the meson M and
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the minimal USp(2Nc) monopole Y survive in the WZ model and they interact through
the superpotential W = Y PfM .

We start considering the original model, adding also the flippers βI arising from the
superpotential (3.3). The partition function is

Z =
∏

A=1,2 Γh(2ω − nA)
8
√
−ω1ω2

2

×
∫ ∏

i=1,2
dzi

∏
a=1,2 Γh(±zi + ma)

Γh(±2zi)

∏
A=1,2 Γh(±z1 ± z2 + nA)

Γh(±z1 ± z2)

(3.21)

In this formula m1,2 are the real masses of the two fundamental fields and n1,2 are the real
masses of the two anti-symmetric fields. We can also use a different basis

m1 = ρ + σ, m2 = ρ− σ, n1 = µ + ν, n2 = µ− ν (3.22)

giving an explicit parameterization it terms of the Cartan of the U(2)2 flavor symmetry.
Indeed in this way σ and ν parameterize the Cartan of SU(2)a and SU(2)A respectively.

We then proceed by deconfining the two totally anti-symmetric tensors. This step
produces two USp(2) gauge nodes, two bifundamentals, each connecting one of these USp(2)
gauge groups to the original USp(4). The partition function of the model becomes

Z =
∏

A=1,2
∏

j=1,2 Γh(2ω − jnA)
32
√
(−ω1ω2)4

∫ dz1 dz2 dw1 dw2
Γh(±2z1)Γh(±2z2)Γh(±2w1)Γh(±2w2)

×
∏

i=1,2

 ∏
a=1,2

Γh(±zi + ma) ·
∏

A=1,2
Γh(±zi ± wA + nA/2)

 (3.23)

As a check we can see that (3.21) is obtained by applying (3.20) to the two USp(2) gauge
groups in (3.23). The partition function (3.23) corresponds to the one for the model in
represented in (3.6).

The next step consists of Aharony duality on USp(4). At the level of the partition
function it corresponds to use the identity (3.20) on the gauge theory identified by the
variables z1,2. The partition function becomes

Z =
∏

A=1,2Γh(2ω−2nA)
4
√
(−ω1ω2)2 Γh(2ω−m1−m2−n1−n2)Γh(m1+m2)

×
∫

dw1dw2

∏
A=1,2

∏
a=1,2Γh(ma±wA+nA/2)·Γh(±w1±w2+(n1+n2)/2)

Γh(±2w1)Γh(±2w2)
(3.24)

The partition function (3.24) corresponds to the one for the model in represented in (3.7).
The next step consists of a confining limit of Aharony duality on one of the USp(2)

factor. Choosing one of the two USp(2) nodes has the effect of making the SU(2)A × SU(2)a

global symmetry not manifest in the integrand of the partition function. Following the
discussion on the field theory side here we choose to dualize the USp(2)1 gauge group, such
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that the partition function becomes

Z = 1
2Γh(2ω −m1 −m2 − n1 − n2)Γh(m1 + m2)

∏
A=1,2

Γh(2ω − 2nA)

×Γh(m1 + m2 + n1)Γh(n1 + n2)Γh(2ω − 2n1 − n2 −m1 −m2)

×
∫

dw2

∏
a=1,2 Γh(ma ± w2 + n2/2 + n1) · Γh(ma ± w2 + n2/2)

Γh(±2w2)
(3.25)

The partition function (3.25) corresponds to the one for the model in represented in (3.10).
The last step of the procedure requires a confining limit of Aharony duality on the

leftover USp(2)2 gauge group. This gives the final partition function

Z = Γh(2ω −m1 −m2 − n1 − n2)Γh(m1 + m2)
∏

A=1,2
Γh(2ω − 2nA)

×Γh(m1 + m2 + n1)Γh(n1 + n2)Γh(2ω − 2n1 − n2 −m1 −m2)

×Γh(m1 + m2 + 2n1 + n2)Γh(m1 + m2 + n1)

×Γh(2ω − 2m1 − 2m2 − 2n1 − 2n2)
∏

a,b=1,2
Γh(ma + mb + n1 + n2) (3.26)

This expression still needs some massage. First we can integrate out the massive fields,
as done on the field theory approach. Here this integration corresponds to take advantage
of the formula Γh(2ω − x)Γh(x) = 1. After this step we can also write down (3.26) in a
manifestly SU(2)A × SU(2)a invariant form. We arrive to the expression

Z = Γh(m1 + m2)Γh(n1 + n2)
∏

A=1,2
Γh(m1 + m2 + nA)Γh(2ω − 2nA)

×Γh(2ω − 2m1 − 2m2 − 2n1 − 2n2)
∏
a≤b

Γh(ma + mb + n1 + n2) (3.27)

or using (3.22)

Z = Γh(2ρ)Γh(2µ)Γh(2µ± 2ν)Γh(2ρ + µ± ν)
×Γh(2ω − 4µ− 4ρ)Γh(2ρ± 2σ + 2µ, 2ρ + 2µ) (3.28)

This is the final expression that matches with (3.21). We can see that all the fields BI ,
ϕIJ , Bαβ, M and the monopole T4 appear in the partition function with the expected real
masses. Explicitly we can associate these Gamma functions to the singlets of the confined
phase using the mapping

Bαβ ↔ Γh(2ρ± 2σ + 2µ, 2ρ + 2µ) ϕIJ ↔ Γh(2µ± 2ν, 2µ)
BI ↔ Γh(2ρ + µ± ν) M ↔ Γh(2ρ) (3.29)
T4 ↔ Γh(2ω − 4µ− 4ρ)

Indeed the arguments of hyperbolic Gamma functions correspond to the real masses that
can be read from the charges in formula (3.2).
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4 Conclusions

In this paper we have derived, using field theory arguments, two confining dualities that have
been proposed in the literature from supersymmetric localization. Here the dualities have
been derived by combining the technique of rank-2 tensor deconfinement of [5] together with
the sequential application of ordinary dualities and/or confining dualities.

There are many interesting directions that would be worth to explore.
For example the Higgsing triggered, in the 4d model, by the quantum correction imposed

on the moduli space, corresponds, on the superconformal index, to the pole pinching [30]
vastly used in [4] for the derivation of 4d confining dualities in presence of a superpotential.
The confining theories obtained in this way were not discussed in [2], because of the absence
of a superpotential. On the other hand confining gauge theories of this type have been
discussed in [31], at least for the limiting cases of ordinary dualities with rank-2 tensor
matter fields. Therefore we expect many more 4d confining gauge theories with a simple
gauge group not discovered yet.

Another interesting question regards the 3d duality for USp(4) with two rank-2 anti-
symmetric tensors and two fundamentals. As discussed in [21] the field content in this
case corresponds to the one of the dualities studied in [32, 33] with D-type superpotential.
Nevertheless as observed in [21] there are differences in the operator mapping and in the
charge spectrum. Furthermore the USp(4) duality discussed here appears sporadic and
its generalization to USp(2Nc) does not seem straightforward. For example we did not
find any confining duality by increasing the rank of the gauge group and keeping fixed the
field content (i.e. keeping two rank-2 antisymmetric tensors and possibly increasing the
number of fundamentals). It is nevertheless possible that further fields and interactions
should be considered in order to have an USp(2Nc) confining theory with two rank-2 anti-
symmetric tensors.

A last, related, question regards the existence of 4d confining dualities with two rank-2
tensors. Beyond the case of USp(2Nc) with two rank-2 anti-symmetric tensors, one can
imagine also cases with unitary or orthogonal gauge groups or cases with more general
rank-2 tensor matter fields.
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A Remarks on the 4d index

In this appendix we collect the mathematical identities that have been useful in our analysis
of the SWV duality. Such identities correspond to the matching of the electric and the
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magnetic index for the 4d duality of [1] and of [8]. The identities hold also in the s-confining
case, when the dual theory become a WZ model.

Skipping the definitions and the conventions that we use for the index (that correspond
to the ones of [15, 34]) where the relevant quantities are the elliptic gamma functions and
the Pochammer symbols

Γe(z; p, q) =
∞∏

ℓ,m=1

1− z−1pℓ+1qm+1

1− zpℓqm
, (x, p)∞ =

∞∏
ℓ=0

(1− xpℓ) (A.1)

here we provide the integral identities matching the indices across duality.
In the case of SU(Nc) SQCD with Nf flavors Seiberg duality corresponds on the super-

symmetric index to the integral identity between

IE = (p; p)Nc−1
∞ (q; q)Nc−1

∞
Nc!

×
∫
TNc−1

∏Nf

i=1
∏Nc

j=1 Γe

(
sizj , t−1

i z−1
j ; p, q

)
∏

1≤i<j≤Nc
Γe

(
ziz

−1
j , z−1

i zj ; p, q
) Nc−1∏

j=1

dzj

2πizj

(A.2)

and

IM = (p; p)Ñc−1
∞ (q; q)Ñc−1

∞

Ñc!
∏

1≤i,j≤Nf

Γe

(
sit

−1
j ; p, q

)

×
∫
TÑc−1

∏Nf

i=1
∏Ñc

j=1 Γe

(
S1/Ñcs−1

i zj , T−1/Ñctiz
−1
j ; p, q

)
∏

1≤i<j≤Ñc
Γe

(
ziz

−1
j , z−1

i zj ; p, q
) Ñc−1∏

j=1

dzj

2πizj

(A.3)

where S =
∏Nf

i=1 si, T =
∏Nf

i=1 ti and Ñc = Nf −Nc. The equality holds with the following
constraint on the fugacities ST−1 = (pq)Nf−Nc .

Observe that the relation between (A.2) and (A.3) holds also for Nf = Nc + 1 where
the integral on the r.h.s. vanishes. This provides the relation for the s-confining limit of
Seiberg duality.

In the case of USp(2Nc) SQCD with 2Nf fundamentals the index is given by

IUSp(2Nc),2Nf
(t) = (p, p)Nc

∞ (q, q)Nc
∞

2NcNc!

∫
TNc

∏
1≤u<v≤Nc

1
Γe(x±1

u x±1
v ; p, q)

×
Nc∏

u=1

∏2Nf

i=1 Γe(tix
±1
u ; p, q)

Γe(x±2
u ; p, q)

Nc∏
u=1

dxu

2πixu
(A.4)

and Intriligator-Pouliot duality corresponds to the integral identity

IUSp(2Nc),2Nf
(t) =

∏
i<j

Γe(titj) IUSp(2(Nf−Nc−4)),2Nf
(pq/t) (A.5)

where the fugacities are constrained by
∏2Nf

i=1 ti = (pq)Nf−Nc−1 Observe that the relation (A.5)
holds also for Nf = Nc + 2 where the integral on the r.h.s. vanishes. This provides the
relation for the s-confining limit of Intriligator-Pouliot duality.
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Another identity that played a crucial role in our derivation was obtained in [22] for the
case of USp(2Nc) SQCD with 2Nc + 2 fundamentals. The identity in this case is

IUSp(2Nc),2Nc+2

(
e2πiϕ

)
=

1
(p;p)Nc∞ (q,q)Nc∞

∑
(Φ1
⋃

Φ2)/Sk
2

∏
1≤i<j≤Nc+1

Γ(e2πi(±ϕ̃i±ϕ̃j);p,q)
∑

SNc+1(Φ2)

Nc∏
i=1

δ(ϕ̃i+ϕ̃Nc+1+i),

(A.6)

with zi = e2πiϕi ,
∑2Nc+2

i=1 ϕi =0, Φ1 =(ϕ̃1, . . . , ϕ̃Nc , ϕ̃k+1 =ϕNc+1) and Φ2 =(ϕ̃Nc+2, . . . , ϕ̃2Nc+2).
This relation reflects the statement that the theory confines with a quantum corrected
moduli space.
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