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1 Introduction

When attempting to define theories of Euclidean quantum gravity, one is usually interested
in making sense of path integrals over some class of Riemannian metrics. In the context of
noncommutative geometry, spectral triples are analogous to manifolds, and in some sense
spectral triples generalize manifolds. In particular, for Riemannian spinc manifolds all the
metric information can be recovered from the associated spectral triple via Connes’ distance
formula [1]. With this in mind, Barrett [2] proposed defining path integrals over the moduli
spaces of Dirac operators instead of those of metrics. To make these integrals well-defined,
Barrett considered finite approximations of spectral triples called fuzzy geometries. The
resulting integrals are matrix integrals. The hope after fuzzifying these spectral triples is that
in some limit one might be able to recover path integrals over metric spaces of Reimannian
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spectral triples. Thus, in some sense, this would recover a theory of Euclidean quantum
gravity. The limits of finite approximations of spectral triples is an active area of study [3–6].

While the work surrounding these models is not quite at this point of development,
we have seen hints of the continuous theory in various limits. As originally pointed out
in [7], in the large N limit the spectral density function of the Dirac operators of certain
Dirac ensembles bears resemblances to the spectra of Dirac operators on spin manifolds.
This was explored quantitatively in [8]. More recently, in the double scaling limit, various
Dirac ensembles have been shown to have the same critical exponents and satisfy the same
differential equations as various minimal models from conformal field theory [9]. One approach
to this problem might be to consider random metric spaces of maps defined by the perturbative
expansion of these models. Based on the critical exponents found in [9], these random metric
spaces are expected to converge to the Brownian map [10], but this will be explored in a
future work. This is in contrast to the models studied in this paper, for which we find strong
hints that the associated random metric spaces converge to the continuous random tree.

The models of interest in this article are three 2-matrix bi-tracial ensembles proposed
by Barrett and Glaser [7]. These models have been studied numerically in [7, 8, 11–13] via
Monte Carlo simulations, which provided evidence of a spectral phase transition. Additionally,
analytical bounds for the moments of these models were computed in [14] using the bootstrap
technique. We will show that all three ensembles have the same moments in the large N

limit and that one only needs to consider the following effective ensemble:

1
Z

e−Seff(A,B)dAdB,

where this is a probability distribution on the space of pairs of N by N Hermitian matrices.
The measure dAdB is the product Lebesgue measure, and the potential is

Seff(A, B) =4t2
[
N TrA2 +TrB2

]
+ 4t4N

[
TrA4 +TrB4 + 4TrA2B2 − 2TrABAB

]
+ 12t4

[(
TrA2

)2
+
(
TrB2

)2
]
+ 8t4[TrA2 TrB2].

The probability measure depends on two real coupling constants t2 and t4, where t4 > 0.
These models are interesting purely from the perspective of random matrix theory.

Despite the success of single matrix ensembles [15, 16], in general very little is known about
multi-matrix ensembles. For perturbative models, much is known for general potentials in
which the only unitarily invariant term is a TrAB interaction [17, 18]. Besides this, only
special cases of more general multi-matrix interactions are known [19, 20]. In convergent
models even less is analytically tractable [21, 22]. However, progress has been made in
determining when the asymptotics of convergent models coincide with their perturbative
counterparts [23, 24]. Such results will be utilized in this work, allowing us to work with
a perturbative expansion but make conclusions about convergent matrix integrals. An
additional level of complexity in the matrix integrals proposed by Barrett comes from the fact
that they are bi-tracial. As far back as the 90’s physicists were already interested in studying
integrals known as multi-trace in which the potential function S(M) includes some product of
traces. Multi-tracial matrix integrals have appeared in many other areas of study [25–28], and
have seen the development of tools for both the perturbative and convergent cases [29–31].
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Despite Barrett’s models having highly nontrivial 2-matrix interactions in their potentials,
in this article we derive explicit formulae for the first twenty moments in terms of the coupling
constants t2 and t4. The idea of the derivation is to first consider the perturbative expansion
of the models and study them as the generating functions of certain types of maps. Certain
properties of these maps and the associated Schwinger-Dyson equations will allow us to
deduce the moments. Applying a result of [23] shows that these formulae are equivalent to
the moments of the convergent ensembles in some neighbourhood of the coupling constants
near zero. From these formulae for the first few moments we deduce the free energy, critical
points, and critical exponents of the model. Note that partition functions of these models are
the same whether they is written in terms of D or A and B, so even though we are working
with moments in terms of A and B, instead of D, we will be able to compute the above
mentioned quantities of interest. Work towards explicit formulae for tracial powers of the
Dirac operators of fuzzy geometries in terms of the tracial powers of constituent matrices
can be found in [32]. It is out hope that these results will lead to more analytic results as
well as more direct approaches to studying these models in future works.

In the following section we introduce the necessary background from Noncommutative
Geometry and state the main results. In section 2, we outline the derivation of the Schwinger-
Dyson equations for the model and its properties. Section 3 gives a short review of the
relevant kind of maps before proving several useful properties that allow for the derivation
of the moments. Section 4 shows the computation of the free energy as well as the critical
exponents. Section 5 outlines the future work and implications of our results.

2 Background and summary

2.1 Random fuzzy geometries

In [1], Connes introduced the notation of a spectral triple (A,H, D) in which

• A is a unital, involutive, complex, and associative algebra.

• The complex Hilbert space H is acted on by elements of A.

• The Dirac operator D is a self-adjoint operator acting on H, that is in general unbounded.

These objects are additionally required to satisfy some regularity conditions. However, we
are interested in spectral triples that automatically satisfy these conditions, so such details
will be omitted. In particular, we are interested in real spectral triples, which have even
more additional structures. The motivation to study real spectral triples is that they serve
as noncommutative analogs of spinc Riemannian manifolds. This idea is based on the fact
that any closed spinc Riemannian manifold M gives rise to a real spectral triple in which the
algebra A = C∞(M) is the algebra of smooth complex valued functions on M and the Hilbert
space is the space of square integrable sections of the spinor bundle such that the elements of
A act as multiplication operators. The Dirac operator D is the usual Dirac operator of M ,
and acts on the spinors. The additional structure mentioned before consists of standard charge
conjugation and chirality operators, J and γ. Conversely, the reconstruction theorem of
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Connnes tells us that under some natural conditions a real spectral triple with a commutative
algebra can be realized as the real spectral triple of a spinc Riemannian manifold [1].

Fuzzy spaces have been studied as a method of regularization of commutative spaces
since the fuzzy sphere in [33]. In particular, they can be characterized within the formalism
of spectral triples and are called fuzzy geometries or fuzzy spectral triples [2, 34]. From
a physics perspective these can be thought of as spinc Riemannian manifolds with a finite
resolution or Planck length.

A (p, q) fuzzy geometry is a real spectral triple of the form (MN (C), V ⊗MN (C), D; J,Γ)
in which

• The algebra of functions is replaced by the algebra of N by N complex matrices.

• The Hilbert space is some Hermitian irreducible Clifford module of signature (p, q) with
the charge conjugation operator J and grading Γ when the KO dimension p + q is even.

• D is a self-adjoint matrix that satisfies the so-called zero order and first order condi-
tions [2].

A result from [2] is that all Dirac operators satisfying the above-mentioned conditions
can be expressed as

D =
∑

I

γI ⊗ {KI , ·}eI , (2.1)

where the sum is over index sets of the form {i1 ≤ . . . ≤ ik} with each index between one
and p + q. The operator γI denotes some product of gamma matrices. If γI is Hermitian,
eI = 1 and {KI , ·}eI = {HI , ·}, where HI is some Hermitian matrix. If γI is skew-Hermitian,
eI = −1 and {KI , ·}eI = [LI , ·], where LI is some skew-Hermitian matrix. One can deduce
from this result that the space of possible Dirac operators D is isomorphic as a real vector
space to some Cartesian product of copies of the spaces of N by N Hermitian matrices
HN , and N by N traceless Hermitian matrices H0

N . In the large N limit, these traceless
Hermitian matrix ensembles have the same moments as their Hermitian counterparts [12].
Hence, since we are currently only interested in the large N distribution of these models,
we will strictly consider Hermitian matrices.

With quantum gravity as a motivation, it makes sense to then consider a probability
distribution on D called a Dirac Ensemble (or sometimes a random fuzzy geometry). The
usual probability distributions of choice are of the form

1
Z

e−Tr V (D)dD,

where V is some polynomial with coupling constants as coefficients such that the probability
distribution is well-defined. In [35], Gaussian Dirac ensembles were studied extensively and
found to have universal properties in the large N limit. However, note that the main choice
of potential in most works has been a quartic action

V (D) = g TrD2 +TrD4,
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since it has been seen to already exhibit many interesting properties. In particular, quartic
Dirac ensembles of this form exhibit manifold-like behaviour near spectral phase transitions [7,
8, 11, 13]. If an additional coupling constant is considered in front of the quartic term, when
tuned to criticality, such models have been found to have connections to the (3, 2) and (5, 2)
minimal models from conformal field theory [9]. Until this work, explicit analytical progress
on such models has mostly been on Dirac ensembles with only one Hermitian matrix [9, 35–37],
with the notable exception of [38] and bounds on moments obtained in [14]. For more details
we refer the reader to the recent review [39].

2.2 Outline of main results

In this paper the main objects of study include the following Dirac ensemble for signatures
(2, 0), (1, 1), and (0, 2):

dµ(p,q)(D) = 1
Z

e−t2 Tr D2−t4 Tr D4
dD. (2.2)

Its partition function is

Z =
∫
D(p,q)

e−t2 Tr D2−t4 Tr D4
dD (2.3)

where t2 and t4 are some real coupling constants. Originally in [2, 7], a key aspect of
these models is that they are convergent matrix integrals and no perturbative expansion or
renormalization techniques are required to make them well-defined mathematical objects.
However, in this work we shall consider both the convergent models and their perturbative
counterparts. A formal matrix integral is a well-defined formal series defined by series
expanding all non-Gaussian terms in the potential and then interchanging summation and
integration. These are vastly different mathematical objects that historically have caused
confusion, but have a deep relationship. For more details see [16, 20, 23, 40]. In particular,
we will show that in the large N limit the loop equations for these models are the same
for both the formal and convergent models, and have a unique solution. We will denote
expectation with respect to a formal matrix integral with bra and ket, and with respect
to a convergent matrix ensemble with E[·].

The Dirac operators on these fuzzy geometries can be expressed as

D(2,0) = σ3 ⊗ {A, ·}+ σ1 ⊗ {B, ·}

D(1,1) = σ3 ⊗ [A, ·] + σ1 ⊗ {B, ·}

D(0,2) = σ3 ⊗ [A, ·] + σ1 ⊗ [B, ·]

where A and B are N × N Hermitian matrices, and σ1 and σ3 are the Pauli spin matrices

σ1 =
[
0 1
1 0

]
σ3 =

[
1 0
0 −1

]
.

The commutators and anti-commutators are represented as matrices

{A, ·} = A ⊗ IN + IN ⊗ AT
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KO ϵ1 ϵ2
(2,0) 1 1
(1,1) 1 -1
(0,2) -1 -1

Table 1. Different signs in the action correspond to different KO dimension [2].

[A, ·] = A ⊗ IN − IN ⊗ AT

via the isomorphism between MN (C) and CN ⊗ CN .
Expressing the action in terms of A and B gives us

S(D) = 4t2
[
N TrA2 + N TrB2 + ϵ1 (TrA)2 + ϵ2 (TrB)2

]
+ 4t4N

[
TrA4 +TrB4 + 4TrA2B2 − 2TrABAB

]
+ 4t4

[
4ϵ1 TrA3 TrA + 4ϵ2 TrB3 TrB + 3

(
TrA2

)2
+ 3

(
TrB2

)2
]

+ 16t4[ϵ1 TrAB2 TrA + ϵ2 TrBA2 TrB]

+ 8t4[TrA2 TrB2 + 2ϵ1ϵ2 (TrAB)2].

(2.4)

where the epsilons are signs that change depending on the signature of the fuzzy geometry
according to table 1. In this paper, all results will be to leading order in the large N limit.
As pointed out in [14, 35], many of the terms in (2.4) do not contribute to the leading order
loop equations. As such we can consider a simplified model whose action we will refer to as
the effective action, but who has the exact same large N behaviour as the above models:

Seff(A, B) = 4t2N
[
TrA2 +TrB2

]
+ 4t4N

[
TrA4 +TrB4 + 4TrA2B2 − 2TrABAB

]
+ 12t4

[(
TrA2

)2
+
(
TrB2

)2
]

+ 8t4[TrA2 TrB2].

(2.5)

Notice that all the epsilon terms are not included. This serendipitously implies that to leading
order in N all the models have the same large N behaviour.

The model is a bi-tracial two-matrix ensemble. In random matrix theory one is generally
interested in computing moments and more generally correlation functions. The Dirac
moments are defined as follows:

1
Z

∫
H2

N

1
N2 TrDℓe−Seff(A,B)dAdB,

for integers ℓ ≥ 0. Let W belong to the set of noncommutative polynomials in two matrix
variables C[A, B], then the (mixed) moments are defined as

1
Z

∫
H2

N

1
N

TrWe−Seff(A,B)dAdB.
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Note that A and B are symmetric in the potential, which implies the equivalence of many
moments.

Finding moments at finite N is very difficult, but generally computing their limits as N

goes to infinity greatly simplifies calculations, provided the limit exists. Much success has been
achieved in this direction dating back to Wigner [41], and his successors [42]. Additionally,
many universal properties have been observed in the limit [43].

For unitary invariant ensembles, one can apply techniques such as the Coloumb gas/e-
quilibrium measure approach [31, 44] or in the case of a formal integral one can apply
(Blobbed) Topological Recursion [29, 30, 45]. Analytic progress has been achieved for some
models that lack invariance [46–48], but for general potentials very little is known [20, 23].
Our model is particularly challenging. It clearly lacks unitary invariance, techniques such
as the characteristic expansion [49], the Harish chandra formula [50], and bi-orthogonal
polynomials [51] are not applicable. Numerical studies of these particular models have been
carried out and many interesting properties have been found [7, 8, 11]. In particular in [14]
the bootstrap technique was applied to find explicit bounds for moments of these models
in the large N limit. Numerical estimates for the moments were then obtained. While an
explicit formula for any moments in terms of coupling constants escaped us at the time,
this paper presents such a formula.

Theorem 2.1. The formal and convergent models of (2.3) for all three signatures have
the same limiting moments. In particular, for t2 and t4 in a sufficiently small enough
neighbourhood of zero,

lim
N→∞

1
N

E[TrA2] = 1
32t4

(√
t22 + 8t4 − t2

)
.

The proof is presented in section 4.3. The idea of the proof is to first consider the
formal counterpart of the model and prove such a claim using Feynman graphical techniques.
Then, applying results from [23], we can conclude that the loop equations for both formal
and convergent models have a unique solution. A list of explicit formulae for higher power
moments can be found in appendix B. We conjecture that from the second moment all other
moments and Dirac moments can be computed explicitly using Schwinger-Dyson equations.

Another quantity of interest in random matrix theory is the so called free energy,

F0 = lim
N→∞

1
N2 lnZ. (2.6)

If this limit exists, as a formal series, it counts some collection of colored planar maps. This
limit does indeed exist for the formal model: see section 4.

Theorem 2.2. The formal models of (2.3) for all three signatures have the same free energy
given by

F0 = lim
N→∞

1
N2 lnZ = −1

2 + t2

t2 +
√

t2
2 + 8t4

+ ln
[

π2

64t2
2

(
t2 +

√
t2 + 8t4

)]
. (2.7)

To someone familiar with the moments of matrix models, it may appear strange why
these formulae are simpler than most single matrix hermitian models. Consider, for example
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the moments for the (1, 0) quartic model [9]. The reason for these more concise expressions
is that the number of maps enumerated in these models is generally smaller than its single
matrix cousins. This is because there are more complicated 2-cells used in the gluing and
we are restricted to gluing edges that match in color.

3 The Schwinger-Dyson equations

The Schwinger-Dyson equations are an infinite system of non-linear recursive equations of
moments that were first discovered in [52]. They can be derived from very simple principles
but can be used to deduce many properties of matrix ensembles [53]. Processes used to
solve matrix models often rely on these equations, such as topological recursion [45] and
bootstrapping [54, 55].

3.1 Derivation and properties

Let W ∈ C[A, B]. The following equality follows from Stokes’ theorem
N∑

i,j=1

∫
∂

∂Aij
TrWdµ(A, B) = 0. (3.1)

It is important to note that this equality holds for both convergent or formal matrix integrals.
In the formal case, it is applied term-wise to each Gaussian integral in the formal series.

By expanding the left-hand side using the product rule one can obtain relations between
(mixed) moments. For example, suppose that W = Aℓ for some integer ℓ ≥ 0. Then
equation (3.1) becomes

ℓ−1∑
k=0

E[TrAk TrAℓ−k−1] =

NE[8t2 TrAℓ+1 + 16t4 TrAℓ+3]

+ E[32t4N TrAℓ+1B2 − 16N TrAℓ+1BAB + 48t4N TrA2 TrAℓ+1 + 16t4N TrB2 TrAℓ+1]
(3.2)

Such relations are called the Schwinger-Dyson equations (SDE), since, unlike the usual
Schwinger-Dyson equations found in single matrix models, the matrices involved may not
commute, resulting in a much more vast ocean of relations to solve. Usually, one considers
the generating functions of these moments to allow complex analytic techniques to solve
this infinite system [53, 56]. However, with this model there is no clear choice of generating
functions that allow for nice closed-form expressions for the SDE. Thus, in this work we are
grounded to work to the level of (mixed) moments. The authors have yet to find a formula
for these SDE that is concise but also informative.

In the large N limit the SDE often simplify. In particular, the factorization property

lim
N→∞

1
N2E[TrW1 TrW2] = lim

N→∞

1
N2E[TrW1]E[TrW2]

is exploited when possible for W1, W2 ∈ C[A, B]. In formal Hermitian matrix models this
property follows from the genus expansion [56]. From theorem 3.1 of [35], models such

– 8 –
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as (2.3) have a genus expansion and hence satisfy this property. For details on how the genus
expansion implies this property see the appendix of [14]. In the large N limit we introduce
the following notation for the (mixed) moments of the convergent ensemble

mℓ1,ℓ2,...,ℓq = lim
N→∞

1
N

E[TrAℓ1Bℓ2 · · ·Aℓq−1Bq],

and
m0

ℓ1,ℓ2,...,ℓq
= lim

N→∞

1
N

⟨TrAℓ1Bℓ2 · · ·Aℓq−1Bq⟩

for the formal ensemble. This notation is well-defined, since the model is symmetric in A and B.
We are interested in the SDE in the large N limit. For example, in the formal case, after

normalizing equation (3.2) and taking the limit, the result is

ℓ−1∑
k=0

m0
km0

ℓ−k−1 = 8t2m0
ℓ+1 + 16t4m0

ℓ+3 + 32t4m0
ℓ+1,2 − 16m0

ℓ+1,1,1,1 + 64t4m0
ℓ+1m0

2,

for integer ℓ ≥ 0.
For any choice of initial word, such equations can be deduced. For more examples of

these equations for general words, see appendix C.

3.2 From perturbative expansion to convergent integrals

As mentioned in the introduction, our strategy is to solve the formal model corresponding
to (A.1), and then use known results to relate the solution to its convergent counterpart. To
do this, we will use the results in [23] and adapt them for our bi-tracial model.

Consider the following formal matrix model∫
H2

N

e−Tr V (A,B)dAdB, (3.3)

where
V (A, B) = 4t2N

[
TrA2 +TrB2

]
+ 4t4N

[
TrA4 +TrB4 + 4TrA2B2 − 2TrABAB

]
+ 32t4[TrA2m0

2 + m0
2 TrB2].

(3.4)

Lemma 3.1. Up to the leading order in N , the loop equations for the model (3.4) and the
model (2.5) are the same.

Proof.

Consider the potential V as a map

V : {Aij , Bkℓ|1 ≤ i, j, k, ℓ ≤ N} → R.

Assume t2 > 0 and t4 ≥ 0. The first line of equation (3.4) is the positive sum of convex
functions so it is also convex. The second line of terms in equation (3.4) can be expressed as

Tr(AB − BA)2 +Tr(A2 + B2)2

– 9 –
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multiplied by a positive number. Hence, it is also convex. Lastly, by the positivity of the
integrand, for any N , m2 ≥ 0 and finite, so the last line is also convex. Thus, there exists a
non-empty set U of coupling constants such that the action V is convex.

With this above observation, one can apply theorem 1.1 from [23] to the model defined
by V . Since the moments and SDE’s of the models (3.4) and (2.5) are the same in the limit,
the result applies to the latter model, giving us the following theorem.

Theorem 3.2. There exists an ϵ > 0 such that, for t2, t4 ∈ U ∩ Bϵ(0) and any word
W ∈ C⟨A, B⟩,

lim
N→∞

1
N

E[TrW ]

converges to the unique solution to the SDE’s of the effective ensemble.

This theorem implies that in some small ball of the coupling constants near zero, the
convergent and formal models coincide.

4 The perturbative expansion

As mentioned in the introduction, a formal matrix model is a well-defined formal generating
function of Gaussian matrix integrals that is constructed by expanding all non-Gaussian
terms of the potential and then interchanging the order of integration and summation. The
resulting Feynman diagrams of such an integral are maps (or their dual fat graphs) [42].
This follows from the fact that Gaussian matrix integrals can be expanded in terms of maps,
which can then be organized by the genus of the associated surface. In this work, we are
interested in the types of maps that come from 2-matrix integrals with bi-tracial interactions,
which will be introduced in the following sections.

4.1 A primer on maps

We will begin by introducing some general terminology on maps. A map of genus g is a
2-cell embedding of a graph into an oriented surface of genus g up to orientation-preserving
homeomorphisms of the surface. In this work we are focused on maps with connected graphs
of genus zero, which we will refer to as planar maps.

Maps can be constructed by gluing the edges of polygons in an orientation-preserving
manner, i.e. no twists. The unglued edges of polygons are referred to as half-edges. A rooted
map is a map with a distinguished rooted edge. Rooted maps appear when computing
moments and cumulants while unrooted maps appear when computing the partition function.
In particular, cumulants and the logarithm of the partition function count connected maps.
Note that maps have an associated topological invariant known as their genus, which can
be computed using Euler’s formula.

For our model we are interested in 2-colored unstable planar maps. A 2-colored map is a
map whose half-edges have one of two assigned colors. Such colors have to match that of
the other half-edge they are glued to in order to form such a map. An unstable map is a
map that is glued from 2-cells whose topology corresponds to unstable Riemann surfaces
with boundaries i.e. a disc or cylinder.

– 10 –
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Figure 1. An example of a 2-cell with the topology of a cylinder where one boundary is a 5-gon and
the other is a quadrangle.

Figure 2. An example of a 2-colored unstable map of genus one.

Note that an ordinary rooted connected map glued from only polygons is planar if and
only if its Euler characteristic is two. However, in unstable maps the notation of graph
connectedness and map connectedness no longer coincide, so Euler’s formula for genus is
not always directly applicable. Unstable maps have a decomposition into graph connected
components, by treating each 2-cell with the topology of a cylinder as two disconnected
2-cells with the topology of a disc. The removed part we will refer to as a branch. Thus
we can associate every unstable map with a graph, where each edge is a branch and each
vertex is a graph component. One sufficient condition for an unstable map to be planar
is if each graph component is planar and the associated graph described above is a tree.
See [35] for more details.

The enumeration of colored maps has long been of interest in the study of formal matrix
integrals, but work on unstable maps has more recently been approached in [9, 35] as well as
within the more general notion of stuffed maps [29, 30]. As far as the authors are aware, the
enumeration of maps with both qualities has not appeared in any works before.

4.2 From matrix models to map enumeration

Let us consider the model with the action (2.5) formally but we will add a redundant
parameter t initially, which will keep track of the number of vertices:

Z =
∫
H2

N

e−
1
t
Seff(A,B)dAdB. (4.1)

The propagators for the Gaussians are

⟨AijAkℓ⟩ =
t

8N
δiℓδjk
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and
⟨BijBkℓ⟩ =

t

8N
δiℓδjk,

where the entries of A and B are independent at the level of Gaussian integrals in the
formal sum.

Via standard techniques [35], the model has a has a genus expansion, i.e. the moments
can be written as

mW =
∑
g≥0

(
N

t

)1−2g

mg
W ,

where
mg

W =
∞∑

v=1
tv

∑
Σ∈UMg

W (v)

W (Σ)
|Aut(Σ)| . (4.2)

The set UMg(v) is the set of all of genus g 2-colored unstable maps with v vertices glued from
a rooted polygon whose coloring corresponds to the word W and the following set of 2-cells:

1. A red quadrangle

2. A blue quadrangle

3. A quadrangle with two adjacent red edges, and two adjacent blue edges

4. A quadrangle with two red edges whose neighbours are blue edges

5. A red 2-cell with the topology of a cylinder and boundaries of length two

6. A blue 2-cell with the topology of a cylinder and boundaries of length two

7. A 2-cell with the topology of a cylinder and boundaries of length two, one red and
one blue.

See figure 4 for a visualization of these 2-cells.
The realization of the correspondence of colored polygons to cyclic words can be described

as follows. The trace of a word W of length ℓ in the alphabet formed from A and B has a
corresponding cyclic sequence of colors of length ℓ. This cyclic sequence of coloring is then
mapped to the colors of edges of an ℓ-gon. See for example figure 3.

In equation (4.2), the Feynman weight of a map Σ ∈ UMg
W (v) is given by

W (Σ) = (16t4)n1+n2+n3+n4(96t4)n4+n5(−16t4)n7 , (4.3)

where ni(Σ), for 1 ≤ i ≤ 7, is the number of 2-cells corresponding to the numbers above
used in the gluing of the map Σ. The coefficients in front of these weights come from a
rescaling needed to construct the factor |Aut| in equation (4.2). Usually, potentials are
nicely normalized so that the Feynman weight is precisely the product of coupling constants.
However, because there is one coupling constant in front of many terms in the effective action,
this is not possible with our model. Because of this, information that helps distinguish
components is lost in the final expressions, which we will find actually simplifies matters.
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Figure 3. Moments corresponding to cyclic words W in A and B correspond to rooted polygons with
alternating colored half-edges. For example the word AAABAB corresponds to the above hexagon,
before choosing a root.

4.3 The second moment

In this section we will derive our formula for the second moment, but we must first look
at another moment. Consider

m0
1,1,1,1 =

∞∑
v=1

tv
∑

Σ∈UM0
ABAB(v)

Γ(Σ)
|Aut(Σ)| .

Our goal is to show that this formal series is precisely zero for our model. Note that the set
UM0

ABAB(v) is not empty for all v, for an example see figure 5. Rather, we will show that the
formal series is zero by showing that all positive contributions cancel with contributions from
the negative sign in the Feynman weight corresponding to chequered unrooted quadrangles.

To do so, we must first study the set UM0
ABAB(v). When v = 1 or 2,the set is empty since

there is no planar gluing of a rooted quadrangle with the coloring corresponding to ABAB.
For v > 2, the sets are not necessarily empty, but the following fact may be observed for all v.

Lemma 4.1. Any map in UM0
ABAB(v) must contain at least one adjacent colored quadrangle

or an opposite colored cylinder.

Proof. Consider some map Σ ∈ UM0
ABAB with no adjacent colored quadrangles or opposite

colored cylinders. If v = 1, 2 the claim obviously holds, so let v > 2. We will show such a
map cannot exist. Without loss of generality, consider one of the red half-edges of the rooted
face. It must be paired to another red half-edge. There are three options: a half-edge of an
unrooted red quadrangle, an adjacent colored quadrangle, or a red cylinder. Note that, since
the number of vertices is strictly greater than one, the edge cannot be paired with the other
red half-edge of the rooted face. In all cases, this new 2-cell must connect to another distinct
red coloured 2-cell, since after considering the initial half-edge, there are an odd number
of half-edges remaining. Since there are finitely many 2-cells with an even number of red
half-edges used in a gluing that all need to be paired with half-edges of the same color, it must
eventually connect to the other red half-edge of the rooted 2-cell by the pigeonhole principle.

This above argument holds for the blue half-edges of the rooted fat vertex as well. Thus,
Σ must have at least two closed loops of colored edges that can be traced to and from the
rooted face. No such map can be embedded into a sphere since this would result in these
loops crossing.

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
1
8
6

(a) A red quadrangle. (b) A blue quadrangle.

(c) An adjacent colored quadrangle. (d) A chequered colored quadrangle.

(e) A red cylinder. (f) A blue cylinder.

(g) An opposite colored cylinder.

Figure 4. All types of 2-cells that are used in gluings of 2-colored unstable maps enumerated by
the model.

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
1
8
6

Figure 5. An example of a map in UM0
ABAB(4).

Figure 6. A planar gluing of a non-rooted adjacent colored quadrangle to an opposite colored cylinder.

Lemma 4.2. For any rooted unstable colored map Σ1 containing an adjacent colored quad-
rangle there is another such map with Feynman weight W (Σ1). Similarly, for any rooted
unstable colored map Σ2 containing an opposite colored cylinder, there exists another such
map with Feynman weight W (Σ2).

Proof. For v > 2, consider a rooted unstable colored map Σ1 containing an adjacent colored
quadrangle. We can construct a new map Σ′

1 containing a an opposite colored cylinder
as follows:

1. Treat one of the non-rooted adjacent colored quadrangle faces in Σ1 as a boundary.

2. Glue an opposite colored cylinder to this boundary as in figure 6.

We claim this procedure provides us with a planar map Σ′
1. From our discussion in

section 4.1, in order to show the gluing in figure 6 is planar, it suffices to show that the
left graph component of Σ′

1 is planar, since the right component is clearly planar and the
only branch in this case forms no handles. The resulting graph component will have three
fewer vertices, one fewer edge and two more faces than Σ1. Thus, it has the same Euler
characteristic as Σ, so also the same genus. The resulting map has the same faces except
with one opposite colored cylinder instead of one adjacent colored quadrangle. Recall from
equation (4.3) that these two 2-cells contribute the same factor up to a sign in the Feynman
weight. This completes the first claim.
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Figure 7. A planar gluing of a non-rooted adjacent colored quadrangle to two different coloured
2-gons.

Next, consider a map Σ2 that contains an opposite colored cylinder. Since the map is
planar the branch in this cylinder must connect two distinct graph components. We then
apply the following procedure:

1. If one of the 2-gons is glued to itself, do the reverse procedure of above.

2. Otherwise:

(a) Treat both 2-gons on each graph component of Σ2 as a boundary.
(b) Glue an adjacent colored quadrangle to each boundary as in figure 7.

The resulting map Σ′
2 is clearly planar if the first case holds. In the second case, Σ′

2 will have
two more edges, one less vertex, and three more faces than either planar graph component
connected by the branch in Σ′. Thus the resulting map will also be planar. In both cases,
the Feynman weight W (Σ2) = −W (Σ′

2).

Theorem 4.3. For the formal model with the effective action, m0
1,1,1,1 is exactly zero.

Proof. In the effective action, the redundant parameter t that counts the number of vertices is
set to one. For a discussion on why this parameter is redundant see chapter 1.2.3 of [56]. We
also know that the set UM0

ABAB(v) is empty for v = 1, 2. It is clear then that our moment
is of the form

m0
1,1,1,1 =

∞∑
v=3

∑
Σ∈UM0

ABAB(v)

Γ(Σ)
|Aut(Σ)| .

We known from Lemma 4.3 that each map must contain at least one adjacent colored
quadrangle or an opposite colored cylinder. We also know from Lemma 4.2 that for each
map with an adjacent colored quadrangle there is a map with the same gluing configuration,
except that the adjacent quadrangle is replaced with an opposite colored cylinder and vice
versa. Additionally, note that any map with one root has a trivial automorphism group. The
result is that when we collect terms of the same power, the number of terms with a positive
sign will always equal the number of terms with a negative sign.
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With these results we may now succinctly prove the main result of this work.

Proof of Theorem 2.1. Algebraically solving the loop equations in appendix C in terms of t2,
t4, and m0

2 gives the formula

m0
1,1,1,1 = 2m2

2
t4

+ m2
√

t2
8t2

4
− 1

64t4

Using the fact that m0
1,1,1,1 = 0, we can rearrange for m2 in terms of t2 and t4. There are

two roots, but we must choose the one that is not always negative for t4 > 0, in order for the
second moment to be positive.

Combining this with Theorem 3.2 gives the main result.

Based on computations done in [14], we conjecture that from the second moment all
other moments can be computed recursively. The proof of this conjecture at the moment
seems to be a challenging combinatorial problem.

5 The free energy

5.1 Derivation

For this particular model we can use our knowledge of the second moment to compute the
leading order term of the logarithm of the partition function in the large N limit, commonly
referred to as the free energy [18, 57].

We know from [35] that the free energy of our models has the genus expansion

lnZ =
∑
g≥0

(
N

t

)2−2g

Fg, (5.1)

where
Fg =

∞∑
v=1

tv
∑

Σ∈UMg(v)

W (Σ)
|Aut(Σ)| .

The set UMg(v) is the set of all maps of genus g with v vertices glued from the list of 2-cells
in figure 4. The proof of Theorem 2.2 follows from a simple computation from the formula
for the fourth moment which can be found in appendix B.

Proof of Theorem 2.2. It is clear that

− lim
N→∞

∂

∂t4

1
N2 lnZ = d4. (5.2)

Since this is a formal series in N−2, we may swap the order of the limit and differentiation,

−d4 = lim
N→∞

∂

∂t4

1
N2 lnZ = ∂

∂t4
lim

N→∞

1
N2 lnZ.
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Integrating both sides and using the formula for the Gaussian Dirac ensemble in the large N

limit from appendix A, we arrive at

F0 = lim
N→∞

1
N2 lnZ = lim

N→∞

1
N2 lnZ|t4=0−

[∫
(d4(s))ds

]
s=t4

(5.3)

=−5ln2+2lnπ−2ln t2−

∫ t2
2−t2

√
8s+t2

2+4s

8s2 ds


s=t4

(5.4)

=−1
2+

t2

t2+
√

t2
2+8t4

+ln
[

π2

64t2
2

(
t2+

√
t2
2+8t4

)]
(5.5)

5.2 Random maps and criticality

The free energy can be used to find critical behavior of the model, from which an asymptotic
expansion can be computed. Such expansions have been shown to bridge connections to
theories of 2D quantum gravity [58]. In [9], several Dirac ensembles were shown to have the
same critical exponents and asymptotic partition functions as various minimal models. We
would also like to emphasize that this critical behavior does not correspond to a spectral
phase transition which is of interest for Dirac ensembles [7, 36], but rather the type of critical
behavior mentioned that connects matrix models to random commutative geometries. In
some sense this can be thought of as a continuum limit.

For a formal matrix integral with a genus expansion, its weighted map generating
functions have an interpretation as a discrete probability distribution. For simplicity set
t2 = 1. Consider, for example, planar maps. If a non-trivial configuration of coupling
constants are such that F0 is finite and greater than zero, then we say such a configuration is
admissible. For admissible configurations we are then able to define the discrete probability
distribution over UM0(v),

1
F0

Γ(Σ)
|Aut(Σ)| .

We know that there exist admissible configurations from Theorem 2.2.
Usually, in matrix models, each coupling constant corresponds to a different trace term

in the potential. In these cases we can compute the expectation number of 2-cells of a
certain topology by differentiating the free energy. This is not the case in our potential, so
a map theoretic interpretation of the second derivative is more complicated. However, it is
still a quantity of interest and can roughly be thought of as a weighted expected number
of 2-cells from figure 4,

∂

∂t4
lim

N→∞

1
N2 lnZ = − lim

N→∞

1
N2 ⟨TrD4⟩ = −

t2
2 − t2

√
8t4 + t2

2 + 4t4

8t2
4

. (5.6)

With this interpretation we can see that the expected number of 2-cells diverges along
the critical curve

t4 = −1
8 t2

2. (5.7)
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Note that the solutions of this equation are only when t4 is less than zero. Thus, this critical
behavior is only seen in the formal model and not the convergent solution.

There exist formal notions of convergence of these probability distributions on maps
to random metric spaces. The critical exponent of interest here is the first non-zero power,
which is usually of the form 1 − γ. This is known as the string susceptibility exponent,
and often indicates to what random metric spaces the above one will converge to in the
Gromov-Hausdorff topology. For more details we refer the reader to [59].

For simplicity set t2 = 1. We may asymptotically expand the partition function around
the critical point tc = −1/8,

1− 4
√
2(t4 − tc)

1
2 ++24(t4 − tc) + 64

√
2 (t4 − tc)

3
2 +O((t4 − tc)2).

This allows us to deduce that γ = 1/2, which is associated with the limiting metric space
known as the continuum random tree. This is also an exponent that does not appear often
in random matrix models, but is common in tensor models [60]. This may suggest that the
maps enumerated here have a realization as the triangulations seen in tensor models. For
comparison, the quartic type (1, 0) Dirac ensemble studied in [9] has a string susceptibility
exponent of −1/2, which is associated with the Brownian map. However, future work is
still needed to establish such a convergence.

6 Conclusions and outlook

In this work we computed the second moment and the free energy of the quartic type (2, 0),
(1, 1), and (0, 2) Dirac ensembles in the large N limit. This was done by studying properties
of unstable colored maps and the associated Schwinger-Dyson equations (SDE’s). Applying
the results of [23], we were then able to show that the solution for all moments for both the
convergent and formal models up to the leading order is unique. Furthermore, we explicitly
computed the first twenty moments of these models.

These results can be compared to past numerical work. For example, the plot of the
second moment in figure 7a and 7b of [11] bears a strong resemblance to the large N solution
presented here. This seems to indicate that convergence is rather fast since the matrix size
in these simulations was rather small, between five and ten. Additionally, in figure 8, the
solution derived here can be seen to perfectly fit within the bootstrapped bounds computed
in [14], as expected.

One limitation of what we currently understand is that despite being able to compute
many moments, the generating functions of both moments and Dirac moments is an enigma.
It is not clear which choice of generating functions the SDE’s can be written succinctly in
terms of. The types of generating functions used in studying past multi-matrix models such
as the two-matrix model [48] do not seem to be enough to close these equations. A natural
candidate might be a generating function in terms of Dirac moments, but such a formulation
is not known to the authors at this time.

We hope that this work will lead to a general formula for all Dirac moments, or equivalently
its generating functions; as well as new techniques to study previously unsolvable multi-matrix
models. In particular, ideas presented here may be useful in studying Dirac ensembles on
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Figure 8. A reproduction of figures 3 and 4 from [14] with the second moment solution from
Theorem 2.1 overlaid in red. In [14], the models are the same except t4 is set to one. Each color
corresponds to a different region of possible solutions to the SDE’s generated by considering various
positivity constraints on the moments.

gauge-matrix spectral triples [38]. It would be also interesting to see if the recent work
in [61] can be generalized to multi-trace matrix models, potentially leading to solutions to
all orders of even more challenging Dirac ensembles.
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A Gaussian Dirac ensembles

Consider the partition function for the Gaussian type (2, 0), (1, 1) and (0, 2) Dirac ensemble’s
partition function

Z =
∫
D(p,q)

e−t2 Tr D2
dD; (A.1)

where
TrD2 = 4t2

[
N TrA2 +TrB2 + ϵ1 (TrA)2 + ϵ2 (TrB)2

]
and ϵ1 and ϵ2 are according to table 1. We wish to compute it explicitly for any given N

and a strictly positive coupling constant t2.
In the large N limit the answer will be the same as that of the following integral since

they have the same loop equations:

lim
N→∞

1
N2 lnZ = lim

N→∞

1
N2 ln

∫
H2

N

e−4t2N Tr(A2+B2)dAdB

= lim
N→∞

1
N2 ln

(∫
HN

e−4t2N Tr A2
dA

)2

= lim
N→∞

1
N2 ln

(∫
HN

e−4t2 Tr A2
dA

)2
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= lim
N→∞

1
N2 ln

∫HN

e
−4t2N

[∑N

i=1 x2
i,i+2

∑
i<j

(x2
i,j+y2

i,j)

]∏
i

dxi,i

∏
i<j

dxi,jdyi,j


2

= lim
N→∞

1
N2 ln

((
π

4t2

)N2 (
π

8t2

)N2−N
)

= −5 ln 2 + 2 ln π − 2 ln t2

B The limiting moments

By the parity of the integral and the A|B symmetry the normalized moments simplify as
follows in the large N limit.

We list here list the first twenty unique moments by considering all words of each length
up to eight.

m2 = 1
32t4

(√
t22 + 8t4 − t2

)
m4 = 1

256t2
4

(
−t2

√
t2
2 + 8t4 + t2

2 + 4t4

)
m2,2 = 1

512t2
4

(
−t2

√
t2
2 + 8t4 + t2

2 + 4t4

)
m1,1,1,1 = 0

m6 = −
19
(

t3
2 − 2t2

4

√
t2
2 + 8t4 − t2

2

√
t2
2 + 8t4 + 6t2t4

)
3276832768t3

4

m4,2 =
−t3

2 + 2t2
4

√
t2
2 + 8t4 + t2

2

√
t2
2 + 8t4 − 6t2t4

3276832768t3
4

m2,1,2,1 = −
3
(

t3
2 − 2t2

4

√
t2
2 + 8t4 − t2

2

√
t2
2 + 8t4 + 6t2t4

)
3276832768t3

4

m3,1,1,1 = −
7
(

t3
2 − 2t2

4

√
t2
2 + 8t4 − t2

2

√
t2
2 + 8t4 + 6t2t4

)
32768t3

4

m8 =
11t4

2 − 48t2t4
√

t2
2 + 8t4 + 92t2

2t4 − 11t3
2

√
t2
2 + 8t4 + 104t2

4

524288t4
4

m4,1,2,1 =
5t4

2 − 24t2t4
√

t2
2 + 8t4 + 44t2

2t4 − 5t3
2

√
t2
2 + 8t4 + 56t2

4

524288t4
4

m6,2 =
15t4

2 − 64t2t4
√

t2
2 + 8t4 + 124t2

2t4 − 15t3
2

√
t2
2 + 8t4 + 136t2

4

524288t4
4

m2,1,1,2,1,1 =
3t4

2 − 16t2t4
√

t2
2 + 8t4 + 28t2

2t4 − 3t3
2

√
t2
2 + 8t4 + 40t2

4

524288t4
4
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m3,1,3,1 = m3,3,1,1 = m5,1,1,1 = m1,1,1,1,1,1,1,1

=
3t4

2 − 8t2t4
√

t2
2 + 8t4 + 20t2

2t4 − 3t3
2

√
t2
2 + 8t4 + 8t2

4

524288t4
4

m2,2,2,2 =
9t4

2 − 40t2t4
√

t2
2 + 8t4 + 76t2

2t4 − 9t3
2

√
t2
2 + 8t4 + 88t2

4

524288t4
4

m4,4 =
11t4

2 − 48t2t
3/2
4

√
t2
2

t4
+ 8 + 92t2

2t4 − 11t3
2
√

t4

√
t2
2

t4
+ 8 + 104t2

4

524288t4
4

m2,2,1,1,1,1 =
t4
2 + 4t2

2t4 − t3
2

√
t2
2 + 8t4 − 8t2

4

524288t4
4

m3.2,1,2 =
5t4

2 − 24t2t4
√

t2
2 + 8t4 + 44t2

2t4 − 5t3
2

√
t2
2 + 8t4 + 56t2

4

524288t4
4

.

Note that there are several interesting relations here that are not understood or expected,
such as m4 = 2m2,2 and m3,1,3,1 = m3,3,1,1 = m5,1,1,1 = m1,1,1,1,1,1,1,1. There are also very
clear patterns in these moments, but no general formula is known for them at the time
of writing this paper.

The first few Dirac moments can be written as:

d2 = 1
4t4

(√
t2
2 + 8t4 − t2

)
(B.1)

d4 = 1
8t2

4

(
t2
2 − t2

√
t2
2 + 8t4 + 4t4

)
(B.2)

d6 = 19
256t3

4

(
−t3

2 + t2
2

√
t2
2 + 8t4 − 6t2t4 + 2t4

√
t2
2 + 8t4

)
(B.3)

C Examples of Schwinger-Dyson equations

Recall that we denote limiting moments using the notation

mℓ1,ℓ2,...,ℓq = lim
N→∞

1
N

⟨TrAℓ1Bℓ2 · · ·Aℓq−1Bq⟩.

Note that this notation is well-defined, since the model is symmetric in A and B.
The first twenty nine unique SDE’s for our model are listed with the corresponding input

word. They are ordered based on initial word input length.

A : 1= 8t2m2+t4(16m4−16m1,1,1,1+16m2,2+16m2,2+64m2m2)

A3 : 2m2 =8t2m4+t4(16m6−16m3,1,1,1+16m4,2+16m4,2+64m2m4)

AB2 :m2 =8t2m2,2+t4(16m4,2−16m3,1,1,1+16m2,1,2,1+16m4,2+64m2m2,2)

BAB : 0= 8t2m1,1,1,1+t4(16m3,1,1,1−16m2,1,2,1+16m3,1,1,1+16m3,1,1,1+64m2m1,1,1,1)

B2A :m2 =8t2m2,2+t4(16m4,2−16m3,1,1,1+16m4,2+16m2,1,2,1+64m2m2,2)
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A5 :m2
2+2m4 =8t2m6+t4(16m8−16m5,1,1,1+16m6,2+16m6,2+64m2m6)

A3B2 :m2,2+m2
2 =8t2m4,2+t4(16m6,2−16m3,3,1,1+16m3,2,1,2+16m4,4+64m2m4,2)

AB4 :m4 =8t2m4,2+t4(16m4,4−16m5,1,1,1+16m4,1,2,1+16m6,2+64m2m4,2)

BA3B : 0= 8t2m3,1,1,1+t4(16m3,1,3,1−16m3,2,1,2+16m3,3,1,1+16m3,3,1,1+64m2m3,1,1,1)

BAB3 : 0= 8t2m3,1,1,1+t4(16m3,3,1,1−16m4,1,2,1+16m3,1,3,1+16m5,1,1,1+64m2m3,1,1,1)

B2AB2 :m2
2 =8t2m2,1,2,1+t4(16m3,2,1,2−16m3,1,3,1+16m4,1,2,1+16m4,1,2,1+64m2m2,1,2,1)

B3AB : 0= 8t2m3,1,1,1+t4(16m3,1,1,3−16m4,1,2,1+16m5,1,1,1+16m3,1,3,1+64m2m3,1,1,1)

B4A :m4 =8t2m4,2+t4(16m4,4−16m5,1,1,1+16m6,2+16m4,1,2,1+64m2m4,2)

A7 : 2m2m4+2m6 =8t2m8+t4(16m10−16m7,1,1,1+16m8,2+16m8,2+64m2m8)

A5B2 :m4,2+m4m2+m2m2,2 =8t2m6,2+t4(16m8,2−16m5,3,1,1+16m5,2,1,2+16m6,4+64m2m6,2)

A3B4 :m2m4+m4,2 =8t2m4,4+t4(16m6,4−16m5,1,1,3+16m4,1,2,3+16m6,4+64m2m4,4)

AB6 :m6 =8t2m6,2+t4(16m6,4−16m7,1,1,1+16m6,1,2,1+16m8,2+64m2m6,2)

BA5B : 0= 8t2m5,1,1,1+t4(16m5,1,3,1−16m5,2,1,2+16m5,1,1,3+16m5,3,1,1+64m2m5,1,1,1)

BA3B3 : 0= 8t2m3,3,1,1+t4(16m3,3,3,1−16m4,1,2,3+16m3,3,3,1+16m5,1,1,3+64m2m3,3,1,1)

BAB5 : 0= 8t2m5,1,1,1+t4(16m5,3,1,1−16m6,1,2,1+16m5,1,3,1+16m7,1,1,1+64m2m5,1,1,1)

B2A5 :m2,2m2+m4,2+m2m4 =8t2m6,2+t4(16m8,2−16m5,1,1,3+16m6,4+16m5,2,1,2+64m2m6,2)

B2A3B2 : 2m2m2,2 =8t2m3,2,1,2+t4(16m3,2,3,2−16m3,3,3,1+16m4,3,2,1+16m4,1,2,3+64m2m3,2,1,2)

B2AB4 :m2m4 =8t2m4,1,2,1+t4(16m4,3,2,1−16m5,1,3,1+16m4,1,4,1+16m6,1,2,1+64m2m4,1,2,1)

B3A3B : 0= 8t2m3,3,1,1+t4(16m3,3,1,3−16m4,3,2,1+16m5,3,1,1+16m3,3,3,1+64m2m3,3,1,1)

B3AB3 : 0= 8t2m3,1,3,1+t4(16m3,1,3,3−16m4,1,4,1+16m5,1,3,1+16m5,1,3,1+64m2m3,1,3,1)

B4A3 :m4,2+m4m2 =8t2m4,4+t4(16m6,4−16m5,3,1,1+16m6,4+16m4,3,2,1+64m2m4,4)

B4AB2 :m4m2 =8t2m4,1,2,1+t4(16m4,1,2,3−16m5,1,3,1+16m6,1,2,1+16m4,1,4,1+64m2m4,1,2,1)

B5AB : 0= 8t2m5,1,1,1+t4(16m5,1,1,3−16m6,1,2,1+16m7,1,1,1+16m5,1,3,1+64m2m5,1,1,1)

B6A :m6 =8t2m6,2+t4(16m6,4−16m7,1,1,1+16m8,2+16m6,1,2,1+64m2m6,2)

D Redundancy of coupling constants

In previous literature [7, 8, 11, 14, 36], quartic Dirac Ensembles considered have had slightly
different coupling constants,

Z[g] =
∫
D(p,q)

exp {−g TrD2 − TrD4}dD. (D.1)

– 23 –
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We briefly address the difference in this section and show how, via a simple change of
variables, we can transform the model and moments to

Z[t2, t4] =
∫
D(2,0)

exp {−g2 TrD2 − TrD4}dD (D.2)

and its moments, allowing one to compare previous results.
Apply the transformation D → D/ 4

√
t4 to ZN [t2, t4] for t4 ̸= 0. If t4 = 0, this is precisely

a Gaussian integral which can be computed explicitly for any N . The result is

ZN [t2, t4] =
1

4
√

t4

∫
D(p,q)

exp
{
− t2√

t4
TrD2 − TrD4

}
dD. (D.3)

Thus,
ZN [t2, t4] =

1
4
√

t4
ZN [t2/

√
t4]. (D.4)

Define

dℓ[t2/
√

t4] = lim
N→∞

1
N2

1
ZN [t2/

√
t4]

∫
D(p,q)

TrDℓ exp{−t2/
√

t4TrD2+TrD4}dD, (D.5)

and

dℓ[t2, t4] = lim
N→∞

1
N2

1
ZN [t2, t4]

∫
D(p,q)

TrDℓ exp {−t2 TrD2 +−t4 TrD4}dD. (D.6)

Then, applying the same transformation and relation (D.4) to the moments, we arrive at

dℓ[t2, t4] = lim
N→∞

1
N2

1
ZN [t2, t4]

∫
D(p,q)

TrDℓ exp {−t2 TrD2 +−t4 TrD4}dD

= lim
N→∞

1
N2

√
t4

ZN [t2/
√

t4]

∫
D(p,q)

1
t
ℓ/4
4

TrDℓ exp {−t2/
√

t4 TrD2 +−TrD4} 1√
t4

dD

= t
−ℓ/4
4 dℓ[t2/

√
t4].

The above relation gives a clear method to compare our results with those in the above
mentioned works.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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