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1 Introduction

In quantum mechanics and quantum field theory, physical operators such as the Hamiltonian,
are postulated to be Hermitian because their eigenvalues, which are observables, are real.
Transformations generated by Hermitian operators admit unitary evolution of physical systems
which preserve transition probabilities. The synthesis of unitarity and Lorentz symmetry
inevitably lead to the celebrated spin-statistics theorem [1–3].

The postulates in quantum mechanics and the spin-statistics theorem have played
indispensable roles in our ongoing efforts to understand the fundamental constituents of matter.
And yet, according to the ΛCDM model and measurements from the Planck Collaboration,
elementary particles of the Standard Model (SM) accounts only up to 5% of the total energy
and matter contents of the observed universe [4]. Therefore, it may be premature to suppose
the present theoretical framework and their theorems are fixed. In fact, the development of
physics from the beginning of the twentieth century has taught us that progresses are made
by continual modifications and generalizations of the foundational axioms.1

In this spirit, the works on PT symmetric Hamiltonians by Bender and Boettcher [6, 7]
and its subsequent generalization to pseudo Hermitian Hamiltonians by Mostafazadeh [8, 9],
are of central importance. These works represent an expansive program to extend quantum
mechanics and quantum field theory beyond the formalism of Hermitian operators. To be
precise, a pseudo Hermitian Hamiltonian is defined by the following equation

H# ≡ η−1H†η = H, (1.1)

where η is an operator to be determined. While definition (1.1) was already known to
Pauli [10], its physical implication was only realized after Mostafazadeh proved two important
theorems concerning the spectrum of H and the generalized unitary evolution of states when

1In essence, we are paraphrasing Dirac’s view on the development of physics which remains very much
relevant even in the twenty-first century [5].
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equipped with the appropriate inner-product. To facilitate ensuing discussions, we now
present the two theorems of Mostafazadeh:

Theorem 1. Let |α⟩ be an eigenstate of H with eigenvalue Eα. From (1.1), the
eigenvalue Eα is real when ηα = ⟨α|η|α⟩ ̸= 0.

Theorem 2. The invariant inner-product between two states is ⟨β|α⟩η ≡ ⟨β|η|α⟩.
The time translations are the canonical quantum mechanical transformations,
|α(t)⟩ = e−iHt|α⟩ and ⟨β(t)| = ⟨β|eiH†t, so that ⟨β(t)|α(t)⟩η = ⟨β|α⟩η.

Physically well-defined free quantum field theories with pseudo Hermitian adjoints that
evade the spin-statistics theorem have been constructed in the spin-zero and spin-half
representations [11–15]. The author and collaborators have, from first principle, constructed
spin-half bosonic as well as fermionic fields of mass dimension one and three-half [12–14].
Despite the use of pseudo Hermitian adjoints, the free theories are unitary. That is, the
free Hamiltonians are Hermitian and positive-definite. In the presence of interactions, the
Hamiltonians become pseudo Hermitian so it is necessary to use the η product to preserve
time translation symmetry. An important problem for pseudo Hermitian theories is that
the η is not positive-definite so further works are needed to establish consistency for the
interacting theories. As we will demonstrate in this work, the indefinite product does not
pose any difficulty for the model under investigation.

In this paper, we study the theory of symplectic scalar fermion constructed by LeClair
and Neubert (LN) [11]. This theory is local, Lorentz-invariant, admits a positive-definite free
Hamiltonian but furnishes fermionic statistics. The point of departure from the bosonic scalar
field theory comes from the introduction of pseudo Hermitian adjoint. Due to the fermionic
statistics, the theory is shown to have global symplectic symmetry and its β function, in the
case of quartic self-interaction has non-trivial fix point [11]. The theory has found applications
in conformal field theory [15] and dS/CFT correspondence [16–21].

The paper is organized as follows. In section 2, we review the theory of scalar fermion
and the properties of pseudo Hermitian Hamiltonians. In section 3, we clarify the derivation
of the global symplectic symmetry. In section 4, we show that for the model of N quartic
self-interacting scalar fermions, the S-matrix satisfies the generalized unitarity relation.

2 Scalar fermions

Let ϕ be a complex scalar field and ¬
ϕ be its adjoint. LeClair and Neubert made the

crucial observation that ¬
ϕ does not have to be the Hermitian conjugate of ϕ. In fact, the

following expansions

ϕ(x) = (2π)−3/2
∫

d3p√
2E

[
e−ip·xa(p) + eip·xb†(p)

]
, (2.1)

¬
ϕ(x) = (2π)−3/2

∫
d3p√
2E

[
eip·xa†(p) − e−ip·xb(p)

]
, (2.2)

are also legitimate. The demand of locality, and the minus sign in (2.2) force ϕ and ¬
ϕ to be

fermionic rather than bosonic while respecting Lorentz symmetry. That is, at equal time,
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they anti-commute with each other {ϕ(t,x), ¬
ϕ(t,y)} = 0. In fact, they also anti-commute

at the same space-time point {ϕ(x), ¬
ϕ(x)} = 0. Given an arbitrary Lorentz transformation

Λ, they transform as

U(Λ)ϕ(x)U−1(Λ) = ϕ(Λx), (2.3)

U(Λ) ¬
ϕ(x)U−1(Λ) = ¬

ϕ(Λx), (2.4)

where U(Λ) is the unitary representation of Λ in the Hilbert space. Taking into account of
the fermionic statistics, the free propagator and Lagrangian density are given by

S(x− y) = i

(2π)4

∫
d4q

[
e−iq·(x−y) 1

q2 −m2 + iϵ

]
, (2.5)

and
L = ∂µ ¬

ϕ∂µϕ−m2 ¬
ϕϕ. (2.6)

One can readily verify that the fields and their conjugate momenta satisfy the canonical
equal-time anti-commutation relations and that the free Hamiltonian is positive-definite
after normal-ordering [11]

H0 =
∫
d3p

√
|p|2 +m2

[
a†(p)a(p) + b†(p)b(p)

]
. (2.7)

Because ϕ and ¬
ϕ furnish fermionic statistics, we cannot add a Hermitian conjugate term

L † to (2.6) to make the Lagrangian density Hermitian as it would lead to non-locality and
non-unitarity because ϕ does not anti-commute with ϕ†. Similarly, given a pseudo Hermitian
interacting potential, we cannot add a Hermitian conjugate to it. Therefore, the kinematics
and dynamics of scalar fermions can only be described by ¬

ϕ and ϕ. Because ¬
ϕ ̸= ϕ†, the

free Lagrangian density is non-Hermitian. Nevertheless, the free propagator remains the
scalar propagator and the free Hamiltonian is Hermitian. Therefore, the states have unitary
evolution under H0 and the fields evolve via

¬
ϕ(t,x) = eiH0t ¬

ϕ(0,x)e−iH0t, (2.8)
ϕ(t,x) = eiH0tϕ(0,x)e−iH0t. (2.9)

Similarly, the free momentum operators are also Hermitian so the states and fields are
unitary under spatial translation.

But in the interacting picture, the full Hamiltonians that are functions of ¬
ϕϕ and its

generalizations are non-Hermitian. To deal with non-Hermiticity, we first review and elaborate
on the observation made by LN. As for how states evolve under such Hamiltonians, we defer
the discussions to section 4. LeClair and Neubert noted that while ¬

ϕϕ is non-Hermitian, it is
pseudo Hermitian [11]. There exists a Hermitian operator η such that[ ¬

ϕ(0,x)ϕ(0,x)
]#

≡ η−1
[ ¬
ϕ(0,x)ϕ(0,x)

]†
η = ¬

ϕ(0,x)ϕ(0,x). (2.10)

Since [H0, η] = O, (2.10) holds at all times under the evolution of H0. We require η to
be Hermitian so that ( ¬

ϕϕ)## = ¬
ϕϕ. To find η, we take ¬

ϕ to be the pseudo Hermitian
conjugate of ϕ in the sense that [11]

¬
ϕ(x) = η−1ϕ†(x)η. (2.11)
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Expanding (2.11) using (2.1)–(2.2) yields

η−1a(p)η = a(p), η−1b†(p)η = −b†(p), (2.12)

which are equivalent to

η†|a(p)⟩ = |a(p)⟩, η|b(p)⟩ = −|b(p)⟩, (2.13)

where a†|0⟩ = |a⟩, b†|0⟩ = |b⟩ and we have demanded that the vacuum to be invariant under
the action of η. We note, if the scalar field is taken to be real, then there is no non-trivial
η. This tells us that a consistent theory of scalar fermion cannot be formulated in terms of
real scalar fields. Doing so inevitably leads to non-locality and non-unitarity.

Equation (2.13) can now be solved by the ansatz η = exp(iθχ) where χ ≡
∫
d3p[b†(p)b(p)]

and θ ∈ R is a phase to be determined. Acting η on the particle and anti-particle state using
the ansatz, we obtain η†|a⟩ = |a⟩ and η|b⟩ = eiθ|b⟩. Choosing θ = −π, we obtain [22]

η = exp
[
−iπ

∫
d3p b†(p)b(p)

]
, (2.14)

so the operator is unitary. Next, act η on an arbitrary state |α⟩ successively, we obtain

η2|α⟩ = e−2inαπ|α⟩ = |α⟩ (2.15)

where nα is the number of anti-particle states in |α⟩. Therefore, η2 = η†η = I so η is Hermitian.
Using (2.12), we find [H0, η] = O. Therefore, the free Lagrangian density is pseudo Hermitian

L #
0 ≡ η−1L †

0 η = L0. (2.16)

Similarly, interactions that are functions of ¬
ϕϕ and its generalizations are pseudo Hermitian

at all times. If we perform transformations on the fields ϕ′ = Uϕ, ¬
ϕ
′
= ¬
ϕU#, we find that

¬
ϕ
′
ϕ′ remains pseudo Hermitian provided that U satisfies U#U = I.

2.1 Pseudo Hermitian Hamiltonians

We study the time evolutions of the scalar fermionic fields in the Heisenberg picture to
demonstrate that the associated definition of pseudo Hermiticity is consistent with its
counterpart in the interacting picture. Pseudo Hermitian Hamiltonian is defined as

H# ≡ η−1H†η = H (2.17)

where [η,H] ̸= O so that H† ̸= H. In the Heisenberg picture, this means that η has a time
dependence. Taking η to be at time t = 0, we obtain

ηH(T ) ≡ eiHT ηe−iHT ̸= η. (2.18)

If we instead define pseudo Hermiticity using ηH(T ) where T ̸= 0, it is equivalent to (2.17) since

η−1
H (T )H†ηH(T ) = η−1H†η = H. (2.19)
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Equations (2.17) and (2.19) show that the time translation on η induces a non-uniqueness in
the definition of pseudo Hermiticity. Also, any similarity transformations η → η′ = UηU−1

where [U,H] = O satisfies (2.17) and (2.19).
If we only consider the definition of pseudo Hermiticity of the Hamiltonian, then η is

unique up to similarity transformation and time translation. However, these considerations
do not take into account of the fact that Hamiltonians are constructed from quantum fields.
The demand of pseudo Hermiticity on quantum fields imposes additional constraint on
η. For scalar fermionic fields, the relation ¬

ϕ = η−1ϕ†η uniquely fix η to be (2.13) thus
removing the non-uniqueness.

Now we consider pseudo Hermiticity in the Heisenberg picture. Let ϕH and ¬
ϕH be the

scalar fermionic fields in the Heisenberg picture. At t = 0, we have

ϕH(0,x) = ϕ(0,x), (2.20)
¬
ϕH(0,x) = ¬

ϕ(0,x). (2.21)

We take their time evolutions to be

ϕH(x) ≡ eiHtϕ(0,x)e−iHt, (2.22)
¬
ϕH(x) ≡ eiHt ¬

ϕ(0,x)e−iHt. (2.23)

Because the Hamiltonian is pseudo Hermitian, the demand that both ϕH and ¬
ϕH have

the same time evolution requires further justification. Specifically, we need to demonstrate
that no inconsistencies arise from (2.20)–(2.23). Towards this end, we rewrite (2.21) as
ϕ† = η

¬
ϕη−1 and evolve ϕ† to obtain

ϕ†H(x) = eiH†tϕ†(0,x)e−iH†t

= eiH†t
[
η

¬
ϕ(0,x)η−1

]
e−iH†t. (2.24)

Since H† ̸= H, the time evolution of ϕ†H is different from ϕH . Using the identity

eiH†tηe−iHt = η, (2.25)

we obtain

eiHt ¬
ϕ(0,x)e−iHt = η−1ϕ†H(x)η. (2.26)

By comparing (2.26) with (2.23), consistency requires ¬
ϕH(x) = η−1ϕ†H(x)η. Therefore, both

fields ϕH and ¬
ϕH must have the same time evolution. Their product transforms as

¬
ϕH(x)ϕH(x) = eiHt ¬

ϕ(0,x)ϕ(0,x)e−iHt. (2.27)

Since ¬
ϕϕ is pseudo Hermitian, using (2.25), we find

eiHt
[ ¬
ϕ(0,x)ϕ(0,x)

]
e−iHt = η−1

[ ¬
ϕH(x)ϕH(x)

]†
η (2.28)

which is equivalent to
¬
ϕH(x)ϕH(x) =

[ ¬
ϕH(x)ϕH(x)

]#
. (2.29)
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The above analysis of pseudo Hermitian conjugation on scalar fermionic fields also apply
to general operators. Given an operator A and its pseudo Hermitian conjugate A# at t = 0,
they both have the same time evolution in the Heisenberg picture. If an operator is pseudo
Hermitian at t = 0, then it is pseudo Hermitian at all times.

3 Symplectic symmetry

Apart from the global U(1) symmetry, the Lagrangian density also has a global symplectic
symmetry Sp(2,C) [11]. Since {ϕ(x), ¬

ϕ(x)} = 0, the product ¬
ϕ(x)ϕ(x) can be written as

¬
ϕ(x)ϕ(x) = 1

2ΦT(x)ΩΦ(x) (3.1)

where

Φ(x) =
[ ¬
ϕ(x)
ϕ(x)

]
, Ω =

(
0 1
−1 0

)
. (3.2)

Therefore, the Lagrangian density is invariant under the symplectic transformations2

Φ(x) →MΦ(x), ΦT(x) → ΦT(x)MT (3.3)

where M is a 2 × 2 complex matrix satisfying

MTΩM = Ω (3.4)

with MT being the transposition of M . Equation (3.4) is satisfied for all complex matrices
of unit determinant. Therefore, they are continuous transformations and can be generated
via M = eX . Expand M near the identity[

I +XT +O(XT2)
]

Ω
[
I +X +O(X2)

]
= Ω, (3.5)

we obtain

XTΩ = −ΩX. (3.6)

Solving (3.6), we find the general solution

X =
(
θ1 + iθ2 θ3 + iθ4
θ5 + iθ6 −θ1 − iθ2

)
, θi ∈ R (3.7)

Substituting (3.7) into M , the generators are given by

Xi = dM

dθi

∣∣∣∣
θi=0

(3.8)

from which we obtain

X1 =
(

1 0
0 −1

)
, X2 =

(
i 0
0 −i

)
, X3 =

(
0 1
0 0

)
, (3.9)

X4 =
(

0 i

0 0

)
, X5 =

(
0 0
1 0

)
, X6 =

(
0 0
i 0

)
. (3.10)

2If we perform the same analysis for complex bosonic scalar field, we would have obtained the conserved
currents and charges associated with the U(1) symmetry.
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Under the infinitesimal transformation

Φn → Φn + θi(Xi)nmΦm, (3.11)

the conserved currents are given by

Jµ
i = N

[
∂L0

∂(∂µΦn)(Xi)nmΦm

]
. (3.12)

Due to fermionic statistics, there is an ambiguity in the ordering of ¬
ϕ and ϕ. To deal with

this issue, we introduce the operation N to order ¬
ϕ to the left of ϕ. The results are

Jµ
1 = ¬

ϕ(∂µϕ) − (∂µ ¬
ϕ)ϕ, (3.13)

Jµ
2 = i

[ ¬
ϕ(∂µϕ) − (∂µ ¬

ϕ)ϕ
]
, (3.14)

Jµ
3 = (∂µϕ)ϕ = −ϕ(∂µϕ), (3.15)
Jµ

4 = i(∂µϕ)ϕ, (3.16)

Jµ
5 = (∂µ ¬

ϕ) ¬
ϕ = − ¬

ϕ(∂µ ¬
ϕ), (3.17)

Jµ
6 = i(∂µ ¬

ϕ) ¬
ϕ = −i ¬

ϕ(∂µ ¬
ϕ). (3.18)

To couple the currents to gauge fields, they must be pseudo Hermitian. Given an arbitrary
operator O, it can be made pseudo Hermitian by the linear combination eiϑO + e−iϑO#

where ϑ ∈ R. Applying this procedure to the above currents, we find

Jµ
1 → 2i sinϑ1

[ ¬
ϕ(∂µϕ) − (∂µ ¬

ϕ)ϕ
]
, (3.19)

Jµ
2 → 2i cosϑ2

[ ¬
ϕ(∂µϕ) − (∂µ ¬

ϕ)ϕ
]
, (3.20)

Jµ
3 → eiϑ3(∂µϕ)ϕ+ e−iϑ3 ¬

ϕ(∂µ ¬
ϕ), (3.21)

Jµ
4 → eiϑ4i(∂µϕ)ϕ− e−iϑ4i

¬
ϕ(∂µ ¬

ϕ), (3.22)

Jµ
5 → eiϑ5(∂µ ¬

ϕ) ¬
ϕ + e−iϑ5ϕ(∂µϕ), (3.23)

Jµ
6 → eiϑ6i(∂µ ¬

ϕ) ¬
ϕ − e−iϑ6iϕ(∂µϕ), (3.24)

for ϑi ∈ R. We find the following currents, namely, Jµ
1 , Jµ

3 , and Jµ
4 to be linearly-dependent

on Jµ
2 , Jµ

5 , and Jµ
6 respectively. Therefore, there are three linearly-independent currents

Kµ
1 = Jµ

3 = i sinϑ1
[ ¬
ϕ(∂µϕ) − (∂µ ¬

ϕ)ϕ
]
, (3.25)

Kµ
2 = eiϑ3(∂µϕ)ϕ+ e−iϑ3 ¬

ϕ(∂µ ¬
ϕ), (3.26)

Kµ
3 = eiϑ4i(∂µϕ)ϕ− e−iϑ4i

¬
ϕ(∂µ ¬

ϕ). (3.27)

The corresponding generators are

Y1 = sinϑ1

(
i 0
0 −i

)
, Y2 =

(
0 eiϑ3

−e−iϑ3 0

)
, Y3 =

(
0 ieiϑ4

ie−iϑ4 0

)
. (3.28)

Choosing the phases to be

sinϑ1 = 1, eiϑ3 = eiϑ4 = eiϑ, (3.29)
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the resulting generators satisfy the su(2) algebra

[Yi, Yj ] = 2ϵijkYk. (3.30)

The currents become

Kµ
1 = i

[ ¬
ϕ(∂µϕ) − (∂µ ¬

ϕ)ϕ
]
, (3.31)

Kµ
2 = eiϑ(∂µϕ)ϕ+ e−iϑ ¬

ϕ(∂µ ¬
ϕ), (3.32)

Kµ
3 = i

[
eiϑ(∂µϕ)ϕ− e−iϑ ¬

ϕ(∂µ ¬
ϕ)
]
, (3.33)

and the conserved charges are given by

Q1 = i

∫
d3x

[ ¬
ϕ(∂tϕ) − (∂t

¬
ϕ)ϕ

]
, (3.34)

Q2 =
∫
d3x

[
eiϑ(∂tϕ)ϕ+ e−iϑ ¬

ϕ∂t
¬
ϕ
]
, (3.35)

Q3 = i

∫
d3x

[
eiϑ(∂tϕ)ϕ− e−iϑ ¬

ϕ(∂t
¬
ϕ)
]
. (3.36)

Substituting (2.1)–(2.2) into (3.34)–(3.36), we obtain the normal-ordered charges

Q1 =
∫
d3p

[
a†(p)a(p) − b†(p)b(p)

]
, (3.37)

Q2 = i

∫
d3p

[
e−iϑa†(p)b(p) + eiϑb†(p)a(p)

]
, (3.38)

Q3 =
∫
d3p

[
e−iϑa†(p)b(p) − eiϑb†(p)a(p)

]
. (3.39)

All three charges are pseudo Hermitian. Additionally, Q1 and iQ2,3 are Hermitian, satisfying
the su(2) algebra

[Q1, (iQ2)] = 2i(iQ3), (3.40)
[(iQ2), (iQ3)] = 2iQ1, (3.41)

[Q1, (iQ3)] = −2i(iQ2). (3.42)

After normal ordering Q1, it defines the charges of the particle and anti-particle, namely,

Q1|a⟩ = +|a⟩, Q1|b⟩ = −|b⟩. (3.43)

For Q2,3, they map the particle state to the anti-particle state and vice versa3

Q2|a⟩ = ieiϑ|b⟩, Q2|b⟩ = ie−iϑ|a⟩, (3.44)
Q3|a⟩ = −eiϑ|b⟩, Q3|b⟩ = e−iϑ|a⟩. (3.45)

3LeClair and Neubert asserts that due to the relation Sp(2) ∼= SO(3), the states are of spin-half. We believe
their interpretation to be incorrect. This is because the spin of states are determined by their eigenvalues
with respect to one of the Casimir invariant operators of the Poincaré group, namely s = −m2j(j + 1) with
j = 0, 1

2 , · · · . Since the scalar fermionic fields are constructed from the scalar representation of the Poincaré
group, we have j = 0 and hence s = 0.
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By demanding the currents to be pseudo Hermitian, the global Sp(2,C) symmetry be-
comes SU(2). Therefore, the Lagrangian density, including interacting potentials constructed
from ¬

ϕ and ϕ has a global SU(2) × U(1) symmetry. Because gauge group is semi-simple and
compact, by treating ¬

ϕ and ϕ as doublet (3.2), we can couple them to non-Abelian gauge
fields that resemble the electroweak sector of the SM. However, we should also note that the
doublet structure presented here is fundamentally different from the SM fermionic doublet
because it is bosonic and contains only of one specie of particle. It would be interesting
to see if the symmetry is preserved in presence of quantum corrections. We leave this task
for future investigations.

4 Generalized unitary evolution

Interacting Hamiltonians constructed as functions of ¬
ϕ and ϕ are pseudo Hermitian and

hence complex. One may therefore suspect the resulting S-matrix to be non-unitary. This
concern was partially addressed in [13]. There, a formalism to compute scattering amplitudes
with pseudo Hermitian Hamiltonians and the definition of generalized unitarity relation were
proposed. Here we review the formalism and discuss problems to be addressed.

Let |α⟩ and ⟨β| to be states that evolve under the pseudo Hermitian Hamiltonian

|α(t)⟩ = e−iHt|α⟩, ⟨β(t)| = ⟨α|eiH†t. (4.1)

To preserve time translation symmetry, we use the η-product [8]

⟨β|α⟩η ≡ ⟨β|η|α⟩. (4.2)

Using (2.25), we find ⟨β(t)|α(t)⟩η = ⟨β|α⟩η. The matrix element of operator must now
be defined as

A
(η)
βα ≡ ⟨β|ηA|α⟩ (4.3)

so that it is invariant under time translation. To see this, we take U(t) ≡ eiHt and find

A
(η)
βα = ⟨β|U †(t)[U †−1(t)ηU−1(t)][U(t)AU−1(t)]U(t)|α⟩

= ⟨β(t)|ηAH(t)|α(t)⟩

=
[
A

(η)
H (t)

]
βα
. (4.4)

From (4.3), we define the expectation value to be ⟨A⟩η ≡ A
(η)
αα. When A is pseudo Hermitian,

the expectation value is real.
In the scattering process α → β described by pseudo Hermitian Hamiltonian, the

S-matrix is given by

Sβα ≡ ⟨β+|α−⟩η. (4.5)

where |α−⟩ and |β+⟩ are the ’in’ and ’out’ states. They are related to the free states by

|α−⟩ = Ω−|α0⟩, (4.6)
|β+⟩ = Ω+|β0⟩, (4.7)
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where
Ω(τ) = eiHτe−iH0τ , Ω± = lim

τ→±∞
Ω(τ). (4.8)

Using Ω±, we write (4.5) as

Sβα = ⟨β0|Ω†
+ηΩ−|α0⟩

≡ ⟨β0|S|α0⟩ (4.9)

where S = Ω†
+ηΩ−. Because H is pseudo Hermitian, both Ω and the S-matrix are non-unitary.

Instead, their inverses are obtained via pseudo Hermitian conjugation

Ω−1 = Ω#, S−1 = S#. (4.10)

The matrix component of S−1 is given by

S−1
γβ = S#

γβ ≡ ⟨γ0|S#|β0⟩

= ⟨γ0|η−1S†η|β0⟩
= ⟨γ0|Ω−1

− Ω+η
−1|β0⟩. (4.11)

In obtaining (4.11), we have used η† = η and η = η−1. Now, we recall that the free states
evolve under the free Hamiltonian which is Hermitian. These states admit a Hermitian
inner-product that is positive-definite and invariant under time translation

⟨β0|α0⟩ = δ(β − α). (4.12)

Therefore, they satisfy the completeness relation the completeness relation∫
dβ|β0⟩⟨β0| = I (4.13)

and the S-matrix satisfies the identity∫
dβS#

γβSβα = δ(γ − α). (4.14)

This is the generalized unitarity relation. For any S-matrices defined in terms of the η-product
with pseudo Hermitian Hamiltonians, they will satisfy (4.14).

The completeness relation for the free states holds at all times because the free Hamiltonian
is Hermitian so that |α0, t⟩⟨α0, t| = |α0⟩⟨α0|. As for the in and out states that evolve under
pseudo Hermitian Hamiltonians, their completeness relation cannot take the form of (4.13)
since |α±, t⟩⟨α±, t| ̸= |α±⟩⟨α±|. To derive the completeness relation for the in and out states,
we use the fact that their η-product is invariant under time translation and that

⟨β±|α±⟩η = ⟨β0|α0⟩η. (4.15)

Using (2.14), we find η|α0⟩ = (−1)nα |α0⟩ where nα is the total number of anti-particles
contained in |α0⟩. Therefore,

⟨β±|α±⟩η = (−1)nαδ(β − α). (4.16)
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The completeness relation then reads∫
dβ(−1)nβ |β±⟩⟨β±|η = I, (4.17)

where ∫
dβ(−1)nβ |β±⟩⟨β±|η|α±⟩ = |α±⟩, (4.18)

and ∫
dβ(−1)nβ ⟨α±|η|β±⟩⟨β±|η = ⟨α±|η. (4.19)

The completeness relation (4.17) holds at all times since |α±, t⟩⟨α±, t|η = |α±⟩⟨α±|η. The fact
that the η product is not positive-definite has important implications for pseudo Hermitian
theories to be discussed below and in section 5.

The S-matrix and its inverse admit the following expansions [13]

Sβα = ηβα +
∞∑

n=1

(−i)n

n!

∫
d4x1 · · · d4xn⟨β0|ηT [H (x1) · · ·H (xn)] |α0⟩, (4.20)

S#
γβ = ηγβ +

∞∑
n=1

(+i)n

n!

∫
d4x1 · · · d4xn⟨γ0|ηT

[
H †(xn) · · ·H †(x1)

]
|β0⟩, (4.21)

where ηβα = ⟨β0|η|α0⟩. Normalizing the S-matrix as

Sβα ≡ ηβα − 2πiMβαδ
4(pβ − pα), (4.22)

S#
γβ ≡ ηγβ + 2πiM#

γβδ
4(pγ − pβ), (4.23)

where M#
γβ = ⟨γ0|η−1M †η|β0⟩, we obtain the generalized optical theorem

i

∫
dβ
[
ηγβMβαδ

4(pβ − pα) −M#
γβηβαδ

4(pγ − pβ)
]

= 2π
∫
dβ
[
δ4(pβ − pγ)δ4(pβ − pα)M#

γβMβα

]
. (4.24)

Setting γ = α yields

i

∫
dβ
(
ηαβMβα −M#

αβηβα

)
= 2π

∫
dβ
[
δ4(pβ − pα)M#

αβMβα

]
. (4.25)

The generalized unitarity relation with pseudo Hermitian Hamiltonians is a generalization
to unitary quantum mechanics with Hermitian Hamiltonians. For the generalization to be
consistent, there must be a prescription to compute transition probabilities. Two criteria are
required to ensure consistency. Firstly, the transition probability P (α→ β) for any process
α→ β must be positive-definite. Secondly, we need

∑
β P (α→ β) = 1. When the S-matrix

is unitary, both criteria are equivalent and are trivially satisfied.
The important question is: How do we compute transition probabilities for pseudo

Hermitian theories? The generalized unitarity relation of the S-matrix suggests that the
transition probability for α→ β ought to be proportional to M#

αβMβα but this quantity is

– 11 –
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not positive-definite. So instead, it was proposed in [13] that we multiply it by a phase ℘βα

to obtain ℘βαM
#
αβMβα ≥ 0 and interpret this quantity to be proportional to the transition

probability. However, this proposal is unsatisfactory for the following reason. If we replace the
term M#

αβMβα in (4.25) by ℘βαM
#
αβMβα for processes where ℘βα ̸= 1, the generalized optical

theorem is no longer satisfied. What this means is that had we adopted this prescription,
then we would end up with

∑
β P (α→ β) ̸= 1 which is unacceptable for any physical theories.

Defining the correct transition probabilities is an important problem to be addressed.
But fortunately for us, in the LN model which involves quartic self-interacting scalar fermions
to be studied, the observed difficulty does not arise. Because even though the interaction of
the LN model is pseudo Hermitian, the generalized unitarity relation reduces to the unitarity
relation. To see how it occurs, let us examine M#

αβ . Using the definition of pseudo Hermitian
conjugation and the solution of η given in (2.14), we find

M#
αβ = ⟨α0|η−1M †η|β0⟩ = e−iπ(nα−nβ)M †

αβ (4.26)

where nα and nβ are the number of anti-particles in states |α⟩ and |β⟩ respectively. When
nα = nβ (or up to a integer multiples of 2π), we have M#

αβ = M †
αβ. This is precisely what

happens in the LN model. Using this formalism, we show that the LN-model [11] admits
(generalized) unitary evolution up to one-loop in perturbation theory.

The LN-model. We now consider the LN-model [11]

L =
N∑

i=1

(
∂µ ¬
ϕi∂µϕi −m2 ¬

ϕiϕi

)
− g

2

(
N∑

i=1

¬
ϕiϕi

)2

(4.27)

where all the fields have equal mass and anti-commute with each other

{ϕi(x), ϕj(x)} =
{
ϕi(x), ¬

ϕj(x)
}

=
{ ¬
ϕi(x), ¬

ϕj(x)
}

= 0. (4.28)

Due to fermionic statistics, ¬
ϕ

2
i (x) = ϕ2

i (x) = 0. The interacting density simplifies to4

H = g
N∑

i<j

[ ¬
ϕi(x)ϕi(x) ¬

ϕj(x)ϕj(x)
]
. (4.29)

The model is pseudo Hermitian because there exists an η given by

η =
N∏

i=1
ηi, ηi = exp

[
−iπ

∫
d3p b†i (p)bi(p)

]
, (4.30)

such that L # = L , H # = H . From (4.29), the following two-body scattering processes
are allowed

ij → i′j′, (4.31)
ij̄ → i′j̄′, (4.32)
īi→ j′j̄′, for all j ̸= i, (4.33)

4We can expand the interaction
∫

d3xH to show that it is non-Hermitian.
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where i, j and ī, j̄ denote particle and anti-particle states created by the ith and jth fields
respectively. We will now verify that the S-matrix for these processes satisfy the generalized
unitarity relation up to one-loop.

For all three processes, as there are equal number of particles and anti-particles in the
initial and final states, we have M#

αβ = M †
αβ. Therefore, the optical theorem (4.25) can be

rewritten in terms of two-body cross sections

i

∫
dβ
(
ηαβMβα −M †

αβηβα

)
= uα

8π3σα (4.34)

where

σα = (2π)4

uα

∫
dβ
[
δ4(pβ − pα)|Mβα|2

]
(4.35)

and
uα =

√
(p1 · p2)2 −m4

E1E2
. (4.36)

In the center of mass frame p1 = (E,p) and p2 = (E,−p), so that uα = 4|p|/ECM with
ECM = 2E. The cross-section simplifies to ([3], section 3.4)

σα = (2π)4E2
CM

16

∫
dΩ|Mβα|2 (4.37)

where dΩ is the differential solid angle of the final particle states. For these processes, the
matrix elements of ηβα are given by

η(i′j′)(ij) = η(ij)(i′j′) = +δ[(i′j′) − (ij)], (4.38)

η(i′j
′)(ij) = η(ij)(i′j

′) = −δ[(i′j′) − (ij)], (4.39)

η(j′j
′)(ii) = η(ii)(j′j

′) = −δ[(j′j′) − (ii)], (4.40)

so we obtain

Im
[
M(ij)(ij)

]
= − 1

8π3

[
1 − 4m2

E2
CM

]1/2

σij , (4.41)

Im
[
M(ij)(ij)

]
= + 1

8π3

[
1 − 4m2

E2
CM

]1/2

σij , (4.42)

Im
[
M(ii)(ii)

]
= + 1

8π3

[
1 − 4m2

E2
CM

]1/2

σii, (4.43)

where we have used |p| =
(
1 − 4m2/E2

CM
)1/2. At tree-level, the cross-sections are given by

σij = σij = g2

16πE2
CM

, (4.44)

σii = g2

16πE2
CM

(N − 1). (4.45)

Substituting the cross-sections into the right-hand side of (4.41)–(4.42) and compare them with
the imaginary part of the amplitudes given by (A.15)–(A.17), we find that the generalized
optical theorem is satisfied.
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5 Conclusions

According to the conventional spin-statistics theorem, scalar fields must furnish bosonic
statistics. When phrased as a no-go theorem, it means that anti-commuting scalar fields
violate locality and unitarity. The theory of scalar fermion constructed by LN showed that
once the Hamiltonian is allowed to be pseudo Hermitian, the no-go theorem no longer applies.
We believe this construct to be of fundamental importance because it represents an extension
to the spin-statistics theorem. We have shown in this paper, not only does the theory respect
Lorentz symmetry, it also admit generalized unitary evolution. It would be satisfying, if
scalar fermion is to find applications in elementary particles physics. We shall now list, what
is in our opinion, topics worthy of future investigations.

The LN model is a special case where M#
αβMβα is positive-definite and generalized

unitarity redcues to unitarity. However, this is in general not true. For instance, let us
consider the interaction g

¬
ϕϕφ2 where φ is a real scalar field. At tree-level, for the process

φφ → ¬
ϕϕ, we find M#

( ¬
ϕ ϕ)(φφ)

M( ¬
ϕ ϕ)(φφ) < 0. This issue can be traced to the fact that the

η-norm is not positive-definite. Theories with indefinite norms are usually discarded as
being pathological. Nevertheless, since the LN model is consistent, we believe that there
is a consistent formalism to compute transition probabilities and physical observables for
pseudo Hermitian Hamiltonians circumventing the problem. We leave this important task
for future investigations.

An interesting feature of scalar fermion is that when the currents are pseudo Hermitian,
the Lagrangian density has a global SU(2) × U(1) symmetry. This allows us to investigate
their interactions with non-Abelian gauge fields having similar structure to the electroweak
sector of the SM. Of course, this similarity may be purely coincidental as the bosonic doublet
considered here is fundamentally different from the lepton doublet in the SM and cannot be
associated with the notion of weak isopin and hypercharge. Regardless of its relevance to the
SM, whether the theory is free of quantum anomalies should to be ascertained. If there are
anomalies, one can attempt to look for possible ways to cancel them. Should anomalies be
absent or can be cancelled, then in addition to the U(1) charge, it would be interesting to
study how the symplectic charges contribute to the partition function at finite-temperature.

Besides possible gauge and gravitational interactions with the SM particles, interactions
between the SM fermions and the scalar fermions are limited. As the scalar fermionic fields are
complex, direct interactions with Dirac fermions would be of the form ψψ

¬
ϕϕ which has mass

dimension five and is therefore suppressed. If we consider the LN model as an extension to
the SM, it would potentially be a model of self-interacting fermionic dark matter of spin-zero.

Concerning the quartic self-interaction involving N scalar fermions, this feature is
reminiscent of the Gross-Neveu [23] and the Nambu-Jona Lasinio model [24]. Except here,
the scalar fermions have renormalizable quartic self-interaction in four space-time dimensions.
It would be interesting to study the massless LN model in the large N limit and investigate
the possibility of dynamical mass generation.
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A Amplitudes

We compute the one-loop amplitudes and their imaginary part that are relevant for verifying
the generalized optical theorem in section 4. Because of the fermionic statistics and the
non-trivial adjoint, caution must be exercised when contracting the fields among themselves
and with the states. The amplitudes are given by

S(ij → i′j′) = (−ig)2

2

∫
d4xd4y⟨j′i′|ηT

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕiϕi
¬
ϕjϕj)y

]
|ij⟩

= (−ig)2

2

∫
d4xd4y⟨j′i′|T

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕiϕi
¬
ϕjϕj)y

]
|ij⟩

= −(−ig)2

2

∫
d4xd4y⟨j′i′|T

[
( ¬
ϕi

¬
ϕjϕiϕj)x( ¬

ϕi
¬
ϕjϕjϕi)y

]
|ij⟩

= −(−ig)2
∫
d4xd4y⟨j′i′|( ¬

ϕi
¬
ϕjϕiϕj)x( ¬

ϕi
¬
ϕjϕjϕi)y|ij⟩ + · · ·

= (−ig)2
∫
d4xd4y⟨j′i′|( ¬

ϕi
¬
ϕj)xSi(x− y)Sj(x− y)(ϕjϕi)y|ij⟩ + · · · (A.1)

S(ii→ i′i
′) =

N∑
j ̸=i

(−ig)2

2!

∫
d4xd4y⟨i′i′|ηT

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕiϕi
¬
ϕjϕj)y

]
|ii⟩

= −
N∑

j ̸=i

(−ig)2

2!

∫
d4xd4y⟨i′i′|T

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕiϕi
¬
ϕjϕj)y

]
|ii⟩

= −
N∑

j ̸=i

(−ig)2

2!

∫
d4xd4y⟨i′i′|T

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕjϕj
¬
ϕiϕi)y

]
|ii⟩

= −(−ig)2
∫
d4xd4y

N∑
j ̸=i

⟨i′i′|( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕjϕj
¬
ϕiϕi)y|ii⟩ + · · ·

= (−ig)2
∫
d4xd4y

N∑
j ̸=i

⟨i′i′|( ¬
ϕiϕiSj(x− y)Sj(y − x) ¬

ϕiϕi)y|ii⟩ + · · · (A.2)

S(ij → i′j
′) = (−ig)2

2!

∫
d4xd4y⟨j′i′|ηT

[
( ¬
ϕiϕi

¬
ϕjϕj)x( ¬

ϕiϕi
¬
ϕjϕj)y

]
|ij⟩

= −(−ig)2

2!

∫
d4xd4y⟨j′i′|T

[
( ¬
ϕiϕjϕi

¬
ϕj)x( ¬

ϕiϕjϕi
¬
ϕj)y

]
|ij⟩

= (−ig)2

2!

∫
d4xd4y⟨j′i′|T

[
( ¬
ϕiϕjϕi

¬
ϕj)x( ¬

ϕiϕj
¬
ϕjϕi)y

]
|ij⟩
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= (−ig)2
∫
d4xd4y⟨j′i′|( ¬

ϕiϕjϕi
¬
ϕj)x( ¬

ϕiϕj
¬
ϕjϕi)y|ij⟩ + · · ·

= (−ig)2
∫
d4xd4y⟨j′i′|( ¬

ϕiϕjSi(x− y)Sj(y − x) ¬
ϕjϕi)y|ij⟩ + · · · (A.3)

For the above expressions, we have made explicit the contributions from the s-channel as they
are the only terms that have non-vanishing imaginary parts. Since all the particles have equal
masses, in the center of mass frame, using the expansions of the field and its adjoint given
by (2.1)–(2.2), the contractions of the fields to the initial and final particle states are given by

(ϕjϕi)y|ij⟩ = +e−i(pi+pj)·y
[
(2π)3ECM

]−1
, (A.4)

⟨j′i′|( ¬
ϕj

¬
ϕi)x = +ei(pi′ +pj′ )·x

[
(2π)3ECM

]−1
, (A.5)

( ¬
ϕiϕi)y|ii⟩ = −e−i(pi+p

i
)·y
[
(2π)3ECM

]−1
, (A.6)

⟨i′i′|( ¬
ϕiϕi)x = +ei(pi′ +p

i
′ )·x

[
(2π)3ECM

]−1
, (A.7)

( ¬
ϕjϕi)y|ij⟩ = −e−i(pi+p

j
)·y
[
(2π)3ECM

]−1
, (A.8)

⟨j′i′|( ¬
ϕiϕj)x = +ei(pi′ +p

j
′ )·x [(2π)3ECM

]−1
. (A.9)

In the limit where the initial and final momenta coincide, the s-channel amplitudes are given by

M(ij)(ij)(s) = + i

(2π)7E2
CM

[
−ig(2π)4

]2
V (s), (A.10)

M(ii)(ii)(s) = − i

(2π)7E2
CM

[
−ig(2π)4

]2
(N − 1)V (s), (A.11)

M(ij)(ij)(s) = − i

(2π)7E2
CM

[
−ig(2π)4

]2
V (s), (A.12)

where
V (s) =

[
i

(2π)4

]2∫
d4k

( 1
k2 −m2 + iϵ

)[ 1
(k + p)2 −m2 + iϵ

]
. (A.13)

By dimensional regularization, we obtain

V (s) = −iπ2
[

i

(2π)4

]2∫
1
0dx

{
ln
[
m2 − s(1 − x)x

]
+ 2
ϵ

+ γE

}
, (A.14)

where ϵ = (d − 4) and γE is the Euler constant. The imaginary part of the amplitudes
are given by

Im
[
M(ij)(ij)

]
= − g2

128π4E2
CM

[
1 − 4m2

E2
CM

]1/2

, (A.15)

Im
[
M(ii)(ii)

]
= + g2

128π4E2
CM

(N − 1)
[
1 − 4m2

E2
CM

]1/2

, (A.16)

Im
[
M(ij)(ij)

]
= + g2

128π4E2
CM

[
1 − 4m2

E2
CM

]1/2

. (A.17)
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