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1 Introduction

Owing to its large cross section and clean experimental signature, the Drell-Yan-like production
of charged leptons is among the most important standard-candle processes at hadron colliders
such as the Tevatron and the LHC [1–4]. The charged-current channel (W production) allows
for the determination of the mass and width of the W boson [5–9], the neutral-current channel
(Z production) for the measurement of the effective weak mixing angle [5, 10–14], both with
extraordinary precision. For these high-precision measurements, among the most relevant
observables are the transverse-momentum and invariant-mass distributions, as well as the
differential forward-backward asymmetry of the charged lepton pair from Z production, in the
vicinity of the W- and Z-boson resonances. Moreover, Drell-Yan cross sections significantly
contribute to the determination of the parton distribution functions (PDFs) via rapidity
distributions and the W-boson charge asymmetry [15]. Last but not least, Drell-Yan-like
processes are well suited to search for new W′ and Z′ bosons in the high invariant-mass
range of the final-state leptons.

All these measurements and precision tests of the Standard Model require precise
predictions for differential Drell-Yan cross sections at the highest possible level in order to
match or better surpass the experimental uncertainties. To this end, radiative corrections of
the strong and electroweak (EW) interactions as well as corrections mixing these types of
interactions have to be calculated to higher orders in perturbation theory. Fixed-order QCD
calculations are available fully differentially at next-to-next-to-leading order (NNLO) [16–23]
with third-order results (N3LO) known fully inclusively [24–26], single-differentially [27, 28],
and at the fiducial level [28–30]. Additionally, the resummation of large QCD logarithms
occurring due to soft-gluon emissions at small transverse momentum has been studied in
refs. [30–43], and threshold effects have been calculated up to N3LO in QCD [44, 45]. On the
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EW side, the next-to-leading order (NLO) corrections are known [46–61] as well as leading
higher-order effects from multiple photon emissions or of universal origin [54, 56, 57, 62, 63].

The mixing of QCD and EW corrections begins at NNLO, i.e. at O(αsα). The calculation
of these corrections to W and Z production started in refs. [64, 65] in pole approximation
(PA), which is based on the leading contribution in an expansion of all matrix elements
about the resonance poles (see, e.g., ref. [66] for the general concept). The PA reduces the
complexity of the loop calculations, e.g. by avoiding two-loop box diagrams with the full
2 → 2 kinematics, and classifies the O(αsα) corrections into four separately gauge-invariant
contributions [64]: (i) factorizable initial-final (IF) corrections including QCD corrections
to W/Z production and EW corrections to the W/Z decay, (ii) factorizable initial-initial
(II) corrections including mixed NNLO QCD × EW corrections to on-shell W/Z production,
(iii) final-final (FF) corrections with QCD and EW corrections confined in the W/Z decays,
and (iv) non-factorizable (NF) corrections linking the QCD-corrected W/Z production to
the leading-order (LO) decay process by soft photon exchange or emission. The NF and
FF corrections have been calculated in ref. [64] and ref. [65], respectively, and found to be
insignificant in differential cross sections. The corrections of type IF have been evaluated in
ref. [65] as well and found to be sizeable owing to the interplay of the large QCD corrections
in the production with enhanced photonic final-state radiation effects. These corrections, in
particular, induce a shift in the W-boson mass extracted from the charged-current process
which was estimated to be about 10MeV. The II corrections had been neglected in refs. [64, 65],
following arguments that they are expected to be subleading w.r.t. the IF corrections owing
to the absorption of the enhanced collinear ISR effects into the PDFs in contrast to the
situation for FSR. The missing II corrections of O(αsα) meanwhile have been calculated in
refs. [67] and [68–75] for W and Z production, but unfortunately have not yet been combined
with the other correction types to a full prediction in PA.

More recently, the O(αsα) corrections to the full off-shell Drell-Yan processes have been
attacked by several groups, starting with the O(Nf αsα) corrections to the charged- and
neutral-current channels which are enhanced by the number Nf of fermion flavours [76].
For the off-shell charged-current process, the O(αsα) corrections have been evaluated in
approximate form, taking into account real and real-virtual NNLO corrections exactly, but
neglecting the genuine two-loop corrections [77]. For the off-shell neutral-current process, the
full O(αsα) corrections have been calculated by two groups [78–80]. While these achievements
can certainly be considered as a major breakthrough in the calculation of mixed QCD × EW
corrections to 2 → 2 scattering processes, we still see the need to complete the discussion of
the phenomenological structure and impact of the O(αsα) corrections to Drell-Yan processes
at least in two respects. Firstly, a thorough comparison of the approximate and full off-shell
calculations with PA predictions is very desirable, to better understand the origin of the
dominant effects and to obtain further guidance in the construction of approximations that
are numerically more efficient to evaluate. Secondly, for the neutral-current case a proper
phenomenological discussion of the O(αsα) corrections to the differential forward-backward
asymmetry still does not exist in the literature.

In this paper we prepare for the first aspect by completing the PA prediction started
in refs. [64, 65] by calculating the missing II corrections to Z production. Since ref. [78]
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employs the same setup as already used in our previous calculation [64, 65], we keep this
setup in this paper as well and compare our PA results on differential cross sections with
the results from the off-shell calculation of ref. [78], which are based on bare muons. A
more complete comparison, including results based on dressed leptons as used in ref. [79],
is beyond the scope of this paper and will certainly carried out within the LHC Electroweak
Working Group in the near future. The major part of our discussion of numerical results is
devoted to the O(αsα) corrections to the forward-backward asymmetry in the Z resonance
region in the neutral-current Drell-Yan process. This discussion is of particular relevance
for the theory predictions to the experimental determination of the effective weak mixing
angle at the LHC.

This paper is organized as follows: In section 2 we give a short overview of the gauge-
invariant PA contributions to the O(αsα) corrections and discuss our calculation of contri-
butions of type II. The latter are divided into mixed QCD × weak and QCD × photonic
corrections in a gauge-invariant way on the basis of selecting appropriate subsets of diagrams.
The QCD × weak part comprises only genuine two-loop corrections to the Zf̄f vertex and
real-virtual corrections with jet emission. Our result for the corresponding two-loop form-
factor, which was first calculated in ref. [81], is presented in appendix A. Since the infrared
(IR) singularities in the QCD × weak corrections are only of NLO complexity, we apply
both the antenna [82] and dipole subtraction [83] approaches to combine the two IR-singular
parts to a total IR-finite result. The QCD × photonic corrections feature double-virtual,
real-virtual, and double-real corrections. To isolate and combine all NNLO IR singularities,
which is the major complication in this part, we apply antenna subtraction as introduced
in refs. [84, 85]. Our calculation is the first application of antenna subtraction to O(αsα)
corrections. In section 3 we present a detailed discussion of the O(αsα) corrections to neutral-
current DY processes in the Z-resonance region on various distributions, with special emphasis
on the newly calculated corrections to the forward-backward asymmetry. To complete the
phenomenological picture we also provide full NLO results (i.e. without resorting to the
PA), split into a genuine weak part and photonic parts induced by initial-state radiation,
final-state radiation, and initial-final interference. The PA-based O(αsα) correction is split
into II, FF, IF, and NF parts as introduced above. Finally, we also evaluate the relevant
leading EW effects beyond NNLO, which are induced by multi-photon radiation and the
leading universal EW renormalization effects. Our summary is given in section 4, and the
appendices provide further analytical results.

2 Details of the calculation

In this section we describe the calculation of O(αsα) corrections to the neutral-current
Drell-Yan process in PA. In section 2.1 we give an overview of the separately gauge-invariant
building blocks of the PA at O(αsα). Corrections of initial-initial type — i.e. the O(αsα)
corrections with both QCD and EW corrections to the production of the Z boson — are
the last missing piece to complete the calculation [64, 65] of O(αsα) corrections to DY-like
Z-boson production in PA; their calculation is described in section 2.2.
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2.1 O(αsα) corrections to single-Z production in pole approximation

The expansion of the full NNLO O(αsα) correction around the Z resonance pole at p2
Z ≈ M2

Z

leads to the following four types of corrections [64, 65], which are illustrated for the purely
virtual two-loop corrections in figure 1:

• Factorizable O(αsα) corrections of initial-final (IF) type combine the O(αs) corrections
to Z production and the O(α) correction to the leptonic Z decay. Here and in the
following the terminology “factorizable” refers to the fact that the corresponding
amplitudes all factorize in terms of subamplitudes for production and decay and a
resonant Z-boson propagator. The strong collinear enhancement of final-state photon
radiation renders the IF class of O(αsα) corrections by far the dominant PA contribution
in the resonance region [65].

• The factorizable initial-initial (II) O(αsα) corrections contain contributions where
both QCD and EW corrections are located in the Z-boson production subprocess.
This contribution is essentially furnished by the corrections to on-shell Z production,
supplemented by the off-shell Z propagator and the leptonic Z decay in LO. Since both
QCD and photonic effects from initial-state radiation are widely absorbed into PDFs,
the type-II O(αsα) corrections were expected to be suppressed w.r.t. to the dominating
IF corrections and neglected in refs. [64, 65]. In this paper, we complete the PA at
O(αsα) by supplementing the corrections of type II. We split the II corrections into the
separately gauge-invariant QCD×weak and QCD×photonic parts of the orders O(αsαw)
and O(αsαp), respectively. The photonic initial-state corrections are identified as the
part of the O(α) corrections that are proportional to the product of quark charges and
comprise all contributions where the photon couples only to the quark or antiquark.
Note that the QCD×photonic corrections even form a gauge-invariant part of the full
off-shell calculation without PA.

• The factorizable final-final (FF) O(αsα) corrections include only counterterm corrections
to the lepton-Z vertices and, in particular, do not receive contributions from real gluon
or photon radiation. In [65] the explicit calculation of these corrections confirmed
the expectation that their impact on differential cross sections is phenomenologically
negligible.

• Non-factorizable (NF) corrections are induced by soft-photon exchange or emission
connecting final-state leptons and initial-state quarks, combined with QCD O(αs)
corrections to Z-boson production. The non-trivial momentum flow of the soft photon
between production and decay subprocesses, which implies that the squared matrix
elements are not proportional to a squared Z propagator, gave rise to the terminology
“non-factorizable”. Owing to a systematic cancellation between real and virtual NF
corrections the numerical impact of these corrections on differential cross sections is at
the sub-permille level [64] and therefore of no relevance for phenomenology.

The four types of O(αsα) corrections in PA can be further classified into the usual NNLO
contributions of types double-real, real-virtual, and double-virtual. Figure 1 shows the
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(a) Factorizable initial-final (IF) corrections

αsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsα

qa

qb

`1
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V

(b) Factorizable initial-initial (II) corrections

αsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsα

qa

qb

`1

`2

V

(c) Factorizable final-final (FF) corrections

αs

qa

qb

`1

`2

V

γ

(d) Non-factorizable (NF) corrections

Figure 1. The four types of corrections that contribute to the mixed QCD × EW corrections in PA
illustrated in terms of generic two-loop amplitudes. Simple circles symbolize tree structures, double
circles one-loop corrections, and triple circles two-loop contributions.

separation of the double-virtual corrections into IF, II, FF, and NF contributions; the
corresponding separation of the double-real and real-virtual corrections is obvious.

2.2 Calculation of the factorizable initial-initial corrections

In this section we present the details of our calculation of the corrections of type II. The
calculation of the corrections of types IF+FF and type NF can be found in refs. [65] and [64],
respectively. Since the PA for the factorizable corrections is based on amplitudes for the
production and decay subprocesses, the implementation of the PA involves a projection
of momenta to on-shell (OS) Z bosons in the subamplitudes (but not in the intermediate
Z propagator), in order to maintain gauge invariance in the subamplitudes. The details of
the OS mappings are discussed when they become relevant below.

The QCD × photonic O(αsαp) corrections of type II are proportional to the charge
factors Q2

q of the (anti)quarks and therefore gauge invariant even without applying the PA.
In order to stay closer to the full calculation, we evaluate the QCD × photonic corrections
without employing the PA. However, for the QCD × weak O(αsαw) corrections we have to
use the PA to preserve gauge invariance. Both for the QCD×weak and the QCD× photonic
II corrections we have performed two independent calculations which produce results that
are in mutual numerical agreement.

The double-real, real-virtual, and double-virtual contributions arising in the calculation
of corrections of type II are depicted in figure 2. Initial-initial O(αsαp) corrections demand
a proper NNLO subtraction scheme as they involve two potentially unresolved particles in
the final state. To this end, we employ antenna subtraction. The construction of antenna
subtraction functions at O(αsαp) is based on the subleading colour parts of the known O(α2

s )
antenna functions for the initial-final [86] and initial-initial [87, 88] cases. In contrast to
the QCD × photonic II corrections, in the QCD × weak II corrections only one potentially
unresolved particle is involved, and therefore the IR pole structure is of one-loop complexity,
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q̄

q

V V ′
l

l̄

g

γ

q̄

g

V V ′
l

l̄

γ

q̄

q

q

V V ′
γ

l

l̄

q

q

g

(a) Double-real O(αsαp) II interference diagrams.

q̄

q

V V ′
αp

l

l̄

g q̄

q

V V ′
αs

l

l̄

γ

q̄

q

Z Z
αw

l

l̄

g

(b) Real-virtual O(αsαp) II (first line) and O(αsαw) II (second line) interference diagrams.

q̄

q

Vαp

l

l̄

g

q̄

q

Z
αw

l

l̄

g

(c) Double-virtual O(αsαp) and O(αsαw) II diagrams.

Figure 2. Various contributions to the gauge-invariant set of O(αsαp) and O(αsαw) II corrections,
where V, V ′ = Z, γ. Double circles indicate one-loop corrections, simple circles indicate relevant
tree structures, and simple circles with a “γ” (“g”) inside represent all possible connected tree-level
diagrams of the process qaqa → qaqa + V with an intermediate photon (gluon). An additional particle
attached to a “one-loop blob”, as e.g. in figure 2(c), means that the particle has to be inserted into
the corresponding one-loop diagram in all possible ways.
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so that one-loop subtraction schemes are sufficient to handle the IR poles. In this case
we have applied both antenna [82] and dipole subtraction [83] and compared the obtained
results, which are in agreement.

2.2.1 Double-virtual corrections

The double-virtual corrections affect the underlying 2 → 2 process

q(pq, σq) + q̄(pq̄, σq̄) → ℓ−(kℓ, τℓ) + ℓ+(kℓ̄, τℓ̄), (2.1)

where the momenta and helicity labels of the respective particles are given in parentheses.
The total incoming momentum is denoted q = pq + pq̄ in the following. All external fermions
are taken massless, i.e. p2

q = p2
q̄ = k2

ℓ = k2
ℓ̄
= 0. In the following we will make use of the

Mandelstam variables

ŝ = (pq + pq̄)2 = q2, t̂ = (pq − kℓ)2, û = (pq − kℓ̄)
2. (2.2)

The double-virtual II corrections to the qq̄ → ℓ−ℓ+ matrix element receive contributions
from QCD × weak O(αsαw) and QCD × photonic O(αsαp) corrections. The O(αsαw) cor-
rections to the Zq̄q vertex are contained in the two-loop contribution to the renormalized
Zq̄q formfactors F̂ Zq̄q

± (q2) for light quarks,

ΓZq̄q
R,µ(−q, pq̄, pq) = e

∑
τ=±

F̂ Zq̄q
τ (q2)γµωτ , ω± = 1

2(1± γ5), (2.3)

where ΓZq̄q
R,µ is the renormalized Zq̄q vertex function with off-shell Z momentum q projected

onto massless external on-shell (anti)quarks q/q̄ and e is the elementary charge. For field-
theoretical quantities and Standard Model fields and parameters we follow the notation
and conventions of ref. [66], if not defined otherwise. The LO contributions F Zq̄q

LO,τ to the
formfactors are given by

F Zq̄q
LO,τ = gτ

q , (2.4)

with the chiral couplings

g+
f = −Qf sw

cw
, g−f =

I3
w,f − Qf s2

w
cwsw

, (2.5)

where Qf and I3
w,f denote the electric charge and the third component of weak isospin of some

fermion f , respectively. Here, sw and cw are the sine and cosine of the weak mixing angle,
which is related to the masses MW and MZ of the W/Z bosons according to cw = MW/MZ.

It is convenient to define the so-called reducible (red) parts of the O(αsαw) contribution
to the formfactors as the products of the renormalized one-loop QCD and weak contributions
to the formfactors,

F̂ Zq̄q,red
Vs⊗Vw,τ (q

2) = δZq̄q
Vs

(q2) F̂ Zq̄q
Vw,τ (q

2), (2.6)
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Z

q

q̄

V g
Z

q

q̄

V

g

Z

q

q̄

V

g

Z

q

q̄

g

V

Z

q

q̄

g

V
Z

q

q̄

V

g
Z

q

q̄

g

V

(a) Abelian diagrams

Z

q

q̄

g

W

W
Z

q

q̄

g

W

W
Z

q

q̄

g

W

W

(b) Non-Abelian diagrams

Figure 3. Example diagrams for the various O(αsαw) two-loop contributions to the Zq̄q vertex,
where V = Z, W .

where δZq̄q
Vs

(q2) is the renormalized NLO QCD correction factor, e.g., given in eq. (2.35) of
ref. [64], and the renormalized NLO weak formfactor contribution F̂ Zq̄q

Vw,τ (q2). The latter
decomposes into unrenormalized part F Zq̄q

Vw,τ (q2) and counterterm contribution δct,τ
Zq̄q,weak,

F̂ Zq̄q
Vw,τ (q

2) = F Zq̄q
Vw,τ (q

2) + F Zq̄q
LO,τ δct,τ

Zq̄q,weak. (2.7)

Explicit expressions for the weak corrections and counterterms can, e.g., be found in ref. [57].
To extract the genuine NNLO information contained in the full O(αsαw) formfactor we

define the irreducible (irred) contribution as the difference between the full O(αsαw) and
the reducible contributions to the formfactor,

F̂ Zq̄q,irred
Vs⊗Vw,τ (q

2) = F̂ Zq̄q
Vs⊗Vw,τ (q

2)− F̂ Zq̄q,red
Vs⊗Vw,τ (q

2), (2.8)

where the corresponding diagrams are shown in figure 3. This irreducible contribution further
decomposes into a (q2-independent) counterterm part F̂ Zq̄q,irred

Nf αsαw,τ containing all irreducible
two-loop contributions with closed quark loops and an internal gluon and a part F Zq̄q,irred

Vs⊗Vw,τ (q2)
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comprising all genuine two-loop corrections to the vertex and the external quark lines. For
the Nf -enhanced counterterm part F̂ Zq̄q,irred

Nf αsαw,τ we adopt the results of ref. [76], where the
O(Nf αsα) corrections to the full off-shell process have been calculated,

F̂ Zq̄q,irred
Nf αsαw,τ = F Zq̄q

LO,τ δct,τ
Zf̄f,(αsα), (2.9)

where the counterterm correction factor δct,τ
Zf̄f,(αsα) is given in eq. (2.46) of ref. [76].1 The Nf -

independent O(αsαw) part F Zq̄q,irred
Vs⊗Vw,τ (q2) is most conveniently formulated with two auxiliary

functions, called ϕA and ϕNA in the following, which have been introduced and calculated
in ref. [81],

F Zq̄q,irred
Vs⊗Vw,+(q

2) = CF
αs

4π

α

4π
(g+

q )3 ϕA(q2/M2
Z), (2.10)

F Zq̄q,irred
Vs⊗Vw,−(q

2) = CF
αs

4π

α

4π

(
(g−q )3ϕA(q2/M2

Z) +
g−q
2s2

w
ϕA(q2/M2

W) + I3
w,q

cw
2s3

w
ϕNA(q2/M2

W)
)

,

where CF = 4/3.
We have performed a completely independent recalculation of the formfactors ϕA and

ϕNA. The graphs for the two-loop vertex corrections were generated with FeynArts1.0 [89].
To express the amplitudes in terms of scalar two-loop master integrals the amplitudes
were further algebraically reduced with inhouse Mathematica routines combined with an
integral reduction based on KIRA [90, 91]. The scalar master integrals were calculated
via differential equations [92, 93] producing results in terms of Goncharov Polylogarithms
(GPLs) [94, 95]. The GPLs are evaluated with an inhouse library that was checked against
results from the programs CHAPLIN [96] and handyG [97]. Further details of our formfactor
calculation as well as benchmark numbers are given in appendix A. Our second, independent
calculation of the O(αsαw) corrections makes use of the results for the unrenormalized
irreducible contribution to the formfactor as given in ref. [81]. Appendix A also reports on
a comparison between our formfactor results and the ones taken from ref. [81], revealing
numerical agreement if we numerically evaluate the analytical results of ref. [81], although
we cannot fully reproduce all benchmark numbers given there.

In summary, the O(αsαw) contributions to the Zq̄q formfactor defined in (2.3) de-
compose as

F̂ Zq̄q
αsαw,τ (q2) = F̂ Zq̄q,red

Vs⊗Vw,τ (q
2) + F̂ Zq̄q,irred

Vs⊗Vw,τ (q
2) (2.11)

= δZq̄q
Vs

(q2)
[
F Zq̄q

Vw,τ (q
2) + F Zq̄q

LO,τ δct,τ
Zq̄q,weak

]
+ F Zq̄q

LO,τ δct,τ
Zf̄f,(αsα) + F Zq̄q,irred

Vs⊗Vw,τ (q
2).

In all contributions from closed quark loops, the full dependence on the bottom- and top-
quark masses is kept. All other appearances of bottom quarks are connected to external
quarks, which are all taken massless. In the one-loop formfactor F Zq̄q

Vw,τ (q2) and in the
irreducible two-loop contribution F Zq̄q,irred

Vs⊗Vw,τ (q2), W-boson exchange leads to the appearance of
top-quarks in the bb̄ channel, which is suppressed w.r.t. the other qq̄ channels. In F Zq̄q

Vw,τ (q2)
the corresponding dependence on the top-quark mass mt is kept, while mt is set to zero in
F Zq̄q,irred

Vs⊗Vw,τ (q2). To assess the validity of this approximation, we have also set mt to zero in
F Zq̄q

Vw,τ (q2) as well, which changes the QCD × weak corrections to the Mℓℓ distribution by
1Actually, the result given there is formulated in the complex-mass scheme. The translation to the real OS

renormalization scheme used in this paper is, however, obvious.
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less than 0.05% and to the forward-backward asymmetry AFB(Mℓℓ) by about 10−5 at most,
which is both phenomenologically completely negligible.

The O(αsαw) correction of type II to the squared qq̄ → ℓℓ̄ amplitude, M qq̄→ℓℓ̄
Vs⊗Vw,II,PA,

is obtained from the interference between the genuine two-loop O(αsαw) matrix element
Mqq̄→ℓℓ̄

Vs⊗Vw,II,PA and the LO matrix element Mqq̄→ℓℓ̄
LO,Z and the interference of two one-loop

matrix elements Mqq̄→ℓℓ̄
Vs,I,PA and Mqq̄→ℓℓ̄

Vw,I,PA, the former with an O(αs) and the latter with an
O(αw) initial-state correction,

M qq̄→ℓℓ̄
Vs⊗Vw,II,PA = 2Re

{
Mqq̄→ℓℓ̄

Vs⊗Vw,II,PA

(
Mqq̄→ℓℓ̄

LO,Z

)∗
+Mqq̄→ℓℓ̄

Vs,I,PA

(
Mqq̄→ℓℓ̄

Vw,I,PA

)∗ }
. (2.12)

In PA, the individual matrix elements in the last equation are obtained by employing the
respective on-shell form factors F Zq̄q

... (q2 = M2
Z),

Mqq̄→ℓℓ̄
LO,Z = e2 F Zq̄q

LO,σ gτ
ℓ

ŝ − µ2
Z

Aστ , (2.13)

Mqq̄→ℓℓ̄
Vw,I,PA = e2 F̂ Zq̄q

Vw,σ(M2
Z) gτ

ℓ

ŝ − µ2
Z

Aστ , Mqq̄→ℓℓ̄
Vs,I,PA = δZq̄q

Vs
(M2

Z)M
qq̄→ℓℓ̄
LO,Z , (2.14)

Mqq̄→ℓℓ̄
Vs⊗Vw,II,PA = e2 F̂ Zq̄q

αsαw,σ(M2
Z) gτ

ℓ

ŝ − µ2
Z

Aστ , (2.15)

ensuring gauge invariance of the respective corrections. In the last equation µ2
Z = M2

Z−iMZΓZ
is the gauge-independent location of the Z-propagator pole, and Aστ are Dirac chains
containing the information on the chiralities of the quark and lepton spinor chains σ and
τ , respectively; in ref. [57] the Aστ were calculated to

A±± = 2û, A±∓ = 2t̂. (2.16)

Recall that σ and τ fix the helicities of the external fermions (σ = σq = −σq̄, τ = τℓ = −τℓ̄),
which are taken massless, so that the matrix-element contributions for different combinations
στ do not interfere.

Equation (2.12) contains products of weak and QCD one-loop corrections, raising the
question whether the one-loop corrections are needed to higher orders in ϵ = (4− D)/2 in
dimensional regularization. This is, however, not the case, i.e. it is sufficient to evaluate all
one-loop corrections to O(ϵ0). Since the weak one-loop corrections are finite, no O(ϵ) terms
of the QCD one-loop corrections can produce relevant terms. On the other hand, the weak
one-loop corrections eventually multiply the finite sum of QCD one-loop corrections and the
integrated contributions of the QCD subtraction function (from antenna or dipole subtraction),
so that O(ϵ) terms of the weak one-loop corrections cannot produce relevant terms either.

The contribution of double-virtual QCD× photonic corrections to the squared qq̄ → ℓℓ̄

amplitude is given by the interference of the genuine two-loop O(αsαp) II amplitude and the
LO amplitude, and by the interference between two one-loop amplitudes with initial-state
corrections,

M qq̄→ℓℓ̄
Vs⊗Vp,II = 2Re

{
Mqq̄→ℓℓ̄

Vs⊗Vp,II

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗
+Mqq̄→ℓℓ̄

Vs,I

(
Mqq̄→ℓℓ̄

Vp,I

)∗ }
. (2.17)
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Owing to parity invariance of QCD and QED, the QCD, the photonic, and the QCD×photonic
correction factors to the right- and left-handed formfactors of the Zq̄q vertex coincide, so that
the corrected matrix elements are proportional to the LO amplitude,

2Re
{
Mqq̄→ℓℓ̄

Vs⊗Vp,II

(
Mqq̄→ℓℓ̄

LO,Z/γ

)∗ }
= δ

Zq̄q,[2×0]
Vs⊗Vp

(ŝ)
∣∣Mqq̄→ℓℓ̄

LO,Z/γ

∣∣2, (2.18)

2Re
{
Mqq̄→ℓℓ̄

Vs,I

(
Mqq̄→ℓℓ̄

Vp,I

)∗ }
= δ

Zq̄q,[1×1]
Vs⊗Vp

(ŝ)
∣∣Mqq̄→ℓℓ̄

LO,Z/γ

∣∣2. (2.19)

We recall that we evaluate these corrections without applying the PA, so that all amplitudes
involve both Z-boson and photon exchange. The explicit expressions for the factorized correc-
tion factors can be extracted from the subleading colour contribution of the O(α2

s ) correction
to the qq̄ → ℓℓ̄ amplitude [98] or from the quark formfactor [99] using an abelianization
procedure. We have recalculated the correction factors explicitly along the same lines as
sketched in appendix A for the QCD × weak corrections.2 The results are

δ
Zq̄q,[2×0]
Vs⊗Vp

(ŝ) = 2Q2
qCF

αsα

π2 C2
ϵ

(
µ2

ŝ

)2ϵ [ 1
4ϵ4 + 3

4ϵ3 + 1
ϵ2

(
41
16 − 13π2

24

)
(2.20)

+ 1
ϵ

(
221
32 − 3π2

2 − 8
3ζ3

)
+
(
1151
64 − 475π2

96 − 29
4 ζ3 +

59π4

288

)
+O(ϵ)

]
,

δ
Zq̄q,[1×1]
Vs⊗Vp

(ŝ) = 2Q2
qCF

αsα

π2 C2
ϵ

(
µ2

ŝ

)2ϵ [ 1
4ϵ4 + 3

4ϵ3 + 1
ϵ2

(
41
16 − π2

24

)

+ 1
ϵ

(
7− π2

8 − 7
6ζ3

)
+
(
18− 41π2

96 − 7
2ζ3 −

7π4

480

)
+O(ϵ)

]
, (2.21)

where Cϵ = (4π)ϵ e−ϵγE .

2.2.2 Real-virtual corrections

The factorizable real-virtual II O(αsα) corrections receive contributions from virtual photonic
corrections to Z/γ∗ production with real QCD radiation, from real photon radiation to
the virtual QCD corrections to Z/γ∗ production, and lastly from virtual weak corrections
to Z production with real QCD radiation, as summarized in figure 2(b). The types of
contributing partonic channels of Z + jet and Z + γ production are given by

q̄a(pa) + qb(pb) → Z(pZ) + g(kg), (2.22)
q̄a(pa) + qb(pb) → Z(pZ) + γ(kγ), (2.23)
g(pg) + qb(pb) → Z(pZ) + qa(ka), (2.24)
g(pg) + q̄a(pa) → Z(pZ) + q̄b(kb). (2.25)

Note we have not included channels with photons in the initial state, since their impact
is already suppressed at NLO. As described above, all QCD × photonic II corrections
are consistently evaluated for the full off-shell process with Z and γ exchange, while the
amplitudes with a virtual weak and a real QCD correction have to be evaluated in PA to
preserve gauge invariance.

2The coefficient of the ϵ−1 contribution to δ
Zq̄q,[1×1]
Vs⊗Vp

in [98] differs from our result by a sign in the term
proportional to ζ3.
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The 2 → 3 one-loop matrix elements are evaluated in two independent ways. In the
first calculation the results for the virtual one-loop EW corrections to Z + jet production
have been taken from the earlier calculation [100], and the virtual one-loop QCD corrections
to Z + γ have been obtained via an abelianization of the NNLO QCD calculation [101].
In the second calculation FeynArts [102] is used to generate the amplitudes which are
reduced to standard integrals using FormCalc [103]. The one-loop integrals are numerically
evaluated with the library Collier [104].

We now turn to the construction of the PA for the QCD × weak II corrections, in
particular to the issue of an appropriate OS projection of momenta to guarantee gauge-
invariant subamplitudes. Having constructed the amplitudes for the virtual weak and real
QCD correction to Z production in the q̄q channel, we first construct a preliminary version of
the PA amplitude from the Zg-production and Z-decay subamplitudes,

M̃q̄aqb→ℓℓ̄,PA
Vw⊗Rs,Z,prod×prod =

∑
λZ

Mq̄aqb→gZ
Vw⊗Rs,PA(λZ) MZ→ℓℓ̄

0,PA (λZ)
p2

Z − µ2
Z

, (2.26)

where the tilde indicates that we still have to fix the OS projection of the external momenta.
Rescaling all external momenta according to

pi → p̂i = pi
MZ√
2kℓkℓ̄

, i = a, b, g,

kj → k̂j = kj
MZ√
2kℓkℓ̄

, j = a, b, ℓ, ℓ̄, g, (2.27)

preserves on-shellness of all (light-like) momenta and momentum conservation, and forces
the new Z momentum p̂Z = k̂ℓ + k̂ℓ̄ on-shell,

p̂2
Z = 2 k̂ℓk̂ℓ̄ = M2

Z. (2.28)

Simply applying eq. (2.27) to the residue of the resonance in eq. (2.26) is, however, not
sufficient to define a consistent PA, since we also have to guarantee a proper subtraction of all
soft and collinear divergences in the IR limits. Since the subtraction function is constructed
from the underlying 2 → 2 scattering amplitudes in PA, the OS projections used in the
2 → 2 and 2 → 3 contributions are not independent.

In the calculation of the double-virtual corrections described in the previous section we
have defined the OS projection in such a way that only the dimensionless Zq̄q formfactor
is forced to be on-shell, but not the Dirac chains Aστ of the amplitudes (and of course not
the Z propagator containing the resonance). This variant ensures the same energy-scaling
behaviour of the PA and off-shell amplitudes in the far off-shell regions up to logarithmic
deviations contained in the corrections. Breaking the scaling behaviour would be prone to
artefacts when evaluating the PA on the full phase space. The OS projection of the 2 → 2
amplitudes can be summarized as follows,

M2→2
Z,PA(pa, pb, kℓ, kℓ̄) =

[
M2→2

Z · (p2
Z − µ2

Z)
]∣∣

pi→p̂i,kj→k̂j

p2
Z − µ2

Z

· 2 kℓkℓ̄

M2
Z

, (2.29)

where the last factor on the r.h.s. is used to restore the original scaling behaviour of the
Aστ after the application of (2.27).
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By the same reasoning, we have to rescale M̃q̄aqb→ℓℓ̄,PA
Vw⊗Rs,Z,prod×prod of eq. (2.26) by a factor

2 kℓkℓ̄/M2
Z to restore the scaling behaviour of the spinor chains. However, we have yet to

apply another factor MZ/
√
2 kℓkℓ̄ to compensate for the fact that the 2 → 3 amplitudes

contain another factor of (energy)−1 that was rescaled by applying eq. (2.27). If we did
not include this compensation factor, some mismatch would arise with the OS-projected
subtraction function which employs squared 2 → 2 amplitudes in PA times a splitting factor
of dimension (energy)−2 that is based on the off-shell kinematics. In summary, the OS
projection of the 2 → 3 amplitudes reads

Mq̄aqb→ℓℓ̄,PA
Vw⊗Rs,Z,prod×prod =

[
M̃q̄aqb→ℓℓ̄,PA

Vw⊗Rs,Z,prod×prod · (p2
Z − µ2

Z)
]∣∣

pi→p̂i,kj→k̂j

p2
Z − µ2

Z

·
√

2 kℓkℓ̄

M2
Z

. (2.30)

This OS projection of the 2 → 3 amplitudes is also in line with the integrated subtraction
function which receives the same scaling as the 2 → 2 contributions after integration over
the off-shell phase space.

Note that the choice we made for the OS projection is not unique and different choices
would be possible. For instance, we could have opted to keep also the Dirac structures
on-shell. Different versions for the OS projection lead to results that formally differ at the
order of the intrinsic uncertainty of the PA. However, it is important to construct the on-shell
projection in a self-consistent way in order to guarantee a proper subtraction of all soft
and collinear singularities between 2 → 3 contributions and subtraction functions in the IR
limits. The OS projection for 2 → 3 processes, thus, implicitly fixes OS projection of all
2 → 2 processes by this consistency requirement.

2.2.3 Double-real corrections

The double-real corrections are diagrammatically illustrated in figure 2(a) and are induced
by diagrams with both an external gluon and photon or by diagrams with two additional
external (anti)quarks and an internal photon, i.e. they are all part of the QCD× photonic
O(αsαp) II corrections, while QCD×weak corrections do not contribute here.3 Accordingly,
we do not apply the PA in the calculation of double-real corrections. The types of channels
that have to be considered are given by

q̄a(pa) + qb(pb) → Z(pZ) + g(kg) + γ(pγ), (2.31)
g(pg) + qb(pb) → Z(pZ) + qa(ka) + γ(pγ), (2.32)
g(pg) + q̄a(pa) → Z(pZ) + q̄b(kb) + γ(pγ), (2.33)
qb(pa) + qb(pb) → Z(pZ) + qb(ka) + qb(kb), (2.34)
q̄a(pa) + q̄a(pb) → Z(pZ) + q̄a(ka) + q̄a(kb), (2.35)
q̄a(pa) + qa(pb) → Z(pZ) + q̄a(ka) + qa(kb). (2.36)

Again, we have not included channels with photons in the initial state, since their impact is
already suppressed at NLO. The helicity amplitudes for the considered partonic channels

3We note that the last diagram in figure 2(a) has a weak counterpart (with a Z boson instead of the photon
in the blob) that is expected to be strongly suppressed and thus not considered further.
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were calculated using the spinor-helicity formalism, using the formulation of ref. [105], and
independently through the abelianization of the corresponding NNLO QCD amplitudes. Note
that the double-real correction induced by the last diagram of figure 2(a) is only non-zero for
the case where the quark chains close to a single loop, i.e. for the scattering of two identical
quarks. Otherwise the interference amplitude vanishes owing to colour conservation.

3 Numerical results

3.1 Input parameters and event selection

The setup for the calculation is largely taken over from refs. [64, 65]. The choice of input
parameters closely follows ref. [106],

MW,OS = 80.385GeV, ΓW,OS = 2.085GeV,

MZ,OS = 91.1876GeV, ΓZ,OS = 2.4952GeV,

MH = 125.9GeV, Gµ = 1.1663787× 10−5 GeV−2,

mt = 173.07GeV, mb = 4.78GeV,

mµ = 105.658369MeV.

(3.1)

We convert the on-shell (OS) masses and decay widths of the vector bosons to the corre-
sponding pole masses according to [66]

MV = MV,OS√
1 + Γ2

V,OS/M2
V,OS

, ΓV = ΓV,OS√
1 + Γ2

V,OS/M2
V,OS

. (3.2)

The electromagnetic coupling constant is set according to the Gµ scheme. The masses of
the light quark flavours (u,d,c,s) and of the leptons are neglected throughout. The mass
mµ of the muon is only needed in the evaluation of the logarithmically mass-singular FSR
corrections for bare muons. The CKM matrix is chosen diagonal in the third generation, and
the mixing between the first two generations of massless quarks cancels in cross sections by
virtue of the unitarity of the CKM matrix. While b-quarks appearing in closed fermion loops
have the mass mb given in eq. (3.1), external b-quarks are taken as massless.

We consider µ−µ+ production in pp collisions at a centre-of mass energy of 13TeV. For
the PDFs we consistently use the NNPDF3.1 set [107], i.e. the NLO and NNLO QCD and
QCD × EW corrections are evaluated using the NNPDF31_nlo_as_0118_luxqed set, which
also includes O(α) corrections. The value of the strong coupling αs(MZ) = 0.118 is dictated
by the choice of this PDF set. The renormalization and factorization scales are set equal,
with a fixed value given by the Z-boson mass,

µR = µF = MZ. (3.3)

For the experimental identification of the DY process we impose the following cuts on
the transverse momenta and rapidities of the charged leptons,

kT,ℓ± > 25GeV, |yℓ± | < 2.5. (3.4)

We further apply a cut on the invariant mass Mℓℓ of the lepton pair,

Mℓℓ > 50GeV, (3.5)

in order to avoid the photon pole at Mℓℓ → 0.
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In the following, we distinguish two alternative treatments of photon radiation off leptons:
“bare muons” and “dressed leptons”. In the bare-muon case, no recombination of leptons
and nearly collinear photons is performed, reflecting the experimental situation which allows
for the detection of isolated muons. In the dressed-lepton case, collinear photon-lepton
configurations are treated inclusively using a photon-recombination procedure. As a result,
the numerical predictions do not contain large logarithms of the lepton mass, which can
be set to zero. The dressed-lepton results are appropriate mostly for electrons in the final
state. In detail, for dressed leptons a photon recombination procedure analogous to the
one used in refs. [49, 57] is applied:

1. Photons close to the beam with a rapidity |ηγ | > 3 are treated as beam remnants and
are not further considered in the event selection.

2. For the photons that pass the first step, the angular distance to the charged leptons
Rℓ±γ =

√
(ηℓ± − ηγ)2 +∆ϕ2

ℓ±γ is computed, where ∆ϕℓ±γ denotes the azimuthal angle
difference of the lepton and photon in the transverse plane. If the distance Rℓ±γ between
the photon and the closest lepton is smaller than Rrec

ℓ±γ = 0.1, the photon is recombined
with the lepton by adding the respective four-momenta, ℓ±(ki) + γ(k) → ℓ±(ki + k).

3. Finally, the event selection cuts from eqs. (3.4)–(3.5) are applied to the resulting event
kinematics.

3.2 Corrections to differential distributions

In this section we discuss our results on the corrections to muon pair production (ℓ = µ)
and to the production of a dressed lepton pair for the distributions in the invariant mass
Mℓℓ of the ℓ̄ℓ pair, the transverse momentum kT,ℓ of one of the leptons, and the rapidity
yℓℓ of the ℓ̄ℓ pair. By default, relative corrections δ are normalized to full off-shell LO
distributions in the following. Whenever of relevance, we show both results for the event
selection without or with photon recombination, denoted “bare muons” and “dressed leptons”,
respectively, in the following.

We start out by showing the NLO QCD and NLO EW corrections in figure 4, recalculated
in the setup described in the previous section. In the following, all LO, NLO, and NNLO
cross sections are evaluated with the same PDF set, in order to make the impact of all types
of corrections most transparent, without being affected by differences in the PDFs. The LO
and NLO predictions are calculated using the complex-mass scheme [66, 108] for treating
the Z-boson resonance, as described in ref. [57] in detail, and the PA is not used in any of
the NLO corrections. Owing to the suppression of the contribution from γγ initial states,
we only include the contributions of the qq̄ channels in the LO cross section and consider
the LO γγ contribution as part of the corrections. We denote as “γ-ind.” the sum of the
LO (γγ) and NLO (qγ/q̄γ) photon-induced contributions.

The decomposition of the NLO EW corrections into contributions from photonic final-
state radiation (FSR), photonic initial-final interference effects (IF), photonic initial-state
radiation (ISR), and purely weak corrections (weak) are shown in figure 5. The LO γγ

contribution as well as the NLO correction induced by qγ/q̄γ initial states are illustrated
in figure 5 separately as well. Of course, similar results have been shown in several places
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contributions in cyan), and full NLO (green) corrections (normalized to LO) to various distributions
for bare muons (l.h.s.) and for dressed leptons (r.h.s.).
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in the literature (see, e.g., ref. [57]), but recalling these results facilitates the discussion of
the O(αsα) corrections below.

The EW corrections to the Mℓℓ distributions show the well-known radiative tail below
the resonance at Mℓℓ = MZ, which is dramatically enhanced due to the collinear singularity
∝ α ln(mℓ/MZ) in the FSR contribution if no photon recombination is applied. The fact
that the radiative tail does not extend below Mℓℓ values of about 68GeV is an effect of the
acceptance cuts on the lepton transverse momenta kT,ℓ± of 25GeV. The major part of all
Z bosons is produced on shell, so that before FSR most leptons carry kT,ℓ± of at most MZ/2.
At NLO, collinear FSR reduces one of the lepton momenta by a factor z (0 < z < 1), so
that M2

ℓℓ is given by zM2
Z after FSR. The maximal value of the reduced kT,ℓ± is zMZ/2,

corrsponding to a Z-boson decay transverse to the beams. Thus, for kT,ℓ± = zMZ/2 < 25GeV,
which corresponds to Mℓℓ =

√
zMZ < 68GeV, events with an on-shell Z boson and collinear

FSR off a lepton cannot pass the acceptance cut any more, which leads to a strong suppression
of the FSR correction for such invariant masses Mℓℓ. The photon recombination described in
the previous section mitigates the FSR corrections by roughly a factor 2, i.e. the mass-singular
logarithm is effectively replaced by ∼ lnRrec

ℓ±γ = ln(0.1). The remaining photonic corrections
(IF, ISR) are at the sub-percent level, the weak corrections at the few-percent level. The
corrections induced by γγ and qγ/q̄γ initial states are largely suppressed on resonance (the
γγ channel does not develop a Z resonance at all), but typically matter at the percent level
in a window of a width of 10−20GeV around the Z-boson resonance.

The distribution in the transverse momentum of a lepton at LO is dominated by resonant
Z production for kT,ℓ ≲ MZ/2, where all NLO corrections are moderate; the largest EW
effects are again due to FSR. For larger kT,ℓ ≳ MZ/2 the QCD corrections develop “giant
K-factors” [109], since the jet recoil in the real QCD corrections allows for the population of
the region with kT,ℓ > MZ/2 by events with resonant Z bosons. The γγ- and qγ/q̄γ-induced
corrections only amount to some ∼ 0.1% for transverse momenta below the Jacobian peak.
For large transverse momenta, the same is true for the relative corrections normalized to
the full (QCD-corrected) differential cross section.

Finally, the NLO corrections to the rapidity distribution of the Z boson resemble the
moderate corrections to the integrated cross section in the central part of the distribution,
i.e. for |yℓℓ| ≲ 1.3. The corrections from γγ and qγ/q̄γ initial states only contribute at the
level of 0.1−0.2% over the whole rapidity range.

Figure 6 shows two types of higher-order EW corrections beyond NLO: First, the FSR
effects induced by collinear multi-photon emission off the leptons in the structure function
approach [110–115]4 based on leading logarithms up to O(α3) with the NLO contribution
subtracted. Second, the leading NNLO EW effects from the universal corrections induced
by the running of the electromagnetic coupling (∆α) and by corrections to the ρ-parameter
(∆ρ). The precise definition of the two types of corrections can be found in Sections 3.4.3
and 3.4.1 of ref. [57], respectively. The corrections shown in figure 6 are obtained for bare
muons. For dressed leptons the FSR effects based on leading-log structure functions vanish,
and the leading universal EW corrections would be identical to the ones for bare muons,
because these corrections do not involve photon radiation. The most notable higher-order
EW effect shown in figure 6 arises from multi-photon correction to the Mℓℓ distribution, with

4Note that ref. [113] contains errors that have been addressed in refs. [116, 117].
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Figure 6. Relative higher-order photonic FSR effects (∆LLFSR, red), i.e. the NLO contribution is
subtracted, and universal EW higher-order corrections (EWHO, green), both normalized to LO. The
red band illustrates the scale uncertainty of the LLFSR correction by varying the central FSR scale
µFSR = MZ up and down by a factor 2.

an impact on the radiative tail at the level of 5%. Note also that the uncertainty arising
from the scale µFSR of the multi-photon effects that is not unambiguously fixed in leading
logarithmic approximation is not completely negligible in the Mℓℓ distribution.

Given that the dominant EW corrections arise from FSR corrections, we compare in
figure 7 the NLO prediction to the one obtained using the Photos [118] QED shower on top
of the LO prediction. This allows to assess the performance of a tool commonly employed
in the experimental measurements and the potential impact of multi-photon emissions that
go beyond the structure-function approach discussed above. As anticipated, FSR effects are
well captured by the Photos tool, agreeing very well with the NLO QED FSR part of our
calculation. NLO EW effects that go beyond FSR, i.e. ISR and initial-final QED effects
and genuine weak corrections, on the other hand, are not included and thus not captured
by the naive LO⊗Photos prediction. Small differences in the normalisation, as can be
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seen in the yℓℓ distribution can likely be attributed to multi-photon effects and the choice
of α scheme within the QED shower.

The NNLO QCD×EW corrections in PA are shown in figure 8 together with their by far
dominating contribution of type IF, which was already calculated in ref. [65]. In the regions
that are dominated by the Z resonance, the IF QCD × EW corrections are typically one to a
few percent and thus phenomenologically important and even larger than the NNLO QCD
corrections, which we have been evaluated using the results of ref. [101]. Note that the large
radiative tail for Mℓℓ ≲ MZ, where the QCD × EW corrections grow to ∼ 5−10%, are still
calculable in PA, because these effects are dominated by photonic FSR off the leptons that
result from nearly resonant Z bosons. The shape of the QCD × EW correction to the Mℓℓ

distribution is widely inherited from the product of the photonic FSR effect at Mℓℓ and the
QCD ISR correction at Mℓℓ ≈ MZ. The only exception is the narrow peak slightly below
Mℓℓ ∼ 68GeV, which is a fixed-order artefact from soft-gluon emission. To understand the
origin of this peak, recall the explanation of the truncation of the FSR radiative tail observed
in figure 4 below the Z resonance at Mℓℓ ∼ 68GeV. For smaller Mℓℓ one of the decay leptons of
a resonant Z boson cannot pass the cuts on kT,ℓ± at NLO. At NNLO QCD×EW, jet emission
before the formation of the Z resonance leads to a recoil of the Z boson that is transferred to
the decay leptons. Thus, near the edge at Mℓℓ ∼ 68GeV, relatively soft gluon emission can
be enough to allow an event to pass the kT,ℓ± cuts while corresponding events with virtual
gluon exchange and LO kinematics in the Z production process still do not pass the cuts.
This mismatch leads to the sharp peak for Mℓℓ values slightly below the edge of the radiative
QED FSR tail. Soft-gluon resummation or possibly an adjustment of fiducial cuts or of the
event selection would largely mitigate this artefact, but this is beyond the scope of this paper.

As mentioned in the introduction, the setup of our calculation coincides with the one
used in ref. [78], where the O(αsα) corrections have been evaluated for bare muons without
applying the PA. Overlaying our relative corrections to the Mℓℓ distribution shown in the top-
left plot of figure 8 with the corresponding plot in figure 2 of ref. [78] reveals agreement within
statistical fluctuation.5 Note that this agreement also confirms our expectation that O(αsα)
corrections induced by photons in the initial state, which are neglected in our calculation
but included in the results of ref. [78], are negligible.

In the kT,ℓ distribution the only significant effect of ∼ 10% appears at kT,ℓ ≲ MZ/2 where
the region of resonant Z bosons sets in. Note that for kT,ℓ > MZ/2 the plots overestimate the
impact of the corrections because of their normalization to the LO distribution. Normalizing
the corrections to the QCD-corrected differential cross section would reveal that the impact
of QCD × EW corrections is back to the few-percent level. As for the applicability of the
PA for kT,ℓ > MZ/2, where the LO distribution receives only contributions from off-shell
Z bosons, we still expect a good approximative quality of the PA, because the recoil from
QCD ISR effects, which is part of the QCD×EW corrections, allows for the population of this
phase-space region by resonant Z bosons. Comparing our PA results on corrections to the kT,ℓ

distribution shown in the left-middle plot of figure 8 to the corresponding results of ref. [78] for
bare muons, shown in their figure 1, we again find agreement within statistical fluctuations.

5In the invariant-mass window 70 GeV < Mℓℓ < 110 GeV the good agreement holds, even though our PA
takes into account only Z-boson exchange LO diagrams, i.e. we do not reweight the full LO cross section with
Z-boson and photon exchange by some PA correction factor, as suggested in eqs. (12,13) of ref. [77].
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Finally, the QCD × EW corrections to the yℓℓ distribution are about 0.5−1% and,
thus, phenomenologically less important in the central region, where most of the events
are concentrated.

The QCD×EW corrections other than the IF contribution, i.e. the corrections of types II
(calculated in this paper), NF [64], and FF [65] are depicted in figure 9. For the shown
window around the Z resonance in the Mℓℓ distribution and in the whole yℓℓ distribution,
these contributions never exceed 0.2% and are phenomenologically not relevant in the absolute
predictions of the differential cross sections. Only the II corrections to the kT,ℓ distribution
gain some relevance, reaching the 1% level near kT,ℓ ∼ MZ/2. Recall again that for larger
kT,ℓ the corrections should be normalized to the QCD-corrected prediction for an assessment
of their true impact.

Figure 10 compares the IF factorizable corrections with an approximation obtained by
folding the NLO QCD correction, dNLOQCD, with the Photos QED shower. In this way,
terms of O(αsα) are generated that can be contrasted with the PA calculation. Overall, we
observe a good qualitative agreement between the two predictions, further supporting our
observation that the dominant effects at this order arise from FSR QED effects. Moreover,
the good agreement hints that the impact of multi-photon emissions beyond what is captured
in our calculation is likely not of high phenomenological relevance. As we will see in the
next section, the agreement seen here in the absolute predictions degrade visibly in the case
of the forward-backward asymmetry AFB.

3.3 Corrections to the forward-backward asymmetry

The forward-backward (FB) asymmetry for ℓ+ℓ− production at the LHC is defined as [46, 48]

AFB(Mℓℓ) =
σF(Mℓℓ)− σB(Mℓℓ)
σF(Mℓℓ) + σB(Mℓℓ)

(3.6)

with

σF(Mℓℓ) =
∫ 1

0
dcos θ∗

dσ

dcos θ∗
, σB(Mℓℓ) =

∫ 0

−1
dcos θ∗

dσ

dcos θ∗
. (3.7)

The angle θ∗ is the so-called Collins-Soper (CS) angle, which is defined by [46, 119]

cos θ∗ = |k3
ℓℓ|

k3
ℓℓ

2
Mℓℓ

√
M2

ℓℓ + k2
T,ℓℓ

(
k+

ℓ k−
ℓ̄
− k+

ℓ̄
k−

ℓ

)
, (3.8)

where

kµ
ℓℓ = kµ

ℓ + kµ

ℓ̄
, k±

j = 1√
2
(k0

j ± k3
j ), j = ℓ, ℓ̄, (3.9)

i.e. M2
ℓℓ = k2

ℓℓ. All four-momenta are defined in the LAB frame.
The FB asymmetry AFB(Mℓℓ) is mainly relevant for determining the leptonic effective

weak mixing angle sin2 θℓ
w,eff defined on the Z resonance from an Mℓℓ window around MZ with

a width of about ∼ ±10GeV. LEP/SLC precision in sin2 θℓ
w,eff roughly translates into an

uncertainty of ∼ 10−3 in AFB, so that the precision target for an improved determination of
sin2 θℓ

w,eff at the LHC requires to control the prediction of AFB(Mℓℓ) at the level of few ∼ 10−4

in the vicinity of the Z resonance. Existing measurements of AFB at the LHC [11, 12, 14, 120]
are already at the accuracy level of 10−3 near the Z resonance. Increased statistics from higher
luminosity and steady improvements in the determination of parton distribution functions
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Figure 9. Subcontributions of the relative NNLO QCD × EW corrections in PA (normalized to LO):
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dominating IF contribution is contained in figure 8.
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Figure 10. NNLO IF QCD × EW (green) and dNLOQCD ⊗ dPhotos (red) corrections, normalized
to LO.
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Figure 11. FB asymmetry AFB for muon pair (left) and dressed-lepton pair (right) production at
LO (red) and including various corrections: NLO QCD (green), NLO EW (blue), full NLO QCD +
EW (pink), and NNLO ≡ NLO + EWHO + ∆LLFSR + QCD×QCD + QCD×EW (light blue).

will tackle two of the main sources of uncertainties in these measurements, further challenging
the precision of the underlying theory predictions.

In figure 11 the LO prediction for the FB asymmetry AFB is compared to predictions
including NLO QCD, NLO EW, and all available NNLO corrections, where

Ax
FB = σx

F − σx
B

σx
F + σx

B
, x = LO, NLO, NNLO, (3.10)

where σx
F/B are the forward/backward cross sections (3.7) evaluated at order x. The absolute

prediction for AFB(Mℓℓ), which is shown in figure 11, is of the order of 10−2 near the
Z resonance, and the impact of NLO and NNLO corrections is already visible there. To
quantify the impact of the various corrections better, we consider the shifts with respect
to the LO asymmetry:

∆Ax
FB = ALO+δx

FB − ALO
FB, (3.11)

where δx indicates the higher-order correction of type x.
Figure 12 separately shows the impact of NLO QCD, NLO EW, γ-induced, and the

pure photonic FSR part of the NLO EW corrections. The latter constitutes the dominating
effect with an impact of ∼ 10−2 at the edge of the MZ − 10GeV < Mℓℓ < MZ + 10GeV
window around the Z resonance. NLO QCD corrections are in the ballpark of ∼ 10−3, while
the photon-induced contributions are negligible as expected. The NLO EW corrections not
connected to FSR are illustrated in figure 13 together with the separation of the γ-induced
contributions into LO and NLO parts. After the FSR effects, the most prominent contribution
at NLO EW is given by the purely weak corrections, which reach up to 5×10−3. The photonic
IF interference, photonic ISR, and γ-induced effects typically contribute only fractions of 10−3,
but have to be taken into account in predictions at the targeted level of precision. We note
that the LO γγ contribution is symmetric in the forward and backward directions, however,
the change in the (symmetric) denominator of eq. (3.10) gives rise to a non-vanishing effect
in eq. (3.11) seen in the figures.
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Figure 12. NLO corrections to the FB asymmetry AFB for muon pair (left) and dressed-lepton pair
(right) production: NLO QCD (black), NLO EW (red), γ-induced contribution (cyan), full NLO QCD
+ EW (green), and photonic FSR at NLO (blue).
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Figure 13. NLO EW corrections to the FB asymmetry AFB for muon pair (left) and dressed-lepton
pair (right) production induced by QED IF (red), QED ISR (green), and purely weak (blue) corrections,
as well as contributions from LO γγ (cyan) and NLO qγ/q̄γ (yellow) initial states.
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Figure 15. NLO EW (green) and LO ⊗ dPhotos (red) corrections to the FB asymmetry.

Figure 14 shows the effect of multi-photon emission off leptons and of the universal
higher-order EW corrections beyond NLO on the FB asymmetry. The higher-order FSR
corrections modify AFB at the level of ∼ 10−3 with a residual scale uncertainty of a few
10−4 and are, thus, important. On the other hand, the NNLO universal EW corrections
amount only to a few 10−4.

In figure 15 we contrast full NLO EW corrections and QED FSR effects with a prediction
based on the Photos QED shower on top of the LO prediction. We see good agreement
between FSR corrections and the QED shower and the small normalization difference that
was observed in the absolute predictions of figure 7 largely drop out in the observable AFB.
A notable difference to the absolute predictions discussed in the previous section is the much
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Figure 16. NNLO QCD × QCD corrections (red), full QCD × EW corrections in PA (blue), and IF
QCD × EW corrections in PA (green) to the FB asymmetry.
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Figure 17. NNLO QCD × EW corrections of types FF (red), NF (green), IsIp (blue), and IsIw
(purple) to the FB asymmetry.

more pronounced impact of non-FSR effects as can be assessed from a comparison to the
full NLO EW curve. This does not come as a surprise given the strong sensitivity of this
observable to the weak sector of the Standard Model.

In figure 16 we show the impact of the NNLO QCD and QCD × EW corrections in PA,
together with the dominating IF contribution of the latter. The QCD × EW IF corrections
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Figure 18. NNLO IF QCD × EW (green) and dNLOQCD ⊗ dPhotos (red) corrections to the
FB asymmetry.

change the FB asymmetry in the vicinity of the Z resonance by a few 10−3 and are, thus,
phenomenologically very important, while the NNLO QCD corrections contribute only at
the level of few 10−4. The QCD × EW corrections of types other than IF are depicted in
figure 17. While the corrections of type FF still reach the relevant level of 4 × 10−4, the
QCD × photonic and QCD × weak II corrections as well as the NF contributions are well
below 10−4 and, thus, phenonemonologically negligible.

Finally, figure 18 shows the comparison of the results obtained with the QED shower
Photos on top of the NLO QCD prediction, dNLOQCD ⊗ Photos, with the IF factorizable
O(αsα) corrections. A similar picture emerges here as at the previous order where the
agreement between the two results that was seen in the absolute predictions of figure 10 sub-
stantially degrades in this observable, with a notable shape distortion that pivots around the
resonance. This is again likely due to the more sizeable impact of the non-FSR contributions
that are not captured by a QED shower.

4 Summary

Next-to-next-to-leading-order (NNLO) corrections of mixed QCD × electroweak (EW) origin,
together with the recent process in third-order (N3LO) QCD results, are among the most
important fixed-order corrections beyond the well-known NNLO QCD and next-to-leading-
order (NLO) EW corrections to differential cross sections of Drell-Yan-like lepton pair
production. In the vicinity of the Z-boson resonance, the pole approximation (PA) can
be used to reduce the complexity of the NNLO QCD × EW corrections significantly. The
PA allows to classify the corrections into four separately gauge-invariant building blocks:
corrections of types initial-initial (II), initial-final (IF), final-final (FF), and non-factorizable
(NF) corrections. Making use of previous calculations of the IF, FF, and NF corrections, in this
paper we have completed the PA at the order O(αsα) by calculating the corrections of type II.
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Technically, we have split the O(αsα) II corrections of the PA into two separately gauge-
invariant parts: the QCD × photonic corrections with photon exchange between and photon
radiation off quarks, which we have evaluated without using the PA, and the QCD × weak
corrections with additional W/Z exchange in loops in PA. For the latter, we have recalculated
the needed two-loop Zq̄q formfactor and presented explicit analytical results. For the QCD
infrared (IR) singularities, which are only of NLO complexity in this part, we have applied
antenna and dipole subtraction. The IR singularities of the QCD × photonic corrections,
which are of NNLO complexity, are treated with antenna subtraction. All our results have
been derived in two completely independent calculations, the results of which are in good
mutual numerical agreement.

Although the O(αsα) corrections to the full off-shell lepton pair production process have
been calculated in recent years, the completion of the PA is still very useful. Firstly, a
detailed numerical comparison between the full calculation and the PA sheds light on the
structure of the O(αsα) corrections, which might be helpful in calculating or approximating
such corrections for related processes. The completion of the PA presented here renders
such a comparison possible. Secondly, the full off-shell calculation is extremely complex and
numerically challenging. For this reason, a detailed discussion of the O(αsα) corrections
to the forward-backward asymmetry AFB of the leptons that is fully differential w.r.t. the
invariant mass of the lepton pair was still missing in the literature. With the numerical
results presented in this paper we have closed this gap.

The prospects to measure the leptonic effective weak mixing angle in the high-luminosity
phase of the LHC with a precision exceeding LEP accuracy, translates into a target precision
in the predictions for AFB of a few 10−4 in the Z resonance region. We have presented a
detailed survey of higher-order corrections, comprising results at the NLO QCD + EW level,
the NNLO QCD + QCD×EW level, and leading EW effects beyond NLO from multi-photon
emission and universal EW corrections. Photonic final-state radiation (FSR) at NLO produces
the largest correction to AFB of about 10−2, followed by the NLO weak corrections of about
5 × 10−3. The remaining NLO contributions, including QCD, affect AFB at the level of
few 10−3. The NNLO O(αsα) corrections of IF type, which combine QCD corrections to
Z production and photonic FSR off the leptons modify AFB at the level of few 1−2× 10−3,
which is also the typical size of multi-photon effects. Finally, the NNLO QCD corrections
and the remaining O(αsα) corrections generically matter at the level of a few 10−4.

As already mentioned, one of the natural next steps in the evaluation of O(αsα) corrections
to Drell-Yan-like processes is a detailed comparison of PA-based and full off-shell results for all
individual ingredients, such as photonic and weak corrections to lepton pair production. Last
but not least, another important step will be the completion of both the PA and the full off-
shell calculation of O(αsα) corrections to the charged-current process of W production, which
will be particularly important for upcoming high-precision measurements of the W-boson
mass at the LHC.
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A Formfactors for the irreducible O(αsαw) corrections to the Zf̄f vertex

Here we present our explicit analytical results for the formfactor functions ϕA(z) and ϕNA(z)
defined in ref. [81] to described the irreducible contributions of O(αsαw) to the Zf̄f vertex
corrections, as defined in eq. (2.10). These contributions correspond to the difference between
the full formfactors and the naive product of the corresponding of O(αs) QCD and O(αw)
weak contributions. We prefer to call those parts “irreducible” rather than “non-factorizable”
(as done in ref. [81]) to avoid confusion with our classification of the different types of
corrections arising in the resonance expansion.

We have performed a completely independent recalculation of the formfactors employing
standard methods. In detail, we have generated the two-loop graphs with FeynArts 1.0 [89]
and further algebraically processed the amplitudes with inhouse Mathematica routines,
to express them in terms of scalar two-loop integrals. The large set of two-loop integrals is
reduced to a set of master integrals with Laporta’s algorithm [121], employing the program
Kira 2.0 [90, 122]. Finally, the master integrals are calculated via differential equations
using Henn’s canonical ϵ-form [92, 93], directly producing a result in terms of Goncharov
Polylogarithms (GPLs) [94, 95].

For the formfactor functions ϕA(z) and ϕNA(z) of ref. [81] we explicitly get

ϕA(z) =
4(1 + z)2

3z2

[
−24G(0, 1, 0,−1;−z) + 6G(0, 1, 0, 0;−z)− 6G(1, 0, 0,−1;−z)

− 12G(1, 0, 1, 0;−z) + 36G(1, 1, 0,−1;−z)− 12G(1, 1, 0, 0;−z)
+ 12G(1, 1, 1, 0;−z)− 18G(1, 0,−1;−z) + 9G(1, 0, 0;−z)
− 9G(1, 1, 0;−z) + 2π2G(0, 1;−z)− 5π2G(1, 1;−z)

− 3(6ζ3 − π2)G(1;−z)
]

+ 16(1 + 3z + z2)
3z2

[
−3G(0,−1, 0,−1;−z) + 3G(0,−1, 0, 0;−z)

+ π2G(0,−1;−z)
]

+ 12(1− z2)
z2

[
π2G(−1;−z)− 3G(−1, 0,−1;−z) + 3G(−1, 0, 0;−z)

]
+ (2 + 3z)

3z

[
12G(0, 1, 0;−z) + 36ζ3 + 16π2 − 51G(0;−z)

]
+ 4(4 + 3z)

z
G(0, 0,−1;−z)− 4(11 + 9z)

z
G(0,−1;−z)

+ 2(16 + 23z)
z

G(0, 0;−z)− 2(1 + z)(3 + 5z)
z2 G(1, 0;−z)

+ 2(−1 + z)(13 + 27z)
z2 G(−1;−z)− 2 + 16

z
, (A.1)
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ϕNA(z) =
8(1 + z)2

3z2

[
6G(0,−1, 0,−1;−z)− 6G(0,−1, 0, 0;−z) + 24G(0, 1, 0,−1;−z)

− 6G(0, 1, 0, 0;−z) + 6G(1, 0, 0,−1;−z) + 12G(1, 0, 1, 0;−z)
− 36G(1, 1, 0,−1;−z) + 12G(1, 1, 0, 0;−z)− 12G(1, 1, 1, 0;−z)
+ 18ζ3G(1;−z) + 5π2G(1, 1;−z) + 18G(1, 0,−1;−z)− 9G(1, 0, 0;−z)

+ 9G(1, 1, 0;−z)− 3π2G(1;−z)− 2π2G(0,−1;−z)− 2π2G(0, 1;−z)
]

+ 8(1− z2)
z2

[
3G(−1, 0,−1;−z)− 3G(−1, 0, 0;−z)− π2G(−1;−z)

]
− 8(4 + 3z)

z
G(0, 0,−1;−z)− 8(2 + 3z)

z
G(0, 1, 0;−z)

− 4(1 + 3z)(5 + 3z)
z2 G(0,−1;−z) + 4(1 + z)(3 + 5z)

z2 G(1, 0;−z)

− 4(1− z)(13 + 19z)
z2 G(−1;−z)− 6(2 + 7z)

z
G(0;−z)

− 48(1− y2)(1− 2y)
y4

[
2G(0, 1, 1, 1; y)− 2G(0, 1, 1, y2; y)− 2G(0, 1, 1, y1; y)

− G(1, 1, 1, 1; y) + G(1, 1, 1, y2; y) + G(1, 1, 1, y1; y)
]

− 16G(0, 0, 1; y) + 16G(0, 0, y2; y) + 16G(0, 0, y1; y) + 24G(0, 1, 1; y)
− 8G(0, 1, y2; y)− 8G(0, 1, y1; y) + 8G(1, 0, 1; y)− 8G(1, 0, y2; y)
− 8G(1, 0, y1; y)− 8G(1, 1, y2; y)− 8G(1, 1, y1; y)

− 4(10− 20y − 4y2 + 14y3 + 5y4)
y4

[
G(0, 1; y)− G(0, y2; y)− G(0, y1; y)

]
− 4(−11 + 34y − 20y2 − 12y3 + 5y4)

y4 G(1, 1; y)

+ 4(−5 + 22y − 16y2 − 10y3 + 2y4)
y4

[
G(1, y2; y) + G(1, y1; y)

]
+ 2(−26 + 64y − 46y2 − 6y3 + 31y4)

y4 G(1; y)

− 4(1− y + y2)(−13 + 13y + 12y2)
y4

[
G(y2; y) + G(y1; y)

]
− 48ζ3

z
− 72ζ3 −

4π2

3 − 60
y2 + 60

y
− 60

z
− 16, (A.2)

where

z = q2

M2 + i0, y1,2 = 1
2
(
1± i

√
3
)

,

y = y(z) =


[
z −

√
z(z − 4)

]
/2 for q2 < 0,

2z/
[
z +

√
z(z − 4)

]
for q2 > 4M2,[

z − i
√

z(4− z)
]

/2 otherwise.
(A.3)

The variable y is a solution of the quadratic equation 0 = z(1 − y) + y2 with the special
property that the contour from y(0) = 0 to y(z) defined by z = r + i0, r ∈ R, is homotopic to
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our result Ref. [81]
ϕA(1 + i0) −2.1073169− 19.033126i −2.1073− 19.0331i
ϕNA(1 + i0) −7.5879998 + 16.719365i −7.5880 + 16.7194i
ϕA(1.2856 + i0) −1.3610142− 22.238253i −1.3598− 30.4095i
ϕNA(1.2856 + i0) −10.121177 + 18.696957i −10.1248 + 35.0336i

Table 1. Comparision our numerical results on ϕA(z) and ϕNA(z) with the benchmark numbers given
in ref. [81].

the straight line from 0 to y(r + i0) in the complex y plane going between the singularities
at y1,2 without hitting them. This property guarantees the correct analytical behaviour
when integrating the differential equations in the kinematical variable y via straight lines
as contours in the complex y plane with y = 0 (q2 = 0) as start condition. This directly
leads to GPLs in y, without picking up contributions from residues resulting from contour
deformations. Note that y(1) = y2 lies on the curve y(r) with r ∈ R which is obtained without
taking Feynman’s i0 prescription into account, and the i0 prescription circumvents y2 in the
“correct direction”. A similar path defined from the second solution of 0 = z(1− y)+ y2 would
circumvent y1 in the “wrong direction”, so that a path defined analogously to the above y(z)
would not be homotopic to the straight line from 0 to y(r + i0).

Since a direct comparison of our analytical results for ϕA(z) and ϕNA(z) to the ones
given in ref. [81] seems too cumbersome, we have compared those functions numerically
for the benchmark points given in ref. [81]. The results of this comparison is shown in
table 1. While our results confirm the ones given in ref. [81] for z = 1 + i0 for all digits
given there, we find significant differences for z = 1.2856 + i0; in particular, the imaginary
parts of ϕA(1.2856 + i0) and ϕNA(1.2856 + i0) are totally different in the two evaluations.
For this reason, we have implemented and numerically evaluated the analytical results of
ref. [81] as well. The corresponding third set of results completely confirms our results given
in table 1 to all digits given there. We therefore conclude that the analytical results of
ref. [81] are in fact in agreement with ours, but the benchmark numbers on ϕA(1.2856 + i0)
and ϕNA(1.2856 + i0) given there are not correct.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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