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1 Introduction

In the past few decades, a large number of neutrino oscillation experiments have provided us
with strong evidence that neutrinos are massive but extremely light, and the lepton flavor
mixing is very significant [3]. To accommodate tiny neutrino masses, three types of canonical
seesaw models have been proposed [4–15]. In these seesaw models, neutrinos turn out to be
Majorana particles and the lightness of their masses can be ascribed to the largeness of heavy
particle masses, which may be far beyond the electroweak scale ΛEW ∼ 100 GeV. In this case,
it seems quite difficult to achieve the on-shell production of these heavy particles in current
or even next-generation collider experiments. An alternative way to scrutinize the seesaw
models of neutrino masses is to explore the off-shell effects of heavy states, which may lead to
remarkable deviations of some observables from the predictions of the Standard Model (SM).

At this point, the SM effective field theory (SMEFT) is a well-established theoretical
framework to interpret possible deviations from the SM predictions [16–18]. Respecting the
SM gauge symmetries and particle content, the SMEFT supplements the SM with a series of
higher-dimensional operators that are suppressed by the inverse power of the cutoff scale Λ. At
the leading order of 1/Λ, there is a unique dimension-five (dim-5) operator, i.e., the Weinberg
operator [19], which gives rise to tiny neutrino masses after the spontaneous gauge symmetry
breaking. The discovery of neutrino oscillations can be regarded as the robust evidence for
the Weinberg operator. In the literature, a lot of efforts have been made to find the minimal
complete set of operators of various mass dimensions in the SMEFT [19–26]. Nevertheless, as
the dimension of the operator becomes higher, the number of independent operators in the
SMEFT will increase rapidly [27]. Fortunately, such operators are also strongly suppressed by
higher powers of 1/Λ, rendering their impact on physical observables smaller. For this reason,
the most commonly used basis is the Warsaw basis [16] of dim-6, including 59 independent
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baryon-number-conserving operators and 4 baryon-number-violating ones. In the near future,
the experiments at the high-energy and high-intensity frontiers will hopefully measure the
Wilson coefficients of these dim-6 operators and thus offer useful information about the
ultraviolet (UV) full theory, from which the relevant dim-6 operators arise.

On the other hand, provided a well-motivated and renormalizable UV theory, one can
match it onto the SMEFT by integrating out heavy degrees of freedom above the cutoff
scale Λ. In this way, the resultant Wilson coefficients of higher-dimensional operators are
completely determined by the model parameters in the UV theory and thus highly correlated.
Ref. [28] outlines the basic strategy to construct the EFT from a specific renormalizable UV
theory. The tree-level contribution of any UV completion (with general scalar, spinor and
vector fields and any types of interactions) to the Wilson coefficients of dim-6 operators in the
SMEFT has been derived in ref. [29]. At the loop level, many UV models as the extensions
of SM are found to be able to generate those dim-6 operators via one-loop matching [30–50].

In view of the discovery of neutrino oscillations, the canonical seesaw models are indeed
well-motivated UV theories. The one-loop matching of type-I and type-II seesaw models
onto the SMEFT has been carried out in previous works [1, 2]. The EFT descriptions of the
seesaw models are referred to as the seesaw effective field theories (SEFTs). In this paper,
we continue to carry out the complete one-loop matching for the type-III seesaw model up
to dim-6 effective operators. To this end, both functional and diagrammatic methods are
implemented to integrate out the heavy fermionic triplets in the type-III seesaw model. As a
cross-check, the results by using these two different methods are compared with each other.
Several mistakes in ref. [48], where the one-loop matching of the type-III seesaw model has
been done via the functional approach, are corrected. The main motivation for such an
investigation is two-fold. First, the fermionic triplets in the type-III seesaw model experience
the SM gauge interactions and come with three flavors, so the one-loop construction of its
low-energy EFT is more complicated than that for either type-I or type-II seesaw models.
Second, only with all these types of EFTs for the seesaw models can one start to consider
whether it is possible to find out physical observables at low energies to distinguish among
three types of seesaw models. Further discussions about the SEFT-III are also given. We
work in the one-loop SEFT-III and calculate the rates of lepton-flavor-violating rare decays of
charged leptons, such as µ→ eγ. It is demonstrated that the SEFT-III can exactly reproduce
the results in the full theory in the large-mass limit. Then, the beta function of the quartic
Higgs coupling λEFT is discussed and related to that in the full theory. By doing so, we show
that the one-loop matching plays an important role in reconstructing the beta function in the
full theory from that in the EFT. Finally, based on the dim-6 four-fermion operators, a brief
study on the possible way to distinguish among three types of seesaw models is presented.

The remaining part of this paper is structured as follows. In section 2, we introduce
the type-III seesaw model and establish our notations and conventions. Then, the tree-level
matching up to dim-6 is accomplished by utilizing the equation of motion. The one-loop
matching onto the SMEFT with functional and diagrammatic approaches is given in section 3.
The resulting dim-6 operators in the Warsaw basis and their Wilson coefficients are explicitly
provided. In section 4, we further discuss some phenomenological implications of the SEFTs.
We summarize the main results and conclude in section 5.
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2 The type-III seesaw model

The type-III seesaw model extends the SM by introducing three right-handed fermionic
triplets ΣR in the adjoint representation of the SU(2)L gauge group and with the hypercharge
Y = 0. The gauge-invariant Lagrangian for the full type-III seesaw model is written as [15]

Ltype−III = LSM + Tr
(
ΣRi /DΣR

)
−
[√

2 ℓLYΣΣRH̃ + 1
2Tr

(
Σc

RMΣΣR
)
+ h.c.

]
, (2.1)

with the SM Lagrangian being

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν +
(
DµH

)†
(DµH)−m2H†H − λ

(
H†H

)2

+
∑

f

f i /Df −
(
QLYuH̃UR +QLYdHDR + ℓLYlHER + h.c.

)
, (2.2)

where f = QL, UR, DR, ℓL, ER refer to the SM fermionic doublets and singlets, and H is the
SM Higgs doublet with Y = 1/2 while H̃ is defined as H̃ ≡ iσ2H∗. In addition, ℓcL ≡ CℓL

T and
Σc

R ≡ CΣR
T are defined, where C ≡ iγ2γ0 denotes the charge-conjugation matrix. Without

loss of generality, we shall work in the mass basis of ΣR, namely, the mass matrix for ΣR
is diagonal with MΣ = diag{M1,M2,M3}. It is worthwhile to note that three heavy states
in the same fermionic triplet have the same mass, while three flavors of fermionic triplets
have their own masses as indicated by their mass matrix.

In eq. (2.1), the covariant derivative reads Dµ ≡ ∂µ − ig1Y Bµ − ig2T
IW I

µ − igsT
AGA

µ as
usual. For the fields in the fundamental representation of SU(2)L, we have T I = σI/2 (for
I = 1, 2, 3) with σI being the Pauli matrices. For the adjoint representation, we take the
representation matrices as (T I)JK = −iϵIJK (for I, J,K = 1, 2, 3), where ϵIJK is the totally
antisymmetric Levi-Civita tensor. As for the adjoint representation of the SU(3)c group,
TA = λA/2 is defined with λA being the Gell-Mann matrices (for A = 1, 2, · · · , 8). In the
subsequent discussions, we rewrite ΣR in the adjoint representation as ΣR ≡ σI · ΣI

R/
√
2

and introduce the three-vector ΣR ≡ (Σ1
R,Σ2

R,Σ3
R) in the weak-isospin space. Hence the

Lagrangian in eq. (2.1) can be recast into

Ltype−III = LSM + ΣR · i /DΣR −
(

ŶΣ ·ΣR + MΣ
2 Σc

R ·ΣR + h.c.
)

= LSM + 1
2Σ · i /DΣ− MΣ

2 Σ ·Σ−
(ŶΣ + Ŷc†

Σ
2 ·Σ + Σ · Ŷc

Σ + Ŷ†
Σ

2

)
, (2.3)

in which Σ = ΣR +Σc
R has been defined, and Tr

(
ΣΣc

)
= Tr

(
ΣΣ
)
= Σ ·Σ has been used. It

is worth stressing that all quantities in boldface represent the vectors in the weak-isospin space,
and their components are defined as ΣI = ΣI , (ŶΣ)I = ℓLYΣσ

IH̃ and (Ŷc
Σ)I = H†Y T

Σ σ
I ℓ̃L,

with I = 1, 2, 3 and ℓ̃L = iσ2ℓcL. In these notations, the dot in eq. (2.3) is just the inner
product between two three-vectors. With the Lagrangian in eq. (2.3), it is straightforward
to derive the equation of motion (EOM) for Σ, i.e.,

i /DΣ−MΣΣ−
(
Ŷ†

Σ + Ŷc
Σ
)
= 0 . (2.4)
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By solving the above EOM, one can find the classical field Σc and then expand it with respect
to 1/MΣ in order to obtain the local field Σ̂c. Integrating out the heavy field Σ at the tree
level is equivalent to substituting the local classical field Σ̂c back into the Lagrangian of
the UV theory. Since we are interested in the operators in the SEFT-III up to dim-6, it is
sufficient to retain the terms up to O(1/M2

Σ) in the local field, i.e.,

Σ̂c =
1

i /D −MΣ

(
Ŷ†

Σ + Ŷc
Σ
)
= − 1

MΣ

(
1 + i /D

MΣ

)(
Ŷ†

Σ + Ŷc
Σ
)
+O

(
1
M3

Σ

)
. (2.5)

After inserting the local classical field Σ̂c in eq. (2.5) into the full Lagrangian eq. (2.3), we
complete the tree-level matching of the type-III seesaw model onto the SMEFT with the dim-5
and dim-6 operators. Some comments on the results of this tree-level matching are in order.

• The tree-level Lagrangian of the SEFT-III turns out to be Ltree
SEFT-III = LSM−(1/2)(ŶΣ+

Ŷc†
Σ ) · Σ̂c, where Σ̂c is given in eq. (2.5). Keeping the terms of O(1/MΣ) in eq. (2.5),

we get the dim-5 Weinberg operator

Ltree
dim-5 = ŶΣ

2
1
MΣ

Ŷc
Σ+h.c. = 1

2

(
YΣ

1
MΣ

Y T
Σ

)αβ

ℓαLH̃H̃
Tℓβc

L +h.c. ≡
(
C

(5)
eff
)αβ

treeO
αβ
5 +h.c. ,

(2.6)
where the identity σI

abσ
I
cd = 2δadδbc − δabδcd has been used and H†H̃ = H†ϵH∗ = 0

is implied. One can see that the Weinberg operator Oαβ
5 ≡ ℓαLH̃H̃Tℓβc

L is successfully
derived with the Wilson coefficient

(
C

(5)
eff
)

tree = (1/2)YΣM
−1
Σ Y T

Σ .

• In a similar way, to obtain the dim-6 operators, one should take out the terms of order
1/M2

Σ in eq. (2.5). More explicitly, the dim-6 operator in the SEFT-III at the tree level
reads

Ltree
dim-6 = ŶΣ

2
i /D
M2

Σ
Ŷ†

Σ + Ŷc†
Σ
2

i /D
M2

Σ
Ŷc

Σ =
(
YΣ

1
M2

Σ
Y †

Σ

)
·
(
ℓLσ

IH̃
)
i /D
(
H̃†σIℓL

)
, (2.7)

which coincides the result in ref. [51]. Converting the above dim-6 operator into those
in the Warsaw basis, we get the following three operators

O
(1)
Hℓ = (H†i←→D µH)

(
ℓLγ

µℓL
)
,

O
(3)
Hℓ = (H†i←→D I

µH)
(
ℓLσ

IγµℓL
)
,

OeH = (H†H)
(
ℓLERH

)
,

(2.8)

with their tree-level Wilson coefficients

C
(1)
Hℓ-tree =

3
4YΣM

−2
Σ Y †

Σ , C
(3)
Hℓ-tree =

1
4YΣM

−2
Σ Y †

Σ , CeH-tree = YΣM
−2
Σ Y †

ΣYl . (2.9)

Note that the lepton-flavor indices of these dim-6 operators and their Wilson coefficients
have been suppressed.

Thus far we have matched the type-III seesaw model onto the SMEFT at the tree level.
The unique dim-5 Weinberg operator and three dim-6 operators in the Warsaw basis, together
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with their Wilson coefficients in terms of the model parameters in the full theory, are derived.
The technical details of the one-loop matching have been clearly explained and extensively
applied to various UV theories in refs. [35, 42, 43, 52–56]. Therefore, we shall just summarize
the loop-level matching results in next section.

Before proceeding with the details of one-loop matching, we briefly comment on the EFT
construction for the UV theory with heavy particles of different masses. In the type-III seesaw
model with heavy fermion triplets of non-degenerate masses, one should in principle construct
a sequence of EFTs by integrating out these triplets separately at the scales characterized
by their masses and considering the renormalization-group (RG) running effects between
these scales. However, if we restrict ourselves to the one-loop precision, only the RG effects
on the operators and their coefficients at the tree level are relevant.

If we focus on the tree-level matching, as shown in eq. (2.6) and eq. (2.7), integrating
out one heavy triplet results in the dim-5 and dim-6 operators in Ltree

dim-5 and Ltree
dim-6, where

the lighter triplets are not involved at all. Therefore, eliminating a heavier triplet does
not necessitate the construction of an EFT containing lighter triplets. In this way, when
integrating out all ΣR’s at different scales separately, the operator mixing via the RG running
will only be caused by Ltree

dim-5 and Ltree
dim-6 [57]. In addition, for the energy scale between

any two heavy triplet masses, the Yukawa coupling matrix Y
(n)

Σ existing in the EFT can
be obtained from the original one YΣ by removing the last n columns if n heavy triplets
have been integrated out. The RG running of Y (n)

Σ in the intermediate EFTs may affect
the lepton flavor mixing at the electroweak scale. However, such effects depend crucially on
the flavor structure of YΣ in the UV theory. All these issues deserve more dedicated studies
and thus will not be explored in the present work.

To summarize, as far as the operators and their Wilson coefficients from one-loop
matching are concerned, one needs only to integrate out heavy fermion triplets simultaneously
appearing in the loop of one-light-particle-irreducible (1LPI) diagrams. This procedure is
similar to matching the SMEFT to the Low-energy Effective Field Theory (LEFT), where
one integrates out t,W,Z and Higgs boson at the one-loop level simultaneously at a common
scale µ = mW [58–60].

3 One-loop matching

The publicly available packages Matchmakereft [55] and Matchete [56] have been designed to
accomplish the one-loop matching of any renormalizable UV model onto the SMEFT, based
on the diagrammatic approach and the functional approach, respectively. Some comments
on the main features of these packages are in order.

The package Matchmakereft performs the off-shell matching in the background-field
gauge, calculating numerous off-shell amplitudes separately in both the EFT and the complete
UV theory and then equating the results. To this end, one needs the prior construction of
a redundant operator basis, such as the Green’s basis, which requires knowledge about the
structure or symmetries of given field contents. On the other hand, Matchete is using the
functional method, which realizes the direct matching without specifying the EFT basis and
calculating the Feynman diagrams. This advantage of functional methods becomes apparent
when matching the UV to the operator of higher mass dimensions in the EFT. However,

– 5 –
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the drawback is that the obtained operators remain highly redundant, and the automatic
reduction to the Warsaw basis in Matchete demands a significant amount of time, with
manual reduction required for certain operators. In this regard, Matchmakereft exhibits
faster performance as the conversion formula from the Green’s basis to the Warsaw basis
is built-in. Additionally, Matchete’s results are given in the d-dimensional basis, and thus
the evanescent contributions cannot be handled. In contrast, Matchmakereft considers the
evanescent contributions by incorporating the evanescent operators into the Green’s basis.
Fortunately, unlike the type-II seesaw, both type-I seesaw and type-III seesaw considered in
the present work are not subject to any evanescent contributions [61].

We have utilized these two packages to carry out the one-loop matching of the type-III
seesaw model and made a careful cross-check to ensure the correctness of the matching results.
In the following, we will list the complete one-loop matching results, including threshold
corrections to the SM couplings, the matching conditions for the Weinberg operator and
for the dim-6 operators in the Warsaw basis.

3.1 Threshold corrections

The renormalizable terms of dim-4 that already exist in the SM receive threshold corrections
from the one-loop matching. We collect these corrections to the SM Lagrangian as below

δLSM = δZGG
A
µνG

Aµν + δZWW I
µνW

Iµν + δZBBµνB
µν +

∑
f

fδZf i /Df

+
(
QδYuH̃UR +QLδYdHDR + ℓLδYlHER + h.c.

)
+ δZH

(
DµH

)†
(DµH) + δm2

HH
†H + δλ

(
H†H

)2
. (3.1)

As the kinetic terms for the Higgs doublet, gauge bosons and fermions are modified, one has
to normalize these fields to maintain the canonical form. For the Higgs doublet and fermions,
we redefine H → (1− δZH/2)H and f → (1− δZf/2)f . For the gauge bosons, one has to
redefine the gauge-boson fields and gauge couplings g1 and g2 simultaneously, i.e.,Bµ → (1 + 2δZB)Bµ

g1 → geff
1 = (1− 2δZB) g1

,

W I
µ → (1 + 2δZW )W I

µ

g2 → geff
2 = (1− 2δZW ) g2

, (3.2)

to keep the covariant derivative Dµ intact. For notational simplicity, we introduce the effective
parameter geff and the threshold correction δgeff such that geff = g + δgeff , where g is the
original parameter belonging to {m2, λ, Yl, Yu, Yd, g2}. All the threshold corrections are

δg2,eff =−2δZW g2 =
g3

2
24π2 tr(LΣ) , (3.3)

δm2
eff =−m2δZH−δm2

= m4

16π2 tr
(
YΣM

−2
Σ Y †

Σ

)
+ 3m2

32π2 tr
(
YΣ (1+2LΣ)Y

†
Σ

)
− 3
8π2 tr

(
YΣM

2
Σ (1+LΣ)Y

†
Σ

)
, (3.4)

δYu,eff =−YuδZH/2−δYu =
m2Y αβ

u
16π2 tr

(
YΣM

−2
Σ Y †

Σ

)
+3Y αβ

u
64π2 tr

(
YΣ (1+2LΣ)Y

†
Σ

)
, (3.5)

δYd,eff =−YdδZH/2−δYd =
m2Y αβ

d
16π2 tr

(
YΣM

−2
Σ Y †

Σ

)
+3Y αβ

d
64π2 tr

(
YΣ (1+2LΣ)Y

†
Σ

)
, (3.6)
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δYl,eff =−YlδZH/2−
1
2δZℓYl−δYl

= m2Y αβ
l

16π2 tr
(
YΣM

−2
Σ Y †

Σ

)
+ 9m2

64π2

(
YΣM

−2
Σ (3+2LΣ)Y

†
ΣYl

)αβ

+3Y αβ
l

64π2 tr
(
YΣ (1+2LΣ)Y

†
Σ

)
+ 3
128π2

(
YΣ (11+10LΣ)Y

†
ΣYl

)αβ
, (3.7)

δλeff =−2λδZH−δλ

=−m
2g2

2
96π2 tr

[
YΣ

(7+2LΣ)
M2

Σ
Y †

Σ

]
+ m2g4

2
120π2 tr

(
M−2

Σ

)
− λ

16π2

{
4m2tr

(
YΣM

−2
Σ Y †

Σ

)
+tr

[
YΣ (3+6LΣ)Y

†
Σ

]}
+ m2

32π2 tr
[
YΣM

−2
Σ (7−2LΣ)Y

†
ΣYlY

†
l

]
+ 1
4π2 tr

[
YΣ (1+LΣ)Y

†
ΣYlY

†
l

]
+
5
(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki

16π2 (M2
i −M2

k

) [
M2

i (1+Li)−M2
k (1+Lk)

]

−

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ik
MiMkLik

16π2 (M2
i −M2

k

)
+
m2
(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki

16π2 (M2
i −M2

k

)3 [
M4

i (4+3Lik)−M4
k (4−3Lik)−14M2

i M
2
kLik

]

+
m2
(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ik

32π2MiMk

(
M2

i −M2
k

)3 [M6
i (1+2Lk)−M6

k (1+2Li)

−M4
i M

2
k (19+10Li−4Lk)+M4

kM
2
i (19+10Lk−4Li)

]
, (3.8)

where “tr” indicates the trace operation in the flavor space, and

LΣ ≡ diag
{
log

(
µ2

M2
1

)
, log

(
µ2

M2
2

)
, log

(
µ2

M2
3

)}
≡ diag {L1, L2, L3} , (3.9)

with µ being the ’t Hooft mass scale, and Lik ≡ log
(
M2

i /M
2
k

)
has been defined. Note

that the fermion triplet has Y = 0, so no threshold correction to the gauge coupling g1
appears at one-loop.

3.2 Matching condition for the dim-5 operator

The Wilson coefficient of the dim-5 operator at the one-loop level is given by

(
C

(5)
eff
)αβ

loop = + g2
1

128π2

[
YΣ

(1 + 3LΣ)
MΣ

Y T
Σ

]αβ

+ g2
2

128π2

[
YΣ

(1 + 3LΣ)
MΣ

Y T
Σ

]αβ

+ λ

16π2

[
YΣ

(1 + LΣ)
MΣ

Y T
Σ

]αβ

− 1
16π2

[
YlY

†
l YΣ

(1 + LΣ)
MΣ

Y T
Σ +Trans.

]αβ

− 3
256π2

[
YΣ (3 + 2LΣ)Y T

Σ Y
∗

ΣM
−1
Σ Y T

Σ +Trans.
]αβ

− 3
64π2 tr

[
YΣ (1 + 2LΣ)Y

†
Σ

] (
YΣM

−1
Σ Y T

Σ
)αβ

, (3.10)
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where “Trans.” denotes the transpose of the preceding term.

3.3 Matching conditions for the dim-6 operators

For different types of dim-6 operators, the matching conditions for their Wilson coefficients
at the one-loop level are summarized as follows

• X3

CW = − g3
2

1440π2 tr
(
M−2

Σ

)
. (3.11)

• X2H2

CHB = g2
1

128π2 tr
(
YΣM

−2
Σ Y †

Σ

)
, (3.12)

CHW B = − g1g2
64π2 tr

(
YΣM

−2
Σ Y †

Σ

)
, (3.13)

CHW = 7g2
2

384π2 tr
(
YΣM

−2
Σ Y †

Σ

)
. (3.14)

• H4D2

CH□ = g2
2

128π2 tr
[
YΣ

(7+2LΣ)
M2

Σ
Y †

Σ

]
− g4

2
160π2 tr

(
M−2

Σ

)
− g2

1
384π2 tr

[
YΣ

(5+6LΣ)
M2

Σ
Y †

Σ

]

−
(
Y †

ΣYΣ
)

ki

(
Y †

ΣYΣ
)

ik
Lik

16π2 (M2
i −M2

k

) +
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ki

32π2 (M2
i −M2

k

)3 [M4
i (1−Lik)−M4

k (1+Lik)
]

−
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ik

32π2MiMk

(
M2

i −M2
k

)3 [M6
i (1+Lk)−M4

i M
2
k (13+6Li−3Lk)

−M6
k (1+Li)+M4

kM
2
i (13+6Lk−3Li)

]
− 1
64π2 tr

(
YlY

†
l YΣ

(11+6LΣ)
M2

Σ
Y †

Σ

)
,

(3.15)

CHD =− g2
1

96π2 tr
[
YΣ

(5+6LΣ)
M2

Σ
Y †

Σ

]
− Lik

32π2 (M2
i −M2

k

)(Y †
ΣYΣ

)
ki

(
Y †

ΣYΣ
)

ik

−
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ik

16π2MiMk

(
M2

i −M2
k

)3 [M6
i (1+Lk)−M6

k (1+Li)+M4
i M

2
k (5+3Li−6Lk)

−M4
kM

2
i (5+3Lk−6Li)

]
+
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ki

4π2 (M2
i −M2

k

)3 [
M4

i (1−Lik)−M4
k (1+Lik)

]

− 1
32π2 tr

[
YlY

†
l YΣ

(11+6LΣ)
M2

Σ
Y †

Σ

]
. (3.16)
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X3 H6 and H4D2 ψ2H3

OG fABCGAν
µ GBρ

ν GCµ
ρ OH

(
H†H

)3
Oαβ

eH

(
H†H

) (
ℓαLEβRH

)
O

G̃
fABCG̃Aν

µ GBρ
ν GCµ

ρ OH□

(
H†H

)
□□□
(
H†H

)
Oαβ

uH

(
H†H

) (
QαLUβRH̃

)
OW ϵIJKW Iν

µ W Jρ
ν W Kµ

ρ OHD

(
H†DµH

)⋆ (
H†DµH

)
Oαβ

dH

(
H†H

) (
QαLDβRH

)
O

W̃
ϵIJKW̃ Iν

µ W Jρ
ν WKµ

ρ

X2H2 ψ2XH ψ2H2D

OHG H†HGA
µνG

Aµν Oαβ
eW

(
ℓαLσµνEβR

)
σIHW I

µν O
(1)αβ
Hl (H†i←→D µH)

(
ℓαLγµℓβL

)
O

HG̃
H†HG̃A

µνG
Aµν Oαβ

eB

(
ℓαLσµνEβR

)
HBµν O

(3)αβ
Hl (H†i←→D I

µH)
(
ℓαLσIγµℓβL

)
OHW H†HW I

µνW Iµν Oαβ
uG

(
QαLσ

µνTAUβR

)
H̃GA

µν Oαβ
He (H†i←→D µH)

(
EαRγµEβR

)
O

HW̃
H†HW̃ I

µνW
Iµν Oαβ

uW

(
QαLσ

µνUβR

)
σIH̃W I

µν O
(1)αβ
Hq (H†i←→D µH)

(
QαLγµQβL

)
OHB H†HBµνBµν Oαβ

uB

(
QαLσ

µνUβR

)
H̃Bµν O

(3)αβ
Hq (H†i←→D I

µH)
(
QαLσIγµQβL

)
O

HB̃
H†HB̃µνB

µν Oαβ
dG

(
QαLσ

µνTADβR
)
HGA

µν Oαβ
Hu (H†i←→D µH)

(
UαRγµUβR

)
OHW B H†σIHW I

µνBµν Oαβ
dW

(
QαLσ

µνDβR
)
σIHW I

µν Oαβ
Hd (H†i←→D µH)

(
DαRγµDβR

)
O

HW̃ B
H†σIHW̃ I

µνB
µν Oαβ

dB

(
QαLσ

µνDβR
)
HBµν Oαβ

Hud i(H̃†DµH)
(
UαRγ

µDβR
)

LLLL RRRR LLRR

Oαβγδ
ℓℓ

(
ℓαLγµℓβL

) (
ℓγLγµℓδL

)
Oαβγδ

ee

(
EαRγ

µEβR
) (
EγRγ

µEδR
)

Oαβγδ
ℓe

(
ℓαLγµℓβL

) (
EγRγµEδR

)
O

(1)αβγδ
qq

(
QαLγ

µQβL

) (
QγLγ

µQδL

)
Oαβγδ

uu

(
UαRγ

µUβR

) (
UγRγ

µUδR

)
Oαβγδ

ℓu

(
ℓαLγµℓβL

) (
UγRγµU δR

)
O

(3)αβγδ
qq

(
QαLσIγµQβL

) (
QγLσIγµQδL

)
Oαβγδ

dd

(
DαRγ

µDβR
) (
DγRγ

µDδR
)

Oαβγδ
ℓd

(
ℓαLγµℓβL

) (
DγRγµDδR

)
O

(1)αβγδ
ℓq

(
ℓαLγµℓβL

) (
QγLγµQδL

)
Oαβγδ

eu

(
EαRγ

µEβR
) (
UγRγ

µUδR

)
Oαβγδ

qe

(
QαLγ

µQβL

) (
EγRγ

µEδR
)

O
(3)αβγδ
ℓq

(
ℓαLσIγµℓβL

) (
QγLσIγµQδL

)
Oαβγδ

ed

(
EαRγ

µEβR
) (
DγRγ

µDδR
)

O
(1)αβγδ
qu

(
QαLγµQβL

) (
UγRγµU δR

)
O

(1)αβγδ
ud

(
UαRγ

µUβR

) (
DγRγ

µDδR
)

O
(8)αβγδ
qu

(
QαLγµT AQβL

) (
UγRγµT AU δR

)
O

(8)αβγδ
ud

(
UαRγ

µTAUβR

) (
DγRγ

µTADδR
)

O
(1)αβγδ
qd

(
QαLγµQβL

) (
DγRγµDδ

)
O

(8)αβγδ
qd

(
QαLγµT AQβL

) (
DγRγµT ADδR

)
(
LR
) (

RL
)

and
(
LR
) (

LR
)

B-violating

Oαβγδ
ℓedq

(
ℓαL

j
EβR

) (
DγRQj

δL

)
Oαβγ

duq ϵabcϵjk

[
(Da

αR)
T CU b

βR

] [(
Qcj

γL

)T
CℓkδL

]
O

(1)αβγδ
quqd

(
QαL

j
UβR

)
ϵjk

(
Q

k
γDδR

)
Oαβγ

qqu ϵabcϵjk

[(
Qaj

αL

)T
CQbk

βL

] [(
U c

γR

)T
CEδR

]
O

(8)αβγδ
quqd

(
Qα

j
TAUβR

)
ϵjk

(
Q

k
γT

ADδR
)

Oαβγ
qdd ϵabcϵjnϵkm

[(
Qaj

αL

)T
CQbk

βL

] [(
Qcm

γL

)T
CℓnδL

]
O

(1)αβγδ
ℓequ

(
ℓαL

j
EβR

)
ϵjk

(
QγL

k
U δR

)
Oαβγ

duu ϵabc
[
(Da

αR)
T CU b

βR

] [(
U c

γR

)T
CEδR

]
O

(3)αβγδ
ℓequ

(
ℓαL

j
σµνEβR

)
ϵjk

(
QγL

k
σµνUδR

)

Table 1. Summary of the dimension-six operators in the Warsaw basis of the SMEFT [20]. There are
33 operators that are induced by integrating out heavy fermionic triplets of the type-III seesaw model
at one-loop level, and they are highlighted in boldface. For comparison, we show the dim-6 operators
in the SEFT-I in light gray, while those in the SEFT-II in dark gray and light gray. It can be observed
that the SEFT-II covers all the dim-6 operators in the SEFT-I and SEFT-III, whereas the SEFT-III
contains two more dim-6 operators than the SEFT-I does, namely, the operators OW and O

(3)
qq .
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• H6

CH = λg2
2

48π2 tr
[
YΣ

(7 + 2LΣ)
M2

Σ
Y †

Σ

]
− λg4

2
60π2 tr

(
M−2

Σ

)

−
λ tr

[
YlY

†
l YΣ

(7−2LΣ)
M2

Σ
Y †

Σ

]
16π2 +

λ
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ik

16π2MiMk
+ λ2

4π2 tr
(
YΣM

−2
Σ Y †

Σ

)

−
tr
[
YlY

†
l YΣ

(1+LΣ)
M2

Σ
Y †

ΣYlY
†

l

]
4π2 − 7λ

8π2

(
Y †

ΣYΣ
)

ki

(
Y †

ΣYΣ
)

ik
Lik(

M2
i −M2

k

)
−
λ
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ki

2π2 (M2
i −M2

k

)3 [
M4

i (1− Lik)−M4
k (1 + Lik)

]

−
λ
(
Y †

ΣYΣ
)

ik

(
Y †

ΣYΣ
)

ik

8π2MiMk

(
M2

i −M2
k

)3 [M6
i (1 + Lk)−M6

k (1 + Li)

−M4
i M

2
k (11 + 5Li − 2Lk) +M4

kM
2
i (11 + 5Lk − 2Li)

]

+
(
Y †

ΣYΣ
)

ij

(
Y †

ΣYΣ
)

jk

(
Y †

ΣYΣ
)

ik

8π2
MiMk

(
M2

i Ljk +M2
j Lki +M2

kLij
)(

M2
i −M2

j

)(
M2

j −M2
k

) (
M2

k −M2
i

)
−

3
(
Y †

ΣYΣ
)

ij

(
Y †

ΣYΣ
)

jk

(
Y †

ΣYΣ
)

ki

8π2

(
M2

i M
2
j Lij +M2

j M
2
kLjk +M2

i M
2
kLki

)(
M2

i −M2
j

)(
M2

j −M2
k

) (
M2

k −M2
i

)
+

(
Y †

ΣYlY
†

l YΣ

)
ki

(
Y †

ΣYΣ

)
ik
Lik

2π2 (M2
i −M2

k

) . (3.17)

• ψ2XH

Cαβ
eB = g1

128π2

(
YΣM

−2
Σ Y †

ΣYl

)αβ
, (3.18)

Cαβ
eW = 3g2

128π2

(
YΣM

−2
Σ Y †

ΣYl

)αβ
. (3.19)

• ψ2H2D

C
(1)αβ
Hq = −g2

1
1152π2 δ

αβtr
[
YΣ

(5 + 6LΣ)
M2

Σ
Y †

Σ

]
, (3.20)

C
(3)αβ
Hq = −g4

2
240π2 δ

αβtr(M−2
Σ ) + g2

2
384π2 δ

αβtr
[
YΣ

(7 + 2LΣ)
M2

Σ
Y †

Σ

]
, (3.21)

Cαβ
Hu = −g2

1
288π2 δ

αβtr
[
YΣ

(5 + 6LΣ)
M2

Σ
Y †

Σ

]
, (3.22)

Cαβ
Hd = g2

1
576π2 δ

αβtr
[
YΣ

(5 + 6LΣ)
M2

Σ
Y †

Σ

]
, (3.23)
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C
(1)αβ
Hℓ = g2

1
1536π2

{
4δαβtr

[
YΣ

(5 + 6LΣ)
M2

Σ
Y †

Σ

]
+ 11

[
YΣ

(11 + 6LΣ)
M2

Σ
Y †

Σ

]αβ
}

− 3g2
2

512π2

[
YΣ

(7 + 30LΣ)
M2

Σ
Y †

Σ

]αβ

− 3Lik

32π2

(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
kβ

(YΣ)αi

(M2
i −M2

k )

+ 3
256π2

[
YlY

†
l YΣ

(3 + 2LΣ)
M2

Σ
Y †

Σ + h.c.
]αβ

− 9
128π2 tr

[
Y †

ΣYΣ(1 + 2LΣ)
] (
YΣM

−2
Σ Y †

Σ

)
αβ

−
9
(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
kβ

(YΣ)αi

512π2M2
i M

2
k

[
M2

i (3 + 2Li) +M2
k (3 + 2Lk)

]
−

3Lik

(
M2

i +M2
k

)
128π2MiMk (M2

i −M2
k )
(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
iβ
(YΣ)αk , (3.24)

C
(3)αβ
Hℓ = + g2

2
1536π2

{
4δαβtr

[
YΣ

(7 + 2LΣ)
M2

Σ
Y †

Σ

]
−
[
YΣ

(127 + 158LΣ)
M2

Σ
Y †

Σ

]αβ
}

− g4
2δ

αβ

240π2 tr
(
M−2

Σ
)
+ g2

1
512π2

[
YΣ

(11 + 6LΣ)
M2

Σ
Y †

Σ

]αβ

− 3
128π2 tr

[
Y †

ΣYΣ(1 + 2LΣ)
] (
YΣM

−2
Σ Y †

Σ

)
αβ

+ 3
256π2

[
YlY

†
l YΣ

(3 + 2LΣ)
M2

Σ
Y †

Σ + h.c.
]αβ

− Lik

16π2

(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
kβ

(YΣ)αi

(M2
i −M2

k )

−

(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
iβ
(YΣ)αk

128π2MiMk
(1− Li − Lk)

+

(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
iβ
(YΣ)αk

32π2MiMk (M2
i −M2

k )

[
M2

i (1 + Lk)−M2
k (1 + Li)

]

−
3
(
Y †

ΣYΣ

)
ik

(
Y †

Σ

)
kβ

(YΣ)αi

512π2M2
i M

2
k

[
M2

i (3 + 2Li) +M2
k (3 + 2Lk)

]
, (3.25)

Cαβ
He = g2

1
192π2 δ

αβtr
[
YΣ

(5 + 6LΣ)
M2

Σ
Y †

Σ

]
+ 1

128π2

[
Y †

l YΣ
(19− 6LΣ)

M2
Σ

Y †
ΣYl

]αβ

. (3.26)

• ψ2H3

Cαβ
uH = −g4

2
240π2Y

αβ
u tr

(
M−2

Σ
)
+ g2

2
192π2Y

αβ
u tr

[
YΣ

(7+2LΣ)
M2

Σ
Y †

Σ

]
− Y

αβ
u

64π2 tr
[
YlY

†
l YΣ

(7−2LΣ)
M2

Σ
Y †

Σ

]
+λY αβ

u
8π2 tr

(
YΣM

−2
Σ Y †

Σ

)

−
Y αβ

u

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ik

32π2MiMk (M2
i −M2

k )
3

[
M6

i (1+Lk)−M6
kLi−M4

i M
2
k (10+4Li−Lk)

+3M4
kM

2
i (3+2Lk−Li)

]
− 7
32π2

Y αβ
u

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki
Lik

M2
i −M2

k

−
Y αβ

u

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki

8π2 (M2
i −M2

k )
3

[
M4

i (1−Lik)−M4
k (1+Lik)

]
, (3.27)
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Cαβ
dH = −g4

2
240π2Y

αβ
d tr

(
M−2

Σ
)
+ g2

2
192π2Y

αβ
d tr

[
YΣ

(7+2LΣ)
M2

Σ
Y †

Σ

]
− Y

αβ
d

64π2 tr
[
YlY

†
l YΣ

(7−2LΣ)
M2

Σ
Y †

Σ

]
+λY αβ

d
8π2 tr

(
YΣM

−2
Σ Y †

Σ

)

−
Y αβ

d

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ik

32π2MiMk (M2
i −M2

k )
3

[
M6

i (1+Lk)−M6
kLi−M4

i M
2
k (10+4Li−Lk)

+3M4
kM

2
i (3+2Lk−Li)

]
− 7
32π2

Y αβ
d

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki
Lik

M2
i −M2

k

−
Y αβ

d

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki

8π2 (M2
i −M2

k )
3

[
M4

i (1−Lik)−M4
k (1+Lik)

]
, (3.28)

Cαβ
eH =− g4

2
240π2Y

αβ
l tr

(
M−2

Σ
)
− g2

1
16π2

[
YΣ

(1+3LΣ)
M2

Σ
Y †

ΣYl

]αβ

+ g2
2

192π2

{
Y αβ

l tr
[
YΣ

(7+2LΣ)
M2

Σ
Y †

Σ

]
−24

[
YΣ

(1+3LΣ)
M2

Σ
Y †

ΣYl

]αβ
}

+ λ

32π2

[
YΣ

(41+30LΣ)
M2

Σ
Y †

ΣYl

]αβ

+λY αβ
l

8π2 tr
(
YΣM

−2
Σ Y †

Σ

)
+ 1
128π2

[
YΣ

(7+10LΣ)
M2

Σ
Y †

ΣYlY
†

l Yl

]αβ

+ 1
64π2

[
YlY

†
l YΣ

(17+6LΣ)
M2

Σ
Y †

ΣYl

]αβ

−
9
(
Y †

ΣYΣ

)
kk

(YΣ)αi

(
Y †

ΣYl

)
iβ
(1+2Lk)

64π2M2
i

− Y
αβ

l

64π2 tr
[
YlY

†
l YΣ

(7−2LΣ)
M2

Σ
Y †

Σ

]

+

(
Y †

ΣYΣ

)
ik
(YΣ)αk

(
Y †

ΣYl

)
iβ

128π2MiMk (M2
i −M2

k )
2

[
(19+20Li−6Lk)M4

i +(15+10Li+4Lk)M4
k

−2(17+13Li+Lk)M2
i M

2
k

]
−

(
Y †

ΣYΣ

)
ki
(YΣ)αk

(
Y †

ΣYl

)
iβ

128π2M2
i M

2
k (M2

i −M2
k )

2

[
6(7+6Li)M6

i

+3(3+2Lk)M6
k−(95+132Li−66Lk)M4

i M
2
k +4(11+19Li−13Lk)M2

i M
4
k

]

−
Y αβ

l

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ik

32π2MiMk (M2
i −M2

k )
3

[
LkM

6
i −(1+Li)M6

k−3(3+2Li−Lk)M4
i M

2
k

+(10−Li+4Lk)M2
i M

4
k

]
−
Y αβ

l

(
Y †

ΣYΣ

)
ik

(
Y †

ΣYΣ

)
ki

32π2 (M2
i −M2

k )
3

[
(4+3Lik)M4

i

−(4−3Lik)M4
k−14LikM

2
i M

2
k

]
. (3.29)

• Four-quark

C(3)αβγδ
qq = − g4

2
480π2 δ

αβδγδ tr
(
M−2

Σ

)
, (3.30)

C(1)αβγδ
qu = − 1

96π2Y
†

u
γβ
Y αδ

u tr
(
YΣM

−2
Σ Y †

Σ

)
, (3.31)
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C(8)αβγδ
qu = − 1

16π2Y
†

u
γβ
Y αδ

u tr
(
YΣM

−2
Σ Y †

Σ

)
, (3.32)

C
(1)αβγδ
qd = − 1

96π2Y
†

d
γβ
Y αδ

d tr
(
YΣM

−2
Σ Y †

Σ

)
, (3.33)

C
(8)αβγδ
qd = − 1

16π2Y
†

d
γβ
Y αδ

d tr
(
YΣM

−2
Σ Y †

Σ

)
, (3.34)

C
(1)αβγδ
quqd = 1

16π2Y
αβ

u Y γδ
d tr

(
YΣM

−2
Σ Y †

Σ

)
. (3.35)

• Four-lepton

Cαβγδ
ℓℓ = −g4

2
480π2

(
2δαδδβγ − δαβδγδ

)
tr
(
M−2

Σ

)
− g2

1
768π2 δ

αβ

[
YΣ

(11 + 6LΣ)
M2

Σ
Y †

Σ

]γδ

+ g2
2

768π2

−δγδ

[
YΣ

(13 + 2LΣ)
M2

Σ
Y †

Σ

]αβ

+ 2δβγ

[
YΣ

(13 + 2LΣ)
M2

Σ
Y †

Σ

]αδ


− 1
128π2


[
YΣ

(3 + 2LΣ)
M2

Σ
Y †

Σ

]αδ (
YlY

†
l

)γβ
+ (β ↔ δ)


−

(YΣ)
αi (YΣ)

γk
(
Y †

Σ

)iδ (
Y †

Σ

)kβ
Lik

128π2 (M2
i −M2

k

) −
(YΣ)

αi (YΣ)
γk
(
Y †

Σ

)kδ (
Y †

Σ

)iβ
Lik

32π2 (M2
i −M2

k

)
− (YΣ)αk (YΣ)γk

(
Y †

Σ

)iδ (
Y †

Σ

)iβ M2
i (1 + Lk)−M2

k (1 + Li)
64π2MiMk

(
M2

i −M2
k

) , (3.36)

Cαβγδ
ℓe = − g2

1
384π2

[
YΣ

(11 + 6LΣ)
M2

Σ
Y †

Σ

]αβ

δγδ + 3
128π2

[
YΣ

(3 + 2LΣ)
M2

Σ
Y †

Σ

]αβ (
Y †

l Yl

)γδ

− 3
64π2

[
Y αδ

l

(
Y †

l YΣM
−2
Σ Y †

Σ

)γβ
+ h.c.

]
− 1

32π2Y
αδ

l Y †
l

γβtr
(
YΣM

−2
Σ Y †

Σ

)
. (3.37)

• Semileptonic

C
(1)αβγδ
ℓq = g2

1
2304π2

[
YΣ

(11+6LΣ)
M2

Σ
Y †

Σ

]αβ

δγδ

+ 3
256π2

(
YuY

†
u −YdY

†
d

)γδ
[
YΣ

(3+2LΣ)
M2

Σ
Y †

Σ

]αβ

, (3.38)

C
(3)αβγδ
ℓq =− g4

2
240π2 δ

αβδγδtr(M−2
Σ )+ g2

2
768π2

[
YΣ

(13+2LΣ)
M2

Σ
Y †

Σ

]αβ

δγδ

− 1
256π2

(
YuY

†
u +YdY

†
d

)γδ
[
YΣ

(3+2LΣ)
M2

Σ
Y †

Σ

]αβ

, (3.39)

Cαβγδ
ℓu =− 3

128π2

[
YΣ

(3+2LΣ)
M2

Σ
Y †

Σ

]αβ (
Y †

u Yu
)γδ

+ g2
1

576π2

[
YΣ

(11+6LΣ)
M2

Σ
Y †

Σ

]αβ

δγδ ,

(3.40)
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Cαβγδ
ℓd = 3

128π2

[
YΣ

(3+2LΣ)
M2

Σ
Y †

Σ

]αβ (
Y †

d Yd
)γδ
− g2

1
1152π2

[
YΣ

(11+6LΣ)
M2

Σ
Y †

Σ

]αβ

δγδ ,

(3.41)

Cαβγδ
ℓedq = Y †γδ

d
32π2

{
2Y αβ

l tr
[
YΣM

−2
Σ Y †

Σ

]
+3

(
YΣM

−2
Σ Y †

ΣYl

)αβ
}
, (3.42)

C
(1)αβγδ
ℓequ =− Y γδ

u
32π2

{
2Y αβ

l tr
[
YΣM

−2
Σ Y †

Σ

]
+3

(
YΣM

−2
Σ Y †

ΣYl

)αβ
}
. (3.43)

With all the matching conditions for the Wilson coefficients of the operators up to dim-6,
we are able to write down the complete Lagrangian of the SEFT-III at the one-loop level, i.e.,

LSEFT−III = LSM
(
m2 → m2

eff , λ→ λeff , Yl → Yl,eff , Yu → Yu,eff , Yd → Yd,eff , g2 → g2,eff
)

+
[(
C

(5)
eff

)αβ
O

(5)
αβ + h.c.

]
+ C

(1)αβ
Hl-treeO

(1)αβ
Hl + C

(3)αβ
Hl-treeO

(3)αβ
Hl + Cαβ

eH-treeO
αβ
eH

+
∑

i

CiOi , (3.44)

where the original parameter g ∈ {m2, λ, Yl, Yu, Yd, g2} in the SM Lagrangian is substituted by
its effective counterpart geff = g+ δgeff , with δgeff provided by eqs. (3.3)–(3.8). For the dim-5
operator in the second line of eq. (3.44), both the tree-level and one-loop-level coefficients
are included, i.e., C(5)

eff =
(
C

(5)
eff
)

tree +
(
C

(5)
eff
)

loop, which are respectively given by eq. (2.6)
and eq. (3.10). In addition, three dim-6 operators from the tree-level matching are shown
separately in the second line and their Wilson coefficients are given in eq. (2.9). In the last
line of eq. (3.44), we formally sum up all the loop-induced dim-6 operators in the Warsaw
basis, as explicitly shown in table 1, and their coefficients are given in eqs. (3.11)–(3.43).

3.4 Comparison with previous results

The one-loop matching results of the type-III seesaw model should be compared with the
previous ones in ref. [48], which are obtained in assumption of the mass degeneracy for three
fermionic triplets. To make such a comparison easier, we take the equal-mass limit of our
general results in eq. (3.44), i.e., M1 = M2 = M3 ≡ M , and find that most of our results
are consistent with those in ref. [48]. However, we do observe some mistakes in ref. [48].
More explicitly, the matching conditions for the coefficients {δλ, δYl, CeH , C

(1)
Hl , C

(3)
Hl } in the

equal-mass limit should be corrected as follows

δλ=−tr
(
YΣY

†
ΣYlY

†
l

)[
4(1+L)+ m2

2M2 (7−2L)
]
+tr

(
YΣY

T
Σ Y

∗
ΣY

†
Σ

)[
1− m2

6M2 (13+6L)
]

−tr
(
Y †

ΣYΣY
†

ΣYΣ

)[
5L+13m2

3M2

]
+ m2

M2 tr
(
Y †

ΣYΣ

)[
4λ+1

6g
2
2(7+2L)

]
− 2m2

15M2 g
4
2NΣ ,

δY pr
l = m2Y pr

l

M2 tr
(
YΣY

†
Σ

)
+3
(
YΣY

†
ΣYl

)pr
[
1+L+ 3m2

4M2 (3+2L)
]
,
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Cpr
eH =− g4

2
15M2Y

pr
l NΣ−

13
6M2 (Yl)

pr tr
(
YΣY

†
ΣYΣY

†
Σ

)
− 1
12M2 (Yl)

pr tr
(
YΣY

T
Σ Y

∗
ΣY

†
Σ

)
(13+6L)

− 1
4M2Y

pr
l tr

(
YΣY

†
ΣYlY

†
l

)
(7−2L)+ 1

12M2Y
pr

l tr
(
Y †

ΣYΣ

)[
(7+2L)g2

2+24λ
]

+ 1
2M2

(
YΣY

†
ΣYl

)pr [
(41+30L)λ−2g2

1 (1+3L)−4g2
2 (1+3L)

]
− 1
8M2

(
YΣY

†
ΣYΣY

†
ΣYl

)pr
(101+42L)+ 1

4M2

(
YlY

†
l YΣY

†
ΣYl

)pr
(17+6L)

+ 1
8M2

(
YΣY

†
ΣYlY

†
l Yl

)pr
(7+10L)+ 7

8M2

(
YΣY

T
Σ Y

∗
ΣY

†
ΣYl

)pr
(1+2L)

− 9
4M2 tr

(
YΣY

†
Σ

)(
YΣY

†
ΣYl

)pr
(1+2L) ,

C
(1)pr
Hl =− 3

4M2

(
YΣY

T
Σ Y

∗
ΣY

†
Σ

)pr
+ 3
16M2

(
YΣY

†
ΣYΣY

†
Σ

)pr
(17+6L)

+ 1
96M2

[
11(11+6L)g2

1−9(7+30L)g2
2
](
YΣY

†
Σ

)pr
+ g2

1
24M2 (5+6L)tr

(
YΣY

†
Σ

)
δpr

+(9+6L)
16M2

(
YΣY

†
ΣYlY

†
l +YlY

†
l YΣY

†
Σ

)pr
− 9
8M2 tr

(
YΣY

†
Σ

)(
YΣY

†
Σ

)pr
(1+2L) ,

C
(3)pr
Hl =− g4

2
15M2 δ

prNΣ+
1

8M2

(
YΣY

T
Σ Y

∗
ΣY

†
Σ

)pr
(7+6L)− 1

16M2

(
YΣY

†
ΣYΣY

†
Σ

)pr
(25+6L)

+ 1
96M2

[
3(11+6L)g2

1−(127+158L)g2
2
](
YΣY

†
Σ

)pr
+ g2

2
24M2 (7+2L)tr

(
YΣY

†
Σ

)
δpr

+(9+6L)
16M2

(
YΣY

†
ΣYlY

†
l +YlY

†
l YΣY

†
Σ

)pr
− 3
8M2 tr

(
YΣY

†
Σ

)(
YΣY

†
Σ

)pr
(1+2L) , (3.45)

where L ≡ log
(
µ2/M2) has been defined and NΣ denotes the number of fermionic triplets.

Two further comments are in order. First, note that our notation for YΣ is actually the
Hermitian conjugation of that in ref. [48], and m2 = −µ2

H is implied. Second, it should be
pointed out that the effects of field normalization on δλ and δYl haven’t been considered in
the above equations in order to perform a direct comparison with ref. [48]. Additionally, an
overall factor of 1/(16π2) has been dropped in these coefficients for the same reason.

4 Further discussions

4.1 Radiative decays of charged leptons

The one-loop matching conditions derived in the previous section can be implemented to carry
out self-consistent one-loop calculations in the SEFT-III, which are supposed to reproduce
the same results in the UV full theory, i.e., the type-III seesaw model. As an explicit example,
we calculate the rates of lepton-flavor-violating decays of charged leptons l−α → l−β + γ in
the SEFT-III, and compare the results with those in the full type-III seesaw model. In the
SEFT-III, after the spontaneous gauge symmetry breaking, the Lagrangian can be written as
L SEFT-III = LSM + δL. It is worthwhile to notice that the SM Lagrangian LSM now includes
the Majorana neutrino mass term arising from the dim-5 Weinberg operator. Therefore,
there exist flavor-violating vertices in LSM when we shift to the mass basis of neutrinos,
which is

(
g2√

2 lαLγ
µνiLW

−
µ U

αi
0 +

√
2mα
v νiLlαRϕ

+U †iα
0 + h.c.

)
, with U0 being the unitary mixing

matrix to diagonalize the C(5). For the extra terms in δL, we show explicitly those relevant
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l−α l−βνi l−α l−βνi l−α νi l−β

γ

W− W− φ− φ−
W−φ−

γ γ

l−α νi l−β

W− φ−
γ

l−α l−β

l−i l−i

γ

Z

γ

l−i l−i

l−α l−βH, φ0 l−α l−β

no

γ

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. The Feynman diagrams for radiative decays of charged leptons l−α → l−β +γ at the one-loop
level in the SEFT-III, where the ’t Hooft-Feynman gauge has been adopted. Diagrams (a)-(f) are
induced by the modified SM interactions after the spontaneous gauge symmetry breaking, while
the diagram (g) is caused by the dim-6 operators OeW and OeB from the one-loop matching in the
SEFT-III.

for l−α → l−β + γ as follows

δL ⊃ − g2
2cw

v2

2 lαLγ
µlβLZµ

(
C

(1)αβ
Hl-tree + C

(3)αβ
Hl-tree

)
− g2

2cw

v2

2 ναLγ
µνβLZµ

(
C

(1)αβ
Hl-tree − C

(3)αβ
Hl-tree

)
+
(
√
2g2

v2

2 lαLγ
µνβLW

−
µ C

(3)αβ
Hl-tree + h.c.

)
+
[
v2

2 C
αβ
eH-tree

(
ℓαEβH

)
+ h.c.

]

+
[
v√
2

(
cwC

αβ
eB − swC

αβ
eW

)
lαLσµν lβRF

µν + h.c.
]

= − g2
2cw

lαLγ
µlβLZµ(RR†)αβ −

g2
2cw

ναLγ
µνβLZµ(RR†)αβ

+
(
g2
2
√
2
lαLγ

µνβLW
−
µ (RR†)αβ + h.c.

)
+
[√

2
v

(
ℓαEβH

)
(RR†Ml)αβ + h.c.

]

−
[

e

32π2v2

(
lαLσµν lβRF

µν
)
(RR†Ml)αβ + h.c.

]
, (4.1)

where v ≡ 2MW /g2, cw ≡ cos θw, sw ≡ sin θw, and R ≡ vYΣM
−1
Σ /
√
2 should be noticed.

Then, it can be obtained that RR† = v2YΣM
−2
Σ Y †

Σ/2, and the U = (1 + RR†/2)U0 is the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for lepton flavor mixing. Furthermore,
θw = arctan(g1/g2) is the weak mixing angle, and e = g1 cos θw = g2 sin θw is the electric
charge. Without loss of generality, we work in the mass basis of charged leptons, i.e,
Ml = diag{me,mµ,mτ} with mα (for α = e, µ, τ) being the charged-lepton masses. In
eq. (4.1), the tree-level coefficients C(1)αβ

Hl-tree, C
(3)αβ
Hl-tree and Cαβ

eH-tree have been used, as the
corresponding vertices appear in the one-loop diagrams in figure 1. Note that the third line
of eq. (4.1) takes account of the contributions from the loop-level operators, i.e., two dim-6
operators OeB and OeW , which result in the electromagnetic dipole operator that directly leads
to the radiative decays of charged leptons. With the interactions in eq. (4.1) for the specific
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process µ−(p1)→ e−(p2) + γ(q), we can compute the amplitudes for the diagrams in figure 1

Ma-d = eGF√
2 (4π)2

[
U

(
7
3 −

M̂2
ν

M2
W

)
U †
]

eµ

[
u (p2)σµνqν

(
mePL +mµPR

)
u (p1) ϵ∗µ (q)

]
,

Me,f =
eGF

3
√
2π2

(
c2

w − 2
) (
UU †

)
eµ

[
u (p2)σµνqν

(
mePL +mµPR

)
u (p1) ϵ∗µ (q)

]
,

Mg = eGF√
2 (4π)2

(
2UU †

)
eµ

[
u (p2)σµνqν

(
mePL +mµPR

)
u (p1) ϵ∗µ (q)

]
, (4.2)

where GF/
√
2 = g2

2/(8M2
W ) is the Fermi constant, and M̂ν ≡ diag{m1,m2,m3} with mi

(for i = 1, 2, 3) being neutrino masses. It is easy to verify that UU † ≃ 1 + RR† and thus
the PMNS matrix is non-unitary.1 Consequently, the decay rate in the SEFT-III up to
O(M−2

Σ ) is given by

Γ (µ→ e+ γ) ≃
G2

Fe
2m5

µ

8192π5

∣∣∣∣∣
[13
3 + 16

3 (c2
w − 2)

]
RR† − 1

M2
W

UM̂2
νU

†
∣∣∣∣∣
2

eµ

. (4.3)

On the other hand, one can also compute the decay rate in the full type-III seesaw model,
as has been done in ref. [62]. Based on the calculations in ref. [62], we expand the results
therein with respect to 1/MΣ and retain the terms up to O(M−2

Σ ). The final result reads

Γ (µ→ e+ γ) ≃
G2

Fe
2m5

µ

8192π5

∣∣∣∣∣
(13

3 + C

)
RR† − 1

M2
W

UM̂2
νU

†
∣∣∣∣∣
2

eµ

, (4.4)

where the coefficient C = −6.56 is given in ref. [62]. Given s2
w ≈ 0.23, it is straightforward

to verify the coefficient 16(c2
w − 2)/3 ≈ −6.56 in eq. (4.3). As expected, eq. (4.3) agrees

perfectly with eq. (4.4). Therefore, starting with the EFT Lagrangian alone, one will be able
to carry out complete one-loop calculations of the low-energy observables in a similar way
as the simple example shows in this subsection. It is worthwhile to stress that the dim-6
operators OeW and OeB arising from the one-loop matching play an important role [63].

Although the comparison between our result in eq. (4.3) and that in eq. (4.4) from
ref. [62] is helpful to demonstrate the correctness of one-loop matching, both results should
be improved when confronted with the experimental observations of µ→ eγ. The reason is
simply that the one-loop matching is carried out at the matching scale, i.e., the seesaw scale
characterized by the heavy triplet mass, but the experimental measurements are performed
at the scales of charged-lepton masses. Since the seesaw scale is significantly higher than the
electroweak scale, we only integrate out the seesaw particles but retain the contributions from
t,W,Z and Higgs boson in loops. Therefore, the results presented in eqs. (4.3) and (4.4)
should not be viewed as the physical decay width, but the value at the matching scale. To
calculate the decay rate of µ → eγ at the scale µ = mµ, we should further integrate out
those heavy particles in the SM and take account of the RG running of relevant physical
parameters. In this case, the more suitable EFT is in fact the LEFT, as discussed generally
in ref. [64]. Such a complete calculation will be necessary when one attempts to constrain
the model parameters in the UV theory by using the precision measurements of µ→ eγ.

1It is worth noting that the non-unitarity of the PMNS matrix in the type-III seesaw model is induced by
the mixing between fermionic triplets and the SM leptons, including both neutrinos and charged leptons [62].
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4.2 Beta function of the quartic Higgs coupling

In the SM, around the energy scale µ = O(1011)GeV, the running quartic Higgs coupling
λ(µ) becomes negative [65, 66], rendering the electroweak vacuum to be unstable. The main
reason why λ(µ) declines rapidly with the increasing µ is that the beta function of λ contains
a large negative contribution from the top Yukawa coupling yt. In the type-III seesaw model,
this problem will be more serious, since λ decreases faster than it does in the SM due to
the existence of the Yukawa coupling YΣ of the fermionic triplet. The beta function of λ
in the type-III seesaw model is [67]:

β(λ) ≡ 16π2µ
dλ
dµ = 3

8g
4
1 + 3

4g
2
1g

2
2 + 9

8g
4
2 − 3g2

1λ− 9g2
2λ+ 24λ2 + 12λy2

t − 6y4
t

+ 12λ tr
(
YΣY

†
Σ

)
− 10 tr

(
YΣY

†
ΣYΣY

†
Σ

)
≡ βSM

λ + 12λ tr
(
YΣY

†
Σ

)
− 10 tr

(
YΣY

†
ΣYΣY

†
Σ

)
,

(4.5)

where the beta function βSM
λ in the SM has been identified in the last line. Since we have

matched the type-III seesaw model onto the SMEFT, it is interesting to clarify the relationship
between the beta function in the UV full theory and that derived in the EFT. From the EFT
perspective, the one-loop renormalization-group (RG) running of λEFT can be studied in the
traditional way [30]. More explicitly, in the SEFT-III where heavy fermionic triplets have
been integrated out, the running of λEFT can be triggered by higher-dimensional operators
apart from original SM contributions [57, 68]:

β(λEFT) ≡ 16π2µ
dλEFT
dµ

= βSM
λ + 2m2 tr

(
C5C

†
5 −

4
3g

2
2C

(3)
Hℓ + 4C(3)

HℓYlY
†

l − CeHY
†

l − YlC
†
eH

)
,

(4.6)

where it is sufficient to input the tree-level results of the Wilson coefficients in eq. (2.9) for
self-consistent computations at one-loop level. Note that λEFT ̸= λ here, because the UV
theory and the EFT may differ in the UV-divergent behaviors (see, e.g., ref. [69], for a review).

However, since we are working on a UV-motivated EFT, we can not only maintain the
infrared (IR) information but also even reconstruct the beta functions of the UV theory
under certain conditions. In fact, according to the EFT running in eq. (4.6) and one-loop
matching result, one can reproduce the running behavior of λ in the full type-III seesaw model
in eq. (4.5). The key point is that we need to include the contribution from the threshold
correction to λ into the beta function in eq. (4.6) in the following way

β(λ) = β(λEFT)− 16π2µ
d(δλeff)

dµ , (4.7)

where δλeff is the threshold correction to λ given in eq. (3.8) and it depends on the renormal-
ization scale µ. Extracting the µ-dependence of δλeff in eq. (3.8) explicitly, one can check
that the equality in eq. (4.7) indeed holds. With the above demonstration, we emphasize
that the complete expression of β(λ) in the full theory can be reproduced by subtracting the
threshold contribution from the beta function β(λEFT) in the EFT.
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The result in eq. (4.7) can be easily understood by focusing on the divergent behaviors
from the perspective of the region expansion in the UV theory. First, note that the beta
function β(λEFT) in the EFT is governed by the UV divergence of the soft region of loop
momentum in the UV theory. However, this UV divergence can be offset by the IR divergence
of the hard region loop momentum, the UV divergence of which corresponds to the true
one of the UV full theory. Because of this, the µ-dependence of δλeff in eq. (4.7) comes
from two sources, i.e., the UV and IR divergences. Consequently, the IR contribution in
16π2µd(δλeff)/dµ will cancel β(λEFT) out. In the meanwhile, the remaining part from the
UV contribution just produces β(λ). In this way, eq. (4.7) will hold for a general UV theory
and its EFT description.

At this point, we shall have a closer look at the one-loop matching results, which in
general receive contributions from both log(µ)-independent and log(µ)-dependent terms.
Normally, the log(µ)-dependent contributions can be ignored at the matching scale, as they
simply vanish at µ = MΣ in the case of mass degeneracy. This indicates that the log(µ)-
independent term represents the contribution from heavy particles in the UV model at a
fixed scale, which has been discussed in section 4.1. While in this subsection, we have noticed
that the log(µ)-dependent terms, on the other hand, essentially contribute to the running
behavior of the UV theory at low-energy scales. The combination of log(µ)-independent
and log(µ)-dependent parts can perfectly reproduce the complete UV theory at any energy
scale below the matching scale at the one-loop level.

4.3 Strategy to distinguish among SEFTs

Thus far all three types of seesaw models have been matched to the SMEFT at the one-loop
level. As for the effective operators up to dim-6, these three SEFTs show clear differences
between each other, as indicated in table 1. Therefore, a natural and interesting question is
whether these different dim-6 operators can be implemented to experimentally distinguish
among three types of seesaw models. To fully answer this question, one must perform a
global-fit analysis of all existing experimental measurements in the framework of the SEFTs
and make a model comparison. In the previous literature [46, 70–73], numerous efforts have
been made to distinguish among different types of seesaw models from the EFT perspective,
utilizing low-energy observables in the leptonic sector. In this subsection, we just outline a
preliminary strategy to look for the answer via non-leptonic observables.

First of all, we notice that the differences among three SEFTs mainly appear as the
four-fermion operators. From table 1, there are 31 dim-6 operators in the SEFT-I, whereas
two additional ones (namely, OW and O(3)

qq ) exist in the SEFT-III. As for the SEFT-II, eight
more dim-6 operators are present, including O(1)

qq , Oqe and six four-fermion operators of type
RRRR, when compared to the SEFT-III. Based on these observations, we propose to search
for physical observables that are sensitive to the four-fermion operators in collider experiments.
The global-fit analysis of four-fermion operators in the SMEFT indicates that the data from
the top-quark sector at the CERN Large Hadron Collider (LHC) may provide very useful
information [74, 75]. For instance, the top-pair production is sensitive to four-quark operators,
but there occur many degeneracies among these operators and more observables will be
helpful to break the degeneracies [76]. Motivated by these studies for the SMEFT, we shall
focus on the processes also in the top-quark sector.
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Then, we suggest looking into the single-top production at high-energy hadron colliders.
As shown in ref. [77], the impact of the dim-6 operator O(3)

qq on the single-top production is
significant. This operator appears in both the SEFT-II and the SEFT-III, but not in the
SEFT-I, implying the possibility to distinguish the latter one from the former two. More
explicitly, three operators O(3)

qq , OuW and O
(3)
Hq at dim-6 in the SMEFT contribute to the

single-top production mainly through the interference with the SM contribution. However,
OuW will be neglected in our analysis because it is absent in all three SEFTs. The rest
two operators contribute to the production cross-sections of u+ d̄→ t+ b̄ in the s-channel
and u + b → d + t in the t-channel [77]2

σud̄→tb̄ =

V 2
tb+

2C(3)
HqVtbv

2

Λ2

 g4
2
(
ŝ−M2

t

)2 (2ŝ+M2
t

)
384πŝ2 (ŝ−M2

W )2 +C(3)
qq Vtb

g2
2
(
ŝ−M2

t

)2 (2ŝ+M2
t

)
48πΛ2ŝ2 (ŝ−M2

W ) ,

σub→dt =

V 2
tb+

2C(3)
HqVtbv

2

Λ2

 g4
2
(
ŝ−M2

t

)2
64πŝM2

W (ŝ−M2
t +M2

W )−C
(3)
qq Vtb

g2
2
(
ŝ−M2

t

)
ln
[
ŝ−M2

t +M2
W

M2
W

]
8πΛ2ŝ

,

(4.8)
where Vtb denotes the element of Cabibbo-Kobayashi-Maskawa matrix, and only the interfer-
ence contributions or the terms up to O(Λ−2) are kept, and the tree diagrams with single
insertions of O(3)

qq and O
(3)
Hq are considered. One can see that the contribution of O(3)

qq in
the t-channel is logarithmically enhanced at high energies compared to that of O(3)

Hq. Such
a distinct dependence on the center-of-mass energy

√
ŝ at the parton level signifies the

possibility to probe the operator O(3)
qq . Once the associated Wilson coefficient C(3)

qq is found to
be nonzero, the SEFT-I can be immediately excluded, since it does not contain this operator.

To estimate the experimental sensitivity to these two relevant Wilson coefficients, we
utilize a simple statistical analysis by constructing the χ2-function as follows

χ2 =

(
σs

exp. − fσs
EFT

)2

(δσs)2 +

(
σt

exp. − fσt
EFT

)2

(δσt)2 + (f − 1)2

(δf)2 , (4.9)

where σs
exp. (or σt

exp.) stands for the measured cross-section in the s- (or t-) channel at the
LHC [78] and likewise σs

EFT (or σt
EFT) for the expected cross-section in the EFT. While

δσs and δσt are the uncertainties of experimental measurements, the theoretical uncertainty
of the EFT cross-section has been taken into account by introducing a nuisance parameter
f and its error δf as a penalty term into the χ2 function. To obtain the total hadronic
cross-section in the proton-proton colliders, one has to convolve the partonic cross-sections in
eq. (4.8) with the parton distribution functions (PDF) with the energy threshold being Mt.
For this purpose, we adopt the NNPDF31_nlo_as_0118_luxqed PDFs [79], and the s- and

2For clarity, we have explicitly factorized out the cutoff-scale dependence Λ−2 from the Wilson coefficients
of dim-6 operators in this subsection such that these coefficients now become dimensionless.
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Figure 2. The χ2-fit results for the s- and t-channel single-top production based on the LHC run-II
data, where only two operators O(3)

Hq and O
(3)
qq at the order of O(Λ−2) contribute to the relevant

processes. The solid red (or dashed blue) curve indicates the allowed region of two associated Wilson
coefficients multiplied by (TeV/Λ)2 at the 68% (or 95%) confidence level, while the SM prediction is
represented by the black star.

t-channel hadronic cross-sections under the Vtb → 1 approximation are

σt
EFT =

f +
2C(3)

Hqv
2

Λ2

σt
SM −

C
(3)
qq

Λ2 (21.03 pb) · (1 TeV)2

σs
EFT =

f +
2C(3)

Hqv
2

Λ2

σs
SM + C

(3)
qq

Λ2 (7.14 pb) · (1 TeV)2 (4.10)

where σs
SM and σt

SM are the SM cross-sections for the s-channel and the t-channel, respectively.
From the LHC run-II data at the center-of-mass energy

√
s = 8TeV with the total luminosity

L = 20.2 fb−1, the measured single-top cross-sections are σs
exp. = 4.8+1.8

−1.5 pb and σt
exp. =

89.6+7.1
−6.3 pb, respectively, whereas the NLO+NNLL SM predictions are 5.61± 0.22 pb and

87.8+3.4
−1.9 pb [80]. Given these input values, a simplified version of the χ2-fit analysis can be

accomplished by imposing a constraint χ2−χ2
min ≤ ∆χ2 at the 68% and 95% confidence levels.

The final results of the χ2-fit analysis are shown in figure 2. At the 95% confidence level, we
obtain the allowed regions C(3)

Hq · (TeV/Λ)2 ∈ [−1.89, 1.79] and C(3)
qq · (TeV/Λ)2 ∈ [−0.65, 0.43].

Note that the one-loop matching conditions for the Wilson coefficients in the SEFT-II and
the SEFT-III give C(3)

qq = −g4
2/(1920π2) and C

(3)
qq = −g4

2/(160π2), respectively. Therefore,
as the cutoff scale is identified as Λ = M∆ in the SEFT-II and Λ = MΣ in the SEFT-III,
one can translate the bounds on the Wilson coefficients in figure 2 into the lower bounds
on the scales of the type-II and type-III seesaw models

M∆ ≳ 3.8 GeV , MΣ ≳ 13 GeV . (4.11)

It can be seen that these lower bounds on the seesaw scales are rather weak, because the
coefficients from one-loop matching are suppressed and the current measurements are not
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precise enough. In addition, figure 2 shows that the LHC run-II data are well consistent
with the SM predictions. However, the situation may be greatly improved for future collider
experiments. For example, at the HL-LHC, the luminosity will be increased to 3000 fb−1,
such that the experimental uncertainty will be reduced to one percent of the present one.
With such a high precision, it is hopefully possible to detect visible deviations from the
SM predictions, and the information about the typical scales of type-II and type-III seesaw
models can be obtained.

Finally, we point out that further discrimination between the SEFT-II and the SEFT-III
is possible but more challenging. When

√
C/Λ ∼ 1 TeV−1 is sizable with C being a general

Wilson coefficient of the dim-6 operator, we also need to include the dim-6 squared terms,
apart from the interference terms, into the global fit for the single-top production. In this
case, there are three additional operators O(1)

qq , OHud and OdW that are also involved in the
global-fit analysis of the SMEFT [76]. Fortunately, the last two operators are absent in the
SEFT-II and SEFT-III, as shown in table 1, so only O(1)

qq is relevant. As this operator happens
to be in the SEFT-II, but not in the SEFT-III, it can be utilized to further distinguish
between the SEFT-II and the SEFT-III in the measurements of single-top production. Once
the dim-6 squared terms are added into the analysis, any indication of nonzero values of
C

(1)
qq will be a smoking-gun signal for the type-II seesaw model, while excluding the type-I

and type-III seesaw models. However, a detailed analysis along this line is beyond the scope
of this paper and will be left for future works.

5 Conclusions

In the present paper, we have accomplished the complete one-loop matching of the type-III
seesaw model onto the SMEFT via both functional and diagrammatic approaches. The general
results for three generations of heavy fermionic triplets are given. A careful comparison
with the previous results in ref. [48], where the equal-mass limit has been taken for the
fermionic triplets, indicates that some mistakes in the Wilson coefficients in ref. [48] need to
be corrected. The correct results are also summarized in section 3.4.

Furthermore, the low-energy phenomenology of the SEFT-III in three aspects is explored.
First, we calculate the rates of lepton-flavor-violating decays of charged leptons in the SEFT-
III and demonstrate that the results in the full type-III seesaw model in the large-mass limit
can indeed be reproduced when the one-loop matching operators and the associated Wilson
coefficients are taken into account. This is a simple example for self-consistent one-loop
calculations in the SEFT-III, which will be important to probe neutrino mass models in
the precision era of particle physics. Then, we investigate the relationship between the beta
function β(λEFT) of the running quartic Higgs coupling λEFT in the SEFT-III and that β(λ)
in the full type-III seesaw model. It has been shown that β(λ) in the full theory can be derived
by subtracting β(λEFT) in the EFT by the contribution from the µ-dependence of one-loop
matching condition for λ. All these discussions manifest the importance of one-loop matching
for phenomenological studies in the EFT. Finally, with the EFTs for three types of seesaw
models, we propose a possible way to distinguish among them in collider experiments. For
example, the single-top production in the hadron colliders is sensitive to dim-6 four-fermion
operators. A novel way to rule out the SEFT-I is to discover the contribution from the operator
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O
(3)
qq , which is absent in the SEFT-I. The further discrimination between the SEFT-II and

the SEFT-III relies on the observation of the dim-6 operator O(1)
qq , which is more challenging.

It is interesting to see whether this strategy can be really implemented in the future analysis
of the HL-LHC data to single out the true mechanism for neutrino mass generation.

The origin of neutrino masses definitely calls for new physics beyond the SM. As the
canonical seesaw models for neutrino masses usually work at the energy scale far beyond the
electroweak scale, precision calculations in their low-energy EFTs will be indispensable when
more accurate data are available at the high-energy and high-intensity frontiers. We believe
that the one-loop construction of the SEFTs for three types of canonical seesaw models will
be very useful for their phenomenological studies at low energies in a systematic way.
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