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1 Introduction

The standard model (SM) of particle physics can be extended with an additional gauge
group, thus accommodates various exotic vector bosons. The electromagnetic neutral Z ′

boson, accompanied with an extra U(1)′ gauge symmetry is the simplest selection [1–4]. Z-Z ′

mixing [5–7] can arise due to the absence of any unbroken symmetry below the electroweak
scale, affecting various phenomenologies for different searching proposals.

Straightforward “bump” searches are effective for a Z ′ with a measurable interaction
with the SM particles (For a review, see ref. [8]). In the literature, Tevatron [9–15] and
the ATLAS and CMS collaborations at the LHC [16–24] published constraints for such
kind of Z ′ boson with its mass well-separated with the SM-Z boson. In contrast with this
“direct” strategy, one of the indirect ways to observe the off-shell Z ′ effects can be found in
ref. [25]. A more prominent “oblique” way is to look into the “oblique parameters”, e.g.,
Peskin-Takeuchi parameters S, T , and U [26, 27], and even W , X, Y , Z [28], etc., to observe
the hints imprinted on the electroweak precision measurement parameters from an off-shell
Z ′ [29, 30] which might be veiled beneath its faint coupling with, or low decay ratio into the
visible SM particles during a straightforward searching process. In the literature, most of
the results utilizing the LEP data actually follow this route [31–33]. The recent W boson
mass data published by the CDF collaboration [34] and its deviation from the SM predicted
value give rise to the possibility of the existence of an exotic vector boson contributing to
the electroweak precision measurement values [35–48].

Theoretical predictions on both “direct” and “oblique” ways to find a Z ′ are based upon
the perturbative expansions up to a particular order. This is sufficient for the case with
a significant mass difference between Z ′ and the SM-Z, and the mixing angle is usually
extremely small. Yet in the literature, it seems that discussions about a nearly degenerate
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Z ′-Z system are rare. As we have examined, we only found in ref. [49] some incomplete
results based upon a particular model defined in ref. [50]. In this paper, we will discuss
a much more general case.

Inspired by the famous K0-K0 system [51, 52], we have realized that despite the Hermitian
squared mass elements, the non-Hermitian widths might also play important roles in finding the
“mass eigen-states” of two mixing states. In the case when two vector bosons mix, diagonalizing
a mass-squared matrix including the non-Hermitian width contributions is equivalent to
a resummation over all possible “string diagrams” including the imaginary contributions
from all possible one-loop self-energy diagrams. Then these two “mass eigen-states” both
contribute to the line-shape of a Z-boson-like object at an electron-positron collider, which
might not be naively considered as a simple composition of two resonances. Compared with
a sheer SM-Z line-shape, such an object might appear as a distorted “resonance” to affect
the electroweak precision measurement results extracted from its appearance.

In this paper, we try to compute the electroweak precision measurement distortions
induced by a Ẑ ′ field which is nearly degenerate with the SM Ẑ field through diagonalizing
their mass-squared matrix including their widths. In order to compare our results with the
familiar parameters, we define observables S̃, T̃ , Ũ and δÑν , corresponding to the well-known
Peskin-Takeuchi parameters S, T , U , and the deviation of the neutrino species δNν . Unlike S,
T and U , our S̃, T̃ , Ũ only reflect the change of the line-shape, and is unable to be attributed to
some particular effective operator contributions. Although one can find some incomplete LEP
data from the references of the ref. [53], as theorists it is difficult for us to completely restore
a LEP simulation environment with higher order contributions considered. As a compromise,
we adopt a set of events simulated in the conditions similar to the LEP environments dubbed
“pseudo-LEP” data to predict the sensitivity if the real original LEP data are utilized.

Besides the LEP, suggested future leptonic colliders, e.g., ILC [54], CEPC [55], FCC-
ee [56], have been proposed with extremely large integrated luminosities. Usually at least a
calibration around the Z-scale should be proceeded, at the same time electroweak precision
measurement data are updated by the way. For an example, the CEPC takes the potential to
produce ∼ 1011-1012 Z-bosons, which can be regarded as a super Z-factory [57] to significantly
improve the sensitivity of the oblique parameters. Simulating such a large “pseudo-CEPC”
data set is beyond our current computational resources, however its sensitivities can still
be estimated by utilizing the pseudo-LEP results.

This paper is organized as follows. In section 2, we introduce the effective Lagrangian
for an exotic vector boson Ẑ ′. Other basic concepts are elaborated. Then simulation details
and settings are illustrated in section 3. In section 4, the numerical results are presented and
described in three scenarios. Finally, section 5 summarize this paper.

2 Effective Lagrangian

In this paper, we rely on a simplified general effective Lagrangian introduced in ref. [45],
enumerating all the possible kinematic and mass mixing terms that preserve the U(1)EW
symmetry. Since some of the variables are not straightforwardly connected to the Z ′ sector,
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we only discuss a subset of them in this paper. We list the corresponding terms as below,

L ⊃ −1
4 Ẑ

′
µνẐ

′µν + 1
2m

2
Ẑ′Ẑ

′
µẐ

′µ − ϵB
2 Ẑ

′
µνB

µν − 1
2Λ2

W

Ẑ ′
µνW

aµνH†σaH

+ Ẑ ′µ
[
iλHZ′(DµH)†H + H.c.

]
, (2.1)

where Ẑ ′µ is the exotic neutral vector boson Ẑ ′, and Ẑ ′
µν ≡ ∂µẐ

′
ν − ∂νẐ

′
µ. H indicates the

SM Higgs doublet, W aµ and Bµ are the SU(2)L and U(1)Y gauge fields respectively, and
Dµ = ∂µ − iĝ′Y Bµ/2− iĝσaW a

µ/2, where ĝ′ and ĝ are the “original” coupling constants. ϵB,
ΛW , λHZ′ are the corresponding constants. Here the mass term m2

Ẑ′Ẑ
′
µẐ

′µ is put by hand,
and might originate from an exotic Higgs carrying a U(1)′ charge corresponding with the
Z ′, or from the Stueckelberg mechanisms.

After H acquires the vacuum expectation value (VEV),

H =
(

iϕ+

v̂+h+iϕ0
√

2

)
, (2.2)

where v̂ ≈ 246GeV, we therefore acquire the effective kinematic mixing terms

Leff ⊃ −ϵB2 Ẑ
′
µνB

µν − ϵW
2 Ẑ ′

µνW
3µν , (2.3)

where ϵW ≡ −v̂2/(2Λ2
W ). Then, the mass terms as well as the kinematic terms can be

written in the form of matrices,

Lmass =
(
Ẑ ′

µ, Bµ, W
3
µ

)
M2

V

 Ẑ ′µ

Bµ

W 3µ

 , (2.4)

M2
V =


m2

Ẑ′ ĝ′δm2 −ĝδm2

ĝ′δm2 ĝ′2

4 v̂
2 − ĝ′ĝ

4 v̂
2

−ĝδm2 − ĝ′ĝ
4 v̂

2 ĝ2

4 v̂
2

 , (2.5)

and

Lkin = −1
4
(
Ẑ ′

µν , Bµν , W
3
µν

)
KV

 Ẑ ′µν

Bµν

W 3µν

 , (2.6)

KV =

 1 ϵB ϵW
ϵB 1 0
ϵW 0 1

 , (2.7)

where δm2 ≡ −λHZ′ v̂2/2. Ref. [45] aimed at diagonalizing (2.5) and (2.7), and perturbatively
expanded the results in the case that mZ′ is well-separated with the mZ .

The contributions from the self-energy diagrams are usually evaluated through two ways,
computed order-by-order perturbatively, or resummed all at once to correct the mass term of
every propagator. Yet near the resonance of each s-channel propagator, the imaginary part
of its self-energy diagrams must be resummed prior to any other process and contributes to
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Z Z ′
e, µ, τ, νe,µ,τ , u, d, s, c, b

Figure 1. Cross terms between Z and Z ′ particles.

the Breit-Wigner form of the propagator by adding up an imaginary part in the denominator.
Other contributions may be taken into account perturbatively order by order later, and
behave like sub-leading corrections in quantities.

Besides the self-energy of each particle, the self-energy among different types of particles,
or the “cross terms” may also give rise to the imaginary parts, as shown in figure 1 as
an example. This is not a problem if Z and Z ′ are well separated in mass spectrum, and
its contributions are suppressed by a factor 1

m2
Z′−m2

Z
so they can be taken into account

order-by-order perturbatively. However, when Z and Z ′ are nearly degenerate so m2
Z′ ≈ m2

Z ,
such a suppression becomes non-viable.

Denote cXY ≡ Im
{
ΠX↔Y (p2 ≈ m2

X,Y )
}

, where ΠX↔Y (p2) is the gµν coefficient of the
self-energy of a particle X transforming into Y , one has to correct each element of (2.5) with
an additional icXY term before the diagonalizion processes. In fact, as we will illustrate
in appendix A, the crossing-terms involving the photon can be negligible, and we utilize
the matrix below

M2 ′
V = M2

V + i (CX↔Y )3×3

=


m2

Ẑ′ + icẐ′Ẑ′ ĝ′
(
δm2 − icẐ′Ẑ√

ĝ′2+ĝ2

)
−ĝ

(
δm2 − icẐ′Ẑ√

ĝ′2+ĝ2

)
ĝ′
(
δm2 − icẐ′Ẑ√

ĝ′2+ĝ2

)
ĝ′2

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
− ĝ′ĝ

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
−ĝ

(
δm2 − icẐ′Ẑ√

ĝ′2+ĝ2

)
− ĝ′ĝ

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
ĝ2

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)

 . (2.8)

Now the mass terms are no longer hermitian, and this can be understood by adding some
non-conjugate corrections into the Lagrangian, or the Hamiltonian, just as what happens
in a K0-K0 system [51, 52]. We also have to note that the “hatted” Ẑ denotes the “SM-Ẑ”
when all the mixing terms are switched off, that is to say,

Ẑµ = 1√
ĝ2 + ĝ′2

(−ĝ′Bµ + ĝW 3µ). (2.9)

In the following of this paper, the hatless “Z” usually appears within the symbols associated
with the aspect of the experimentalists who might be unaware that their observed resonance
can accommodate exotic contributions. “Z” also appears within the definitions from the
literature or simulating tools. In this paper, the hatless “Z ′” is also associated with a general
reference of “Z ′-model” or “Z ′-Z system”, while the hatted “Ẑ ′” particularly refers to the
Ẑ ′ field that we introduce in (2.1).

Then we can follow ref. [45] to diagonalize the kinetic matrix (2.7) beforehand:

VC = V1V2V3, V T
C KV VC = I3×3, (2.10)
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where

V1 =

1 −ϵB −ϵW
0 1 0
0 0 1

 , V2 =


1 0 0
0 1 ϵBϵW

1−ϵ2
B

0 0 1

 ,

V3 =


1 0 0
0 1√

1−ϵ2
B

0

0 0
√

1−ϵ2
B

1−ϵ2
B−ϵ2

W

 , (2.11)

and then the mass-squared matrix becomes

(V1V2V3)TM2 ′
V V1V2V3, (2.12)

and diagonalizing this matrix gives

V = V1V2V3VSMVf , V TM2 ′
V V = diag(m2

1 − im1Γ1, m
2
2 − im2Γ2, 0), (2.13)

where VSM is the familiar EW rotation matrix

VSM =


1 0 0
0 − ĝ′√

ĝ′2+ĝ2
ĝ√

ĝ′2+ĝ2

0 ĝ√
ĝ′2+ĝ2

ĝ′√
ĝ′2+ĝ2

 . (2.14)

m1, Γ1, m2, Γ2 are the “masses” and “widths” of two “mass eigenstates” of the Z ′-Z system.
These “mass eigenstates” are denoted by Z1 and Z2 in this paper. Since their masses are
nearly degenerate, and their mixing angle might be large, they might altogether form a single
SM-Z-like object, and which of them is identified to be the Z or Z ′ is unessential. The
appearance of a zero eigenvalue in V TM2′

V V might correspond to the photon, and further
calculation indicates that such a massless eigenstate coupling with all the fermions exactly
mimics a photon, leaving us no problem about its identity. However the vertices involving
the Z1,2 are extremely complicated with a combination of the continuous products composed
with the V1,2,3,SM,f elements. In this paper, we calculate these couplings numerically without
showing their detailed form.

We have to note that although (2.8) is no longer hermitian, one can still verify that it
is symmetric, that is, M2 ′

V = (M2 ′
V )T. This guarantees the existence of Vf in (2.13) with

the condition V T
f Vf = VfV

T
f = I. However, the elements of Vf can be complex, which are

weird to be understood as the “mixing terms” among real vector fields, since the mixed
“eigenstate fields” are no longer real numbers. This indicates that the usual perceptions of the
“mixing fields” are non-viable and should be replaced with the concept of the resummmed
propagators as described in appendix A.
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3 Details of the event generation and the extraction of the observables

The standard way to extract the electroweak precision data is to compare the line-shape of
the Z-resonance with the parameterized functions considering the Breit-Wigner propagators,
initial-state radiation (ISR) effects, and the momentum distribution of the beams (See
section 55 of “Reviews, Tables & Plots” in ref. [52] for a review, and for the references
therein). The photon mediated s-channel diagrams and all the t- and u-channel contributions
with the interference effects should also be considered. After finding out the most fitted
parameterized function, mZ , ΓZ , Re,µ,τ , A0e,µ,τ

FB , and Nν , which are the mass of the Z-boson,
the width of the Z-boson, the ratios of the Z → hadrons over Z → e/µ/τ branching ratios,
the forward-backward asymmetry parameters, and the effective number of the active neutrinos,
respectively, are extracted for further comparison with the SM predicted values.

In this paper, we alternatively adopt what we called the “SM templates” to replace the
role of the parameterized functions. These are the line-shape data acquired from the event
generator based upon the dubbed “pseudo-SM” model file, which is a modified variation of
the default SM model file provided by FeynRules [58], added with four additional parameters
mZ , s2

l , ΓZ and ξ as the input value. Here s2
l is the effective Weinberg angle affecting the

weak coupling constants, independent with the s2
W associated with the ratio of the W and

Z bosons. ΓZ can also be assigned with an arbitrary value, which might not equal to the
SM-predicted one. ξ appears in

Bµ = −sW ξZµ + cWAµ,

W 3
µ = cW ξZµ + sWAµ, (3.1)

modifying the definitions of the Bµ and W 3
µ in the model file. This parameter aims at

rescaling the height of the resonance while keeping the shape of it intact through exerting
a universal factor upon the Z-f -f vertices

LF ⊃ − e

2slcl

∑
i

ψiγ
µ(ξgi

V − ξgi
Aγ

5)ψiZµ, (3.2)

where e =
√
4πα is the electromagnetic coupling constant, and cl =

√
1− s2

l . For each
i ∈ {all SM fermion species}, gi

V = ti3L − 2Qis
2
l and gi

A = ti3L where ti3L is the weak isospin
of the fermion i, and Qi is the charge of ψi. Notice that with the couplings defined in (3.2),
the event generator can automatically compute a width of the Z-boson, denoted by ΓSM

Z in
this paper, which is not necessarily equivalent with the ΓZ which has been enforced into
the Breit-Wigner propagator as an input parameter. We are going to utilize both of them
in the following of this paper.

Although part of the LEP data can be found in refs. [49, 59–61] by the DELPHI, OPAL,
and L3 collaboration, a comparison between the theoretical predicted results with these data
requires intricate higher-order loop-level contributions as well as the complete Monte-Carlo
simulation imitating the detector performances and event selection techniques decades ago.
As theorists, we may concern only the sensitivity of a LEP-like collider on such a new physics
model as a compromise at current stage, leaving these complexities for future studies if
all the LEP raw data from all four detectors can be excavated. Therefore, more familiar
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Monte-Carlo tools developed in the LHC era are utilized for fast simulation processes in this
paper, and comparing our simulated Z ′-model events with the SM templates generated by
exactly the same Monte-Carlo tools up to the tree level can reduce both the impacts from the
higher-order corrections, and from the difference between the 1990s and current techniques.

To compare the continuous line-shape curves, one should sample a set of discrete
√
s’s,

which are defined as the invariant masses, or the total energies of the colliding e+e− system.
LEP published some of the early detailed data including the integrated luminosity and
the number of events at each of the sampled

√
s, while later as the integrated luminosity

accumulates, in ref. [62] only the fitted results of the electroweak precision measurements
were published. For the integrated luminosities of each sampled

√
s, only the L3 collabo-

ration published them from 1993–1995 in ref. [61]. From the table 1 of ref. [62] and the
table 14–17 of ref. [61], we learned that the

√
s ≈ 91.2GeV occupied most of the inte-

grated luminosity budget. In this paper, we aim at a simpler but clearer analogy rather
than a perfect and precise restoration of the LEP experimental environments, so we adopt√
s = [88.2, 89.2, 90.2, 91.2, 92.2, 93.2, 94.2]GeV as our samples as a reference, and equalize

their integrated luminosities as 300 pb−1 for each
√
s when generating the Z ′-model events.

Since in ref. [62], the total luminosity is 60 pb−1, we therefore multiply a
√
5 when evaluating

the statistical uncertainties of the
√
s = 91.2GeV events. According to ref. [61], other

√
s’s

are still assigned with considerable integrated luminosities, so we multiply a
√
30 at the√

s = [88.2, 89.2, 90.2, 92.2, 93.2, 94.2]GeV uncertainty data for the equivalence with the
effective 10 pb−1 integrated luminosities. We call our data with such settings the “pseudo-
LEP” results. Since from the knowledge of statistics, the sensitivity of a measurement is
usually proportional to the square root of the luminosity, so our assignments of the integrated
luminosities indicate a virtual collider with its performances a little bit better than the
authentic LEP. The results acquired from the pseudo-LEP are therefore still expected to
reflect the authentic LEP sensitivities.

For the pseudo-SM templates, we generate 107 events for each
√
s = [88.2, 89.2, 90.2,

91.2, 92.2, 93.2, 94.2]GeV sample with various input values of mZ , s2
l , ΓZ , and ξ. Then

we use the polynomial

σPSM
t

(
mZ ,ΓZ ,s

2
l , ξ,

√
s
)
= a0t

(√
s
)
+(mZ−mZ0)2a1t

(√
s
)
+(s2

l −s2
l0)2a2t

(√
s
)

+(ΓZ−ΓZ0)2a3t
(√
s
)
+(ξ−ξ0)2a4t

(√
s
)
+(mZ−mZ0)(s2

l −s2
l0)a5t

(√
s
)

+(mZ−mZ0)(ΓZ−ΓZ0)a6t
(√
s
)
+(mZ−mZ0)(ξ−ξ0)a7t

(√
s
)
+(s2

l −s2
l0)(ΓZ−ΓZ0)a8t

(√
s
)

+(s2
l −s2

l0)(ξ−ξ0)a9t
(√
s
)
+(ΓZ−ΓZ0)(ξ−ξ0)a10t

(√
s
)
+(mZ−mZ0)a11t

(√
s
)

+(s2
l −s2

l0)a12t
(√
s
)
+(ΓZ−ΓZ0)a13t

(√
s
)
+(ξ−ξ0)a14t

(√
s
)
, (3.3)

to fit the pseudo-SM template events by quadratic fitting for each
√
s = [88.2, 89.2, 90.2, 91.2,

92.2, 93.2, 94.2]GeV in each final product channel t ∈ {(e+e−)F/B,(µ+µ−)F/B,hadrons}. Here
the subscript of the “(e+e−)F” or “(e+e−)B” denotes the “forward” or “backward” directions
that the positive charged product outcomes parallels or anti-parallels to the incoming positron
beam respectively. The a(0−14)t are the factors to be determined by the fitting processes.
mZ0, s2

l0, ΓZ0, ξ0 are the “central values” of the corresponding input parameters. Here we
assign mZ0 with the current measured value of the Z-boson mass. The sl0 is assigned by
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solving s2
l0c

2
l0 = s2

W c2
W = πα√

2m2
Z0GF

, and ΓZ0 is computed from the pure SM theory with the
previously assigned mZ0 and sl0 values, both neglecting the beyond-tree-level contributions
as we have mentioned before. Here GF is the Fermi constant, sW is the Weinberg angle
defined in the SM model file accommodated in the FeynRules. The sl0 = sW assignment
eliminates all the Z ′ contributions at the reference central point. We should note that the
precise absolute value of these three parameters are not important on the stage of this paper,
since what we concern is the tiny “correction” upon them from the new physics contributions,
rather than their original “background values”. In the future, if the algorithm proposed in
this paper is practically adopted, corrections including the loop-level contributions should be
further taken into account. Finally, ξ0 is appointed to be the value 1. The charge asymmetry
of the quarks also affect the charge unbalance of the final hadrons, however analyzing such
an asymmetry is beyond our ability of simulation, so we evade taking this into account.

In principle the e+e− → τ+τ− channels should also be considered. τ might decay into
muons, electrons, or hadrons to fake the corresponding channels. The leptonic decay channels
can be simply distinguished by the additional missing energy/momentum criterion during
the event selections, and the hadronic decay channels might be problematic. At a lepton
collider, the hadronic τ -decay products can be well discriminated from the hadronic-jet
events [63]. As a comparison, the famous “tau-tagging” techniques seem to have started
drawing attention since the “LHC-era” because of the miscellaneous QCD-backgrounds which
are difficult to be eliminated, while during the “LEP-era”, probably due to the extremely
low QCD-background so that the hadronic decaying τ can be well-separated from the QCD
jets, the “τ -contamination” is therefore only briefly discussed in the published papers. For
an example, in ref. [64], the τ -contamination was found to occupy typically 0.45 ± 0.05%
times the QCD-jet cross section, indicating so tiny effects on our discussions. Further more,
during the “LHC-era”, the efficiency of the “τ -tagging” techniques at a hadronic collider
seems to have been significantly improved within these years [65, 66], and it is reasonable to
expect a similar improvement not only at the future lepton collider programs, but also for
the previous LEP data if the raw data can be excavated to be reanalyzed. Considering the
complexity of the τ -tagging algorithms for a fast simulation in this paper, and the potential
of the technology improvement in the future, we just assume that all the τ products can
be well-discriminated and negligible in this paper.

In this work, we apply WHIZARD [67–69] as our event generator. LHAPDF6 [70, 71],
PYTHIA6 [72], FastJet [73, 74] and DELPHES [75–77] are connected for the detector-level
data. In DELPHES, we utilize the CEPC card regardless our purpose for a LEP-like
prediction, and not so many differences are expected. The beams structure is chosen to be
the Gaussian distribution. The WHIZARD parameter σ of both the “gaussian_spread1” and
“gaussian_spread2” are set to be 250/90000 [78], which indicates the relative Gaussian-width
of the energy of each beam. ISR is also switched on. The event selection rules are set as
PT > 7GeV and |η| < 2.4 for each isolated (anti-)muons. Here, the “isolated” muons or
electrons mean that these objects do not appear as a part of a hadronic jet. Clustered jets
which is not identified as the isolated electrons/positrons/(anti)-muons are also regarded
as “single objects” to fit the criterion above. Here “E”, “PT ”, and “η” are the energy, the
transverse momentum, the pseudo-rapidity of the particle/jet in the argument respectively.
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We should also note that the isolated electron or muon identification criteria are set as the
DELPHES default standards, that the total PT for all the exotic objects appeared within a
circle with the radius R =

√
∆η2 +∆ϕ2 = 0.5 around the electron or muon candidate should

be less than 0.12 or 0.25 times the PT of the candidate electron or muon respectively. Here
∆η and ∆ϕ are the difference of the pseudo-rapidity and the azimuth-angle. Additionally
M2

ff
≥ 1 GeV2 where “M2

ff
” means the invariant mass squared of the e±/µ±/jet pairs. For the

isolated electron/positron pairs, the |η| < 2.4 criterion becomes too loose to accommodate too
many nearly co-linear events originating from the t- or u-channel internal photon propagators.
Therefore we add a | cos(θ)| ≤ 0.8 cut on each isolated electron/positron to eliminate such
events, where “θ” is the absolute polar angle in the lab frame.

We then compare the line-shape cross sections in the Z ′-model for each parameter
point with the pseudo-SM template cross sections fitted in (3.3) to find the best fitted
(m∗

Z , s
∗2
l ,Γ∗

Z , ξ
∗) by minimizing the χ2

F defined as

χ2
F (mZ ,ΓZ , s

2
l , ξ) =

∑
t,
√

s

(
σZ′

t (
√
s)− σPSM

t

(
mZ ,ΓZ , s

2
l , ξ,

√
s
))2

(
∆Z′

t (
√
s)
)2 + (∆PSM

i

(
mZ ,ΓZ , s2

l , ξ,
√
s
))2 , (3.4)

where
√
s = [88.2, 89.2, 90.2, 91.2, 92.2, 93.2, 94.2]GeV, σPSM

t (mZ ,ΓZ , s
2
l , ξ,

√
s) is defined

in (3.3). σZ′
t (

√
s) are line-shape sample cross sections for the Z ′-model with a particular set of

parameters. ∆Z′
i and ∆PSM

i (mZ ,ΓZ , s
2
l , ξ,

√
s) are the statistical uncertainties of the pseudo-

SM template cross sections and the Z ′-model cross sections respectively. The statistical
uncertainty ∆X for each cross section σX at channel X is evaluated by

∆Z′/PSM
X = f

Z′/PSM
X√
n

Z′/PSM
X

σX, (3.5)

where n
Z′/PSM
X is the number of events passing through all selection criterion. As we

have mentioned, fZ′
X =

√
5 for all

√
s = 91.2GeV channels, and fZ′

X =
√
30 for

√
s =

[88.2, 89.2, 90.2, 92.2, 93.2, 94.2]GeV channels. For all fPSM
X , they are assigned with 1. The

total χ2
F includes seven points of center-of-mass energy, three channels, and the leptonic

channels are separated into forward-back parts, so the total degree of freedom is counted
to be Ndf =35.

Then the best-fitted (m∗
Z , s

∗2
l ,Γ∗

Z , ξ
∗) will be converted into effective oblique parameters

S̃, T̃ , Ũ , and δÑν , which are the effective Peskin-Takeuchi oblique parameters and the
effective deviation of the species of neutrinos respectively. Refs. [26, 27] derived the S, T , U
expressions depending on mW , sl,ΓZ . Here similar to ref. [45], we have followed the steps
in ref. [79] to derive and reverse these formulas as the definitions of the effective S̃, T̃ , Ũ
so that the constraints of S, T , U in the literature can be straightforwardly cast here. One
subtle thing is that in the usual electroweak precision measurement discussions, mZ is the
input parameter, so δmW is given by

δmW = − αm “SM”
W

4(c2
W − s2

W)

(
S − 2c2

WT − c2
W − s2

W
2s2

W
U

)
, (3.6)

where δmW = mW −m“SM”
W . Here, the actual meaning of the quoted superscript the “SM”

in m“SM”
W means that it is predicted from the SM formula m“SM”

W = mMD
Z cW, where the “MD”
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superscript in mMD
Z indicates the abbreviation for “measured”, which means that its value is

straightforwardly extracted from the experimental data of the Z-like resonance peak. In this
paper, the “mMD

Z ” is actually the best-fitted m∗
Z . The mW , however, is the “measured” W -

boson mass and can be computed by mW = minput
Z cW, where the minput

Z =
√

ĝ2+ĝ′2

2 v̂ indicating
the “SM-Z” boson’s mass if all the Z ′ effects are switched off in the model. Therefore, one
can realize that the correction on mW is equivalent to a correction on minput

Z towards the
opposite direction, so δmW = mW −m“SM”

W = minput
Z cW −m∗

ZcW ≃ −(m∗
Z −minput

Z )m“SM”
W

minput
Z

.
Together with the formulas in refs. [26, 27, 80], we define S̃, T̃ , Ũ , as well as the deviation
of the neutrino species number δÑν by solving the following equations.

−δmW
minput

Z

m“SM”
W

= m∗
Z −minput

Z = αminput
Z

4(c2
W − s2

W)

(
S̃ − 2c2

WT̃ − c2
W − s2

W
2s2

W
Ũ

)
,

s∗2
l − (s2

l )SM = α

4(c2
W − s2

W)(S̃ − 4s2
Wc

2
WT̃ ),

Γ∗
Z − (ΓZ)SM = α2minput

Z

72s2
Wc

2
W(c2

W − s2
W)(−10(3− 8s2

W)S̃ + (63− 126s2
W − 40s4

W)T̃ ),

δÑν = Γ∗
Z − (ΓZ)pSM

(Γνν)pSM , (3.7)

where the first equation is actually equivalent to the (3.6) by substituting the δmW with
−(m∗

Z − minput
Z )m“SM”

W

minput
Z

. (s2
l )SM and (ΓZ)SM are also the calculated values of s2

l and ΓZ

regarding the m∗
Z as the input value in this case. (ΓZ)pSM and (Γνν)pSM are calculated

according to the pseudo-SM model files with the best fitted m∗
Z , s∗2

l and ξ∗ as the input
parameter. Solving the three equations in the front of (3.7), we obtain

S̃ = 367.29δs2
l + 37.92δΓZ ,

T̃ = 132.35δs2
l + 52.94δΓZ ,

Ũ = −2.62δmZ + 144.31δs2
l − 37.92δΓZ , (3.8)

where δmZ = m∗
Z −minput

Z , δs2
l = s∗2

l − (s2
l )SM and δΓZ = Γ∗

Z − (ΓZ)SM. The fourth equation
in (3.7) is also applied to compute δÑν , in which the best fitted ξ∗ is implicitly accommodated
through calculating the (ΓZ)pSM and the (Γνν)pSM with the corrected vertices in (3.2).

The χ2
STU comparing the S̃, T̃ and Ũ with the global fitted data is defined by

χ2
STU =

(
S̃ − S0, T̃ − T0, Ũ − U0

)
C−1

 S̃ − S0
T̃ − T0
Ũ − U0

 , (3.9)

where S0, T0 and U0 are the best global-fitted values, C−1 represents the inverse of the
covariance matrix of S0, T0 and U0. In this paper, the S0, T0, U0 and C−1 are adopted
from table 1.

In this paper, based upon some typical models (See an enumeration of the Z ′-models
in ref. [81], and the references therein), we are going to show our calculated S̃, T̃ , Ũ , δÑν ,
as well as the estimated e+e− collider sensitivity in three scenarios. They are
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Result Correlation
S 0.06± 0.1 1.00
T 0.11± 0.12 0.90 1.00
U −0.02± 0.09 −0.57 −0.82 1.00

Table 1. Global fit results of the oblique parameters S, T , and U adopted from ref. [39].

• Scenario I: Ẑ ′ only couples to invisible particles.
This scenario is inspired from the dark matter model associated with a Z ′, in which Z ′

plays a crucial role connecting the visible world with the dark sector. Z ′ might couple
with the dark matter, and the dark matter particles decayed from it are invisible at a
collider. Besides the dark matter, Z ′ might also couple with the sterile neutrino, which
might also be invisible if they are long-lived enough to decay outside the detector.
This scenario is accomplished by straightforwardly assigning a cẐ′Ẑ′ value in (2.8) for
convenience, rather than introducing some invisible fields for the Ẑ ′ to decay into them.

• Scenario II: Ẑ ′ couples with the SM fermions universally among all three generations.
Charged under the U(1)′ gauge symmetry universally among all three generations, the
coupling constants are stringently constrained by the off-shell Ẑ ′ mediated processes,
leading to a particularly small cẐ′Ẑ′ to give a narrow but sharp valley-like structure
imposed on the resonance. The initial momentum distribution in the beams and the
ISR effect smear this structure to give a relatively “smooth” curve. Therefore, the
electroweak observables are then extract by comparing the Z ′ induced pseudo-LEP
data with the pseudo-SM template results.
Here we define the coupling constants as

guRẐ
′
µūRγ

µuR + guLẐ
′
µūLγ

µuL = Ẑ ′
µūγ

µ
(
guL + guR

2 − guL − guR

2 γ5
)
u,

gdR
Ẑ ′

µd̄Rγ
µdR + gdL

Ẑ ′
µd̄Lγ

µdL = Ẑ ′
µd̄γ

µ
(
gdL

+ gdR

2 − gdL
− gdR

2 γ5
)
u,

glRẐ
′
µ l̄Rγ

µlR + glLẐ
′
µ l̄Lγ

µlL = Ẑ ′
µ l̄γ

µ
(
glL + glR

2 − glL − glR

2 γ5
)
u,

gνLẐ
′
µν̄Lγ

µνL = Ẑ ′
µν̄

(
gνL

2 − gνL

2 γ5
)
ν. (3.10)

• Scenario III: Ẑ ′ couples with the SM fermions depending on their generations.
For some particular models (ref. [82] enumerated such models, and references can be
found therein), a particular generation of particles might be charged under the U(1)′
group, or two generations of particles takes a particular combination of the U(1)′ charge
(For an example, the U(1)Lµ−Lτ models [83–87]). This not only affects the shape of
the Z-resonance, but also breaks the universality of the l+l− branching ratios, where
l = e, µ, τ . In this paper, we only discuss the e-µ asymmetry, and utilize the

Re

Rµ
(3.11)
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where
Rl ≡

Γhad
Γl+l−

(3.12)

to observe such an asymmetry.

4 Numerical results

The effective Lagrangian (2.1) takes such parameters, mẐ′ , ϵB, ΛW , and λHZ′ . For the
convenience of a relatively intuitive presentation, equivalently, ϵB , ϵW , mẐ′ , and δm2 appeared
in (2.8) and (2.7) and can be treated as the free parameters for further discussions. Among
them, ϵB, ϵW and mẐ′ are the most important. δm2 can also give rise to non-perturbative
mixings. However, if one switch off the δm2 and diagonalize the kinematic terms by (2.11),
off-diagonal terms arise in (2.12). Expand (2.12) up to the lowest non-trivial order, it becomes

(V1V2V3)TM2 ′
V V1V2V3 ≃


m2

Ẑ′ −m2
Ẑ′ϵB −m2

Ẑ′ϵW

−m2
Ẑ′ϵB

ĝ′

4 v̂
2 − ĝ′ĝ

4 v̂
2

−m2
Ẑ′ϵW − ĝ′ĝ

4 v̂
2 ĝ2

4 v̂
2

 . (4.1)

Therefore, a particular choice of ϵB
ϵW

= − ĝ′

ĝ generates the similar off-diagonal terms in (2.5)
which are proportional to δm2. Therefore, the effects from δm2 can be alternatively estimated
by choosing an appropriate combination of ϵB and ϵW approximately, so in the rest of this
paper, we neglect δm2.

To further understand this approximate equivalence prompted by (4.1), notice that
changing into the momentum representation, the − ϵB

2 Ẑ
′
µνB

µν − ϵW
2 Ẑ

′
µνW

3µν in (2.3) can be
reduced by substituting the ∂µ with −ipµ, where pµ is the momentum of the propagating vector
boson. Since we concentrate in the s-channel vector propagators around

√
p2 ≈ mẐ ≈ mẐ′ ,

the equivalent mass crossing terms −ϵBm2
Ẑ′Ẑ

′
µB

µ − ϵWm2
Ẑ′Ẑ

′
µW

3µ arise in this case. The
remained ∝ ϵB(p · Ẑ ′)(p · B) + ϵW (p · Ẑ ′)(p ·W 3) terms will finally be connected with the
fermionic final states, and the p will be inevitably dotted into a fermionic external line to
summon the Goldstone coupling constants, which are small enough to be neglected in this
paper, just as the similar mechanism to neglect the pµpν terms in (A.7) to be discussed in
appendix A. Therefore, up to the linear order, the contributions from δm2 is equivalent to a
particular combination of ϵB and ϵW if all of them are sufficiently small.

In the following of this section, we plot the S̃, T̃ , Ũ and δÑν for Scenario I-III on
various plains. For Scenario III when universality among generations is broken, Re

Rµ
− 1

is also plotted. Besides these familiar observables which might not be able to summarize
the complete distortion of the Z-like resonance, the χ2

F defined in (3.4) can also reflect
the deviation of the lineshape from a standard single-particle resonance, which can also
be regarded as a hint of the new physics. In this paper, we also take best-fitted χ2

F into
account, and the details will be addressed later.

The Monte-Carlo algorithm that we utilize inevitably introduces statistical fluctuations in
our results, thus smoothness is lost in the plotted figures. We use a second-order polynomial of
ϵB , ϵW and the coupling constants defined in (3.10) to fit each of the fluctuated S̃, T̃ , Ũ , δÑν

and Re
Rµ

−1 by least square method to smooth the results. Since all new physics corrections are
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destined to vanish if one switches off ϵB , ϵW and all additional coupling constants between the
Ẑ ′ and the SM-fermions, we utilize this condition to fix the constant terms of the polynomials.
The similar results from several independent runs with different random seeds verify the
reliability of this fitting algorithm, so in this paper, we show the fitted results in the figures.

In principle, we should compare our results with the global fitted results of all S̃, T̃ , Ũ ,
δÑν , and Re

Rµ
− 1 parameters. Unfortunately, in the literature S̃, T̃ , Ũ are fitted with the

assumption of universality and δÑν = 0. δÑν is also fitted with the assumption that the
visible Z-propagator is not distorted, that is to say, S̃ = 0, T̃ = 0, Ũ = 0. A complete global
fitting including all these parameters is far beyond our target, and remember that we are
only able to show readers the “sensitivity” of a LEP-like electron-positron collider without
performing a real fitting process due to the lack of the published data, so in this paper, we
still show the corresponding “STU-(1, 2)-σ”, “δÑν-(1, 2)-σ”, “Re/Rµ-(1, 2)-σ” contours in
each of the figures. The prefixes “STU-”, “δÑν-”, “Re/Rµ-” indicate that the 1-σ and 2-σ
fitted results originate from the global fitted oblique parameter in table 1, indirect Nν results
from ref. [52], Re and Rµ data with their uncertainties adopted from ref. [52]. However we
should note that these contours only characterize the sensitivity of the collider on this model,
and should not be regarded as real constraints.

The best-fitted χ2
F ’s are also computed. Practically, the LEP collaborations published the

best-fitted χ2/Ndf ’s in ref. [62], where Ndf means the number of degrees of freedom. For a real
experiment, the χ2 is usually dominated by statistical fluctuations so the expectation value of
the χ2/Ndf becomes 1, which is compatible with the results published in ref. [62]. According
to the central limit theorem, the distribution of χ2/Ndf should approach a normal distribution
with the standard deviation σ =

√
2/Ndf when Ndf ≫ 1. Therefore, if the χ2/Ndf acquired

from the experimental data deflect from the value of 1 too “far away”, e.g., |χ2/Ndf − 1| ≳ 2σ,
one can reasonably doubt the validity of the assumptions that the experimental collaborations
utilize to fit the data. In ref. [62] specifically, if such a case happens, the validity of a SM
Z-resonance is doubted and the hint of some new physics arises. Our χ2

F defined in (3.4)
also includes the contributions from the Monte-Carlo statistical fluctuations, however as we
have mentioned, we have generated our events in a much larger integrated luminosity to
suppress these fluctuations, so in this paper, the statistical fluctuations in χ2

F /Ndf are almost
deducted, and it can reflect the systematic deviation of the distorted Z ′-Z resonance from the
pure Z lineshape. Therefore, considering that the χ2

F is non-negative, we plot the best-fitted
χ2

F /Ndf = 1.69
√
2/Ndf contour tagged by “χ2

F -2σ” to show the sensitivity of a LEP-like
collider to find the difference between the Z ′-Z resonance and a SM-Z lineshape. Here the
“2σ” means that the single-sided p-value of a χ2 distribution (or the approximate normal
distribution) is equivalent to the double-sided p-value of a normal distribution corresponding
to the 2σ sensitivity when Ndf ≫ 1. As we have mentioned before, all through this paper
we adopt Ndf = 35, except we will mention that in our Scenario III, for the particular Re

Rµ

fitting processes we deleted some channels, therefore Ndf = 21.
Besides, people are more interested about the sensitivity of some proposed future colliders.

According to ref. [55], the CEPC is expected to significantly improve the uncertainties of the
electroweak precision measurements. With the expected sensitivities published in ref. [55]
around the Z-pole, we also plot the “CEPC-ST-(1, 2)-σ”, “CEPC-δÑν-(1, 2)-σ”, “CEPC-
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Re/Rµ-(1, 2)-σ” contours within one plot for each of the ϵB and ϵW plain. Note that ref. [55]
only shows the expected S-T results in its figure 11.18, so we are forced to give up the U .
Although in principle U -sensitivity can be extracted from the table 11.16 of ref. [55], however
the complete covariance matrix is missing for a complete fitting. Since we only target at
the collider’s potential sensitivity, neglecting the U is expected not to affect the final results
significantly. Another subtle thing is that ref. [55] only gives Rµ, which is insufficient to
estimate the Re/Rµ uncertainties. In fact, at a lepton collider, the e+e− → e+e− channel
data are slightly less precise than the corresponding e+e− → µ+µ− data because of the less
accuracy of the electron/positron trajectory measurements. Fortunately, refs. [88, 89] give
both the expected Re and Rµ sensitivities at the CEPC. In this paper, we adopt the values
there to estimate the expected CEPC Re/Rµ uncertainties as a reference in this paper.

Now we show our results for the three scenarios respectively.

4.1 Scenario I: Ẑ′ couples with invisible matters

In this scenario, the width ΓẐ′ that Ẑ ′ only decays to invisible matter is regarded as an
input parameter, so cẐ′Ẑ′ and cẐẐ are given by

cẐ′Ẑ′ = −mẐ′ΓẐ′ , cẐẐ = −mẐΓẐ , (4.2)

where mẐ = ĝ2+ĝ′2

4 v̂2 and the ΓẐ which is the width of the Ẑ-boson can be computed by
the event generator if all mixing parameters switch-off. Since the Ẑ ′ has no coupling to SM
fermions, there is no self energy diagram of Ẑ ′-Ẑ. Therefore we have

cẐ′Ẑ = 0. (4.3)

If the ΓẐ′ is close to ΓẐ , and the mẐ′ is also close to mẐ , maximum mixings between
Z ′-Z might arise, however the overlapped and interfered peaks still look like a single Z-pole.

For convenience we define

λZ′ =
ΓẐ′

ΓẐ

, δmZ′ = mẐ′ −mẐ , (4.4)

which is the ratio of the widths of the two “interaction-eigenstates” and the mass difference
between them, respectively. The δmZ′ parameter is also used in the following two scenarios.
We have tried several combinations of parameters like δmZ′ = 0,−0.1GeV, and λZ′ = 0.5, 0.9
on the ϵB-ϵW plain, and found that the results are quite similar if Ẑ ′ and Ẑ are nearly-
degenerate. Finally, we choose to plot the results when λZ′ = 0.9 and δmZ′ = −0.1GeV in
figure 2 as a paradigm on the ϵB-ϵW plain. In figure 3, 4, we also plot the similar results
on the ϵB-δmZ′ and ϵB-λZ′ plains. Other conditions are addressed in the corresponding
captions. In these figures we neglect the T̃ and Ũ results for brevity, since they can be roughly
estimated by multiplying the universal factors upon the S̃ results within the parameter range
of the plots. These factors are shown in the figure captions. In the following of this paper,
we will also omit some pictures if such a universal factor exists. We also have to note that
in figure 3, a simple polynomial fitting with the ϵB, δmZ′ parameters fails along the δmZ′

direction, so we only use polynomials to fit the results along the ϵB directions for each fixed
δmZ′ , then interpolate the coefficients of the polynomials along the δmZ′ to finally smooth
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δÑ ν-2
σ

0.00

0.05

0.10

0.15

0.20

0.25

δÑν
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Figure 2. Plots for δmZ′ = −0.1GeV, λZ′ = 0.9 and δm2 = 0 on the ϵB-ϵW plain. The right panel
shows the estimated CEPC sensitivity. The remaining two panels display the heat maps of S̃ and δÑν .
1-σ and 2-σ contours are displayed on the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying
S̃ by the coefficients 1.8 and −1.6, respectively. Current Nν data is extracted from ref. [52].
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Figure 3. Plots for ϵW = 0, λZ′ = 1.0 and δm2 = 0 on the ϵB-δmZ′ plain. The right panel shows
the estimated CEPC sensitivity. The remaining two panels display the heat maps of S̃ and δÑν , and
plot the 1-σ and 2-σ contours on the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying S̃ by
the coefficients 1.5 and −1.2, respectively. Current Nν data is extracted from ref. [52].
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Figure 4. Plots for δmZ′ = 0.5GeV, ϵW = 0 and δm2 = 0 on the ϵB-λZ′ plain. The right panel
shows the estimated CEPC sensitivity. The remaining two panels display the heat maps of S̃ and δÑν ,
and plot the 1-σ and 2-σ contours on the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying
S̃ by the coefficients 1.5 and −1.1, respectively. Current Nν data is extracted from ref. [52].

the results. Notice that the “χ2
F -2σ” line is also missing, which means that in this scenario,

generally the shape of the Z-Z ′ system looks very similar to a SM-like Z resonance, making
the familiar S̃, T̃ , Ũ , δÑν observables much more sensitive than the χ2

F parameters.
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4.2 Scenario II: Ẑ′ couples with the SM fermions universally among all three
generations

In this scenario, Ẑ ′ couples directly with the SM quarks and leptons. General definitions of
the coupling constants have been listed in (3.10). To compute the ImΠẐ′Ẑ , the following
fermions’ couplings with the Ẑµ fields are required,

L ⊃ Ẑµψ̄
fγµ(V f

Ẑ
−Af

Ẑ
γ5)ψf , f = u, d, l, ν, (4.5)

where according to the SM,

V u
Ẑ
= 1

4cW
− 2s2

W
3cW

, Au
Ẑ
= 1

4cW
, V d

Ẑ
= − 1

4cW
+ s2

W
3cW

, Ad
Ẑ
= − 1

4cW
,

V l
Ẑ
= − 1

4cW
+ s2

W
cW

, Al
Ẑ
= − 1

4cW
, V ν

Ẑ
= 1

4cW
, Aν

Ẑ
= 1

4cW
. (4.6)

Denote V f

Ẑ′ ≡
gfL

+gfR
2 and Af

Ẑ′ ≡
gfL

−gfR
2 , under the approximation that the decay products

are massless, cẐẐ , cẐ′Ẑ and cẐ′Ẑ′ are calculated to be

cẐẐ = −mẐΓẐ ,

cẐ′Ẑ′ = −
m2

Ẑ

12π
∑
f ̸=t

(V f

Ẑ′V
f

Ẑ′ +Af

Ẑ′A
f

Ẑ′),

cẐ′Ẑ = −
m2

Ẑ

12π
∑
f ̸=t

(V f

Ẑ′V
f

Ẑ
+Af

Ẑ′A
f

Ẑ
). (4.7)

In this scenario, the direct coupling constants between Ẑ ′ and the SM particles should
be stringently constrained. Therefore the cẐ′Ẑ′ and cẐ′Ẑ become much smaller than cẐẐ .
This actually suppresses the mixing angle and in this case, the Ẑ ′-like object cleaves a deep
but narrow valley within the resonance induced by the Z-like object, which will later be
smeared by the ISR and beam momentum distribution effects, just as we have plotted in
figure 5 as an example.

It is actually impossible for a practical lepton collider to scan every
√
s in a sufficient

resolution to depict such inconspicuous structure, so what we can do is still adopt the
scattered

√
s = [88.2, 89.2, 90.2, 91.2, 92.2, 93.2, 94.2]GeV samples to extract the S̃, T̃ ,

Ũ , δÑν parameters.
In this paper, we only consider two cases, one is that the Ẑ ′ only couples universally with

all the leptons, and the other is that the Ẑ ′ couple with leptons and quarks with the ratio of the
coupling constants to be 3 : (−1), inspired by the U(1)B−L model. For the first case, since we
find out that the chirality of the interaction terms defined in (3.10) does not affect the results
to a significant extent, we only adopt the vector-type interaction pattern glL = glR , and show
plain examples in figure 6, 7 and 8. Inspired by the U(1)B−L models, we plot the figure 9, 10
and 11 as the example plains when glL = glR = −3guL = −3guR = −3gdL

= −3gdR
. One can

also learn about the LEP sensitivity as well as the estimated CEPC sensitivity in these figures.
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Figure 5. Z line-shape predicted by an example model that Ẑ ′ couples with the SM fermions. The
left panel shows the results when the electron/positron is “bare”, while the right panel considers the
ISR and beam momentum distribution effects.
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Figure 6. Plots for δmZ′ = 0.1GeV, glL
= glR

= 0.001 and δm2 = guL
= guR

= gdL
= gdR

= gνL
= 0

on the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients 1.4 and −1.1,
respectively. The other symbols are the same as in figure 2.
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= gdR
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= 0 on the

ϵB-δmZ′ plain. The other symbols are the same as in figure 3.
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δÑ
ν
-2
σ

δÑ
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Figure 8. Plots for δmZ′ = 0.1GeV, glL
= glR

= gc and ϵW = δm2 = guL
= guR

= gdL
= gdR

=
gνL

= 0 on the ϵB-gc plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients 1.6
and −1.2, respectively. The other symbols are the same as in figure 4.
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Figure 9. Plots for δmZ′ = 0.1GeV, guL
= guR

= gdL
= gdR

= −0.0002, glL
= glR

= gνL
= 0.0006

and δm2 = 0 on the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients
1.4 and −1.1, respectively. The other symbols are the same as in figure 2.
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Figure 10. Plots for guL
= guR

= gdL
= gdR

= −0.0002, glL
= glR

= gνL
= 0.0006 and ϵW = δm2 = 0

on the ϵB-δmZ′ plain. The other symbols are the same as in figure 3.

– 18 –



J
H
E
P
0
5
(
2
0
2
4
)
1
6
7

0.0050 0.0025 0.0000 0.0025 0.0050

εB

0.0050

0.0025

0.0000

0.0025

0.0050

g c

εW = 0.0, δmZ ′ = 0.1 GeV

ST
U

-1
σ

ST
U

-2
σ

χ
2 F
-2
σ

χ
2 F
-2
σ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S̃

0.0050 0.0025 0.0000 0.0025 0.0050

εB

0.0050

0.0025

0.0000

0.0025

0.0050

g c

εW = 0.0, δmZ ′ = 0.1 GeV

δÑ
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Figure 11. Plots for δmZ′ = 0.1GeV, −3guL
= −3guR

= −3gdL
= −3gdR

= glL
= glR

= gνL
= gc

and δW = δm2 = 0 on the ϵB-gc plain. The T̃ and Ũ can be obtained by multiplying S̃ by the
coefficients 1.5 and −1.2, respectively. The other symbols are the same as in figure 4.

4.3 Scenario III: Ẑ′ couples with the SM fermions depending on the
generations

The Z ′ couplings to fermions might be generation-dependent, in which case coefficients
in (3.10) need to be changed into the generation-dependent version. Constrained by our
current calculation ability and inspired by some eminent models, we only consider the case
that Ẑ ′ only couples with µ and/or τ . The interaction terms are parametrized by

Leff ⊃ Ẑ ′
µµ̄γ

µ
(
gµL + gµR

2 − gµL − gµR

2 γ5
)
µ+ Ẑ ′

µτ̄ γ
µ
(
gτL + gτR

2 − gτL − gτR

2 γ5
)
τ. (4.8)

Although the e+e− → µ+µ− might be affected by (4.8), breaking the universality among the
e± and µ± channels, however in the literature, all the S, T , U parameters are extracted with
the assumption of the leptonic universality. To keep in pace with these fitting processes as
possible as we can, we still follow our previous steps to fit the S̃, T̃ , Ũ , δÑν , pretending to
be blind to the non-universality. On the contrary, in order to compute the (3.11), we should
follow another route by deleting all the µ+µ− terms in (3.4) to find the best-fitted point in
our pseudo-SM template again. As we have mentioned before, in this case the Ndf becomes
21. With the newly independent fitted results, (3.11) can be expressed by

Re

Rµ
=
σNP

µ+µ− (
√
s = mZ)

σNP
se+e− (

√
s = mZ)

, (4.9)

where subscript “s” in σNP
se+e−(mZ) indicates the s-channel cross section the e+e− → e+e−

channel. Certainly, σNP
se+e−(mZ) is impossible to be acquired straightforwardly due to the

contamination from the t-, u-channels. Fortunately, in the pseudo-SM template, the univer-
sality is preserved, and the σPSM

µ+µ− does not include the t-, u-channel contributions. Therefore,
the σPSM

µ+µ−(
√
s = 91.2 GeV) adopted from the pseudo-SM template can be utilized in place

of σNP
se+e−(mZ), and we also take

√
s = 91.2GeV to replace the mZ , so

Re

Rµ
=
σNP

µ+µ− (
√
s = 91.2 GeV)

σPSM
µ+µ− (

√
s = 91.2 GeV)

. (4.10)

We will extract the current Re
Rµ

data from ref. [52], and plot the 1-σ and 2-σ contour
in the ϵB-ϵW and ϵB-gc plain. As we have mentioned, the CEPC sensitivity is extracted
from refs. [88, 89].
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Figure 12. Plots for δmZ′ = 0.1GeV, gµL
= gµR

= 0.001 and gτL
= gτR

= δm2 = 0 on the ϵB-ϵW
plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients 1.4 and −1.1, respectively.
Compared with the figure 2, Re

Rµ
− 1 is additionally plotted.

Inspired by the models that Z ′ couples with a particular generation of leptons, we show
example plains that the Ẑ ′ only couples with the second family of the leptons in figure 12,
13, 14. Inspired by the U(1)Lµ−Lτ models [83–87], we show example plains in figure 15, 16,
17. Notice that in some Re

Rµ
− 1 plots among them, e.g., in the Re

Rµ
− 1 plot in figure 12, the

current Re
Rµ

− 1 bounds are far less sensitive than the S̃, T̃ , Ũ , δÑν parameters so that it
disappears in the plot. We also have to note that our current algorithm cannot reach the
reliable CEPC- Re

Rµ
− 1 constraints at figure 13 and figure 16. Since usually Re

Rµ
− 1 constraints

are more relaxed than other parameters in the parameter space that we observe, we neglect
the CEPC- Re

Rµ
− 1 constraints in these two figures.

5 Summary

In a nearly-degenerate Z ′-Z system, not only the widths, or equivalently, the imaginary part
of the self-energy diagram of each fields, but also the indispensable “cross terms”, that is
to say, the imaginary part of the self-energy diagram connecting two different fields play
important roles in calculating the line-shape observables. After diagonalizing the “mass
matrix” with the imaginary contributions included, sometimes “SM-like Z” and “Z ′” cannot
be well discriminated and they overlap coherently to form a single resonance-like object
which might be recognized as a single particle.

Relying on the effective field theory model in which many of the Z ′ models can be
accommodated, we simulate the shape of this resonance-like object, and follow the usual
literature to utilize “oblique parameters” S̃, T̃ , Ũ , and “neutrino species deviation” δÑν to
describe the shape of it. Comparing the results with the current data mainly contributed
by the LEP, one can estimate the sensitivity of the LEP ϵB and ϵW , δmZ′ , and coupling
constant parameter space if the LEP data can be reanalyzed. As a paradigm of the future
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δÑ
ν -2σ
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Figure 13. Plots for gµL
= gµR

= 0.001 and gτL
= gτR

= ϵW = δm2 = 0 on the ϵB-δmZ′ plain.
Compared with the figure 3, Re

Rµ
− 1 is additionally plotted.
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Figure 14. Plots for gµL
= gµR

= gc and gτL
= gτR

= ϵW = δm2 = 0 on the ϵB-gc plain. The T̃ and
Ũ can be obtained by multiplying S̃ by the coefficients 1.5 and −1.2, respectively. Compared with the
figure 4, Re

Rµ
− 1 is additionally plotted.

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
1
6
7

0.002 0.001 0.000 0.001 0.002

εB

0.002

0.001

0.000

0.001

0.002

ε W

gµL = gµR = 0.001, gτL = gτR = − 0.001,  
 δmZ ′ = − 0.1 GeV

STU-1σ

STU-1σ
STU-2σ

STU-2σ
χ

2
F
-2σ

χ
2
F
-2σ

0

1

2

3

4

S̃

0.002 0.001 0.000 0.001 0.002

εB

0.002

0.001

0.000

0.001

0.002

ε W

gµL = gµR = 0.001, gτL = gτR = − 0.001,  
 δmZ ′ = − 0.1 GeV
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δÑ ν-1
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Figure 15. Plots for δmZ′ = 0.1GeV, gµL
= gµR

= 0.001, gτL
= gτR

= −0.001 and δm2 = 0 on
the ϵB-ϵW plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients 1.4 and −1.1,
respectively. Compared with the figure 2, Re

Rµ
− 1 is additionally plotted.
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Figure 16. Plots for gµL
= gµR

= 0.001, gτL
= gτR

= −0.001 and ϵW = δm2 = 0 on the ϵB-δmZ′

plain. Compared with the figure 3, Re

Rµ
− 1 is additionally plotted.
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Figure 17. Plots for δmZ′ = 0.1GeV, gµL
= gµR

= −gτL
= −gτR

= gc and ϵW = δm2 = 0 on
the ϵB-gc plain. The T̃ and Ũ can be obtained by multiplying S̃ by the coefficients 1.5 and −1.2,
respectively. The other symbols are the same as in figure 14.

high-luminosity lepton colliders, the predicted sensitivity of this model at the CEPC is also
evaluated. Besides, we also estimate the Re/Rµ − 1 of the non-universality models, and
compare them with the LEP and CEPC sensitivities.
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A Resummation of the imaginary parts of the self-energy diagrams

Let us start from a group of real scalar particles for simplicity, e.g., ϕi, i = 1, 2, . . . , n,
with the mass matrix to be M2

s = {m2
ij} where m2

ij = m2
ji so M2T

s = M2
s, and the mass

terms being Lm = −1
2ϕim

2
ijϕj . The complete propagator of these scalar particles can be

written in the form of a matrix
i

p2In×n −M2
s

≡ i(p2In×n −M2
s)−1. (A.1)

The usual diagonalization processes to find the mass eigenstates of ϕi’s are equivalent to
finding an orthogonal matrix V to diagonalize the propagator

iV (p2In×n −M2
s)−1V −1 = diag

[
i

p2 −m2
1
,

i

p2 −m2
2
, . . . ,

i

p2 −m2
n

]
, (A.2)
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where V is a real matrix to satisfy V V T = V TV = I. Expand the left-hand side of (A.2)
according to M2

s, we acquire

iV (p2In×n −M2
s)−1V −1 = iV

1
p2

(
I +

n∑
t=1

(
M2

s

p2

)n)
V −1 (A.3)

= i
1
p2

[
I +

n∑
t=1

(
VM2

sV
−1

p2

)n]
= i

(
p2In×n − VM2

sV
−1
)−1

.

It is then clear to see that M2
s and the propagator (A.2) must be diagonalized at the same time.

Including all the imaginary parts of the ϕi-ϕj self-energy diagrams introduces a re-
summation

∞∑
t=0

i

p2In×n −M2
s

[
(−i)Im(Σ(p2)) i

p2In×n −M2
s

]t

= i

p2In×n −M2
s − iIm(Π(p2)) , (A.4)

where −iΠ(p2) is a n× n symmetric matrix with each of its element −iΠjk(p2) the (cross)
self-energy diagram connecting ϕj and ϕk. Therefore, a complete diagonalization process
described in (A.3) should be replaced by

iV (p2In×n −M2
s − iIm(Π(p2)))−1V −1 = i

{
p2In×n − V [M2

s + iIm(Π(p2))]V −1
}−1

. (A.5)

It is now clear that for the complete diagonalization processes including all the width
informations, one should in turn diagonalize M2

s + iIm(Π(p2)) at each momentum p instead of
a mere M2

s. Again, it is easy to verify that M2
s + Im(Π(p2)) is a complex symmetric diagram,

which guarantees the possibility of a successful diagonalization by a complex orthogonal
diagram V = (V T )−1.

If all the scalars are nearly-degenerate around the mass md, a good approximation can be
p2 = m2

d to preserve the accuracy of the near-shell performances of the propagators. This is a
generalization of the Breig-Wigner propagator for the single particle into a nearly-degenerate
multiple particle group.

Since we are discussing about the real scalars, and usually the complex orthogonal V
contains not only real numbers, if we treat V as the matrix to recombine ϕ1,2,...,n into “mass
eigenstates” ϕ′j = Vjkϕk as usual, then ϕ′j is something “complex” but cannot be regarded as
a “complex scalar field”. Therefore, in this paper, we remind the reader that (A.5) cannot
be understood as a equivalence to diagonalizing the scalar fields, although we sometimes
still apply this less rigorous terminology for brevity.

Similar discussions about the scalar fields also appeared in ref. [90], while in this paper,
we should change to the vector bosons. For the W 3-B-Z ′ system, the propagators should
be accompanied with a Lorentz term

igµν

p2I3×3 −M2
V

≡ igµν(p2I3×3 −M2
V )−1, (A.6)

if Feynmann gauge is adopted. The complete discussions on a general Rξ gauge can be
found in ref. [91], and note that the ξ-dependence does not make a significant effect in this
paper. In principle Goldstone propagators should also be considered. However, around the
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Z-pole, only light leptons and quarks can be produced on-shell. Even the heaviest b quark
takes the mB ∼ 3-5GeV mass, so the Goldstone/Higgs contributions are suppressed by a(mb

v

)2 ≪ 1 factor, and can be safely neglected.
Due to the Lorentz covariance, the one-loop self-energy diagram of the vector bosons

can be decomposed and parametrized by

iΠµν
3×3(p2) = iΠ3×3(p2)gµν + iΠ′

3×3(p2)pµpν . (A.7)

Then we can follow (A.4) to resum the vector boson’s propagators. Similar to ref. [91], in
the general Rξ gauge, the result is

− i

(
gµν − pµpν

p2

) [
p2I3×3 −M2

V − iIm(Π3×3(p2))
]−1

− iξ
pµpν

p2

[
p2I3×3 − ξ(M2

V − iIm(Π3×3(p2)− ip2Im(Π′
3×3(p2))

]−1
, (A.8)

where ξ is the Rξ gauge parameter. Here the first and second line of (A.8) indicate the
transverse and longitudinal contributions respectively. Then, we can again set ξ=1 for the
Feynmann gauge. Notice that all the masses of our initial and final state particles are
ignorable since they are extremely relativistic particles, so once a pµ in (A.7) appears, it
will finally dots into the fermionic propagators of the external legs. The Ward-Takahashi
identity version in the broken phase [92] transmute this into a Goldstone propagator, and its
contributions are again suppressed by the smallness of the Yukawa couplings. Therefore, we
are able to neglect the pµpν terms in (A.7), and finally write down the resummed propagators
when only imaginary parts of the (A.7) are considered

−igµν
[
p2I3×3 −M2

V − iIm(Π3×3(p2))
]−1

. (A.9)

In principle, Im(Π3×3(p2)) should be computed for each p. However, practical event
generators are not designed for such kind of propagators. Fixing p2 ≈ mSM2

Z in (A.9) moves
the pole of the photon propagator to an unphysical non-zero point. Since we are talking
about a Z ′-Z system, and the photon lies too far away from them at the spectrum, it is
convenient for us to rotate into the γ, Ẑ, Ẑ ′ basis if all the mixing terms are shut down.
Then, we have to simply diagonalize

MSM2
V =


m2

Ẑ′ 0 0
0 ĝ′2

4 v̂
2 − ĝ′ĝ

4 v̂
2

0 − ĝ′ĝ
4 v̂

2 ĝ2

4 v̂
2

 . (A.10)

Usually shutting down the mixing terms does not affect the self-energy calculations up to the
one-loop order, since all the widths are acquired only from the couplings. Diagonalizing (A.10)
requires VSM defined in (2.14), V T

SMMSM2
V VSM gives

diag[m2
Ẑ′ ,m

2
Ẑ
, 0], (A.11)

corresponding to the masses of the “Ẑ ′”, “SM-like Ẑ” with the “hat” symbols to distinguish
them from the true SM mass-eigenstates, and the photon “eigenstate” masses respectively.

– 25 –



J
H
E
P
0
5
(
2
0
2
4
)
1
6
7
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Figure 18. (Cross) self-energy terms connecting among Ẑ ′, Ẑ and photon fields.

Here m2
Ẑ

= ĝ2+ĝ′2

4 v̂2. By principle, we have to insert the imaginary part of all ΠẐẐ(p2),
ΠẐ′Ẑ′(p2), Πγγ(p2), ΠγẐ′(p2), ΠγẐ(p2) and ΠẐ′Ẑ(p2) into (A.10). However, due to the large
difference between the photon and the Ẑ ′-Ẑ mass spectrum, the contributions from the

ΠγẐ′(p2) and ΠγẐ(p2) are suppressed by a factor of ∼

 Im
(

Π
γẐ(′)

)
m2

Ẑ

2

during the diagonal-

ization processes. Neglecting them also eliminate the Πγγ(p2) effects. Therefore, with the
definition cXY ≡ Im

{
ΠX↔Y (p2 ≈ m2

X,Y )
}

, we only need to consider the X,Y = Ẑ, Ẑ ′ terms,
so that (A.11) becomes

V T
SMMSM2

V VSM + iCẐ/Ẑ′ =

m
2
Ẑ′ + icẐ′Ẑ′ icẐ′Ẑ 0
icẐ′Ẑ m2

Ẑ
+ icẐẐ 0

0 0 0

 , (A.12)

where iCẐ/Ẑ′ indicates the corrections from the imaginary parts of the self-energy dia-
grams. Then we utilize V −1

SM = V T
SM to restore (A.12) into the form under the “interacting

eigenstate basis”,

VSM(V T
SMMSM2

V VSM + iCẐ/Ẑ′)V T
SM

=


m2

Ẑ′ + icẐ′Ẑ′ −i ĝ′√
ĝ′2+ĝ2

cẐ′Ẑ i ĝ√
ĝ′2+ĝ2

cẐ′Ẑ

−i ĝ′√
ĝ′2+ĝ2

cẐ′Ẑ
ĝ′2

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
− ĝ′ĝ

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
i ĝ√

ĝ′2+ĝ2
cẐ′Ẑ − ĝ′ĝ

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
ĝ2

4

(
v̂2 + 4icẐẐ

ĝ′2+ĝ2

)
 . (A.13)

Supplement (A.13) with the mixing terms δm2 appeared in (2.5), (2.8) is then acquired.
In the practical event simulation processes that we have performed, we at first shut

down all the mixing terms to calculate the width of the SM-Z boson by the event generator
to extract the cẐẐ from it. Then, we compute cẐ′Ẑ and cẐ′Ẑ′ by hand relying on different
model setups. After diagonalizing (2.8) by our own programs, we acquire the “masses” and
“widths” of the “mass eigenstates”, as well as the rotated “coupling constants” to be input
into the event generator for further simulations, which is equivalent to diagonalizing the
propagator matrix (A.9) to calculate the amplitudes.
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