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1 Introduction

One of the most interesting features that emerges when studying the non-perturbative regime
of quantum field theories (QFTs) is their θ-dependence: peculiar terms exist (the so called
θ-terms) which, when added to the action, do not modify the classical equations of motion,
and yet change the physical properties of the theory. The existence of θ-terms is related
to the topological features of the gauge group and to the space-time dimensionality [1, 2],
so θ-dependence is not present in all QFTs. Nevertheless, several interesting QFTs display
a nontrivial θ-dependence, ranging from Quantum Chromo-Dynamics (QCD) and four-
dimensional SU(N) Yang-Mills theories [1, 3, 4], to two-dimensional models like the CPN−1

models [5, 6] and U(N) Yang-Mills theories [7–9] (and even elementary quantum mechanical
models [2, 10, 11]).

The vacuum energy (or the free energy, at finite temperature) is the physical observable
whose θ-dependence has been investigated more thoroughly. The functional form of the
vacuum energy in QCD can be estimated either analytically in the chiral limit [12, 13] or
perturbatively at the semi-classical level in the very high-temperature regime [3, 4, 14]. In
the generic finite temperature case (or away from the chiral limit), the coefficients of the
Taylor’s expansion of the free energy in powers of θ2 can only be obtained through numerical
simulations of the lattice regularized theory [15–22]. In the four-dimensional SU(N) Yang-
Mills case, lattice simulations are the main tool to study the θ-dependence of the vacuum (or
free) energy, and several lattice studies have been devoted to investigating different aspects
of this subject [23–40]. The large-N limit is particularly interesting as in this limit (at zero
temperature), θ-dependence is a key ingredient in the Witten-Veneziano solution of the U(1)A
problem [41–43], and some general N -scaling behaviors are theoretically expected [44]. In two-
dimensional CPN−1 models, analytical predictions are available in the large-N limit for the
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coefficients of the Taylor expansion in θ2 of the vacuum energy [5, 38, 45–47], which are nicely
supported by numerical data [8, 9, 48–50]. Finally, for two-dimensional U(N) Yang-Mills
theories we have complete analytic control of the θ-dependence of the vacuum energy [7–9].

In this work we investigate an aspect of θ-dependence that has received far less attention:
the θ-dependence of the spectrum of the theory. In QCD, close to the chiral limit, it is easy
to derive the θ-dependence of the mass of the pseudo-Nambu-Goldstone bosons associated
to the spontaneous breaking of chiral symmetry [13]; away from the chiral limit, we have
once again to resort to lattice simulations. This is the case also for four-dimensional pure-
gauge theories, which are however much simpler to simulate than QCD. For this reason
here we focus on the case of four-dimensional SU(N) Yang-Mills theories, whose Euclidean
Lagrangian density is given by

LYM(θ) = 1
2g2 Tr {Gµν(x)Gµν(x)} + iθq(x) , (1.1)

where
q(x) = 1

32π2 εµνρσTr {Gµν(x)Gρσ(x)} , (1.2)

and we investigate the θ-dependence of the string tension σ and of the lightest glueball mass
mG. Analytical computations can be performed in two-dimensional U(N) Yang-Mills models,
which however do not seem to provide much insight on the physics of their four-dimensional
counterparts, since there is no θ-dependence at all in the spectrum of these two-dimensional
models in the continuum (see appendix A).

At θ = 0, it is established that the 0++ glueball ground state represents the lightest
state [51–54]. At θ ̸= 0, spatial parity is explicitly broken, and cannot be used as a quantum
number for glueball states. The latter are thus only characterized by their spin and charge
conjugation quantum numbers. For this reason, we denote by mG the mass of the lightest
glueball state, i.e., the one that tends to the 0++ glueball in the θ → 0 limit. Note that, since
in our study we only investigate the small-θ regime, we can a priori exclude the possibility
of a level crossing between different states.

Using the invariance under parity of the θ = 0 theory, we can parameterize the leading
order θ-dependence of the string tension and of the lightest glueball mass by the constants
s2 and m2, defined as follows:

σ(θ) = σ
[
1 + s2θ2 + O(θ4)

]
, (1.3)

mG(θ) = m0++

[
1 + m2θ2 + O(θ4)

]
, (1.4)

where σ and m0++ stand for the string tension and the lightest glueball mass computed
at θ = 0, respectively. To the best of our knowledge, the only study in which an estimate
of m2 and s2 was attempted is ref. [46], where their values have been obtained from the
computation, at vanishing θ, of the three-points correlation functions between the torelon or
glueball interpolating operator and the square of the topological charge. As the calculation of
these correlation functions is challenging, only results of limited accuracy could be obtained
in ref. [46].

In this work we adopt an alternative approach, performing simulations at imaginary
values of θ [31]. In a few words, assuming analyticity around θ = 0, we can perform an
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analytic continuation from real to imaginary values of θ, which can be simulated without any
sign problem. Since non analyticities are expected to arise only for θ ∼ π, and since we are
dealing with the behavior of σ and mG at small θ, the analyticity assumption is well justified
in our case and poses no theoretical issues. We can then obtain σ(iθI) and mG(iθI) directly
for different values of θI ∈ R, using the same standard algorithms used for computations of
the spectrum at θ = 0, and estimate s2 and m2 from their small θI behavior.

Although this approach avoids the complications involved in the evaluation of a three-
point correlation function, the computation of s2 and m2 remains non-trivial, especially for
large values of N , where two main difficulties arise. The first is the rapid increase of the
integrated auto-correlation time of the topological modes in simulations when approaching
the continuum limit [55–57] (often referred to as the topological freezing problem), which
becomes much stronger in the large-N limit. To address this problem, we employ the Parallel
Tempering on Boundary Conditions (PTBC) algorithm [58], which has been shown to perform
very well in four-dimensional SU(N) gauge theories [59]. The second is that, as can be seen by
using standard large-N arguments [46], s2 and m2 are expected to scale as 1/N2. Hence they
are generically expected to have small values, and to have a worsening of their signal-to-noise
ratio when the value of N is increased.

As a final remark, we note that a reliable estimate of the coefficients s2 and m2 is not
only important from a theoretical point of view, but is also directly useful in numerical
simulations. As shown in [60, 61], these coefficients describe the systematical error that would
be introduced by estimating the spectrum from simulations at fixed topological charge Q. If
M is the mass of a state and M (Q) is its estimate at fixed topological charge Q, then

M (Q) − M

M
≈ M2

2χV
, (1.5)

where M2 is once again defined by M(θ) = M(1+M2θ2+· · · ), χ is the topological susceptibility
and V the space-time volume. The coefficient m2 can thus be used to impose an upper bound
on the finite size effects introduced by a fixed topological background in the computation
of the m0++ glueball mass.

This paper is organized as follows: in section 2 we present our numerical setup, discussing
the discretization adopted, the update algorithm and the procedure used to evaluate σ and
mG; in section 3 we present our numerical results for the coefficients m2 and s2 parametrizing
the θ dependence of the string tension and of the lightest glueball state, discussing separately
the cases N = 3 and N = 6; finally, in section 4 we draw our conclusions and discuss some open
problems. Two appendices report the analytic computations performed in two dimensional
U(N) models and the tables with the raw numerical data of the four-dimensional SU(N) cases.

2 Numerical setup

2.1 Lattice discretization and simulation details

We discretize the SU(N) pure Yang-Mills theory at θ = 0 on an isotropic hypercubic lattice
with L4 sites using the standard Wilson action:

SW = − β

N

∑
x,µ>ν

ℜTr [Πµν(x)] , (2.1)
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where Πµν(x) = Uµ(x)U †
ν(x + aµ̂)Uµ(x + aµ̂)Uν(x) is the plaquette in position x oriented

along the directions µν, a is the lattice spacing, and β is the inverse lattice bare coupling.
For the discretization of the topological charge we adopt the standard clover discretization

Qclov = 1
29π2

±4∑
µνρσ=±1

εµνρσTr [Πµν(x)Πρσ(x)] , (2.2)

in which εµνρσ coincides with the standard completely anti-symmetric tensor for positive
values of the indices, and its extension to negative values of the indices is uniquely fixed
by ε(−µ)νρσ = −εµνρσ and anti-symmetry. This definition ensures that Qclov is odd under a
lattice parity transformation. The action used to generate gauge configurations is thus

SL(θL) = SW − θLQclov, (2.3)

where the lattice parameter θL is related to the physical θ angle by −iθ = ZQθL, and ZQ is
the (finite) renormalization constant of the lattice topological charge [62] Q = ZQQclov.

To estimate the numerical value of the renormalization constant ZQ it is convenient to
use smoothing algorithms such as cooling [63–69], smearing [70, 71], or gradient flow [72–
74], which dampen the short-scale fluctuations while leaving the global topology of the
configurations unaltered. All smoothing algorithms have been shown to be equivalent for
this purpose [69, 75, 76], and in this work we adopt cooling to define an integer-valued
topological charge by using [26]

Q = round
{

α Q
(cool)
clov

}
, (2.4)

with round{x} denoting the closest integer to x, and with α determined by the first nontrivial
(i.e., 1 < α < 2) minimum of〈(

αQ
(cool)
clov − round

{
α Q

(cool)
clov

})2
〉

. (2.5)

In this way we can determine the renormalization constant using [31]

ZQ = ⟨QQclov⟩
⟨Q2⟩

. (2.6)

Since the dependence of ZQ on the number ncool of cooling steps used to smooth the
configurations is only very mild, reaching a plateau for ncool ∼ 10–15 for all the β values
studied, we define Q using ncool = 20.

Simulations at imaginary values of the θ angle are by now recognized as a cost-effective
technique to study θ-dependence on the lattice, as they have been shown to typically
outperform simulations carried out at θ = 0 [31, 37–40, 49, 50, 59, 77–85]. This is especially
true whenever θ = 0 simulations would require the computation of higher-order (i.e., larger
than two) correlators or susceptibilities, whose order can be effectively reduced by performing
simulations with an external source, then studying the dependence of the results on the source
strength. To determine the coefficients s2 and m2 at θ = 0 would require the computation of
three point functions, see ref. [46], while using simulations at θ ̸= 0 we can estimate σ(θ) and
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mG(θ) as usual, from two-point functions. The values of s2 and m2 are then determined from
the behavior of σ(θ) and mG(θ) for small θ values. It should be clear that, in this way, we are
reducing the statistical errors. However, we have to pay attention not to introduce systematic
ones, related to the determination of the O(θ2) behavior of the observables for θ ≈ 0. More
details about the computation of σ(θ) and mG(θ) are provided in the next subsection.

For simulations at N = 3, we rely on the standard local updating algorithms usually
employed in pure-gauge simulations. More precisely, we adopt a 4 : 1 mixture of over-
relaxation [86] and heat-bath [87, 88] algorithms. For N = 6, instead, due to the severe
topological freezing experienced by standard local algorithms already at coarse lattice spacing,
we adopt the Parallel Tempering on Boundary Conditions (PTBC) algorithm, proposed
for two-dimensional CPN−1 models in ref. [58]. This algorithm has indeed been shown
to dramatically reduce the auto-correlation time of the topological change both in two-
dimensional models [50, 58, 89] and in four-dimensional Yang-Mills theories [59, 85, 90–92].

In a few words, in the PTBC algorithm Nr replicas of the lattice theory in eq. (2.3)
are simulated simultaneously. Each replica differs from the others only by the boundary
conditions imposed on a small sub-region of the lattice, called the defect; these boundary
conditions depend on a single parameter, which is used to interpolate between periodic and
open boundary conditions. In this way a single replica has periodic boundary conditions,
another single replica has open boundary conditions, and the intermediate Nr − 2 replicas
have “mixed” boundary conditions, i.e., boundary conditions which interpolate between the
two previous ones. The state of each replica is updated using heat-bath and over-relaxation
local updates, and configuration swaps between different replicas are proposed during the
MC evolution. These are accepted or rejected using a Metropolis step. This algorithm allows
to exploit the fast decorrelation of Q achieved with open boundaries [93], avoiding at the
same time the difficulties related to the lack of translation invariance associated with the
presence of open boundaries. For more details on the implementation of this algorithm we
refer the reader to ref. [59], where exactly the same setup adopted here was used.

2.2 Extraction of glueball and torelon masses

The starting point to evaluate the torelon mass, needed to extract the string tension, and
the lightest glueball mass is the selection of a variational basis of zero-momentum-projected
interpolating operators Oi. Each Oi is a (sum of) gauge invariant single-trace operators of
fat-links, built by applying blocking and smearing algorithms to the lattice link variables [51–
53, 70, 94–100]. For the computation of the lightest glueball mass we employ 4-, 6- and 8-link
operators in the A1 representation of the octahedral group, using a total of 160 operators. To
evaluate the torelon mass we use instead 5 operators, built in terms of products of fat-links
winding around the time direction once.

As noted before, the only discrete symmetry that can be used to classify the states for
non-vanishing values of θ is the charge conjugation C, since parity is not conserved. For this
reason, it would be natural to use a variational basis containing definite C only operators,
without any projection on definite P representations. However, since we are just interested in
the properties of the ground state at small θ values, we can safely use the same standard
procedure adopted at θ = 0, i.e., use operators with definite parity. We have indeed verified
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that the extraction of the lowest glueball and torelon mass does not pose particular challenges
and is always characterized by large enough overlaps (AG > 0.9, with AG the squared modulus
of the matrix element between the ground state of the selected channel and the vacuum).

The optimal interpolating operator O =
∑

i viOi for the ground state of the selected
channel (i.e., the operator with the largest value of AG = |⟨0|O|G⟩|2, with |G⟩ denoting the
ground state) is the one whose weights vi correspond to the components of the eigenvector
of the Generalized Eigenvalue Problem (GEVP)

Cij(t)vj = λ(t, t0)Cij(t0)vj , Cij(t) ≡ 1
aL

∑
t′

⟨Oi(t − t′)Oj(t′)⟩ (2.7)

associated to the largest eigenvalue λ (we typically used t0/a = 1, performing also some
checks using t0/a = 2). If we denote by v̄i the components of this eigenvector, the optimal
correlator can be written as

CG(t) = Cij(t)vivj . (2.8)

The mass of the ground state is then obtained by fitting the functional form

CG(t) = AG [exp{−mGt} + exp{−mG(aL − t)}] (2.9)

in a range where the t-dependent effective mass

am
(eff)
G (t) = − log

[
CG(t + a)

CG(t)

]
(2.10)

exhibits a pleateau as a function of the time separation t. Final errors on amG were estimated
by means of a standard binned jack-knife analysis.

3 Numerical results

3.1 Results for the SU(3) Yang-Mills theory

For N = 3 we performed simulations for 5 different values of the inverse lattice bare coupling
β, corresponding to lattice spacings ranging from ∼ 0.1 fm to ∼ 0.05 fm. The lattice size
L was chosen large enough to have aL

√
σ ≳ 3.5, in which case finite lattice size effects are

expected to be negligible to our level of precision, see, e.g., ref. [37]. As a further check that
finite size effects are indeed negligible, we compare our estimates of m0++/

√
σ at θ = 0 with

the results of ref. [52], which have been obtained using larger lattices (with aL
√

σ ∼ 4 − 5),
finding perfect agreement.

Using the method described in section 2.2, we computed the lightest glueball mass mG
and the torelon ground state mass mtor for several values of the lattice parameter θL. For
each value of β and θL we gathered a statistics of about O(60k) thermalized configurations,
separated from each other by 10 updating steps (1 step = 1 heat-bath and 4 over-relaxation
sweeps of the whole lattice). The string tension is extracted from the torelon ground state
mass mtor by the usual formula [101]:

a2σ(θ) = amtor(θ)
L

+ π

3L2 , (3.1)
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Figure 1. Examples of t-dependent effective masses obtained for the lightest glueball (left) and
torelon (right) states for N = 3, β = 6.40 and θL = 0 and 8, computed using eq. (2.10) and the
method described in section 2.2. Shaded bands represent our final results for aG and amtor, obtained
from a best fit of the optimal correlator according to eq. (2.9) for t/a ≥ 3, i.e., in the range where
effective masses exhibit a plateau.

and we explicitly verified that consistent results for s2 (but not for σ(θ)) are obtained by using
simply a2σ(θ) = amtor(θ)/L. For this reason, we used eq. (3.1), including the next-to-leading
correction, to compute a2σ for all values of θL. The estimates of mG(θL) and σ(θL) thus
obtained for all the probed values of β and θL are reported for reference in appendix B.
In figure 1 we instead show a few examples of the obtained effective masses for the same
coupling β = 6.40 and for two values of θL = 0 and 8.

The dependence of the lightest glueball mass and of the string tension on θL can be
parameterized, at leading order in θL, as (see eq. (1.3)):

mG(θL) = m0++

[
1 −

(
m2Z2

Q

)
θ2

L + O(θ4
L)
]

,

σ(θL) = σ
[
1 −

(
s2Z2

Q

)
θ2

L + O(θ4
L)
]

,
(3.2)

where the relation θ2 = −Z2
Qθ2

L has been used, and ZQ is the finite renormalization constant
introduced in section 2.1. The numerical value of ZQ depends on β, and we used the values
reported in ref. [37] in all but one case, namely β = 6.00, in which case ZQ has been estimated
anew by using eq. (2.6) on data at θ = 0 (as in ref. [37]).

To extract the values of m2 and s2 we performed a best fit of our data for amG(θL)
and a2σ(θL) using the fit function

f(θL) = A1[1 + A2θ2
L + O(θ4

L)] , (3.3)

where A1 and A2 are fit parameters. Examples of these fits are displayed in figure 2, from
which it can be clearly seen that our data are perfectly described by the leading O(θ2

L)
behavior. To exclude the presence of systematical errors induced by the higher-order O(θ4

L)
terms, we performed several fits, varying the upper limit of the fit range. When lowering
the upper limit of the fit range, the errors on the optimal fit parameters increase, but their
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m
2

×10−2

N = 3, β = 6.40
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Figure 2. Results for N = 3 with β = 6.40. Examples of fits performed by using the functional form
eq. (3.3) for several quantities: (top left panel) the lightest glueball mass amG, (top right panel) the
string tension a2σ, (bottom left panel) the ratio mG/

√
σ. In the bottom right panel we show the

dependence of the estimates of m2 and s2 on the upper limit of the fit range θ
(max)
L .

central values remain well consistent with those obtained by using the full available range,
as can be seen from the example shown in figure 2. For this reason we report the results
obtained by fitting all the available θL values.

Our estimates of m2 and s2 for N = 3 are summarized in table 1. For comparison,
in ref. [46] the values of s2 and m2 were estimated by using simulations at θ = 0, where
s2 = −0.077(15) and m2 = −0.07(4) were obtained at β = 6.00. Bearing in mind that
the methods employed for these results are very different, they appear to be in reasonable
agreement. Moreover, they are based on a roughly equivalent statistics, which shows that the
improvement in accuracy is a benefit of the computational strategy used in the present work.

Since s2 < 0 the string tension increases when using simulations at imaginary θ, hence
we do not expect to observe significant finite-size effects at θL ̸= 0. As a further check of
the absence of finite-size effects we compared our results for the ratio m0++/

√
σ (extracted

from a fit of eq. (3.3)) with those obtained in ref. [52] using significantly larger volumes.
The comparison between these results is displayed in figure 3, from which it is clear that
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L β ZQ am0++ m2 a2σ s2

16 5.95 0.12398(31)* 0.7461(45) −0.0247(28) 0.05577(12) −0.0426(11)

18 6.00 0.13554(39) 0.6937(44) −0.0190(31) 0.04669(16) −0.0419(20)

18 6.07 0.15062(62)* 0.6220(35) −0.0248(33) 0.037079(89) −0.0375(12)

22 6.20 0.1778(13)* 0.5213(55) −0.0172(34) 0.02463(12) −0.0363(20)

30 6.40 0.2083(29)* 0.3965(22) −0.0118(16) 0.014135(46) −0.0295(10)

Table 1. Summary of the results obtained for N = 3. The values of ZQ denoted by an asterisk are
from ref. [37], while the value for β = 6.00 has been computed anew in this work.

0 2 4 6
a2σ ×10−2

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

m
0+

+
/√
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N = 3

Athenodorou & Teper, 2020
[arXiv:2007.06422]

0 2 4 6
a2σ ×10−2
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−3.5
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−2.5

−2.0

−1.5

−1.0

−0.5

a
2
σ

×10−2 N = 3

m2

s2

Figure 3. Left panel: continuum scaling of our N = 3 results for m0++/
√

σ, compared with data
reported in ref. [52]. The dashed line is the result of a best fit of our data assuming O(a2) scaling
corrections. Right panel: continuum scaling of our N = 3 results for m2 and s2 and their continuum
extrapolation assuming O(a2) scaling corrections.

they are perfectly consistent with each other. In particular, assuming just O(a2) corrections,
we get the continuum limit

m0++√
σ

= 3.398(25) , (3.4)

to be compared with m0++/
√

σ = 3.405(21) reported in ref. [52].
The continuum extrapolations of m2 and s2 are displayed in figure 3. These results are

obviously consistent with the presence of just the leading O(a2) finite-a corrections. We
thus obtain the continuum extrapolated values

m2 = −0.0083(23), (continuum extrapolated), (3.5)
s2 = −0.0258(14), (continuum extrapolated). (3.6)

Remarkably, the continuum extrapolated value of s2 is quite close to twice m2, which means
that the dimensionless ratio mG(θ)/

√
σ(θ) is almost independent of θ. If we define g2 by
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the equation

mG(θ)√
σ(θ)

= m0++√
σ

[1 + g2θ2 + O(θ4)], (3.7)

we indeed have the continuum result:1

g2 = m2 −
s2
2 = 0.0046(24), (continuum extrapolated). (3.8)

That the ratio mG(θ)/
√

σ(θ) is quite insensitive to the value of θ is also true at finite lattice
spacing, as can be appreciated from the data reported in table 1 and from the example
displayed in figure 2.

Although we are not aware of any physical argument implying the vanishing of g2, this
result could suggest that all dimensionless quantities are independent of θ. Such a strong
statement can be however shown to be false. In ref. [83] (see also [84, 85]), the θ-dependence
of the SU(3) deconfinement critical temperature Tc was studied, and it was concluded that

Tc(θ) = Tc[1 − Rθ2 + O(θ4)], (3.9)

where Tc is the θ = 0 critical temperature and

R = 0.0178(5). (3.10)

This can be recast in units of
√

σ(θ) as:

Tc(θ)√
σ(θ)

= Tc√
σ

[1 − t2θ2 + O(θ4)], (3.11)

with (using eq. (3.6))

t2 = R + s2
2 = 0.0049(9), (3.12)

which is definitely different from zero.

3.2 Results for the SU(6) Yang-Mills theory

The general strategy adopted at N = 6 is the same as for the case N = 3. However, obtaining
precise results in this case has proven to be a much more challenging task. We thus focused
on just two values of the bare inverse lattice coupling, namely β = 25.056 and β = 25.452,
corresponding to quite fine lattice spacings. Obviously, using estimates at only two values of
the lattice spacing prevents us from performing a reliable continuum extrapolation in this case.

The use of the PTBC algorithm was instrumental in reducing the auto-correlation time
of Monte Carlo simulations. In particular, for the two values of β considered in this work,
the PTBC algorithm allows to reduce the integrated auto-correlation time of the topological
modes (at constant CPU time) by a factor of ∼ 20 for β = 25.056 [59], and by a factor
of ∼ 60 for β = 25.452 [90]. In simulations performed at inverse coupling β = 25.056 we

1We assume the statistical errors on s2 and m2 to be statistically independent, which is a reasonable guess
since they come from very different channels.
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L β ZQ am0++ m2 a2σ s2

14 25.056 0.12053(88)* 0.7369(75) −0.0004(55) 0.06278(27) −0.0117(21)

16 25.452 0.13834(46) 0.6297(64) −0.0088(64) 0.04467(25) −0.0084(26)

Table 2. Summary of the results obtained for N = 6. The value of ZQ denoted by an asterisk is
from ref. [59], while the value for β = 25.452 has been computed anew in this work.

produced and stored O(20 k) thermalized configurations at θ = 0 and O(13 k) configuration
for each non-zero θ value, while for simulations at inverse coupling β = 25.452 we produced
and stored O(5 k) thermalized configurations for each non-zero value of θ (for θ = 0 we
used results from a previous study, see ref. [90]). In all cases, measurements were performed
every 10 parallel tempering steps, using the same setup already adopted in refs. [59, 90],
to which we refer for more details.

Our results at N = 6 for m2 and s2 are summarized in table 2, while all raw data for
mG(θL) and σ(θL) can be found in appendix B. As it is clear from data in table 2, and from
the example shown in figure 4, the θ dependence of mG(θ) and σ(θ) is much milder at N = 6
than it is at N = 3. In particular, we can only provide upper bounds for m2. This behavior
is compatible with the expectation that m2 and s2 are suppressed in the large-N limit.

The accuracy of the data collected at N = 6 is not sufficient to directly test the
expected [46] 1/N2 behavior of m2 and s2. However, our data are definitely consistent with
this scaling law, as can be appreciated from figure 5, where N2m2 and N2s2 are plotted
together for N = 3, 6 as a function of σa2. To describe the large-N behavior we can define
the parameters s̄2 and m̄2 by:

s2 ≃ s̄2/N2 + O(N−4) , m2 ≃ m̄2/N2 + O(N−4) . (3.13)

Assuming the leading order large-N scaling to be accurate already for N ≥ 3, as is the
case for other O(θ2) quantities [59, 85], we can estimate these parameters using the results
obtained for N = 3:

s̄2 ≃ −0.23(1) , m̄2 ≃ −0.075(20) . (3.14)

4 Conclusions

In this paper we presented a novel investigation of the θ-dependence of the spectrum of
four-dimensional SU(N) Yang-Mills theories. In particular, we focused on the leading order
O(θ2) dependence of the string tension σ(θ) and of the lightest glueball state mG(θ), and
estimated the value of the parameters s2 and m2 defined in eq. (1.3). The present study
has been carried out by means of lattice simulations performed at imaginary values of the
topological θ-angle, using the so called analytic continuation approach. This approach proved
to be extremely effective in reducing statistical uncertainties with respect to the previously
adopted Taylor expansion method.
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Figure 4. Results for N = 6 with β = 25.452. Examples of fits performed by using the functional
form eq. (3.3) for several quantities: (top left panel) the lightest glueball mass amG, (top right panel)
the string tension a2σ, (bottom panel) the ratio mG/

√
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Figure 5. Continuum scaling of N2m2 and N2s2 for N = 3 and N = 6.
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Our main results have been obtained for the N = 3 theory, for which we were able to
perform a controlled continuum extrapolation of m2 and s2, with the results:

m2(N = 3) = −0.0083(23), (4.1)
s2(N = 3) = −0.0258(14). (4.2)

The case N = 6 was much more challenging, as expected a priori. Larger auto-correlation
times make numerical simulations particularly demanding. Moreover, the values of m2 and
s2 at N = 6 are expected (by large-N scaling) to be suppressed by a factor ≈ 4 with respect
to their value at N = 3. To address the first problem we used the Parallel Tempering on
Boundary Conditions algorithm, and yet the best we could do was to estimate the values of
m2 and s2 for only two values of the lattice spacing, although two quite fine ones.

Due to the limited accuracy of the results at N = 6, we cannot perform a stringent test
of the expected O(N−2) behavior of m2 and s2. However, our data are definitely consistent
with this expectation. Based on our previous experiences with O(θ2) corrections (see, e.g.,
refs. [59, 85]), it is natural to expect the large-N scaling of m2 and s2 to be well approximated
by the leading O(N−2) behavior already for N = 3; using this assumption we get for the
coefficients s̄2 and m̄2 defined in eq. (3.13) the estimates

s̄2 ≃ −0.23(1) , m̄2 ≃ −0.075(20) . (4.3)

As noted in the introduction, the parameters m2 and s2, which parameterize the leading
order θ-dependence of the spectrum, also parameterize the way in which the lightest glueball
mass and the string tension are affected by the topological freezing, i.e., the systematics
induced by using for their estimation an ensemble of gauge configurations with fixed topological
charge. Such a quantitative information is very useful. Indeed, given the very fast growth
of the integrated auto-correlation time of the topological charge as the continuum limit is
approached, it is quite common to perform simulations at fixed Q = 0 with large-N gauge
groups. Using our results in eq. (4.3) and the general formula eq. (1.5), it is possible to
estimate the bias induced by using a fixed topological background. It turns out that already
modestly large volumes are sufficient to have a negligible bias: considering for example the
case N = 3, in which case χ1/4 is roughly equal to 1 fm−1 (see, e.g., [102]), we have

∆m0++

m0++

∣∣∣∣∣
N=3

≈ m2
2χV

≈ −0.08% (4.4)

for V ≃ (1.5 fm)4. Using larger values of N this estimate becomes drastically more favorable,
since the topological susceptibility changes only slightly (see, e.g., refs. [34, 38, 59]), while
m2 scales as 1/N2. These estimates constitute an independent confirmation of the results
obtained in ref. [90], with the advantage of providing a quantitative upper bound to the
accuracy that can be achieved when using simulations at fixed topological sector.

The results presented in this paper can be extended quite naturally in several different
ways. One possibility is to accurately investigate s2 and m2 for N > 3, in order to quantita-
tively asses the N dependence of these coefficients. From the previous discussion it should be
clear that this is not an easy task, and some ideas are required to further improve the signal-
to-noise ratio. A second possibility is to study the excited glueball spectrum. In particular, it
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would be very interesting to understand (both theoretically and numerically) how the O(θ2)
correction to the mass depends on the state considered. Indeed, these corrections can not
be all independent from each other, since they are indirectly related to the θ-dependence
of the free energy in the confined phase. This can be easily understood by using hadron
resonance gas models like, e.g., those discussed in [103, 104], where it was shown that a
determination of the glueball masses is sufficient to obtain quantitatively accurate estimates
of thermodynamical quantities. Finally, it would be very interesting to study models in
which s2 and m2 or, more generally, the θ-dependence of the spectrum, can be investigated
analytically (and is non-trivial). Two-dimensional CPN−1 models are natural candidates.
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A Two-dimensional U(N) Yang-Mills theories

Two-dimensional Yang-Mills theories are particularly simple to investigate in the thermo-
dynamic limit: neglecting boundary conditions, we can fix U1(x) = 1 on all the sites and
U2(x) = 1 along a single line at constant x1. In this way it is simple to show, using the
invariance properties of the Haar measure, that link integrals can be traded for plaquette
integrals and the theory reduces to a single-plaquette model [105].

Using for the topological charge density the definition [8]

q(x) = 1
2π

arg det(Π12(x)) , (A.1)

where Π12(x) denotes the plaquette in position x, the string tension at inverse ’t Hooft lattice
coupling λ = β/(2N2) can be written as [105]

σ(N, λ, θ) = − log
(

1
Z1p(N, λ, θ)

∫
dW

1
N

tr(W )eNλtr(W +W †)+ θ
2π

tr log(W )
)

= − log
( 1

2N2
d

dλ
log Z1p(N, λ, θ)

)
,

(A.2)

where dW is the Haar measure on U(N) and

Z1p(N, λ, θ) =
∫

dWeNλtr(W +W †)+ θ
2π

tr log(W ) . (A.3)

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
1
6
3

It is also simple to show that the connected correlator of two plaquette identically vanishes
whenever the two plaquettes are not coincident, hence no finite glueball mass can be defined.

Using the Weyl form of the Haar measure for class functions, it is possible to rewrite,
using manipulations completely analogous to those used in [105, 106], the single-plaquette
partition function as a N × N determinant [8]

Z1p(N, λ, θ) = det
(
Ii−j+ θ

2π
(2Nλ)

)
, i, j = 1, . . . N , (A.4)

where the functions Iν(x) are defined by

Iν(x) = 1
2π

∫ π

−π
eiνϕex cos ϕdϕ . (A.5)

We thus have (for k, j = 1, . . . , N)

Z1p(N, λ, θ) =
∫

det
[
eiϕj(k−j)

]
e

i θ
2π

∑
j

ϕj e
2Nλ

∑
j

cos ϕj
∏ dϕj

2π
, (A.6)

and to study the leading behavior in the limit λ → ∞ it is sufficient to replace cos ϕj by
1 − 1

2ϕ2
j in the exponentials, obtaining

Z1p(N, λ ≫ 1, θ) =
(

e2λN

√
4πλN

)N

det
[
e−

1
4Nλ (k−j+ θ

2π )2
]

. (A.7)

By using the multi-linearity of the determinant we can rewrite this expression as follows

Z1p(N, λ ≫ 1, θ) =
(

e2λN

√
4πλN

)N

det
[
e−

1
4Nλ

(k−j)2]
exp

{
− 1

4λ

(
θ

2π

)2}

= Z1p(N, λ ≫ 1, θ = 0) exp
{
− 1

4λ

(
θ

2π

)2}
,

(A.8)

where

Z1p(N, λ ≫ 1, θ = 0) =
(

e2λN

√
4πλN

)N

e−
1

2λN

∑N

k=1 k2 det
[
e−

jk
2Nλ

]
, (A.9)

and the remaining determinant can be related to a Vandermonde determinant. Using these
expressions in eq. (A.2) we see that for λ ≫ 1 we have

d
dλ

log Z1p(N, λ ≫ 1, θ = 0) = 2N2 − N

2λ
+ o(λ−1) , (A.10)

and to reliably estimate subleading terms we should go beyond the leading order expansion of
eq. (A.4). The θ ̸= 0 contribution is the subleading N -independent correction θ2

16π2λ2 , hence
the continuum string tension does not depend on θ.

B Raw data for four-dimensional SU(3) and SU(6) Yang-Mills theories

In this appendix we collect all the results obtained for amG(θL) and a2σ(θL) at the different
values of the inverse lattice coupling β for N = 3 (table 3) and N = 6 (table 4).
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θL amG a2σ

N = 3, L = 16, β = 5.95
0 0.7487(62) 0.05576(19)

2 0.7409(15) 0.05478(43)

4 0.7560(15) 0.05652(23)

6 0.7473(14) 0.05718(20)

8 0.7589(72) 0.05816(45)

10 0.804(16) 0.05961(23)

12 0.7892(71) 0.06097(22)

14 0.7922(77) 0.06283(24)

16 0.8231(76) 0.06515(26)
N = 3, L = 18, β = 6.00

0 0.6865(61) 0.04659(31)

5 0.7008(65) 0.04757(17)

8 0.744(12) 0.04930(19)

10 0.7190(67) 0.05014(19)

12 0.7301(62) 0.05155(21)

14 0.7364(64) 0.05475(46)
N = 3, L = 18, β = 6.07

0 0.6261(45) 0.03710(11)

5 0.6296(55) 0.03787(14)

8 0.6417(55) 0.03898(24)

10 0.6495(57) 0.04027(14)

12 0.676(11) 0.04149(15)

14 0.707(11) 0.04357(28)
N = 3, L = 22, β = 6.20

0 0.5187(78) 0.02425(23)

5 0.5312(78) 0.02543(15)

8 0.5410(85) 0.02653(10)

10 0.5482(83) 0.02760(29)

12 0.5576(92) 0.02839(30)

14 0.5792(98) 0.03036(20)
N = 3, L = 30, β = 6.40

0 0.3923(36) 0.014104(80)

2 0.4014(40) 0.014297(87)

4 0.4033(44) 0.014304(93)

6 0.4033(46) 0.014837(97)

8 0.4084(48) 0.015314(97)

10 0.4154(46) 0.01622(16)

12 0.4254(47) 0.016680(83)

14 0.4397(79) 0.01770(13)

Table 3. Summary of all obtained results for N = 3.
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θL amG a2σ

N = 6, L = 14, β = 25.056
0 0.748(11) 0.06137(77)

2 0.757(27) 0.06351(44)

4 0.761(27) 0.06307(44)

6 0.717(15) 0.06261(97)

8 0.725(13) 0.06241(99)

10 0.679(25) 0.06256(95)

12 0.811(31) 0.06426(50)

14 0.742(13) 0.06559(47)

16 0.735(16) 0.06530(45)
N = 6, L = 16, β = 25.452

0 0.6246(78) 0.04518(48)

2 0.624(19) 0.04450(43)

4 0.676(19) 0.0441(13)

6 0.643(17) 0.04519(46)

8 0.622(32) 0.04496(38)

10 0.632(16) 0.04507(48)

12 0.610(30) 0.04544(46)

14 0.658(15) 0.04633(37)

Table 4. Summary of all obtained results for N = 6.
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