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1 Introduction

The problem of adding a cosmological term, including abelian gauge fields, to Einstein’s field
equations was treated in refs. [1, 2] by gauging the D = 4 Maxwell algebra [3, 4], which can
also be obtained from (A)dS algebra using the Lie algebra expansion procedure developed
in refs. [5–8].1 This method allows also to derive the so called AdS-Maxwell algebra [9–11],
whose generators satisfy the following commutation relations,2

[Jab, Jcd] = ηbcJad + ηadJbc − ηacJbd − ηbdJac,

[Jab, Zcd] = ηbcZad + ηadZbc − ηacZbd − ηbdZac,

[Zab, Zcd] = ηbcZad + ηadZbc − ηacZbd − ηbdZac,

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab,

[Zab, Pc] = ηbcPa − ηacPb. (1.1)
1An expansion is, in general, an algebra dimension-changing process, i.e., is a way to obtain new algebras

of increasingly higher dimensions from a given one. A physical motivation for increasing the dimension of Lie
algebras is that increasing the number of generators of an algebra is a non-trivial way of enlarging spacetime
symmetries. Examples of this can be found in refs. [12, 13], where applications of Maxwell’s algebra in gravity
were studied (this algebra, also known as B4 algebra, is a modification to the Poincaré symmetries and can be
obtained, via S-expansion, from the anti-de Sitter (AdS) algebra). Another interesting modification to the
Poincaré symmetries are the so-called generalized Poincaré algebras [11] of which the M algebra is an example.

2This algebra was also reobtained in ref. [13] from Maxwell algebra through a procedure known as
deformation.
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This algebra was found in [9, 10], where was called “semisimple extended Poincaré algebra”.
In ref. [13] this algebra was obtained from Maxwell algebra through of the deformation
procedure and called “AdS-Maxwell algebra” and in ref. [11] it was obtained from the
expansion procedure and called “AdS-Lorentz (AdSLN ) algebra”.

The Chern-Simons gravity has been extensively investigated within several theoretical
frameworks. In three-dimensional spacetime, the Chern-Simons gravity invariant under
(A)dS algebra is equivalent to the Einstein-Hilbert action with a cosmological constant [14].
Furthermore, in the context of higher dimensions, the (A)dS-Chern-Simons gravity can be
obtained by properly selecting the coefficients in the Lovelock theory [15, 16]. These results
have also been generalized for symmetries that are given by expansions and contractions of
the (A)dS algebra [17–20]. Nevertheless, the formulation of Chern-Simons gravity is limited
to odd dimensions. On the other hand, it was shown in ref. [21] that several terms of (D = 4)
Horndeski action [22] emerged from the Kaluza-Klein dimensional reduction of Lovelock theory.
Consequently, it is interesting to investigate the effective theories derived from dimensional
reductions of extended Chern-Simons gravity, which incorporate non-abelian fields [23–27].

From the commutation relations (1.1) we can note that the set I = (Pa, Zab) satisfies the
conditions [I, I] ⊂ I, [so(3, 1), I] ⊂ I, i.e. I is an ideal of the AdS-Maxwell algebra, which
means that the AdS-Maxwell= so(3, 1) ⊎ I.

The main purpose of this article is to show that the four-dimensional extended Einstein
gravity with a cosmological term including non-abelian gauge fields, found in [26, 27], may
derive from five-dimensional AdS-Maxwell-Chern-Simons gravity. This can be achieved by
replacing a Randall-Sundrum type metric in the five-dimensional Chern-Simons action for
AdS-Maxwell algebra. The same procedure is used to obtain the four-dimensional extended
Einstein gravity, with a cosmological term including Abelian gauge fields, found in refs. [1, 2],
from the five-dimensional Maxwell-Chern-Simons gravity action.

This paper is organized as follows: in section 2 we consider a brief review of the
construction of the AdS-Maxwell-Chern-Simons Lagrangian gravity and then we obtain the
Maxwell-Chern-Simons Lagrangian using the In önü-Wigner contraction procedure in the
Weimar-Woods sense. In Section 3 we apply the so called Randall-Sundrum compactification
procedure to the AdS-Maxwell-Chern-Simons Lagrangian gravity to obtain the extended
four-dimensional Einstein-Hilbert action with a cosmological term including non-abelian
gauge fields. This procedure is also applied to the Maxwell-Chern-Simons gravity action to
obtain an action for the extended four-dimensional Einstein gravity, which coincides, except
for some coefficients, with the action obtained some years ago in references [1, 2]. Finally, it
is shown in section 4 that the four dimensional actions obtained in section 3 belong to the
family of Horndeski actions. Three appendices and concluding remarks end this article.

2 Maxwell-Chern-Simons action from AdS-Maxwell-Chern-Simons gravity

In this section we use the dual S-expansion procedure [8] to find the five-dimensional Chern-
Simons Lagrangian invariant under the AdS-Maxwell algebra [11], and then using the Inönü-
Wigner contraction procedure we find the Chern-Simons Lagrangian for the Maxwell algebra.
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2.1 AdS-Maxwell-Chern-Simons gravity action

In order to write down an AdS-Maxwell-Chern-Simons Lagrangian, we start from the AdS-
Maxwell algebra valued one-form gauge connection

A = 1
l
eaPa + 1

2ωabJab +
1
2kabZab,

where a, b = 0, 1, 2, 3, 4 are tangent space indices raised and lowered with the Minkowski
metric ηab, and where

ea = ea
µdxµ, ωab = ωab

µ dxµ, kab = kab
µ dxµ,

are the ea
µ fúnfbein, the ωab

µ spin connection and the kab
µ new non-abelian gauge fields. The

corresponding associated curvature 2-form, is given by

F = 1
l
T aPa + 1

2RabJab +
1
2F abZab, (2.1)

with

T a = T a + ka
ce

c,

Rab = dωab + ωa
cω

cb,

F ab = Dkab + k[a
ck

c|b] + 1
l2

eaeb. (2.2)

In this point, it might be of interest to remember that: (i) clearly l could be eliminated
by absorbing it in the definition of the vielbein, but then the space-time metric gµν would
no longer be related to ea through the relation gµν = ηabe

a
µeb

ν ; (ii) the interpretation of the
l parameter as a parameter related to the radius of curvature of the AdS space-time, is
inherited for the space-time whose symmetries are described by the Maxwell algebra.

On the another hand, it could also be interesting to observe that Jab are still Lorentz
generators, but Pa are no longer AdS boosts. In fact, [Pa, Pb] = Zab. However ea still
transforms as a vector under Lorentz transformations, as it must, in order to recover gravity
in this scheme.

A Chern-Simons Lagrangian in D = 5 dimensions is defined to be the following local
function of a one-form gauge connection A:

L(5D)
ChS (A) =

〈
AF 2 − 1

2A3F + 1
10A5

〉
, (2.3)

where ⟨· · · ⟩ denotes an invariant tensor for the corresponding Lie algebra, F = dA + AA

is the corresponding two-form curvature [28].
Using theorem VII.2 of ref. [8], it is possible to show that the only non-vanishing

components of an invariant tensor for the AdS-Maxwell algebra are given by

⟨JabJcdPe⟩ =
4
3α1l3εabcde,

⟨ZabZcdPe⟩ =
4
3α1l3εabcde,

⟨JabZcdPe⟩ =
4
3α1l3εabcde,

where α1 is an arbitrary constant of dimensions [length]−3.
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Using the dual S-expansion procedure in terms of Maurer-Cartan forms [8], we find that
the five-dimensional Chern-Simons Lagrangian invariant under the AdS-Maxwell algebra
is given by [11]

L(AdSM)
ChS = α1εabcde

{
l2RabRcdee + l2

(
Dkab

) (
Dkcd

)
ee

+ l2ka
f kfbkc

gkgdee + 1
5l2

eaebecedee + 2l2Rabkc
f kfdee

+ 2
3
(
Dkab

)
ecedee + 2l2Rab

(
Dωkcd

)
ee

+2l2
(
Dkab

)
kc

f kfdee + 2
3Rabecedee + 2

3ka
f kfbecedee

}
, (2.4)

where α1 is a parameter of the theory, Rab = dωab + ωa
c ωcb correspond to the curvature

2-form in the first-order formalism related to the spin connection 1-form, ea is the vielbein
1-form, and kab 1-form are others gauge fields presents in the theory.

2.2 Maxwell Chern-Simons action

Keeping in mind that the Maxwell algebra can be obtained from AdS-Maxwell algebra by
a generalized Inönü-Wigner contraction [11, 29], the natural question is how to obtain the
corresponding Lagrangian for the Maxwell algebra from the Lagrangian for the AdS-Maxwell
algebra? We find that it is also possible to obtain this relation using the same procedure which
was applied to the algebras. In fact, carrying out the rescaling of the generators Pa → ξPa,
Zab → ξ2Zab and of the fields ea → ξ−1ea, kab → ξ−2kab in the Lagrangian (2.4) we obtain

L
(M)
ChS = α1l2εabcdeRabRcdee + 2

3α1εabcdeRabecedee

+ α1
5l2

εabcdeeaebecedee + 2
3α1εabcde

(
Dωkab

)
ecedee

+ α1l2εabcde

(
Dωkab

) (
Dωkcd

)
ee + 2α1εabcdeRab

(
Dωkcd

)
ee, (2.5)

which corresponds to the five-dimensional Chern-Simons Lagrangian for the Maxwell algebra.

3 Extended four-dimensional Einstein-Hilbert action from
AdS-Maxwell-Chern-Simons gravity action

In order to obtain an action for a 4-dimensional gravity theory from the Chern-Simons action
for AdS-Maxwell algebra we will consider the following 5-dimensional Randall Sundrum
type metric [30–33]

ds2 = e2f(ϕ)g̃µν(x̃)dx̃µdx̃ν + r2
c dϕ2

= e2f(ϕ)η̃mnẽmẽn + r2
c dϕ2, (3.1)

where e2f(ϕ) is the so-called “warp factor”, and rc is the so-called “compactification radius”
of the extra dimension, which is associated with the coordinate 0 ⩽ ϕ < 2π. The symbol ∼
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denotes 4-dimensional quantities related to the space-time Σ4. We will use the usual notation,

xα = (x̃µ, ϕ) ; α, β = 0, . . . , 4; a, b = 0, . . . , 4;
µ, ν = 0, . . . , 3; m, n = 0, . . . , 3;
ηab = diag(−1, 1, 1, 1, 1); η̃mn = diag(−1, 1, 1, 1). (3.2)

This allows us, for example, to write

em(ϕ, x̃) = ef(ϕ)ẽm(x̃) = ef(ϕ)ẽm
µ (x̃)dx̃µ; e4(ϕ) = rcdϕ.

kmn(ϕ, x̃) = k̃mn(x̃), km4 = k4m = 0, (3.3)

where, following Randall and Sundrum [30, 31] matter fields are null in the fifth dimension.
From the vanishing torsion condition

T a = dea + ωa
b eb = 0, (3.4)

we obtain

ωa
bα = −eβ

b

(
∂αea

β − Γγ
αβea

γ

)
, (3.5)

where Γγ
αβ is the Christoffel symbol.

From equations (3.3) and (3.4), we find

ωm
4 = ef f ′

rc
ẽm, with f ′ = ∂f

∂ϕ
, (3.6)

and the 4-dimensional vanishing torsion condition

T̃ m = d̃ẽm + ω̃m
n ẽn = 0, with ω̃m

n = ωm
n and d̃ = dx̃µ ∂

∂x̃µ
. (3.7)

From (3.6), (3.7) and the Cartan’s second structural equation, Rab = dωab + ωa
c ωcb, we

obtain the components of the 2-form curvature

Rm4 = ef

rc

(
f ′2 − f ′′

)
dϕẽm, Rmn = R̃mn −

(
ef f ′

rc

)2

ẽmẽn, (3.8)

where the 4-dimensional 2-form curvature is given by

R̃mn = d̃ω̃mn + ω̃m
p ω̃pn. (3.9)

From equation (2.4) we can see that the Lagrangian contains ten terms that we will
denote as L1, L2, · · · , L10, where L1 corresponds to the Gauss-Bonnet term, L4 corresponds
to the cosmological term, L9 correspond to the Einstein-Hilbert term. In fact, following
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refs. [32, 33] we replace (3.3) and (3.8) in (2.4), and using ε̃mnpq = εmnpq4, we obtain

L1 = α1l2εabcdeRabRcdee

= α1l2rcdϕ

{
ε̃mnpqR̃mnR̃pq −

(
2e2f

r2
c

)(
3f ′2 + 2f ′′

)
ε̃mnpqR̃mnẽpẽq

+
(

e4f

r4
c

f ′2
)(

5f ′2 + 4f ′′
)

ε̃mnpq ẽmẽnẽpẽq

}
, (3.10)

L2 = α1l2rcdϕε̃mnpqDkmnDkpq, (3.11)

L3 = α1ℓ2rcdϕϵ̃mnpqk̃m
f k̃fnk̃p

g k̃gq, (3.12)

L4 = α1
l2

rcdϕe4f ε̃mnpq ẽmẽnẽpẽq, (3.13)

L5 = 2α1ℓ2rcdϕ

[
ϵ̃mnpqR̃mnk̃p

f k̃fq − e2f(ϕ)

r2
c

(
2f ′′ + 3f ′2

)
ϵ̃mnpqk̃m

f k̃fnẽpẽq

]
,

L6 = 2α1rcdϕe2f(ϕ)ϵ̃mnpq

(
Dωk̃mn

)
ẽpẽq, (3.14)

L7 = 2α1l2rcdϕε̃mnpq

{
R̃mnDkpq − e2f

r2
c

(
3f ′2 + 2f ′′

)
Dkmnẽpẽq

}
, (3.15)

L8 = 2α1ℓ2rcdϕϵ̃mnpq

(
Dωk̃mn

)
k̃p

f k̃fq, (3.16)

L9 = 2
3α1rcdϕ

{(
3e2f

)
ε̃mnpqR̃mnẽpẽq −

(
e4f

r2
c

)(
5f ′2 + 2f ′′

)
ε̃mnpq ẽmẽnẽpẽq

}
,

(3.17)

L10 = 2α1rcdϕe2f(ϕ)ε̃mnpqk̃m
f k̃fnẽpẽq. (3.18)

By replacing (3.10)–(3.18) in (2.4) and integrating over the fifth dimension we find

SAdSM
4D =

∫
Σ4

Aε̃mnpq

[
R̃mnẽpẽq + k̃m

f k̃fnẽpẽq + Dk̃mnẽpẽq
]

+Bε̃mnpq ẽmẽnẽpẽq + Cε̃mnpq

[
Dk̃mnDk̃pq + k̃m

f k̃fnk̃p
g k̃gq

+2R̃mnk̃p
f k̃fq + 2Dk̃mnk̃p

f k̃fq
]
+ sourface terms, (3.19)

where,

A = 2α1rc

∫ 2π

0
e2f(ϕ)

[
1− ℓ2

r2
c

(
2f ′′ + 3f ′2

)]
dϕ, (3.20)

= 2πα1
(
ℓ2 + r2

c

)
rc

(3.21)

B = α1rc

∫ 2π

0
e4f(ϕ)

[
ℓ2

r4
c

(
4f ′′ + 5f ′2

)
f ′2 + 1

ℓ2 − 2
3r2

c

(
2f ′′ + 5f ′2

)]
dϕ

= πα1
4ℓ2r3

c

[
3r4

c + 2ℓ2r2
c − ℓ4

]
, (3.22)

C = 2πα1ℓ2rc (3.23)

– 6 –
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with f(ϕ) an arbitrary and continuously differentiable function. Since we are working with a
cylindrical variety, we have chosen (non-unique choice) f(ϕ) = ln (sinϕ).

From the action (3.19) we see that it includes non-Abelian fields k̃mn
µ , which could be

interpreted as non-Abelian gauge field that driven inflation (see e.g. [34–38]).

3.1 Maxwell Einstein gravity from Maxwell Chern-Simons action

In order to obtain an action for a 4-dimensional gravity theory from the Chern-Simons action
for Maxwell álgebra we follow the same procedure used in the previous section. In fact,
replacing (3.3) and (3.8) in (2.5), and using ε̃mnpq = εmnpq4,

SGEH
M =

∫
Σ4

Aεmnpq

[
R̃mnẽpẽq + Dk̃mnẽpẽq

]
+ Bεmnpq ẽmẽnẽpẽq + 2πα1ℓ2rcεmnpqDk̃mnDk̃pq,

(3.24)
where the coeficients A and B are given by eqs. (3.21), (3.22). This action matches with
the action (A.2), which correspond to the equation (29) of reference [1], as long as A =
−1/2κ = λ/2κΛ, B = λ/4κ, 2πα1ℓ2rc = λ/2κΛ2. This means that the action (3.24) and the
action (A.2) coincide only if Λ = 1/l2, that is if λ = −1/l2.

It is of interest to note that the action (3.24) can be obtained from the action (3.19) using
the generalized Inönü-Wigner contraction, namely, carrying out the rescaling of the generators
Pa → ξPa, Zab → ξ2Zab and of the fields ea → ξ−1ea, kab → ξ−2kab in the Lagrangian (3.24).

4 From AdS-Maxwell gravity to scalar-tensor theory

In this section it is found that the four-dimensional actions obtained from Chern-Simons
gravity actions invariants under the so called generalized (A)dS-Maxwell symmetries belongs
to a larges class of theories known as Horndeski theories (see appendix B).

The non-abelian gauge field in four-dimensional spacetime is a rank-three tensor with
two anti-symmetric indices, k̃[mn]p. This means that it has 24 degrees of freedom (d.o.f.). We
can decompose this field with respect to the Lorentz group into three irreducible tensors [41,
42], namely

k̃[mn]p = −1
3
(
k̃mηnp − k̃nηmp

)
− 1

6εmnpqSq + qmnp, (4.1)

where, the trace vector k̃m ≡ k̃n
mn has 4 d.o.f. . The axial vector Sq possesses 4 d.o.f., while

qmnp exhibits 16 d.o.f., representing the traceless and non-totally anti-symmetric component
of the tensor. In order to obtain an effective scalar-tensor theory from AdS-Maxwell gravity,
it is necessary to consider a single additional degree of freedom; accordingly, we set a value
of zero to both the axial vector and the q tensor. Furthermore, we choose the trace vector
as k̃m = ẽµ

mDµφ that is, we postulate that k̃m is the gradient of a scalar field, therefore
depending completely on one degree of freedom. Thus, we have that

k̃mn ≡ k̃mn
p ẽp = −1

3
(
k̃mẽn − k̃nẽm

)
. (4.2)

– 7 –
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Taking this ansatz into account we have that the eight terms of (3.19) take the form (see
appendix C)

Aϵ̃mnpqR̃mnẽpẽq = 4A
√
−g̃R̃d4x̃. (4.3)

Aϵ̃mnpqk̃m
f k̃fnẽpẽq = −4

3ADµφDµφ
√

g̃d4x. (4.4)

Aϵ̃mnpqDk̃mnẽpẽq = −4ADµDµφ
√
−g̃d4x̃ (4.5)

Bϵ̃mnpq ẽmẽnẽpẽq = 24B
√
−g̃d4x̃. (4.6)

Cε̃mnpqDk̃mnDk̃pq = 8C

9
{
(DαDαφ)2 − DγDνφDνDγφ

}√
−g̃d4x̃ (4.7)

Cε̃mnpqk̃m
f k̃fnk̃p

gk̃gq = 0 (4.8)

2Cε̃mnpqR̃mnk̃p
f k̃fq = −8C

32
√
−g̃d4x̃DαφDβφG̃αβ − 8C

32
√
−g̃d4x̃DνφDνφR̃ (4.9)

2Cε̃mnpqDk̃mnk̃p
f k̃fq =

√
−g̃d4x̃

8C

33 DγAγ , with Aγ = DαφDαφDγφ. (4.10)

Replacing (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10) in (3.19), we find:

SAdSM
4D =

∫
Σ4

d4x̃
√
−g̃

{(
4A − 8C

9 DνφDνφ

)
R̃ − 4

3ADµφDµφ − 4ADµDµφ

+ 24B + 8C

9
[
(DαDαφ)2 − DγDνφDνDγφ

]
+8C

9 ϕDαDβφG̃αβ + surface terms
}

, (4.11)

where, we have used the followin identities

DαφDβφG̃αβ = Dα
[
φDβφG̃αβ

]
− φDαDβφG̃αβ ,

DαG̃αβ = 0. (4.12)

Comparing these results with the equations (B.1) of appendix B, we can see that the
Lagrangian (4.11) can be written as

SAdSM
4D =

∫
Σ4

d4x̃
√
−g̃

{
G2 (φ, X) + G3 (φ, X)DµDµφ + G4 (φ, X) R̃

− 2G4X (φ, X)
[
(DαDαφ)2 − (DµDνφ) (DµDν φ)

]
+G5 (φ, X) G̃µυDµDνφ + surface terms

}
, (4.13)

where

G2 (φ, X) = −4
3ADµφDµφ + 24B

G3 (φ, X) = −4A

G4 (φ, X) = 4A − 8C

9 DνφDνφ

G4X (φ, X) = −4C

9

G5 (φ, X) = 8C

9 φ. (4.14)
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This action explicitly includes Einstein-Hilbert gravity with a cosmological constant, along
with various additional components of Horndeski theory; therefore, this is a second-order
scalar-tensor theory. On the other hand, by considering all the degrees of freedom of the
non-abelian gauge field, we will obtain an extended theory with a sector corresponding to
a Horndeski family, as well as new terms whose interpretation will depend on the physical
quantities introduced. We will investigate this theory in future works.

It should be noted that an analogous result can be obtained in the case of the Maxwell
action (3.24), where it is straightforward to see that the four terms of the Lagrangian
corresponding to the action (3.24) are given by (4.3), (4.4), (4.5), (4.6), (4.7).

5 Concluding remarks

In this article we have obtained a four-dimensional extended Einstein gravity with a cosmologi-
cal term, including non-abelian gauge fields, from five-dimensional AdS-Maxwell-Chern-Simons
gravity. This gravity in 4D includes non-Abelian fields k̃mn, which could be interpreted as
gauge fields that driven inflation. This was achieved by making use of the Randall-Sundrum
compactification procedure, which is also used to re-obtain, from the Maxwell Chern-Simons
gravity action, the extended Einstein gravity in 4D with a cosmological term, which including
abelian gauge fields of refs. [1, 2].

The Inönü-Wigner contraction procedure in the Weimar-Woods sense is used both to
obtain the Maxwell-Chern-Simons action from the Chern-Simon saction for AdS-Maxwell
algebra and to obtain the Maxwell extension of Einstein gravity in 4D from AdS-Maxwell-
Einstein-Hilbert action.

It might be of interest to note that both extensions of Einstein’s gravity with cosmological
terms (which includes Abelian and non-Abelian gauge fields respectively) are not invariant
under the respective local transformations but only under local Lorentz transformations.
Here, we have shown that is possible to obtain this generalized four-dimensional Einstein-
Hilbert actions from the genuinely invariant five-dimensional Chern-Simons gravities. This
seems to indicate that the compactification procedure breaks the original symmetries of the
Chern-Simons actions (Maxwell and AdS-Maxwell) to the Lorentz symmetry.

We have also shown that the four-dimensional actions obtained from Chern-Simons gravity
actions invariants under the so called generalized (A)dS-Maxwell symmetries as well as under
the Maxwell symmetries belongs to the family actions for the Horndeski theory. This result
allows us to conjecture that the compactification of Chern-Simons gravities corresponding
to groups with symmetries greater than those presented here will lead to Lagrangians that
involve more Lagrangians of the basis Li [Gi], i = 1, 2, 3, 4, 5, · · · (see appendix B and ref. [40]).

A The Maxwell algebra

The generators of Maxwell algebra (Pa, Jab, Zab) satisfying the following commutation re-
lations [3, 4]

[Jab, Jcd] = ηbcJad + ηadJbc − ηacJbd − ηbdJac,

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab,
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[Jab, Zcd] = ηbcZad + ηadZbc − ηacZbd − ηbdZac,

[Zab, Zcd] = 0, [Zab, Pc] = 0. (A.1)

From (A.1) we see that the set I = (Pa, Zab) is an ideal of Maxwell’s algebra because
[I, I] ⊂ I, [so(3, 1), I] ⊂ I [1]. This means that the Maxwell algebra M is the semidirect sum
of the Lorentz algebra so(3, 1) and the ideal I, that is M = so(3, 1) ⊎ I [1].

The Abelan four-vector fields kab
µ associated with their Abelian tensorial generators Zab

and the set of curvatures associated to this gauge potentials denoted by F ab
µν allow to construct

a generalization of the Einstein-Hilbert Lagrangian given by

L = − 1
2κ

εabcdRabeced + λ

4κ
εabcdeaebeced + µ

2κ
εabcdDkabeced

+ µ2

4κλ
εabcdDkabDkcd, with µ = λ/Λ and Λ = 1/l2 (A.2)

which corresponds to equation (29) of reference [1], which is not invariant under local Maxwell
transformations but only under local Lorentz transformations. This action contain geometric
Abelian gauge fields, kab, playing the role of vectorial inflatons [34], which contribute to
a generalization of the cosmological term.

On the other hand, actions containing cosmological terms that describe vector inflations
by means of geometric non-Abelian gauge fields remain as an open problem. The idea that
dark energy could be understood by non-abelian vector fields, that is, that non-abelian gauge
fields could be responsible for the accelerated expansion of the universe, was postulated
in references [35–38].

B Horndeski theories

Although Horndeski’s theories have Lagrange functions that contain at most second derivatives
of a scalar field, they correspond to the more general tenso-scalar theory that leads to second-
order equations of motion. These theories can be written as a linear combination of the
following Lagrange functions ([39, 40])

L2 [G2] ≡ G2 (ϕ, X)

L3 [G3] ≡ G3 (ϕ, X)DµDµϕ

L4 [G4] ≡ G4 (ϕ, X) R̃ − 2G4X (ϕ, X)
[
(DαDαϕ)2 − (DµDνϕ) (DµDν ϕ)

]
L5 [G5] ≡ G5 (ϕ, X) G̃µυDµDνϕ + 1

3G5 (ϕ, X)
[
(DµDµϕ)3 − 3 (DµDµϕ) (DγDνϕ) (DγDνϕ)

]
+2 (DµDνϕ) (DσDνϕ) (DσDµϕ) . (B.1)

C Lagrangian terms (3.19) in tensor language

We consider the tensor form of the eight terms of the Lagrangian corresponding to teh
action (3.19). To do this we will use the equation (4.2), with k̃m = ẽµ

m∂µϕ.

– 10 –



J
H
E
P
0
5
(
2
0
2
4
)
1
6
0

First term: in this case it is direct to see that

Aϵ̃mnpqR̃mnẽpẽq = 4A
√
−g̃R̃d4x̃. (C.1)

Second term: writing the second term in the form,

Aϵ̃mnpqk̃m
f k̃fnẽpẽq = A

9 ϵ̃mnpq

(
k̃mẽf − k̃f ẽm

) (
k̃f ẽn − k̃nẽf

)
ẽpẽq

= A

9 ϵ̃mnpq

(
k̃mẽf k̃f ẽn − k̃f k̃f ẽmẽn − k̃mk̃nẽf ẽf − k̃f ẽf ẽmk̃n

)
ẽpẽq,

(C.2)

and considering that ẽf k̃f =
(
ẽf

νdxν
) (

ẽµ
f ∂µϕ

)
= δµ

ν dxν∂µϕ = dϕ, we have

Aϵ̃mnpqk̃m
f k̃fnẽpẽq = 2A

9 ϵ̃mnpqdφk̃mẽnẽpẽq − A

9 ϵ̃mnpqk̃2ẽmẽnẽpẽq, (C.3)

where,

ϵ̃mnpqk̃2ẽmẽnẽpẽq = ϵ̃mnpqem
α en

β ẽp
γ ẽq

δdxαdxβdxγdxδDµφDµφ

=
√

g̃d4xϵ̃αβγδ ϵ̃αβγδDµφDµφ =
√

g̃DµφDµφ4!d4x

2ϵ̃mnpqdφk̃mẽnẽpẽq = 2ϵ̃mnpqem
α en

β ẽp
γ ẽq

δdxµdxβdxγdxδ∂µφDαφ

= 2
√

g̃d4xϵ̃αβγδ ϵ̃µβγδDµφDαφ

= 2 · 3!DµφDµφ
√

g̃d4x (C.4)

so that,

Aϵ̃mnpqk̃m
f k̃fnẽpẽq = A

9 (2 · 3!DµφDµφ − 4!DµφDµφ)
√

g̃d4x

= −4
3ADµφDµφ

√
g̃d4x . (C.5)

Third term: for the third term, we have

Aϵ̃mnpqDk̃mnẽpẽq = −2
3Aϵ̃mnpqDk̃mẽnẽpẽq, (C.6)

where we have taken into account that the absence of four-dimensional torsion, that is,
T̃ m = Dẽm = 0. In tensor language C.6 takes the form,

Aϵ̃mnpqDk̃mnẽpẽq = −2
3Aϵ̃mnpqem

α ẽn
β ẽp

γ ẽq
δDµDαφdxµdxβdxγdxδ

= −2
3Aϵ̃αβγδ ϵ̃µβγδDµDαφ

√
−g̃d4x̃

= −4ADµDµφ
√
−g̃d4x̃. (C.7)

Fourth term: in this case it is direct to see that

Bϵ̃mnpq ẽmẽnẽpẽq = 24B
√
−g̃d4x̃. (C.8)
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Fifth term: in this case we can write

Cε̃mnpqDk̃mnDk̃pq = 1
9Cε̃mnpq

(
Dk̃mẽn − Dk̃nẽm

) (
Dk̃pẽq − Dk̃q ẽp

)
= 4

9Cε̃mnpqDk̃mẽnDk̃pẽq, (C.9)

where we have taken into account the absence of four-dimensional torsion. So we have,

Cε̃mnpqDk̃mnDk̃pq = 4C

9 ε̃mnpq ẽm
α ẽn

β ẽp
ν ẽq

δdxµdxβdxγdxδDµDαφDγDνφ

= 4C

9
√
−g̃d4x̃ε̃αβγδεµβνδDµDαφDνDγφ

= 8C

9
{
(DαDαφ)2 − DγDνφDνDγφ

}√
−g̃d4x̃ . (C.10)

Sixth term: using the previous result,

k̃m
f k̃fn = 1

32

(
2dφk̃mẽn − k̃2ẽmẽn

)
,

we have,

Cε̃mnpqk̃m
f k̃fnk̃p

gk̃gq = C

34 ε̃mnpq

(
2dφk̃mẽn − k̃2ẽmẽn

) (
2dφk̃pẽq − k̃2ẽpẽq

)
= C

34 ε̃mnpq

{
4 (dφ)2 k̃mẽnk̃pẽq − 4dφk̃2k̃mẽnẽpẽq + k̃4ẽmẽnẽpẽq

}
.

(C.11)

To obtain this result in tensor language, let’s analyze each term separately. Indeed,
4C

34 ε̃mnpq (dφ)2 k̃mẽnk̃pẽq = 4C

34 ε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxµdxνdxβdxδ∂µφ∂νϕDαφDγφ

= −4C

34
√
−g̃d4x̃ε̃αγβδ ε̃µνβδ∂µφ∂νφDαφDγφ

= −8C

34
√
−g̃d4x̃ (DαφDαφDγφDγφ

−DαφDαφDγφDγφ) = 0 (C.12)

−4C

34 ε̃mnpqdφk̃2k̃mẽnẽpẽq = −4C

34 ε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxµdxβdxγdxδ∂µφDαφk̃2

= −4C

34
√
−g̃d4x̃ε̃αβγδ ε̃µβγδDµφDαφk̃2

= −8C

33
√
−g̃d4x̃DαφDαφDνφDνφ

= −8C

33
√
−g̃d4x̃ (Dαφ)4 (C.13)

C

34 ε̃mnpqk̃4ẽmẽnẽpẽq = C

34 ε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxαdxβdxγdxδDµφDµφDνφDνφ

= C

34
√
−g̃d4x̃ε̃αβγδ ε̃αβγδDµφDµφDνφDνφ

= 8C

33
√
−g̃d4x̃ (Dµφ)4 . (C.14)
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Introducing (C.12), (C.13), (C.14) into (C.12), we find

Cε̃mnpqk̃m
f k̃fnk̃p

gk̃gq = 0, (C.15)

which proves that the sixth term is null.

Seventh term: in this case we can write,

2Cε̃mnpqR̃mnk̃p
f k̃fq = 2C

32 ε̃mnpqR̃mn
(
2dφk̃pẽq − k̃2ẽpẽq

)
= 4C

32 dφε̃mnpqR̃mnk̃pẽq − 2C

32 k̃2ε̃mnpqR̃mnẽpẽq, (C.16)

where,

4C

32 dϕε̃mnpqR̃mnk̃pẽq = 2C

32 Dµϕε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxµdxλdxρdxδR̃αβ
λρ Dγφ

= 2C

32
√
−g̃d4x̃ε̃αβγδ ε̃µλρδDµφDγφR̃αβ

λρ

= 2C

32
√
−g̃d4x̃δµλρ

αβγDµφDγφR̃αβ
λρ ,

= −8C

32
√
−g̃d4x̃DαφDβφ

{
R̃αβ − 1

2gαβR̃

}
(C.17)

−2C

32 k̃2ε̃mnpqR̃mnẽpẽq = −8C

32
√
−g̃d4x̃DνφDνφR̃. (C.18)

Introducing (C.17), (C.18) in (C.16), we have

2Cε̃mnpqR̃mnk̃p
f k̃fq = −8C

32
√
−g̃d4x̃DαφDβφG̃αβ − 8C

32
√
−g̃d4x̃DνφDνφR̃ (C.19)

Eighth term: as in the previous cases we write

2Cε̃mnpqDk̃mnk̃p
f k̃fq = − 2

3 · 32 Cε̃mnpqD
(
k̃mẽn − k̃nẽm

) (
2dϕk̃pẽq − k̃2ẽpẽq

)
= −8C

33 dϕε̃mnpqDk̃mẽnk̃pẽq + 4C

33 k̃2ε̃mnpqDk̃mẽnẽpẽq. (C.20)

Analyzing each term separately, we have,

−8C

33 dφε̃mnpqDk̃mẽnk̃pẽq = −8C

33 ε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxµdxνdxβdxδDµφDνDαφDγφ

= 8C

33
√
−g̃d4x̃ε̃αγβδ ε̃µνβδDµφDνDαφDγφ

= 16C

33
√
−g̃d4x̃ {Dαφ (DγDαφ)Dγφ − DγφDγφ (DαDαφ)}

16C

33
√
−g̃d4x̃

{1
2Dγ [DαφDαφDγφ]− 3

2DαφDαφ (DγDγφ)
}

,

(C.21)

where we have used

(DγDαφ)DαφDγφ = 1
2Dγ [DαφDαφDγφ]− 1

2DαφDαφDγDγφ.
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For the second term of (C.20), it is found,

4C

33 k̃2ε̃mnpqDk̃mẽnẽpẽq = 4C

33 ε̃mnpq ẽm
α ẽn

β ẽp
γ ẽq

δdxνdxβdxγdxδDµφDµφDνDαφ

= 4C

33
√
−g̃d4x̃ε̃αβγδ ε̃νβγδDµφDµφDνDαφ

= 8C

32
√
−g̃d4x̃DµφDµφDαDαφ. (C.22)

Introducing (C.21), (C.22) into (C.20), we find that the eighth term is given by,

2Cε̃mnpqDk̃mnk̃p
f k̃fq = 16C

33
√
−g̃d4x̃

{1
2Dγ [DαφDαφDγφ]− 3

2DαφDαφ (DγDγφ)
}

=
√
−g̃d4x̃

8C

33 DγAγ , con Aγ = DαφDαφDγφ . (C.23)
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