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1 Introduction

Symmetry is a powerful tool in the study of quantum field theory. As in the case of classical
field theories, symmetries provide strong constraints on quantum dynamics. While symmetries
in classical theories lead to foliations of phase space, symmetries in quantum theories lead to a
decomposition of the Hilbert space into representations of the symmetry. This decomposition
leads to selection rules for correlation functions, protection against perturbative and non-
perturbative corrections, and can strongly constrain renormalization group flows.

Recently, the notion of symmetry in QFT has been expanded beyond the framework of
group theory to that of category theory. This is the notion of “generalized” or “categorical”
symmetries which provides a new set of tools with which to study QFTs. For a review see [1–7].

In this paper we will restrict our attention to group-like generalized symmetries and
the constraints they impose on the IR behavior of QFTs. These symmetries go under the
name of “higher form” global symmetries. A higher form global symmetry is labeled by a
degree p ∈ Z≥0 and a group G which together are denoted G(p) and is called a p-form global
symmetry. These symmetries act on p-dimensional charged operators via co-dimension-(p+ 1)
topological operators called symmetry defect operators. These topological operators are
written as Ug(Σ) where g ∈ G(p) and Σ is a closed co-dimension-(p + 1) manifold. These
operators obey group multiplication

Ug1(Σ) · Ug2(Σ) = Ug1g2(Σ) , (1.1)

and act on charged operators via linking. Due to the fact that these operators are topological,
all p-form global symmetries are abelian for p > 0.

The paradigm of the renormalization group flow in QFT, is that any theory flows in the
IR to a scale invariant fixed point which may either be a gapless phase (CFT) or gapped
phase (TQFT). The IR phase may additionally either preserve or spontaneously break a
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global symmetry which is equivalent to the statement of that the vacuum state of the theory
either transforms trivially or non-trivially under the global symmetries. This can generally be
diagnosed by whether or not a charged operator has a non-trivial vacuum expectation value.

In addition to whether or not the symmetry is gapped or gapless, we can also differentiate
whether or not global symmetries in the IR phase are fractionalized [8–11]. Symmetry
fractionalization occurs when a p-dimensional operator transforms projectively under a
(p− 1)-form global symmetry. Categorically speaking, this implies that co-dimension (p+ 1)
junctions of (p− 1)-form symmetry defect operators act effectively as p-form symmetry defect
operators on p-dimensional objects (subject to a cocycle condition). A standard example of
this is when there is a 0-form global symmetry G(0) with non-trivial π1(G(0)) and there exists
a line operator that transforms projectively under G(0). This can occur, for example, in gauge
theories when a massive charged particle that transforms projectively under G(0) is integrated
out. This notion of symmetry fractionalization crucially relies on the fact that we can make
a consistent choice of (renormalization) scheme so that the only allowed counter terms are
dependent on G(0)-background gauge fields which allows us to track whether or not a line
operator transforms projectively under G(0).1 The projective transformation of a line operator
under G(0) is also reflected by the fact that the operator carries a world volume anomaly under
shifts of integer lift of obstruction classes w2(G(0)) ∈ H2(BG(0)) associated with π1(G(0)).

As with “ordinary” global symmetries, higher form global symmetries provide many
powerful tools for studying QFTs and in particular can be used to constrain RG flows. These
global symmetries and their anomalies can constrain the behavior of the IR phase of the theory
because certain phases are incompatible with different realizations of the symmetry. For
example, continuous symmetries cannot be matched by gapped phases where the symmetry
is spontaneously broken, whereas for discrete symmetries a spontaneous symmetry breaking
phase may be gapped or gappless.

In general, the possible IR phases can be further constrained if any of the global
symmetries are anomalous (i.e. if they have an ‘t Hooft anomaly). The reason is that ‘t
Hooft anomalies must be matched along symmetry preserving RG flows and, as it turns out,
many anomalies cannot be matched by symmetry preserving TQFTs. Thus, if a QFT has
a symmetry with such an anomaly, it cannot flow to a symmetry preserving gapped phase.
These types of constraints are often referred to as “Lieb-Schultz-Mattis-type theorems” or
“anomaly enforced gaplessness” which have been well studied in the literature [12–24].

The anomalies that give these constraints can often be distinguished by evaluating
the associated (d+ 1)-dimensional SPT phase on a mapping class torus. For example, for
d-dimensional, unitary continuum QFTs with certain types of discrete, abelian higher form
global symmetries with an anomaly given by the SPT phase ωd+1(A) ∈ Hd+1(BG; U(1)), if

exp
{

2πi
∮

N
(g)
d+1

ωd+1(A)
}

̸= 1 , (1.2)

1Note that it is also consistent to define the global symmetry to be the simply connected cover Ĝ(0)

where part of the symmetry group acts ineffectively. This allows for schemes that can trivialize any Ĝ(0)

transformation of a line operator. Such a scheme is consistent, but is not useful as it washes out physically
meaningful information.
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where N (g)
d+1 = (Sp×Sd−p)⋊gS

1 is the mapping class torus of Sp×Sd−p where g ∈ G is a twist
of the G-bundle on Sp × Sd−p, then the theory cannot flow to a symmetry preserving gapped
phase [18, 19]. The reason is that the variation of the partition function of any QFT under a
constant (i.e. trivial) background gauge transformation with an anomaly leads to the relation

ZQFT[A] = exp
{

2πi
∮

N
(g)
d+1

ωd+1(A)
}
× ZQFT[A] . (1.3)

This implies that ZQFT[A] = 0 when the phase (1.2) is non-trivial, which cannot be accom-
modated by a unitary, symmetry preserving TQFT: ZTQFT[A] ̸= 0. There also exists similar
results for continuum QFTs with SpinG-symmetries, time reversal symmetry, and particular
types of non-invertible symmetries [20–24].

In this paper, we will study the IR constraints that are imposed by a peculiar type of
anomaly: one which does not correspond to a “symmetry.” Let us clarify what we mean
by this. Consider a d-dimensional theory which has a (continuous) 0-form global symmetry
group G(0) — which we define by the group that acts effectively on gauge invariant local
operators — which has π1(G(0)) ̸= 0. When we couple this symmetry to background gauge
fields, the connection has a possible discrete flux w2(G(0)) ∈ H2(BG(0);π1(G(0))) which
obstructs the G(0)-connection from being able to be lifted to a Ĝ(0)-connection. If we were to
gauge Ĝ(0) ⊃ G(0), turning on this discrete flux would correspond to turning on a background
gauge field for a 1-form center symmetry π1(G(0))(1) which acts on the G(0) Wilson lines.
However, when G(0) connection is a background gauge field, the Wilson lines are trivial
operators and the fluxes do not correspond to a symmetry because there is no corresponding
charged operator. In this sense, we can say that the w2(G(0)) flux does not correspond to a
“symmetry” (although they clearly are allowed background fluxes for G(0) symmetry).

In general, anomalies can depend on this discrete flux w2(G(0)). For example, such
anomalies may have a dependence

ωd+1(A) = w2(G(0)) ∧ ωd−1(A) . (1.4)

This gives a class of anomalies that are only activated when we couple the theory to G(0)-
bundles with non-trivial discrete flux. It is in this sense that we mean that the anomaly
can depend on particular background fluxes which are not associated to a symmetry. We
will thus refer to these anomalies as background flux anomalies.

In this paper, we will derive constraints in theories which have a higher form sym-
metry group

Gglobal = G0 ×Gdisc. , Gdisc. = G
(0)
disc. ×G

(p)
disc. . (1.5)

where G0 is a continuous 0-form group with π1(G0) ̸= 0 and Gdisc. is a product of abelian
discrete higher form global symmetry groups with p ̸= 2. We will show that if the theory
has anomalies that are only activated when w2(G0) ̸= 0 of the form (1.4) which evaluates
non-trivially on the mapping class torus:

exp
{

2πi
∮

N
(g)
d+1

w2(G0) ∧ ωd−1(A)
}

̸= 1 , N
(g)
d+1 = (S2 × Sp+1) ⋊g S

1 , (1.6)
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then the theory cannot flow to a unitary, symmetry preserving, gapped phase without
symmetry fractionalization for G0.2

The outline of our paper is as follows. We will begin in section 2 by reviewing some
of the results from [18, 19] that proves the result (1.2) for higher form discrete generalized
global symmetries. Then in section 3, we will describe how these results can be generalized to
flux background anomalies by using the clutching construction similar to the results of [21].
Then we will conclude in section 4 with a set of examples in 4d gauge theories. In 4d, flux
anomalies can be of one of the two forms:

A1 = 2πi
N

∫
w2(G(0)) ∪ x1 ∪ y2 , A2 = 2πi

N

∫
w2(G(0)) ∪ z3 , (1.7)

where here x1, w2(G(0)), y2, z3 ∈ H∗(Nd+1;ZN ) with degree indicated by their subscript. We
will give two interesting examples of theories that have these anomalies: SU(2) QCD with
a scalar field and N = 2 SU(2) gauge theory with Nf > 1 flavors and comment on their
generalization to other gauge groups and matter content.

2 Review of anomaly enforced gaplessness for discrete symmetries

In this section we will review the results of [18, 19] on anomaly enforced gaplessness for
theories with anomalous discrete higher form global symmetries. In this paper, the authors
studied d-dimensional QFTs that have an abelian discrete global symmetry which is given
by a product of higher form global symmetries:

Gglobal = G(0) ×G(p) ×G(d−p−2) , (2.1)

and have an anomaly that is described by the (d + 1)-dimensional SPT phase ωd+1(A) ∈
Hd+1(M ; U(1)) where A collectively denotes the background gauge fields for Gglobal. Their
result is given as follows:

Theorem ([18, 19]). A d-dimensional, unitary TQFT with a symmetry group Gglobal as
defined above cannot carry an anomaly described by an SPT phase ωd+1 if

exp
{

2πi
∮

N
(g)
d+1

ωd+1(A)
}

̸= 1 , (2.2)

where N (g)
d+1 is the mapping class torus where we twist the Gglobal-bundle by g ∈ G(0).

In particular, this implies that any QFT with such an anomaly for this class of symmetry
cannot flow to a symmetry preserving gapped phase: it must flow to either a gapless phase
or a gapped phase that spontaneously breaks the Gglobal symmetry.

This theorem can be proven as follows.

Proof. Consider a d-dimensional unitary TQFT. Such theories are by definition reflection
positive [25], which means that for any closed d-dimensional manifold Xd which can be

2To be clear, here we assume that there is no symmetry fractionalization in the UV theory (which may
occur when p = 1) and that any symmetry fractionalization is an emergent property in the IR.
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decomposed as Xd = Y d#Yd, the partition function is non-negative: Z[Xd] ≥ 0. Here we use
the notation where Y d is the orientation reversal of Yd. This follows from the fact that the
path integral on the manifold Yd defines a state in the Hilbert space defined on the boundary
Z[Yd] := |Yd⟩ ∈ H[∂Yd] so that the path integral on Xd defines the norm of |Yd⟩:

Z[Xd] = ⟨Yd|Yd⟩ ≥ 0 , (2.3)

which is non-negative in any unitary theory.
In particular, the fact that Sd can be decomposed as Sd = D

d#Dd implies Z[Sd] ≥ 0.
However, since Dd is contractible, it defines the vacuum state which in any unitary TQFT is
non-trivial. This implies that with an appropriate choice of normalization/counter-terms:

Z[Sd] = ⟨Dd|Dd⟩ = 1 . (2.4)

This choice of normalization reflects the fact that in any unitary TQFT, the Hilbert space on
∂Dd = Sd−1 is generated by the vacuum state:

H[Sd−1] ∼= C
[
|Dd⟩

]
, (2.5)

since there is a unique local operator (the identity operator).
The d-sphere also admits a decomposition

Sd =
(
Dd−p × Sp

)
#
(
Sd−p−1 ×Dp+1

)
, (2.6)

where we glue along a Sd−p−1 × Sp. Since Z[Sd] = 1, the above decomposition implies

Z[Sd] = ⟨Dd−p × Sp|Sd−p−1 ×Dp+1⟩ = 1 , (2.7)

and therefore that the state |Dd−p × Sp⟩ is non-trivial, which by unitarity also implies

⟨Dd−p−1 × Sp+1|Dd−p−1 × Sp+1⟩ = Z[Sd−p−1 × Sp+1] > 0 , (2.8)

for any p.
Now let us use the Lemma from the next subsection which states that a TQFT with a

symmetry preserving vacuum has a non-vanishing partition function on Sd−p−1 × Sp+1 when
we turn on background gauge fields A for Gglobal:

Z[Sd−p−1 × Sp+1;A] > 0 . (2.9)

We can use this fact to derive a contradiction. We also need the fact that the anomalous
variation of the partition function can be given by evaluating the SPT phase on the mapping
class torus with

Z[Ag(x)] = exp
{

2πi
∮

N
g(x)
d+1

ωd+1(A)
}
Z[A] , (2.10)

where Ag(x) is the gauge variation of A with respect to g(x) which is valued in G(0), and
N

g(x)
d+1 = (Sd−p−1 × Sp+1) ⋊g(x) S

1 is the mapping class torus where the Gglobal-bundle is
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twisted by the action of g(x) ∈ G(0). In particular, when g(x) = g is the constant function,
Ag = A since we have taken Gglobal to be abelian. However, even when g(x) = g is the
constant function (which trivially acts on the gauge fields), the anomalous phase can be
non-zero as the twisting by g turns on a flat G(0) gauge field along the S1. The anomalous
variation then reads

Z[A] = exp
{

2πi
∮

Ng
d+1

ωd+1(A)
}
Z[A] , (2.11)

which implies

1.) exp
{

2πi
∮

Ng
d+1

ωd+1(A)
}

= 1 or 2.) Z[A] = 0 . (2.12)

Therefore, if exp
{

2πi
∮

Ng
d+1

ωd+1(A)
}

̸= 1, then Z[A] = 0 and the anomaly cannot be a
unitary, symmetry preserving TQFT as we have ZTQFT[Sp+1 × Sd−p−1;A] ̸= 0, which proves
the theorem.

2.1 Proof of lemma

In order to complete our review, we need to prove the following lemma.

Lemma ([18, 19]). For a d-dimensional unitary, symmetry preserving TQFT with Gglobal =
G(0) ×G(p) ×G(d−p−2) a discrete, abelian group, then

Z[Sd−p−1 × Sp+1;A] > 0 . (2.13)

Proof. Here, the background gauge fields can be turned on by wrapping a G(d−p−2) symmetry
defect operator Ug on Sp+1 and a G(p) symmetry defect operator Ug′ on Sd−p−1. Let us first
consider the simple case where g′ = 1 ∈ G(p). Now, we can relate

Z[Sp+1 × Sd−p−1;A] = ⟨Ug(Sp+1)⟩ . (2.14)

In this case, we can cut the space time along a great circle of Sd−p−1:3

⟨Ug(Sp+1)⟩ = ⟨Sp+1 ×Dd−p−1|U (p+1)
g ⟩ , (2.15)

where the state |U (p+1)
g ⟩ is the path integral on Sp+1 ×Dd−p−1 where Ug is wrapped on Sp+1.

Since the state |U (p+1)
g ⟩ is an element of the Hilbert space H[Sp+1 ×Sd−p−2], we can compute

its inner product with the state |Dp+2 × Sd−p−2⟩:

⟨Dp+2 × Sd−p−2|U (p+1)
g ⟩ = ⟨Ug(Sp+1)⟩Sd = Z[Sd] = 1 . (2.16)

Further, if G(d−p−2) is preserved then Ug(Sp+1) has trivial winding with all operators on
Sp+1 × Sd−p−1 and |U (p+1)

g ⟩ = |Sp+1 ×Dd−p−1⟩. This follows if the symmetry is preserved
because then any charged operator necessarily vanishing expectation value. This implies that

⟨Ug(Sp+1)⟩Sp+1×Sd−p−1 = ⟨U (p+1)
g |Sp+1 ×Dd−p−1⟩

= ⟨Sp+1 ×Dd−p−1|Sp+1 ×Dd−p−1⟩ > 0 .
(2.17)

3In our discussion here we assume that the symmetry defect operators to be inserted along embedded
manifolds which are away from any topological manipulations unless otherwise specified.
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Now consider the case where g′ ̸= 1. Now if we cut along the same great circle in Sd−p−1,
we get a state |ϕ′g⟩ ∈ H[Sp+1 × Sd−p−2

g′ ] in the defect (i.e. g′-twisted) Hilbert space:

⟨Ug(Sp+1)Ug′(Sd−p−1)⟩Sp+1×Sd−p−1 = ⟨ϕ′1|ϕ′g⟩ , (2.18)

where |ϕ′g⟩ is defined by the path integral on Sp+1 ×Dd−p−1 with Ug wrapping a Sp+1 and
Ug′ wrapping Dd−p−1.

If there exists an invertible linear map f : H[Sp+1×Sd−p−2
g′ ] → Hg′ [Sd−1], where Hg′ [Sd−1]

is the defect/twisted Hilbert space where Ug′ wraps a Sd−p−2 circle on the boundary, such that

f : |ϕ′g⟩ 7−→ |0g′⟩ , (2.19)

then the fact that ⟨0g|0g⟩ = 1 implies that ⟨ϕ′g|ϕ′g⟩ ̸= 0. This map can be constructed as
in [18, 19] by taking Dd\(Dp+2 × Sd−p−2) where Ug wraps a cylinder Sd−p−2 × [0, 1] running
from one boundary component to the other. Since f is manifestly linear, we simply need to
show that it is not the trivial map. This can be shown by computing

⟨0g′ |f |ϕ′1⟩ = ⟨Ug′(Sd−p−1)⟩Sp+1×Sd−p−1 > 0 , (2.20)

by equation (2.17). Here we used the fact that ⟨0|f = ⟨Sd\(Dp+2 × Sd−p−2)| and that(
Sd\(Dp+2 × Sd−p−2)

)
#(Sp+1 ×Dd−p−1) ∼= (Sp+1 ×Dd−p−1)#(Sp+1 ×Dd−p−1)

= Sp+1 × Sd−p−1 .
(2.21)

We can now implement state-operator correspondence to show that the state |ϕ′1⟩
corresponds to a (d− p− 2)-dimensional operator along which Ug′ can end. It also follows
that there is a similar operator along which Ug can end.

Now if we consider the partition function then we can cut the Ug and Ug′ by the insertion
of the operator ϕ and ϕ′ respectively:

Z[Sp+1 × Sd−p−1;A] = ⟨Ug(Sp+1)Ug′(Sd−p−1)⟩Sp+1×Sd−p−1

= ⟨Uϕ
g (Dp+1)Uϕ′

g′ (Dd−p−1)⟩Sp+1×Sd−p−1 ,
(2.22)

where Uϕ
g (Dp+1) and Uϕ′

g′ (Dd−p−1) are the symmetry defect operators inserted on the disk
with an operator ϕ, ϕ′ inserted along the boundary.

We can then contract the operators to a point operator using topological invariance.
However, since there is a unique local operator (the identity operator), we see that they must
contract to the identity operator. This means that the partition function is given

Z[Sp+1 × Sd−p−1;A] = ⟨Ug(Sp+1)Ug′(Sd−p−1)⟩Sp+1×Sd−p−1

= ⟨Uϕ
g (Dp+1)Uϕ′

g′ (Dd−p−1)⟩Sp+1×Sd−p−1

= ⟨1⟩Sp+1×Sd−p−1 = Z[Sp+1 × Sd−p−1; 0] > 0 .

(2.23)

This completes the proof. See [18, 19] for more details and further discussion.
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3 Anomaly enforced gaplessness for background flux anomalies

In this section we would like to consider the constraints imposed by a particular class of
anomalies: background flux anomalies. As described in the introduction, these are in a sense
anomalies for which we turn on background fields that do not correspond to any symmetry.

Our setting is a d-dimensional unitary quantum field theory with a global symmetry
group Gglobal which has the form

Gglobal = G0 ×Gdisc. = G0 ×
(
G(0) ×G(p)

)
, (3.1)

where d = p+ 3 and p ̸= 2. Here G0 is a continuous 0-form symmetry group with π1(G0) ̸= 0
and Gdisc. is a product of discrete, abelian higher form symmetry groups. We assume here
that the UV theory has no innate symmetry fractionalization in the case where p = 1.

We would like to make a comment about the fact that π1(G0) ̸= 0. If we were to gauge
G0, then π1(G0) would correspond to a 1-form magnetic global symmetry. However, since
G0 is a global symmetry, there are no intrinsic G0 line operators that would be charged
under a putative symmetry. Rather, the physical property associated to π1(G0) corresponds
to charge fractionalization.

As we discussed in the introduction, G0-symmetry fractionalization occurs when a
line operator transforms projectively under G0. Such a line operator exhibits symmetry
fractionalization if it has a world volume anomaly which is given by a non-trivial element
of the cohomology group H2(BG0;π1(G0)) which correspond to obstruction classes for
lifting G0-bundles to Ĝ0-bundles. We often denote these characteristic classes as w2(G0) ∈
H2(BG0;π1(G0)).

It would also be consistent to consider a theory with Ĝ0 global symmetry, it would simply
be that π1(G0) ⊂ Ĝ0 does not act on any gauge invariant local operators. The choice of G0
versus Ĝ0 global symmetry is a statement about what background gauge bundles we are
allowed to couple to as well as what counter terms we allow in our theory. In particular,
in the theory with G0 symmetry, we are only allowed counter terms that are dependent
on G0 background connections. This means that in the theory with G0 symmetry it is
meaningful to measure G0-symmetry fractionalization whereas this is not meaningful in the
theory with Ĝ0 global symmetry.

In this paper, we are interested in generalizing the discussion from the previous section
to anomalies that can only be activated by G0-bundles which do not lift to Ĝ0-bundles.
These are anomalies which are controlled by a (d + 1)-dimensional SPT phase ωd+1[A] ∈
Hd+1(BGglobal; U(1)) that vanishes on G0-bundles which can be lifted to Ĝ0-bundles. In
other words, they depend explicitly on the obstruction class w2(G0) ∈ H2(BG0;π1(G0)):
ωd+1[A;w2(G0)] with ωd+1[A; 0] = 0. We refer to these anomalies as “background flux
anomalies” as they are anomalies that are only activated when we turn on particular back-
ground fluxes.

Again, we want to be able to constrain IR phases by using the mapping class torus.
To do so, we need to prove that

Z
[
S2 × Sp+1;A

]
̸= 0 , (3.2)
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for a unitary, symmetry preserving TQFT. In particular, we need to show that coupling
a TQFT to a G0-bundle with a non-trivial obstruction class w2(G0) does not cause the
partition function to vanish.

3.1 Flux backgrounds and the clutching construction

In order to prove that coupling a TQFT to a non-trivial G0-bundle which does not lift to
a Ĝ0-bundle does not cause the partition to vanish, we need to make use of the clutching
construction.

Let us consider a G0-bundle P over a 2-sphere S2. The 2-sphere can be covered by two
overlapping open discs D2

N/S which cover the northern and southern hemisphere respectively.
For generic P , the restriction P

∣∣
D2

N/S

to D2
N/S can be trivialized separately on each patch.

The topology of the G0-bundle is then specified by the transition function on the annulus
D2

N ∩D2
S . These transition functions are classified by π1(G(0)), which specify the topological

class of the bundle.
For example, if G0 = U(1), then the bundle P over S2 will be specified by an element

n ∈ π1(G0) ∼= Z. The clutching construction above is the standard construction of the
holomorphic line bundle of degree n over S2 ∼= CP1, P = O(n), where n specifies the first
Chern class n =

∮ FU(1)
2π .

For more general G0, the choice of element [f ] ∈ π1(G0) specifies a discrete flux [f ] 7→
w2(G0) ∈ H2(BG0;π1(G0)) which can be seen explicitly by restricting to a U(1) ⊂ G0 for
which the particular element [f ] ∈ π1(G0) can be represented by an element [f ] ∈ π1(U(1))
and noting that the corresponding FU(1)

2π is an integer lift of w2(G0).
We can now use this to derive under what conditions Z[S2 × Sp+1;w2(G0)] ̸= 0. Here

we will take a construction which is similar to the Gluck twist as in [21, 26, 27]. Since
a G0-bundle on S2 × Sp+1 with non-trivial w2(G0) on the first factor can be constructed
by the twisted gluing (

D2 × Sp+1
)

#f

(
D2 × Sp+1

)
, (3.3)

where f ∈ π1(G0), in the TQFT we can write

Z
[
S2 × Sp+1;w2(G0)

]
=
〈
D2 × Sp+1

∣∣∣T̂f

∣∣∣D2 × Sp+1
〉
, (3.4)

where here T̂f is a twist operator and w2(G0) is specified by [f ] as described above. This
operator enacts the twist of the G0-bundle by shifting the transition functions by the element
f . This is similar to the Gluck twist operator which twists the space/tangent bundle by
the non-trivial element F ∈ π1(SO(4)) to turn (D2 × S2)#F (D2 × S2) = CP2#CP2 into
a non-spin manifold [21, 26, 27].

Now, it is clear that if T̂f is the trivial operator in our theory, then

Z
[
S2 × Sp+1;w2(G0)

]
= Z

[
S2 × Sp+1; 0

]
̸= 0 , (3.5)

which would achieve our goal. We now need to physically interpret what it means for T̂f

to be the trivial operator.
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Here, the twist operator T̂f is acting on the Hilbert space H
[
S1 × Sp+1]. This Hilbert

space is generated by local operators and, when p = 1, line operators that wrap the S1. In
order for an operator to be charged under the twist operator, it must transform projectively
under G0 since f forms a closed loop in G0. By assumption, there are no local operators
which transform projectively under G0. However, as discussed in the introduction, when
p = 1, there will exist some line operator (wrapping S1) that will the generate a state that
transforms projectively under G0 iff the G0 symmetry is fractionalized in the IR.4

Thus, we find that in a unitary theory without G0-symmetry fractionalization (which
only exists for p = 1) that we have

Z
[
S2 × Sp+1;w2(G0)

]
= Z[S2 × Sp+1; 0] , (3.6)

which implies

Z
[
S2 × Sp+1;w2(G0)

]
̸= 0 . (3.7)

3.2 Constraints from mapping class tori

Now we can derive constraints on IR phases that are imposed by background flux anomalies.
Consider a d-dimensional unitary QFT with a symmetry group Gglobal of the form in (3.1) and
let us assume that the theory only has a background flux anomaly given by ωd+1[A;w2(G0)].
Let us take the partition function on the manifold S2 × Sp+1.

ZQFT[S2 × Sp+1;A] . (3.8)

Given that the partition function of a TQFT does not vanish when we couple the theory
to a G0-bundle with a non-trivial obstruction class w2(G0), we can consider the variation of
the partition function with respect to G(0) background gauge transformations:

ZQFT[S2 × Sp+1;Ag(x)] =exp
{
i

∮
N

g(x)
d+1

ωd+1[A;w2(G0)]
}
× ZQFT[S2 × Sp+1;A] , (3.9)

where again Ag(x) is the gauge transformation of A with respect to g(x) ∈ G(0) and N
g(x)
d+1 =

(S2 × Sp+1) ⋊g(x) S
1 is the mapping class torus where the Gglobal-bundle is twisted by the

action of g(x) ∈ G(0). Again, in the case where g(x) = g is the constant function, Ag(x) = A

and the equation becomes

ZQFT[S2 × Sp+1;A] =exp
{
i

∮
Ng

d+1

ωd+1[A;w2(G0)]
}
× ZQFT[S2 × Sp+1;A] , (3.10)

which implies that either

1.) exp
{
i

∮
N

(g)
d+1

ωd+1[A;w2(G0)]
}

= 1 , 2.) ZQFT[S2 × Sp+1;A] = 0 . (3.11)

4Note that the assumption that a TQFT has a group-like symmetry given by (3.1) necessarily implies that
the theory only has operators of co-dimension 1, (p + 1) (symmetry defect operators) and possibly operators
of dimension 0, p that are charged under the corresponding symmetries.
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This implies that if the SPT phase evaluated on the mapping class torus is non-trivial, then
the partition function must vanish.

However, if the QFT flows to a gapped phase, the anomaly — and therefore the anomalous
variation (3.10) — must also be matched by a TQFT. As we have shown for a unitary,
symmetry preserving TQFT without charge fractionalization

ZTQFT[S2 × Sp+1;A] ̸= 0 . (3.12)

This implies that if the SPT phase evaluated on the mapping class torus is non-trivial, then
the theory cannot flow to a gapped phase that preserves the symmetry and, when p = 1,
has no symmetry fractionalization. This proves our main result.

4 Examples in 4d

Let us now consider some examples of theories with background flux anomalies. Here we
will focus on 4d gauge theories. Because of dimensionality, there are only two types of
possible flux anomalies. Here we can take Gglobal = G0 × (G(0) ×G(1)) or Gglobal = G0 ×G(1)

and have anomalies

A1 = 2πin
N

∫
w2(G0) ∪ x1 ∪ y2 , A2 = 2πin

N

∫
w2(G0) ∪ Bock[y2] , (4.1)

where x1, y2 are gauge fields for G(0), G(1) — which for simplicity we take to both be ZN and
Bock is the associated Bockstein map. In these examples, the G0 symmetry can fractionalize
when line operators charged under G(1) transform projectively under G0.

Our results can be applied can be applied to anomalies of the type A1,A2 as they evaluate
non-trivially on (S2 ×S2)⋊g S

1. Our results imply that theories with these anomalies cannot
flow to a gapped phase without spontaneous symmetry breaking or symmetry fractionalization.
Examples of TQFTs that match the A1,A2 anomaly without spontaneous symmetry breaking
are given by

S1 = 2πi
N

∫
(b2 ∪ δa1 + n b2 ∪ w2(G0) + a1 ∪ x1 ∪ y2) ,

S2 = 2πi
N

∫
(b2 ∪ δa1 + n b2 ∪ w2(G0) + a1 ∪Bock[y2]) ,

(4.2)

respectively. Both of these theories, are described by a ZN gauge theory where the Wilson
line has a world-volume anomaly nw2(G0).

We will now exhibit some theories that have this anomaly.

4.1 4d SU(2) QCD

Consider 4d SU(2) gauge theory with 2Nf fermions in the fundamental representation ψA,
2Nf scalar fields in the fundamental representation hA, as well as a real scalar in the adjoint
representation Φ and an uncharged fermion χ. Consider the interactions:

S =
∫
d4x

( 1
2g2 Tr [F 2] + iψA /DψA + iχ/∂χ+ |DhA|2 + Tr [(DΦ)2]

− V (Φ, hA) + iλ1 χψ
AhA + iλ2δAB ψ

AΦψB + c.c.
)
.

(4.3)
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Here the two Yukawa interactions break the global symmetry group down to SO(2Nf )×U(1)
where the fields transform as

SU(2) SO(2Nf ) U(1)
ψA 2 2Nf 0
hA 2 2Nf 1
Φ 3 1 0
χ 1 1 1

Here we would like to comment on two features of these global symmetries. First, note that
U(1) has a cubic anomaly, which would imply that the theory must flow to a gapless theory.
However, we can additionally break the U(1) global symmetry by introducing a mass term for
χ so that there is only an SO(2Nf ) global symmetry which has no perturbative anomalies.

More importantly, notice that the center of SO(2Nf ) is gauged since it is identified with
−1SU(2) ∼ −1SO(2Nf ). This implies that there is an additional Z2 flux background that can be
activated. In the case where Nf = 2nf the total background fluxes form a Z2 × Z2 generated
by w(L)

2 , w
(R)
2 ∈ H2(PSO(2Nf );Z2) whereas when Nf = 2nf + 1, the total background flux

forms a Z4 which is generated by w2(Z4) ∈ H2(PSO(2Nf );Z4).
Besides being a 4d interacting QCD-like theory, this theory is of physical interest because

the Yukawa interaction (λ1) is reminiscent of the Yukawa interaction in the Standard model.
Indeed, if we choose the scalar potential V such that the Higgs field hA condenses, then
the fermion fields will also partially gain a mass.

Now we would like to demonstrate the fact that this theory has an anomaly of the
form A2. The simplest way to see this is to compute the anomaly in the U(1) Maxwell
phase that results from condensing Φ. As discussed in [9], an anomaly involving background
fluxes for SO(2Nf ) can be computed in the Maxwell phase by computing the symmetry
fractionalization of the emergent U(1)(1)

e × U(1)(1)
m global symmetries. In the Maxwell phase,

all fundamental fermions are integrated out and the fractionalization of the emergent U(1)(1)
e

is given by the charge of the fundamental fermion under PSO(2Nf ). This means that turning
on the background flux for PSO(2Nf ) results in

B
(e)
2

2π =


1
2(w(L)

2 + w
(R)
2 ) Nf even

1
2w2(Z4) Nf odd

(4.4)

which is the obstruction for lifting PSO(2Nf ) → SO(2Nf ) since ψA transforms under the
vector representation of SO(2Nf ).

The background flux for B(m)
2 then corresponds to the projective representation for the

Hilbert space of fermion zero-modes bound to the minimal smooth monopole. Using the
Callias Index theorem [28], we see that there are 2Nf real fermion zero-modes so that the
monopole Hilbert space transforms as a Dirac spinor of PSO(2Nf ). This means that turning
on the background flux for PSO(2Nf ) results in

B
(m)
2
2π =


1
2w

(L)
2 Nf even

1
4w2(Z4) Nf odd

(4.5)
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which is the obstruction for lifting PSO(2Nf ) → Spin(2Nf ) since the Hilbert space transforms
in the spin representation of SO(2Nf ).

After implementing the Wu relations, we find that on spin manifolds, that the anomaly
of the UV theory has is given by

A =

πi
∫
w

(L)
2 ∪ w(R)

3 Nf even
πi
∫
w2(Z4) ∪ w3(Z4) Nf odd

(4.6)

Thus we find that the anomaly can only be activated on spin manifolds — and in particular
can be activated on the mapping class torus — allowing us to apply our theorem.

Notice here that the anomaly we have derived is only dependent on the background
fluxes. So it is prudent to ask in what sense this is an anomaly at all. The key is that the
additional flux background that arises from the identification of −1SU(2) ∼ −1SO(2Nf ) can
be identified as a (0,1)-form symmetry or a “color-flavor center” symmetry [29, 30]. In fact,
since our theorem can be applied to this background, it is a proof by example that these
symmetries are physical: they can have anomalies and that their anomalies obstruct the
theory from flowing to a trivially gapped phase.

4.2 4d N = 2 SU(2) QCD with Nf > 1 hypermultiplets

Now consider 4d N = 2 SU(2) QCD with Nf hypermultiplets. In addition to the gauge
field, the matter content of this theory is given by5

SU(2) SO(2Nf ) SU(2)R U(1)R

ψA 2 2Nf 1 -1
hA 2 2Nf 2 0
Φ 3 1 1 2
λ 3 1 2 1

Here, the U(1)R → Zr where r = |8 − 2Nf | by an ABJ anomaly when Nf ̸= 4 and
additionally 4 ≥ Nf ≥ 0 for asymptotically free theories. The resulting Zr symmetry has
a cubic anomaly

[Zr]3 = 6 − 4Nf modr , (4.7)

as well as a mixed anomaly with SO(2Nf ):

[Zr] × [SO(2Nf )]2 = −2 modr . (4.8)

Note that both of these ‘t Hooft anomalies vanish in the case where Nf = 3 since r = 2.
In addition to the standard kinetic terms for a gauge theory, the theory also has the

additional interactions:

Lint = gδABψ
AΦψB + g2[Φ†,Φ]2 + g2hAa{Φ†,Φ}hAa + gψAλahAa

+ g2(hAa(σr)a
bh

Ab)2 + c.c.
(4.9)

5Note that here Φ is a complex scalar field as opposed to the previous example where it was a real-valued
scalar field.
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where here A = 1, . . . , 2Nf and a = 1, 2 are SO(2Nf ) and SU(2)R indices respectively. Here the
Yukawa terms again serve to break the SU(2Nf )×SU(2Nf ) global symmetry of the interacting
theory to a SO(2Nf ) symmetry. This theory has the same matter content transforming under
the SO(2Nf ) symmetry (again, the gauge symmetry gauges Z2 ⊂ SO(2Nf )). We thus find
again that the theory has a background flux anomaly6

A =

πi
∫
w

(L)
2 ∪ w(R)

3 Nf even
πi
∫
w2(Z4) ∪ w3(Z4) Nf odd

(4.10)

It is known that these theories flow to gappless theories in the IR via the work of Seiberg-
Witten [31, 32], thereby matching our theorem.

4.3 SUSY and non-SUSY Sp(Nc) QCD

More generally, the flux background anomalies for SU(2) QCD from section 4.1 and N = 2
SU(2) QCD in section 4.2 generalizes straightforwardly to Sp(Nc) gauge groups. The reason
is that the structure of the interactions are the same as above due to reality/pseudo-reality
of the representations.

For Sp(Nc) non-SUSY QCD, we consider the theory with the action given in (4.3) where
the fields transform under SO(2Nf ) × U(1) as7

Sp(Nc) SO(2Nf ) U(1)
ψA 2Nc 2Nf 0
hA 2Nc 2Nf 1
Φ adj 1 0
χ 1 1 1

As before, we can flow to the Maxwell phase by condensing Φ and look for anomalies by
implementing the fractionalization technique. Here condensing Φ leads to the breaking
Sp(Nc) 7→ U(1)Nc . Due to the fact that the fermions transform under the same global
symmetry group, we find that the allowed background fluxes are the same as before and
that the background flux for PSO(2Nf ). Since −1Sp(Nc) ∼ −1SO(2Nf ), the obstruction class
from lifting PSO(2Nf ) → SO(2Nf ) will activate a Z2 ⊂ (U(1)(1)

e )Nc discrete flux in the IR
associated with the center Z(Sp(Nc)):

B
(e)
2

2π =


1
2(w(L)

2 + w
(R)
2 ) Nf even

1
2w2(Z4) Nf odd

(4.11)

Here B(e)
2 is the background gauge field of a 1-form center symmetry for a choice of U(1)0 ⊂

U(1)Nc where U(1)0 ⊃ Z(Sp(Nc)).8 Here we can pick the generator of U(1)0 to be Q0

6Note that we cannot apply Wu identities to trivialize the Nf -odd anomaly since the fluxes are Z4-valued.
7Again we can consider adding a mass term for χ to break the anomalous U(1) global symmetry.
8Note that this flux will be independent of the choice of U(1)0 because any two choices will have the

same Z2 ⊂ U(1)0. Said differently, two choices for U(1)0 have Z2-valued background gauge fields which have
different integer lifts in U(1)Nc .
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which acts as

Q0 =
(
1Nc 0

0 −1Nc

)
, (4.12)

in the fundamental representation.
To compute the background flux anomaly, we only need to check the mixed anomaly

of the 1-form global symmetries of this U(1)0. We then need to determine how the UV
background fluxes activate the background gauge field B

(m)
2 for the U(1)(1)

m magnetic 1-form
symmetry associated to U(1)0. Now, since the U(1)0 minimal monopole is the direct sum of
Nc Sp(Nc) minimal monopoles, there will be 2NcNf real fermion zero-modes and turning on
the background flux for PSO(2Nf ) will result in an IR background gauge field:

B
(m)
2
2π =


Nc
2 w

(L)
2 Nf even

Nc
4 w2(Z4) Nf odd

(4.13)

We then find that the anomaly of the UV theory is identical to that of SU(2) QCD:

A =

πiNc
∫
w

(L)
2 ∪ w(R)

3 Nf even
πiNc

∫
w2(Z4) ∪ w3(Z4) Nf odd

(4.14)

For N = 2 Sp(Nc) QCD with Nf hypermultiplets, the matter of the theory transforms
under SO(2Nf ) × SU(2)R × U(1)r as:

Sp(Nc) SO(2Nf ) SU(2)R U(1)r

ψA 2Nc 2Nf 1 -1
hA 2Nc 2Nf 2 0
Φ adj 1 1 2
λ adj 1 2 1

Now the U(1)r global symmetry is broken to Zr with r = |8Nc − 2Nf | by an ABJ anomaly
when Nf ̸= 4Nc. Again, we find that 4Nc ≥ Nf for asymptotically free theories. The Zr

global symmetry also has a cubic anomaly and mixed ‘t Hooft anomaly with SO(2Nf ) which
are given by the coefficients:

[Zr]3 = Nc(4Nc + 4 − 2Nf ) modr , [Zr] × [SO(2Nf )]2 = −2Nc modr . (4.15)

Now, when Nf = 3Nc the theory perturbative anomalies all vanish.
However, as in the case of N = 2 SU(2) QCD, this theory still has a non-perturbative

background flux anomaly. As above, the computation of the flux anomaly follows straightfor-
wardly from the non-supersymmetric case: the minimal IR Wilson line has charges (4.11)
under PSO(2Nf ) and the minimal monopole has 2Nf zero-modes so that the corresponding
fluxes for B(m)

2 are given by (4.13). Therefore we the theory has the anomaly

A =

πiNc
∫
w

(L)
2 ∪ w(R)

3 Nf even
πiNc

∫
w2(Z4) ∪ w3(Z4) Nf odd

(4.16)
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Thus we find that non-SUSY Sp(Nc) QCD when Nf is even and N = 2 Sp(Nc) QCD have a
non-trivial anomaly (4.14) and (4.16) respectively which can be activated on the mapping
class torus when Nc is odd, allowing us to apply our theorem. And indeed, while the IR
phase of non-SUSY QCD is generally unknown, the N = 2 SUSY theories are also known
to flow to gapless theories similar to the N = 2 SU(2) QCD theory above [33, 34], thereby
satisfying our theorem.
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