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1 Introduction

Symmetry serves a crucial role in understanding physics. Especially, infinite-dimensional
symmetries control physical systems so strongly that only finite quantities remain independent.
It was known [1] that the grand canonical partition function of the Aharony-Bergman-Jafferis-
Maldacena (ABJM) theory [2] constructed with one NS5-brane and one (1,k)5-brane, after
normalized by the lowest order, is given by the Fredholm determinant of a spectral operator
enjoying symmetries of the A1 Weyl group. Later, it was found [3] that the grand partition
function satisfies the q-Painlevé equation qPIII3 , which associates to symmetries of the affine
A1 Weyl group. Also, all of these relations are generalized to the theory with two NS5-branes
and two (1,k)5-branes [4], where the spectral operator enjoys symmetries of the D5 Weyl
group [5] and the grand partition function satisfies the q-Painlevé equation qPVI associated
to the affine D5 Weyl group [6, 7]. In this paper we would like to point out a big difference
of symmetries between non-affine cases and affine ones. Namely, we study how the affine
symmetries work for grand partition functions where only the non-affine symmetries of
spectral operators were clarified so far. These affine symmetries allow us to determine the
grand partition functions in the whole infinite parameter space of relative ranks from a
finite domain. Before that, however, we shall explain the similarities between the non-affine
symmetries of spectral operators and the affine symmetries of Painlevé equations first.

The ABJM theory [2, 8, 9] is the N =6 super Chern-Simons theory with gauge group
U(N1)×U(N2), Chern-Simons levels (k,−k) and two pairs of bifundamental matters. This
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theory describes the worldvolume theory of M2-branes with min(N1,N2) M2-branes and
|N2−N1| fractional M2-branes on the background C4/Zk. This is obtained from the brane
configuration of D3-branes on a circle in IIB string theory with an NS5-brane and a (1,k)5-
brane placed perpendicularly and tilted relatively to preserve supersymmetries. Using the
localization technique [10], the partition function defined with the infinite-dimensional path
integral reduces to a finite-dimensional matrix model.

For the case of equal ranks N1 =N2 =N , after obtaining the behavior of N
3
2 for the

free energy [11], the perturbative corrections in N−1 for the partition function are summed
up to an Airy function [12]. The Airy function suggests us to move to the grand canonical
ensemble by introducing a fugacity dual to the rank. The grand canonical partition function
normalized by the lowest order of the partition function is found to be expressed by the
Fredholm determinant of a spectral operator [1]. The expression further leads us to the
studies of full non-perturbative corrections [13–15]. Finally, it was found that the grand
potential is given by the free energy of topological strings on a background local P1×P1 [16].

All these studies extend to the case of non-equal ranks with two formalisms associated
respectively to open strings and close strings. The open string formalism [17] corrects the
Fredholm determinant by multiplying contributions similar to Wilson loops and easily applies
to numerical studies and various integrable identities [18–20], while the closed string formalism
is more deep. The closed string formalism [21–23] keeps the Fredholm determinant and
incorporates the relative rank by changing parameters of the spectral operator [24]. The
spectral operator is regarded as a quantized algebraic curve P1×P1 and enjoys symmetries
of the A1 Weyl group.

The arguments extend to more complicated backgrounds for M2-branes, where the
quantized algebraic curve is also generalized. In this paper we consider the four-node circular-
quiver super Chern-Simons theory with gauge group U(N1)0×U(N2)k×U(N3)0×U(N4)−k

(subscripts denoting the Chern-Simons levels) and bifundamental matters connecting adjacent
unitary groups, which is constructed with two NS5-branes and two (1,k)5-branes [5, 25–27].
For this theory, the corresponding curve has symmetries of the D5 Weyl group. Generally,
matrix models for brane configurations with p NS5-branes and q (1,k)5-branes were also
studied [1, 28–30] and named as (p,q) models.

Correspondingly, Painlevé equations also relate to similar symmetries. Originally Painlevé
equations were studied aiming at special functions for non-linear second-order differential
equations whose solution does not have movable singularities except poles. From a modern
viewpoint, Painlevé equations are classified by algebraic curves [31]. Explicitly, various
q-Painlevé equations are constructed from exceptional affine Weyl groups. See [32, 33] for
quantum representations of the affine E8 Weyl group constructed recently.

With the similarity in mind, it is natural that the grand partition functions of the ABJM
theory and the above-mentioned four-node (2,2) model were found to satisfy respectively
the q-Painlevé equations qPIII3 [3] and qPVI [6, 7], which enjoy respectively symmetries of
the affine A1 and D5 Weyl groups. Here we would like to stress, however, that there is a big
difference between the Weyl group and the affine Weyl group. Among other, the affine Weyl
group contains elements of discrete translations which are absent in the Weyl group. Hence,
the main project to be studied in this paper is how symmetries of the discrete translations
are realized in the grand partition functions.
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Related to this project, duality cascades [34, 35] in the ABJM theory and its generaliza-
tions [36, 37] induced by the Hanany-Witten brane transitions [38] were studied in [39–41].
In [40, 41], the working hypothesis of duality cascades was proposed as the following steps;
(1) we first select one of the lowest ranks in the brane configuration as a reference and fix
it temporally; (2) we change the reference when we encounter lower ranks in applying the
Hanany-Witten transitions arbitrarily without crossing the reference; (3) we repeat the above
step until no lower ranks appear. Note that here we are allowed to add the overall rank
uniformly when we encounter negative ranks since we are considering the supersymmetric
grand partition function with a source of the overall rank. It was then asked, starting from
an arbitrary brane configuration, whether duality cascades always end and, if yes, whether
the endpoint is uniquely determined. From the charge conservations, the change of references
in duality cascades is realized as discrete translations in the parameter space of relative
ranks. By defining the fundamental domain to be the parameter domain where no more
duality cascades are applicable, this question was translated into the question whether the
fundamental domain forms a parallelotope (that is, a polytope which can tile the whole
parameter space by discrete translations) [40]. This question was answered positively in [41]
for general supersymmetric configurations of D3-branes on a circle stretching between per-
pendicular 5-branes. Especially, for those with symmetries of Weyl groups, the parallelotopes
form the affine Weyl chambers [40]. Thus, the translations in the affine Weyl group are
interpreted physically as duality cascades. So, our original project on understanding how the
grand partition function is transformed under the translations is recast physically into the
transformation of the grand partition function under duality cascades.

For the ABJM theory, the transformation rule of the grand partition function was derived
directly from the matrix model [39]. Interestingly, as we explain in the next section, the
transformation rule is compatible with the q-Painlevé equation qPIII3 found in [3]. Namely,
although qPIII3 was originally confirmed only inside the fundamental domain [3], it also
holds exactly on the boundary where the equation relates the grand partition functions
in the fundamental domain and those outside obtained by the transformation rule under
the translation. With the transformation rule established, we can further show that qPIII3

continues to hold outside everywhere in the parameter space.
It is preferable to derive the transformation rule for the (2,2) model also directly from

the matrix model as in the ABJM theory and discuss the q-Painlevé equation qPVI with it.
However, such an approach is difficult for the (2,2) model due to the convergence condition for
the integrations in the matrix model. Indeed, as discussed in [7] and some earlier works [42, 43],
the convergence of the matrix model is guaranteed only in a range of relative ranks where
the theory is “good” in the sense of [44]. For this reason, in this paper we explore the project
of studying the transformation under duality cascades by overlooking these ambiguities and
providing a few studies from slightly different approaches.

First, we trust the validity of analysis of the matrix model in the fundamental domain [7]
and try to extend it outside using qPVI. With this method, we obtain the exact expressions
of the matrix model slightly beyond the fundamental domain. Using these expressions,
we can read off the transformation rules under the translations of duality cascades. Here
each transformation rule is supplemented by the change of the overall rank N which is
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explained from the physical argument of duality cascades. The rules thus found around the
fundamental domain are surprisingly simple (see [7] or (3.13) later), which we propose to
remain valid even far away from the fundamental domain. Second, alternatively, we can
“derive” the transformation rules directly from the matrix model. Despite the ambiguities in
the convergence condition, a prescription to rewrite the matrix model into residue sums gives
the transformation rules for exchanging 5-branes which duality cascades are composed of.
Interestingly, these two approaches reach the same conclusion. Namely, the prescription with
residue sums precisely reproduces the transformation rules obtained from qPVI.

Namely, the main claim in this paper is that we can extend the grand partition function
outside the fundamental domain of duality cascades naturally by translations in the relative
ranks and lifts in the overall rank. As a result, the grand partition function defined on the
whole parameter space of the relative ranks enjoys the q-Painlevé equations. The result is,
of course, not just a mathematical extension of the solution under the consistency with the
q-Painlevé equations. From the consistency with the physical argument of duality cascades
and the formal derivation from the matrix model, we strongly expect that this solution is a
natural extension of the physical partition function of the super Chern-Simons theory.

Let us stress that, while the grand partition function of the ABJM theory was found
to satisfy qPIII3 [3] and its generalization was found to satisfy qPVI [7], symmetries of the
affine Weyl group was not fully clarified so far. Also, while duality cascades were studied by
proposing a working hypothesis and the fundamental domain after duality cascades was found
to be the affine Weyl chamber in [40], the studies with the grand partition function were
missing. By fully relating them, we find that the grand partition function extends outside
the fundamental domain and is compatible with the q-Painlevé equations.

This paper is organized as follows. In the next section, we first combine the studies
of [3] and [39] consistently and show that, with the transformation rule of the grand partition
function of the ABJM theory under the translation, the q-Painlevé equation qPIII3 continues
to hold outside the fundamental domain. Then, in section 3 we apply these viewpoints to
the (2,2) model. We propose the transformation rules of the grand partition function under
duality cascades and show that, with the transformation rules, the q-Painlevé equation qPVI
continues to hold outside the fundamental domain. In section 4 we propose a prescription to
evaluate the partition functions of the (2,2) model outside the fundamental domain, which
allows us to derive the transformation rules proposed in section 3. In section 5 we provide
further supporting (but not necessarily fully independent) evidences for the cascade relations.
Finally we conclude with some future directions. In the appendix we list exact expressions
of the (2,2) model for k=1 and k=2.

2 Affine symmetries for ABJM theory

In this section we shall explain that the grand partition function of the ABJM theory defined
in the fundamental domain extends naturally to the whole parameter space of the relative
rank with shifts in the total rank, and show that the resulting transformation rule of the grand
partition function under the translation is compatible with the qPIII3 Painlevé equation.

Before discussing the grand partition function, let us concentrate on the brane con-
figuration first. The brane configuration of the ABJM theory [2, 8, 9] with gauge group
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(1,k)5 NS5
N1 =N N2 =N+M+ k

2

345
6

789

Figure 1. The brane configuration for the ABJM theory. The solid horizontal line denotes D3-branes,
the solid vertical line denotes the NS5-brane, while the dashed tilted line denotes the (1,k)5-brane.
Aside from the common directions 012 for all the branes, D3-branes extend to the direction 6, with
two sets of perpendicular directions denoted respectively by 345 and 789. The NS5-brane extends to
the directions of 345, while the (1,k)5-brane extends to the directions of 345 tilted to those of 789 by
a common angle arctank.

U(N1)k×U(N2)−k consists of D3-branes on a circle with an NS5-brane and a (1,k)5-brane
placed perpendicularly and tilted relatively by an angle, where the numbers of D3-branes
(N1,N2) in each interval separated by 5-branes can be different. See figure 1. In [40, 41] it
was proposed to choose the lowest rank as a reference and cut the circle into a segment. If we
denote the cut by a bracket, the NS5-brane by • and the (1,k)5-brane by ◦ with the number
of D3-branes in each interval specified, the brane configuration can be denoted as

⟨N1◦N2•⟩= ⟨N ◦N+M+ k

2 •⟩, (2.1)

where we label the overall rank by N and the relative rank by M . Note that the parame-
terization of the ranks is slightly different from the conventional one ⟨N ◦N+L•⟩ used in
literatures. We shift the relative rank deliberately by k

2 so that the Weyl reflection can be
denoted simply by M→−M . Since ranks N and N+M+ k

2 are integers, M has to be either
integers or half-integers depending on whether k is even or odd. It is known that physics for
the brane configurations related by the Hanany-Witten transitions [38]

⟨· · ·K •◦L ◦•M · · · ⟩⇒ ⟨· · ·K ◦•K−L+M+k •◦M · · · ⟩, (2.2)

are the same, up to an overall phase factor for the partition function. We define the
fundamental domain of duality cascades by requiring that no lower ranks appear in the
Hanany-Witten transitions, which is an interval

|M | ≤ k

2 . (2.3)

This is a one-dimensional parallelotope tiling the one-dimensional space by translations.
Outside the fundamental domain (2.3), M <−k

2 or k
2 <M , the overall rank N and the relative

rank M are transformed as (N,M)→ (N ′,M ′) [39] in duality cascades with (N ′,M ′)= (N+
M+ k

2 ,M+k) or (N ′,M ′)= (N−M+ k
2 ,M−k) respectively. Forgetting about the overall

rank N , the transformation is simply the translation of the relative rank M , M→M±k,
which alleviates the breakdown of the inequalities (2.3). The transformation rule for the
overall rank N will also play an important role later.
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Next, let us turn to the grand partition function. We introduce the notation corresponding
to the brane configuration (2.1)

Zk,M (N)=Zk(N1 =N,N2 =N+M+ k

2 ), (2.4)

for the partition function1

Zk(N1,N2)= e
πi
6k

((N2−N1)3+(N2−N1))i−
1
2 (N2

1−N2
2 )

∫
dN1µ

(2π)N1N1!
dN2ν

(2π)N2N2!
e

ik
4π

(
∑

m
µ2

m−
∑

n
ν2

n)

×
∏

m<m′(2sinh µm−µm′
2 )2∏

n<n′(2sinh νn−νn′
2 )2∏N1

m=1
∏N2

n=1(2cosh
µm−νn

2 )2
. (2.5)

Note that the integration contour is taken to be the real axis R for all the variables here
and hereafter unless specified. We also define the grand partition function by introducing
a fugacity dual to the overall rank N ,

Ξk,M (κ)=
∞∑

N=0
Zk,M (N)κN . (2.6)

From the matrix model (2.5), we can study how the partition function transforms under
duality cascades and derive [39]

Zk,M+k

(
N+M+ k

2

)
=Zk,M (N), (2.7)

which is zero, Zk,M (N)= 0, if N < 0 when reducing to the fundamental domain (2.3) with
duality cascades. This is expected from the transformation of (N+M+ k

2 ,M+k)→ (N,M)
under duality cascades, since duality cascades do not change physics. Furthermore, in terms
of the grand partition function, (2.7) implies

Ξk,M+k(κ)=κM+ k
2 Ξk,M (κ). (2.8)

This transformation rule shows that the partition function Zk,M (N) or the grand partition
function Ξk,M (κ) extends naturally outside the fundamental domain (2.3) by repetition of the
same values if the starting point of N for non-vanishing partition functions Zk,M (N) is taken
care of. See figure 2 for the lowest value of N for non-vanishing Zk,M (N) and the repetitive
pattern of the identical exact values of Zk,M (N). Since the relations (2.7), (2.8) fix the behavior
of the partition functions under duality cascades, we refer to them as cascade relations.

On the other hand, the grand partition function of the ABJM theory is known to satisfy [3]

e−
πi
k

MΞk,M (κ)2+e
πi
k

MΞk,M (−κ)2−Ξk,M+1(−iκ)Ξk,M−1(iκ)= 0, (2.9)

which is nothing but the Hirota bilinear form of the third q-Painlevé equation qPIII3 . Note
that in [3] the bilinear equation was checked for the grand partition function only when
all the grand partition functions are in the fundamental domain (2.3), namely, |M | ≤ k

2 −1
for (2.9) (or at least the extension outside was not mentioned explicitly).

1Compared with the standard notation in [11], we multiply an extra phase factor so that the resulting
partition function is real and positive [17].
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Figure 2. Non-vanishing partition functions Zk,M (N) in the grand partition function Ξk,M (κ) of
the ABJM theory for k=1 (left) and k=4 (right). We plot with a colored circle when the partition
function Zk,M (N) is non-vanishing, with different colors schematically representing different values.
The fundamental domain and its copies in the parameter space of the relative rank M are distinguished
by red regions with different shades. All partition functions reduce to those in the fundamental
domain of duality cascades uniquely, which implies conversely that the same pattern of colored circles
is repeated in different copies of the fundamental domain.

In this section we shall see that the transformation rule (2.8) extends the domain of
validity of the bilinear equation (2.9) from |M | ≤ k

2 −1 to M =±k
2 first and then to the

entire parameter space of M in a consistent way with the same set of exact values of the
partition function (2.7). Conversely, one would say that the consistency with the bilinear
equation (2.9) as well as the physical argument of duality cascades constrains the grand
partition function non-trivially so that we can extend the grand partition function outside
the fundamental domain uniquely as in (2.8). This gives us an insight useful in generalizing
the cascade relation (2.8) for the (2,2) model where the direct derivation from the matrix
model is difficult.

We stress that, with the cascade relation (2.8), both the exact values of the partition
function and the bilinear equations for the whole infinite parameter space of the relative
rank M are determined from those in the finite fundamental domain. Especially for k=1,
as we see explicitly below, there is only one independent grand partition function and one
independent bilinear equation. Others are simply generated by (2.8).

2.1 M = ±k
2

First let us consider the qPIII3 bilinear equation (2.9) with M formally set to M =±k
2 .

Although the equation contains the grand partition function outside the fundamental domain
Ξk,±( k

2 +1)(κ), by using the cascade relation (2.8) we can rewrite it in terms of Ξk,∓( k
2−1)(κ)
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in the fundamental domain. Hence, we obtain

Ξk,− k
2
(κ)2−Ξk,− k

2
(−κ)2−κΞk,− k

2 +1(−iκ)Ξk, k
2−1(iκ)= 0, (2.10)

for both the cases of M =±k
2 . Interestingly, by using the known exact values of Zk,M (N)

for |M | ≤ k
2 [45], we find that this equation is also satisfied. Namely, from the viewpoint

of the bilinear equation (2.9), the cascade relation (2.7) at M =−k
2 −1 and M = k

2 can be
interpreted as the rule to extend the bilinear equation from |M | ≤ k

2 −1 to |M | ≤ k
2 in a

consistent way with the actual values of Zk,M (N).
For example, for k=1, if we further use the relation Ξ1, 1

2
(κ)=Ξ1,− 1

2
(κ) obtained

from (2.8), the grand partition functions reduce to a single function Ξ1(κ)=Ξ1, 1
2
(κ)=Ξ1,− 1

2
(κ)

and we can write (2.10) only in terms of Ξ1(κ) as

Ξ1(κ)2−Ξ1(−κ)2−κΞ1(−iκ)Ξ1(iκ)= 0, (2.11)

which is indeed satisfied by

Ξ1(κ)=
∞∑

N=0
Z1,± 1

2
(N)κN =1+1

4κ+
1

16πκ
2+π−3

64π κ
3+ 10−π2

1024π2κ
4+O(κ5), (2.12)

with the exact values of the partition function Z1,± 1
2
(N) [46] substituted.

It may be interesting to ask whether the bilinear equation (2.11) determines the grand
partition function at all orders of κ. We find that this is only partially possible in the sense
that while the next odd order of κ is fixed if the lower orders are given, this does not work for
the next even order. Indeed the irrational number π in Z1,± 1

2
(2)= 1/(16π) never appears from

the equation (2.11) and the values Z1,± 1
2
(0)=1 and Z1,± 1

2
(1)=1/4. This might be related

to certain degeneracy of the equation. Interestingly, after the mass deformation in [8, 47], we
obtain a recurrence relation for Zk,M (N) which is non-degenerate at all orders [48, 49].

2.2 |M | > k
2

Next let us consider the bilinear equation (2.9) for |M |> k
2 . When |M |> k

2 , the relation (2.7)
implies that the lowest value of N for non-vanishing Zk,M (N) is greater than zero. As a
result, the small κ expansion of the grand partition function Ξk,M (κ) starts with a non-
zero power of κ (2.8). To understand the general structure, it is useful to rewrite (2.8) as
Ξk,M+k(κ)=κ

1
2k

((M+k)2−M2)Ξk,M (κ), which further implies

Ξk,M+nk(κ)=κ
1

2k
((M+nk)2−M2)Ξk,M (κ), (2.13)

for n∈Z.
As already discussed in [39], the transformation rule for the partition function (2.7) is

motivated by the behavior of the brane configuration under duality cascades induced by the
Hanany-Witten transitions of 5-brane exchanges (2.2), such as

· · ·⇒ ⟨15•10◦⟩→ ⟨10◦15•⟩⇒ ⟨10•6◦⟩→ ⟨6◦10•⟩⇒ ⟨6•3◦⟩
→ ⟨3◦6•⟩⇒ ⟨3•1◦⟩→ ⟨1◦3•⟩⇒ ⟨1•0◦⟩→ ⟨0◦1•⟩⇒ ⟨0•0◦⟩, (2.14)
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for k=1. Here we have denoted the Hanany-Witten transitions (2.2) by ⇒ and the change of
references by →. Note that → preserves the partition function since the partition function (2.5)
is independent of the choice of the reference, while ⇒ may change the partition function by
an N -independent overall factor in principle (see section 4 for more details) though this does
not happen in the current ABJM case (2.7). From this computation we find out that the
general expression for the lowest power of κ in the grand partition function Ξ1,M (κ) for k=1
where non-vanishing partition functions start from is given by

Ξ1,M (κ)=κ
1
2 (M2− 1

4 )Ξ1(κ). (2.15)

It is interesting to observe that, with the extension (2.15) all of the bilinear equations (2.9)
with arbitrary M reduce to the single relation (2.11). Later we will see this property works
for general k. For larger k, although the general expression for the lowest power of κ is
more intricate (which involves the residue class, M mod k), non-vanishing partition functions
continue to start from N =0 in the fundamental domain. From this viewpoint, we may
rewrite (2.13) again as

Ξk,M (κ)=κ
1

2k
(M2−M2

FD)Ξk,MFD(κ), (2.16)

where MFD is the corresponding relative rank in the fundamental domain which M reduces
to through duality cascades.

We would like to claim for general k that, with the cascade relation (2.8), once the
bilinear equation (2.9) is satisfied for the relative rank M in the fundamental domain, the
equation also works for M outside. For this purpose, we study how each term of this equation
transforms under the translation M→M+k. Since we have the transformation rule

Ξk,M+k(κ)
Ξk,M (κ) =κM+ k

2 ,
e±

πi
k

(M+k)

e±
πi
k

M
=−1, (2.17)

under the translation, each term transforms by the factor

−
(
κM+ k

2
)2
, −

(
(−κ)M+ k

2
)2
, (−iκ)M+1+ k

2 (iκ)M−1+ k
2 , (2.18)

all of which are identical. This shows that the bilinear equation is invariant under the
translation, of which general duality cascades are composed.

To summarize, we have combined the works on the cascade relation [39–41] and the
qPIII3 bilinear equation [3] consistently. Although the fundamental domain of the ABJM
theory in duality cascades was discussed in [39–41] and the fundamental domain was found
to be a parallelotope, which is a segment in one dimension, the relation to the qPIII3 bilinear
equation was not discussed. Also, although the grand partition function of the ABJM theory
was found to satisfy qPIII3 in the fundamental domain in [3], studies on the affine Weyl group
were missing. Here we combine these two aspects of the ABJM theory. We extend the grand
partition function to the whole parameter space of the relative rank M with the cascade
relation (2.16) by multiplying suitable powers of the fugacity κ determined from duality
cascades and claim that it satisfies qPIII3 for the whole space of the relative rank M .

All we have found in this section is not confined to the ABJM theory. Indeed, we shall
see how the results are generalized to the four-node (2,2) model in the next section.
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3 Affine symmetries for four-node (2,2) model

In the previous section, in extending the domain where the grand partition function of the
ABJM theory satisfies the bilinear form of the q-Painlevé equation qPIII3 (2.9) [3], we have
explained explicitly how the grand partition function transforms under the translation of
duality cascades (2.8) and called it the cascade relation. In this section we shall turn to the
study of the cascade relations for the super Chern-Simons theory with gauge group U(N1)0×
U(N2)k×U(N3)0×U(N4)−k (subscripts denoting the Chern-Simons levels) and bifundamental
matters, known as the four-node (2,2) model. Namely, based on the physical argument of
duality cascades for the brane configuration and the analysis of the partition function in [7]
as well as an analogy from the ABJM theory, we propose the cascade relations for the (2,2)
model and show the consistency with qPVI with them.

The theory we consider is a generalization of the ABJM theory in the following two
senses. First, the brane configuration for the ABJM theory consists of one NS5-brane and
one (1,k)5-brane, while that for the above super Chern-Simons theory consists of two of
them. Second, the ABJM theory satisfies the qPIII3 bilinear equation [3], while the above
super Chern-Simons theory is still integrable and satisfies the 40 qPVI bilinear equations [7].
This theory is called the four-node (2,2) model after the brane configuration.

Let us denote the relative ranks by M =(M0,M1,M3), introduce the FI parameters
Z =(Z1,Z3) and often further combine the parameters as M̃ =(M0,M1,M3,Z1,Z3). With
these parameters, we consider the brane configuration

⟨N1
4•
0
N2

2◦
−Z1

N3
1◦
0
N4

3•
Z3
⟩

= ⟨N 4•
0
N−M0−M3+k

2◦
−Z1

N−M1−M3+k
1◦
0
N+M0−M3+k

3•
Z3
⟩

= ⟨4•2◦1◦3•⟩, (3.1)

with 5-branes labeled and the FI parameters included following the notation of [7] (the
last abbreviation is used in section 4). From the localization technique, we define the
partition function Z

k,M̃
(N)=Zk,(M ,Z)(N) (or, when the dependence on the FI parameters

Z is understood tacitly without confusions, simply Zk,M (N)) for this brane configuration as

Z
k,M̃

(N)= e
iP

k,M̃
(N)

N1!N2!N3!N4!

∫
dN1λ(1)

(2π)N1

dN2λ(2)

(2π)N2

dN3λ(3)

(2π)N3

dN4λ(4)

(2π)N4
e

ik
4π

(
∑N2

i=1(λ(2)
i )2−

∑N4
i=1(λ(4)

i )2)

×eZ1(
∑N2

i=1 λ
(2)
i −

∑N3
i=1 λ

(3)
i )e−Z3(

∑N2
i=1 λ

(4)
i −

∑N3
i=1 λ

(1)
i )

×
∏N1

i<j(2sinh
λ

(1)
i −λ

(1)
j

2 )2∏N2
i<j(2sinh

λ
(2)
i −λ

(2)
j

2 )2

∏N1
i=1

∏N2
j=1 2cosh

λ
(1)
i −λ

(2)
j

2
∏N2

i=1
∏N3

j=1 2cosh
λ

(2)
i −λ

(3)
j

2

×
∏N3

i<j(2sinh
λ

(3)
i −λ

(3)
j

2 )2∏N4
i<j(2sinh

λ
(4)
i −λ

(4)
j

2 )2

∏N3
i=1

∏N4
j=1 2cosh

λ
(3)
i −λ

(4)
j

2
∏N4

i=1
∏N1

j=1 2cosh
λ

(4)
i −λ

(1)
j

2

, (3.2)
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where (N1,N2,N3,N4) are labeled by N1 =N , N2 =N−M0−M3+k, N3 =N−M1−M3+k,
N4 =N+M0−M3+k as in (3.1) and e

iP
k,M̃

(N) is [7]

e
iP

k,M̃
(N) =exp

[
πi

(
M0N+M3

0 −M0
3k +M0(M2

1 +M2
3 )

2k −2M0M3+
3kM0
2 −2M1(Z1+Z3)

+ (M0−M1)Z2
1

k
+(M0−M3+k)Z2

3
k

+(M0−M1−M3−k)Z1Z3
k

)]
. (3.3)

Here we have chosen the overall phase eiP
k,M̃

(N) in the same way as adopted in [7]2 so that
the coefficients of the qPVI bilinear equations simplify as (3.8) below. We shall propose the
cascade relations for the (2,2) model from the physical argument of duality cascades for the
brane configuration (3.1) and the analysis of the partition function (3.2).

As discussed in [5], the grand partition function normalized by the partition function at
N =0, or more generally that at the lowest value of N for non-vanishing partition functions,
enjoys symmetries of the D5 Weyl group generated by

s1 :M3 ↔Z3, s2 :M3 ↔−Z3, s3 :M0 ↔M3, s4 :M0 ↔−M1, s5 :M1 ↔Z1, (3.4)

part of which is associated with the 5-brane exchange in the Hanany-Witten transition. Note
that here we adopt the same terminology of the Hanany-Witten transition even for the
exchange of 5-branes of the same kind with no extra D3-branes generated,

⟨· · ·K •◦L •◦M · · · ⟩⇒ ⟨· · ·K •◦K−L+M •◦M · · · ⟩. (3.5)

Also, as in the case for the ABJM theory, in [40] duality cascades for this theory were
discussed and the fundamental domain was found to be

±M0±M1 ≤ k, ±M0±M3 ≤ k, ±M1±M3 ≤ k. (3.6)

Namely, after duality cascades, the relative rank M reduces to a point in the fundamental
domain (3.6) uniquely. In duality cascades, references are changed when lower ranks compared
with the reference appear. These processes are realized by discrete translations in the
parameter space of the relative ranks. Especially, when lower ranks appear, one of the
inequalities for the fundamental domain (3.6) breaks and the breakdown is alleviated by the
discrete translation of changing references. Depending on various intervals of lower ranks,
there are various directions for the translations. Nevertheless, all directions are compatible in
the parameter space of the relative ranks [41], which guarantees that, after duality cascades,
the relative rank reduces to a point in the fundamental domain (3.6) uniquely. Since the
parameter space is three-dimensional, only three of the translations are independent and
the following four [7, 40]

∆(±1,1,0) : (N,M0,M1,M3) 7→ (N±M0+M1+k,M0±k,M1+k,M3),
∆(±1,0,1) : (N,M0,M1,M3) 7→ (N±M0+M3+k,M0±k,M1,M3+k), (3.7)

are enough for our current study of how the grand partition function transforms under the
translations. The directions of the translations are depicted in figure 3.

2This phase e
iP

k,M̃
(N)

is defined as e
iP

k,M̃
(N)

= e
i(Θ

k,M̃
−Θ′

k,M̃

)
i−

N2
2

2 +
N2

4
2 , with N2 = N−M0−M3+k and

N4 = N +M0−M3+k. The phases Θ
k,M̃

and Θ′
k,M̃

are given by (2.16) in [7]. Here the power of i comes from
the phase introduced by (2.3) in [7] associated with the non-zero Chern-Simons levels.
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Figure 3. The directions of the translations ∆(±1,1,0) and ∆(±1,0,1) are given respectively in the left
and right figures. The rhombic dodecahedron is a parallelotope, which tiles the entire three-dimensional
space of the relative ranks M by the discrete translations and the directions of the translations are
those which map one face into the opposite one. The directions of ∆(1,1,0), ∆(−1,1,0), ∆(1,0,1) and
∆(−1,0,1) are represented by the green, magenta, red and cyan arrows respectively.

In [6, 7] it was found that the grand partition functions in the fundamental domain (3.6)
satisfy the 40 bilinear equations

e−
πi
2k

(σcc+σdd+σee)S
(1)
M̃

ΞB
a±b±c∅d∅e∅(κ)+e

πi
2k

(σcc+σdd+σee)S
(2)
M̃

ΞB
a±b∓c∅d∅e∅(−κ)

+S(3)
M̃

ΞB
a∅b∅c±σc d±σd

e±σe
(∓iκ)= 0. (3.8)

Each of the 40 bilinear equations is characterized by two variables out of five including the
relative ranks and the FI parameters M̃ =(M0,M1,M3,Z1,Z3) along with patterns of shifts
in the remaining three variables, (a,b;σc,σd,σe). Here (a,b,c,d,e) denotes a permutation
of {M0,M1,M3,Z1,Z3} and (σc,σd,σe) is a pattern of shifts (1,1,1), (1,−1,−1), (−1,1,−1),
(−1,−1,1). In (3.8) various bilinears ΞB are defined as

ΞB
a±b±c∅d∅e∅(κ)=

∏
±
Ξ

k,M̃α± 1
2 (δa

α+δb
α)(κ),

ΞB
a±b∓c∅d∅e∅(−κ)=

∏
±
Ξ

k,M̃α± 1
2 (δa

α−δb
α)(−κ),

ΞB
a∅b∅c±σc d±σd

e±σe
(∓iκ)=

∏
±
Ξ

k,M̃α± 1
2 (σcδc

α+σdδd
α+σeδe

α)(∓iκ), (3.9)

and the prefactors are (1̄ = 3, 3̄ = 1)

(S(1)
M̃
,S

(2)
M̃
,S

(3)
M̃

)= (S+
i ,S

−
i ,S

σM0
ī

), for (a,b)= (Mi,Zi),

(S(1)
M̃
,S

(2)
M̃
,S

(3)
M̃

)= (1,1,SσZi

ī
), for (a,b)= (M0,Mi),

(S(1)
M̃
,S

(2)
M̃
,S

(3)
M̃

)= (1,1,SσMi

ī
), for (a,b)= (M0,Zi),

(S(1)
M̃
,S

(2)
M̃
,S

(3)
M̃

)= (1,1,1), otherwise, (3.10)
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with

S±
i =2sin π(Mi±Zi)

k
. (3.11)

More explicitly when necessary, the readers can always consult tables 2 and 3 in [7] where
the 40 bilinear equations are given line-by-line (in terms of the lowest partition functions).
These bilinear equations are associated to the q-Painlevé equations qPVI.

By tracking the change of N under duality cascades (3.7), we propose the general
expression of the cascade relation

Ξk,M (κ)
Zk,M

=κ
1

2k
(M2−M2

FD)Ξk,MFD(κ)
Zk,MFD

. (3.12)

Hereafter we suppress the dependences on the FI parameters Z for the (grand) partition
functions as they do not change under duality cascades. (3.12) relates the grand partition
function for M =(M0,M1,M3) outside the fundamental domain to that for MFD inside which
is the corresponding relative rank of M obtained after applying duality cascades. Here Zk,M

is the non-vanishing partition function Zk,M (N) of the lowest rank N for given M , while
Zk,MFD is the partition function at N =0 in the fundamental domain.

The expression (3.12) is analogous to the cascade relation for the ABJM theory (2.16).
Note, however, that although no extra factors appear in the cascade relation for the grand
partition function of the ABJM theory (2.7), this does not work for the current (2,2) model in
general. Unfortunately, the argument of duality cascades provides only the power of κ in the
cascade relation (3.12). Nevertheless, we propose that (3.12) is valid if we normalize by the
lowest non-vanishing partition function. Still we need to determine the concrete expression for
the ratio between Zk,M and Zk,MFD . In [6, 7] an explicit determinant expression for Zk,M (0)
without integration was found which is valid at least in a subdomain of the fundamental
domain (3.6). Assuming that the expression applies to the whole fundamental domain, we
can evaluate the ratio when both of M before and after the translation are on the boundary
of the fundamental domain. Furthermore, by assuming that the qPVI bilinear equations are
valid on the boundary where the equations involve both Ξk,M (κ) in the fundamental domain
and those outside, we can also determine Zk,M when M is slightly outside. These analyses
were done in [7] for k=1 (and also for k=2 only on the boundaries of the fundamental
domain). From (3.12) with these results substituted, we finally propose that duality cascades
cause the changes of the grand partition function as

∆(1,1,0)Ξ=
Ξk,(M0+k,M1+k,M3)(κ)

Ξk,(M0,M1,M3)(κ)
= e−2πik(Z1+Z3)fM1(Z1)κM0+M1+k,

∆(−1,1,0)Ξ=
Ξk,(M0−k,M1+k,M3)(κ)

Ξk,(M0,M1,M3)(κ)
= e−2πik(Z1+Z3)fM1(Z1)κ−M0+M1+k,

∆(1,0,1)Ξ=
Ξk,(M0+k,M1,M3+k)(κ)

Ξk,(M0,M1,M3)(κ)
= fM3(Z3)κM0+M3+k,

∆(−1,0,1)Ξ=
Ξk,(M0−k,M1,M3+k)(κ)

Ξk,(M0,M1,M3)(κ)
= fM3(Z3)κ−M0+M3+k, (3.13)
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where

fM (Z)= (eπiZ−(−1)2Me−πiZ)−2M =

(2cosπZ)−2M , for M ∈Z+ 1
2 ,

(−4sin2πZ)−M , for M ∈Z.
(3.14)

We shall postpone to section 4 a formal derivation from the matrix model for the cascade
relations (3.13) with (3.14).

In the next subsection we explain how the cascade relations guarantee that the grand
partition function satisfying the qPVI bilinear equations (3.8) in the fundamental domain
extends to that satisfying the same equations in the whole parameter space.

3.1 Bilinear equations outside fundamental domain

In this subsection, we would like to show that, with the cascade relations (3.13) given, once
it was found that the grand partition function satisfies the 40 bilinear equations (3.8) in
the fundamental domain, it satisfies the same bilinear equations in the whole parameter
space of the relative ranks.

We shall explain with an example of the bilinear equation labeled by (a,b;σc,σd,σe)=
(M0,M1;+,+,+),

e−
πi
2k

(M3+Z1+Z3)Ξk,(M0+ 1
2 ,M1+ 1

2 ,M3,Z1,Z3)(κ)Ξk,(M0− 1
2 ,M1− 1

2 ,M3,Z1,Z3)(κ)

+e
πi
2k

(M3+Z1+Z3)Ξk,(M0+ 1
2 ,M1− 1

2 ,M3,Z1,Z3)(−κ)Ξk,(M0− 1
2 ,M1+ 1

2 ,M3,Z1,Z3)(−κ)

+2sin π(M3+Z3)
k

Ξk,(M0,M1,M3+ 1
2 ,Z1+ 1

2 ,Z3+ 1
2 )(−iκ)Ξk,(M0,M1,M3− 1

2 ,Z1− 1
2 ,Z3− 1

2 )(iκ)= 0.

(3.15)

By transforming with ∆(±1,1,0), each of the three terms in (3.15) transforms as

fM1+ 1
2
(Z1)fM1− 1

2
(Z1), fM1+ 1

2
(Z1)fM1− 1

2
(Z1), fM1

(
Z1+

1
2

)
fM1

(
Z1−

1
2

)
, (3.16)

while with ∆(±1,0,1), each term transforms as

(−i)fM3(Z3)2, (i)fM3(Z3)2(−1), (−1)fM3+ 1
2

(
Z3+

1
2

)
fM3− 1

2

(
Z3−

1
2

)
(−i). (3.17)

Note that the phase factors (omitted if it is 1) prior to the function fM (Z) come from those
in the bilinear equations, while those behind fM (Z) are from the powers of κ. Thus, the
validity of the bilinear equations after the transformations relies on the relations

ψ±
i =

fMi+ 1
2
(Zi± 1

2)fMi− 1
2
(Zi∓ 1

2)
fMi(Zi)2 =−1, ϕi =

fMi(Zi+ 1
2)fMi(Zi− 1

2)
fMi+ 1

2
(Zi)fMi− 1

2
(Zi)

= 1, (3.18)

which can be shown explicitly with (3.14). Although we have picked up only an example of
(M0,M1;+,+,+), the same computations work for all other examples with different choices
of variables (a,b) and shifts (σc,σd,σe). In table 1, we list the relations on which the validity
of each bilinear equation under each transformation relies. Since the relations do not depend
on the shift patterns (σc,σd,σe), we omit them in the table. It is interesting to find that the
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qPVI \ transl. ∆(±1,1,0) ∆(±1,0,1)
(M1,M3) ϕ1 =1 ϕ3 =1
(M1,Z1) ψ±

1 =−1 ψ±
3 =−1

(M1,Z3) ϕ1 =1 ϕ3 =1
(M3,Z1) ϕ1 =1 ϕ3 =1
(M3,Z3) ψ±

1 =−1 ψ±
3 =−1

(Z1,Z3) ϕ1 =1 ϕ3 =1

qPVI \ transl. ∆(±1,1,0) ∆(±1,0,1)
(M0,M1) ϕ1 =1 ψ±

3 =−1
(M0,M3) ψ±

1 =−1 ϕ3 =1
(M0,Z1) ϕ1 =1 ψ±

3 =−1
(M0,Z3) ψ±

1 =−1 ϕ3 =1

Table 1. Relations (3.18) on which the validity of each bilinear equation (3.9) labeled by (a,b;σc,σd,σe)
under each transformation (3.13) relies. Since the computations do not depend on the shifts (σc,σd,σe),
we label the bilinear equations only by the combinations of the variables (a,b).

validity of the 40 bilinear equations after applying the four translations relies only on a few
relations (3.18). To summarize, all of the 40 bilinear equations continue to be valid under
the discrete translations in all of the directions. For this reason, the cascade relations (3.13)
guarantee that, if the 40 qPVI bilinear equations hold in the fundamental domain, they
are also satisfied outside.

4 Cascade relations from matrix model

In this section, we shall provide a formal derivation for the cascade relations of the grand
partition function (3.13). In the case of the ABJM theory, the cascade relation under the
translation M→M+k (2.8) follows directly from the matrix model Zk,M (N) (2.5) as shown
in [39]. It would be natural to ask whether we can understand the cascade relations for
the four-node (2,2) model (3.13) from the original matrix model Zk,M (N) (3.2). As in the
case of the ABJM theory and as we see explicitly below, since the translations of M are
realized by moving one of the 5-branes in the IIB brane setup along the compactified direction
cyclically [40], we naturally expect that the cascade relations (3.13) can be derived from the
transformation rules of the partition function under 5-brane exchanges.

Note that in contrast with the case of the ABJM theory it is a subtle issue whether the
partition function of the (2,2) model is even well-defined or not outside the fundamental
domain. The exchange of 5-branes of the same kind may change the rank into that of “bad”
theories [44], where the partition function becomes divergent. The divergence is due to
the integrand without an exponential decay or a Fresnel oscillation at infinity, and is not
resolved by the FI parameters. Nevertheless, in the following we observe that, if we adopt
a prescription by formally replacing the integrations with residue sums for the exchange of
5-branes of the same kind, we can precisely reproduce from the matrix model the cascade
relations (3.13) required for the consistency of the qPVI bilinear equations (3.8). In this
sense, rather than a derivation of (3.13), our results in this section may be viewed as a
proposal for an extension of the matrix model with the prescription of residue sums which
reproduces (3.13). As a result, this extension is consistent with the physical argument of
duality cascades and the validity of the qPVI bilinear equations.

To make the argument precise, let us first introduce a new notation for the matrix
model which is directly related to the brane setup. To avoid a confusion with the notation
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µ⟨N1 •
Z
N2⟩ν = N1

µi

N2
νi

NS5

−iZ

µ⟨N1 ◦
Z
N2⟩ν = N1

µi

N2
νi

(1,k)5

−iZ

Figure 4. The brane configurations corresponding to µ⟨N1•◦
Z
N2⟩ν whose unintegrated partition

functions are given in (4.1).

in the previous sections, in this section we shall denote by W the unintegrated partition
function with all of the extra phases dropped for a subset of the brane configuration. For the
brane configuration µ⟨N1•◦

Z
N2⟩ν where only an NS5-brane • or a (1,k)5-brane ◦ with the FI

parameter Z separates N1 and N2 D3-branes, we associate the building blocks

W
(

µ⟨N1•
Z
N2⟩ν

)
=e−Z(

∑N1
i=1µi−

∑N2
i=1νi)

∏N1
i<j2sinh

µi−µj

2
∏N2

i<j2sinh
νi−νj

2∏N1
i=1

∏N2
j=12cosh

µi−νj

2
,

W
(

µ⟨N1◦
Z
N2⟩ν

)
=e−Z(

∑N1
i=1µi−

∑N2
i=1νi)e

ik
4π

(
∑N1

i=1µ2
i −

∑N2
i=1ν2

i )
∏N1

i<j2sinh
µi−µj

2
∏N2

i<j2sinh
νi−νj

2∏N1
i=1

∏N2
j=12cosh

µi−νj

2
.

(4.1)

The brane configurations corresponding to the above building blocks are summarized in
figure 4. From them we can define the unintegrated partition function for a general brane
configuration as

W
(

µ⟨N1 •◦
Z1
N2 · · ·Nℓ−1 •◦

Zℓ−1
Nℓ⟩ν

)
= 1
N2! · · ·Nℓ−1!

∫
dN2λ

(2)
i

(2π)N2
· · · d

Nℓ−1λ
(ℓ−1)
i

(2π)Nℓ−1

×W
(

µ⟨N1 •◦
Z1
N2⟩λ(2)

)
· · ·W

(
λ(ℓ−1)⟨Nℓ−1 •◦

Zℓ−1
Nℓ⟩ν

)
. (4.2)

Similarly, let us introduce Wk,M (N) for the configuration (3.1) with phases dropped
from the partition function Zk,M (N) (3.2) which is used for the bilinear equations (3.8),

Zk,M (N)= eiPk,M (N)Wk,M (N), (4.3)

where eiPk,M (N) is given by (3.3). We have referred to (4.1) as building blocks, since Wk,M (N)
is constructed from (4.1). Note that the cascade relations (3.13) are obtained as long as
the local transformation rules for the relevant parts of (4.2) are known. In the following
we first discuss the effects of various 5-brane exchanges in terms of W (4.2), and then
convert the obtained transformation rules into those for Zk,M (N) via (4.3) and discuss the
cascade relations (3.13).

4.1 5-brane exchanges

Now let us consider the effects of 5-brane exchanges on the matrix model W . We first consider
the exchange of 5-branes of different kinds, NS5↔ (1,k)5 or (1,k)5↔NS5. This case was
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studied rigorously in [39], where the local transformation rules of the unintegrated partition
functions involving only the 5-branes exchanged were found to be

W
(

µ⟨NL •
ZL

NC ◦
ZR

NR⟩ν

)
=Ω(ZL,ZR)

+

[NC

ÑC

]
W

(
µ⟨NL ◦

ZR

ÑC •
ZL

NR⟩ν

)
,

W
(

µ⟨NL ◦
ZL

NC •
ZR

NR⟩ν

)
=Ω(ZL,ZR)

−

[NC

ÑC

]
W

(
µ⟨NL •

ZR

ÑC ◦
ZL

NR⟩ν

)
, (4.4)

with ÑC =NL+NR−NC+k and

Ω(ZL,ZR)
+

[NC

ÑC

]
=

(
Ω(ZL,ZR)
−

[NC

ÑC

])−1
= eπi(− 1

6−
k2
12 + k(NC +ÑC )

4 + (NC−ÑC )2
4 +(ZL−ZR)2). (4.5)

Here for later purpose we have expressed the rank-dependence of the transformation factors
Ω± by using only NC , ÑC . Note that, as is expected, Ω+ and Ω− are mutually reciprocal,
since they are factors for inverse transformations.

Next let us consider the exchange of 5-branes of the same kind, NS5↔NS5 or (1,k)5↔
(1,k)5. Since the two cases result in the same transformation factor, let us concentrate on
the exchange of two NS5-branes associated with the FI parameters ZL,ZR and separating
NL,NC ,NR D3-branes. Similarly to the above case, let us consider again the unintegrated
partition functions involving only the 5-branes exchanged. The unintegrated partition
function before the exchange is given by

W
(

µ⟨NL •
ZL

NC •
ZR

NR⟩ν

)
= 1
NC !

∫
dNCλi

(2π)NC
W

(
µ⟨NL •

ZL

NC⟩λ

)
W

(
λ⟨NC •

ZR

NR⟩ν

)
, (4.6)

while that after the exchange is given by the same expression W
(

µ⟨NL •
ZR

ÑC •
ZL

NR⟩ν

)
with

NC replaced by ÑC =NL+NR−NC and the two FI parameters ZL and ZR swapped. We
can evaluate the integration in (4.6) by using the Vandermonde determinant formula

N∏
i<j

2sinh xi−xj

2 =
N
det
i,s

[
e( N+1

2 −s)xi

]
, (4.7)

and the Cauchy-Binet formula

1
N !

∫
dNx

N
det
i,j

[
fi(xj)

] N
det
i,j

[
gi(xj)

]
=

N
det
i,j

[∫
dxfi(x)gj(x)

]
, (4.8)

as

W
(

µ⟨NL •
ZL

NC •
ZR

NR⟩ν

)
=

(NL∏
i<j

2sinh µi−µj

2
)(NR∏

i<j

2sinh νi−νj

2
)

×e−ZL

∑NL
i=1 µi+ZR

∑NR
i=1 νi

NC

det
r,s

[
INL+NR

(NC+1−r−s+ZL−ZR,{µi}NL
i=1∪{νi}NR

i=1)
]
, (4.9)

with

In(α,{βa})=
∫
dx

2π
eαx∏n

a=1 2cosh
x−βa

2
. (4.10)
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If we assume that the integration is convergent, In(α,{βa}) is given by a residue sum,

In(α,{βa})= I(res)
n (α,{βa})=

1
e−πiα−(−1)neπiα

n∑
a=1

eαβa∏
a′( ̸=a) 2isinh

βa−βa′
2

. (4.11)

Similarly, W
(

µ⟨NL •
ZR

ÑC •
ZL

NR⟩ν

)
is obtained simply by replacing NC with ÑC and swapping

ZL and ZR in (4.9).
As we have commented at the beginning of this section, convergence of the integration

after the 5-brane exchange is not guaranteed even when the integration for the original
configuration (4.6) is convergent. The convergence condition for the integration (4.6) is

NL+NR

2 −NC+1−|Re[ZL−ZR]|> 0, (4.12)

which is obtained by considering the asymptotic behavior of the integrand as the absolute
value of one of the integration variables, say |λ1|, grows,

W
(

µ⟨NL •
ZL

NC⟩λ

)
W

(
λ⟨NC •

ZR

NR⟩ν

)
∼ e−( NL+NR

2 −NC+1∓(ZL−ZR))|λ1|, λ1 →±∞. (4.13)

On the other hand, the convergence condition for the integration after the 5-brane exchange
is (4.12) with NC replaced with ÑC , which is different from (4.12). Nevertheless, let us
tentatively ignore the issue of divergences and assume that both of the unintegrated partition
functions, (4.6) and its replacement, are evaluated by I

(res)
n (α,{βa}) (4.11). This is also

justified if we choose the integration contour for INL+NR
in (4.9) to surround only the

poles of 1
2cosh x−µi

2

1
2cosh x−νi

2
in the upper-half (or lower-half) plane if Im[ZL−ZR]> 0 (or

Im[ZL−ZR]< 0 respectively), as depicted in figure 5. Then we obtain3

W
(

µ⟨NL •
ZL

NC •
ZR

NR⟩ν

)
=Γ(ZL,ZR)

[NC

ÑC

]
W

(
µ⟨NL •

ZR

ÑC •
ZL

NR⟩ν

)
,

W
(

µ⟨NL ◦
ZL

ÑC ◦
ZR

NR⟩ν

)
=Γ(ZL,ZR)

[NC

ÑC

]
W

(
µ⟨NL ◦

ZR

NC ◦
ZL

NR⟩ν

)
, (4.14)

with ÑC =NL+NR−NC and

Γ(ZL,ZR)
[NC

ÑC

]
=(e−πi(ZL−ZR)−(−1)ÑC−NCeπi(ZL−ZR))ÑC−NC . (4.15)

Here we have used the determinant formula

e−Z
∑ℓ

i=1 xi
detm

r,s[I
(res)
ℓ (m+1−r−s+Z,{xi}ℓ

i=1)]
detn

r,s[I
(res)
ℓ (n+1−r−s−Z,{xi}ℓ

i=1)]
= (e−πiZ−(−1)n−meπiZ)n−m, (4.16)

with ℓ=m+n, which we have checked for ℓ≤ 7. Note that in (4.14) the equality holds only
after ignoring the issue of divergences. Surprisingly the transformation rule (4.14) with (4.15)
is not obtained by taking the naive limit k→ 0 from (4.4) with (4.5).

3This factor depending on the FI parameters was also derived by [42, 50] in a slightly different formulation
(see [51] for further argument). A similar factor was also found in the relation of partition functions between
a pair of linear-quiver Chern-Simons theories in [43] where the brane configurations are related through an
exchange of 5-branes of the same kind.
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Figure 5. Contours which justify the prescription of replacing the integrations with residue sums,
In = I

(res)
n , in the evaluation of W (µ⟨NL •ZL

NC •ZR
NR⟩ν) (4.9). The blue line (and the green one)

denotes the contour for Im[ZL−ZR]> 0 (and that for Im[ZL−ZR]< 0 respectively), while the red
crosses denote the poles of

∏NL

i=1
1

2cosh x−µi
2

∏NR

i=1
1

2cosh x−νi
2

.

Here let us make a detour to discuss interesting properties relating to the factors Ω (4.5)
and Γ (4.15). As is clear from physical intuition that the exchange does not rely on the
intermediate processes, these factors should satisfy the braiding relations or the Yang-Baxter
relations. Let us consider a brane configuration µ⟨NL

1•◦
ZL

Nl

2•◦
ZC

Nr

3•◦
ZR

NR⟩ν . When bringing it

into µ⟨NL

3•◦
ZR

Ñl

2•◦
ZC

Ñr

1•◦
ZL

NR⟩ν with Ñl =NL−Nr+NR and Ñr =NL−Nl+NR by exchanging

5-branes, we have two processes. Namely, we can either follow the exchanges of 1•◦↔
2•◦, 1•◦↔

3•◦,
2•◦↔

3•◦, or the exchanges of 2•◦↔
3•◦, 1•◦↔

3•◦, 1•◦↔
2•◦. See figure 6 for a schematical picture of

the exchanges. Since the final results of the partition function should not depend on the
processes of exchanges, we have the relation

Γ(ZL,ZC)
[Nl

N▷

]
Γ(ZL,ZR)

[Nr

Ñr

]
Γ(ZC ,ZR)

[N▷

Ñl

]
=Γ(ZC ,ZR)

[Nr

N◁

]
Γ(ZL,ZR)

[Nl

Ñl

]
Γ(ZL,ZC)

[N◁

Ñr

]
, (4.17)

with N▷ =NL−Nl+Nr and N◁ =Nl−Nr+NR. Similarly, we can replace some of NS5-branes
by (1,k)5-branes. Then, the Yang-Baxter relations

Γ
[Nl

N▷

]
Ω±

[ Nr

Ñr+k

]
Ω±

[ N▷

Ñl+2k

]
=Ω±

[ Nr

N◁+k

]
Ω±

[ Nl

Ñl+2k

]
Γ
[N◁+k
Ñr+k

]
,

Ω±
[ Nl

N▷+k

]
Γ
[ Nr

Ñr+k

]
Ω∓

[N▷+k
Ñl+k

]
=Ω∓

[ Nr

N◁+k

]
Γ
[ Nl

Ñl+k

]
Ω±

[N◁+k
Ñr+k

]
,

Ω∓
[ Nl

N▷+k

]
Ω∓

[ Nr

Ñr+2k

]
Γ
[N▷+k
Ñl+k

]
=Γ

[Nr

N◁

]
Ω∓

[ Nl

Ñr+k

]
Ω∓

[ N◁

Ñr+2k

]
, (4.18)
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ZL ZC ZR

Nl Nr

NL N▷ NR

Ñl Ñr

=

ZL ZC ZR

Nl Nr

NL N◁ NR

Ñl Ñr

Figure 6. A schematic picture of the exchanges of 5-branes. Here the ranks after the exchanges of
5-branes may be shifted by k depending on the types of 5-branes (see (4.18)). We regard 5-branes as
“scattering particles” and denote the numbers of D3-branes in each interval. Although two processes

are possible to move from ⟨· · ·NL

1
•◦

ZL

Nl

2
•◦

ZC

Nr

3
•◦

ZR

NR · · · ⟩ to ⟨· · ·NL

3
•◦

ZR

Ñl

2
•◦

ZC

Ñr

1
•◦

ZL

NR · · · ⟩, the values of

partition functions should not depend on the processes.

should hold as well with Ñl, Ñr, N▷ and N◁ shifted by k due to the Hanany-Witten transi-
tions (2.2). We have omitted the FI parameters (ZL,ZC ,ZR) in (4.18) since the dependence
is the same as in (4.17).

4.2 Cascade relations

Now that we have the local transformation rules (4.4) and (4.14) of the unintegrated partition
function W under 5-brane exchanges, let us study the behavior of Zk,M (N) under the cyclic
5-brane exchanges which induce the translations of (M0,M1,M3) in (3.13). For example, let us
consider ∆(1,1,0) : (M0,M1,M3)→ (M0+k,M1+k,M3). The translation ∆(1,1,0) is realized by
moving the (1,k)5-brane 1◦

0
leftward cyclically along the compactified direction by exchanging

with 2◦
−Z1

, 4•
0

and 3•
Z3

subsequently. Then, the configuration in (3.1) denoted by ⟨4•2◦1◦3•⟩ changes as

⟨4•2◦1◦3•⟩= ⟨N 4•
0
N−M0−M3+k

2◦
−Z1

N−M1−M3+k
1◦
0
N+M0−M3+k

3•
Z3
⟩

⇒
2↔1

⟨N 4•
0
N−M0−M3+k

1◦
0
N+M1−M3+k

2◦
−Z1

N+M0−M3+k
3•

Z3
⟩

⇒
4↔1

⟨N 1◦
0
N+M0+M1+k

4•
0
N+M1−M3+k

2◦
−Z1

N+M0−M3+k
3•

Z3
⟩

⇒
3↔1

⟨N+2M0+M1−M3+3k 3•
Z3
N+M0+M1+k

4•
0
N+M1−M3+k

2◦
−Z1

N+M0−M3+k
1◦
0
⟩

→ ⟨4•2◦1◦3•⟩
∣∣∣
(N,M0,M1,M3)→(N ′,M ′

0,M ′
1,M ′

3)=(N+M0+M1+k,M0+k,M1+k,M3)
, (4.19)

where ⇒
a↔b

stands for the exchange of 5-branes labeled with a and b, which changes the
partition function W by the transformation factors Ω± (4.5) or Γ (4.15), while → stands for
the cyclic rotation of the entire brane configuration which does not change the expression
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of W . Taking into account all the transformation factors, we obtain

Wk,M (N)=Γ(−Z1,0)
[N−M1−M3+k
N+M1−M3+k

]
×Ω(0,0)

+

[N−M0−M3+k
N+M0+M1+k

]
Ω(Z3,0)

+

[ N

N+2M0+M1−M3+3k

]
Wk,M ′(N ′). (4.20)

Here, again, the equality is obtained under the assumption of replacing the integration by
residue sums. Substituting (4.5), (4.15) and converting back to the relation for Zk,M (N)
through (4.3), we find

Zk,M+(k,k,0)(N+M0+M1+k)= e−2πik(Z1+Z3)(eπiZ1−(−1)2M1e−πiZ1)−2M1Zk,M (N), (4.21)

which implies
Ξk,M+(k,k,0)(κ)

Ξk,M (κ) = e−2πik(Z1+Z3)(eπiZ1−(−1)2M1e−πiZ1)−2M1κM0+M1+k. (4.22)

Interestingly, this precisely reproduces the cascade relation (3.13) for ∆(1,1,0) which is con-
sistent with the bilinear equations.

Similarly, the same computation works for all of the discrete translations in (3.13).
In table 2 we display necessary information for the derivations, including the 5-brane ex-
changes which the discrete translation consists of, the change of variables (N,M0,M1,M3),
Wk,M (N)/Wk,M ′(N ′) computed using (4.4) and (4.14), and the results of Zk,M ′(N ′)/Zk,M (N)
and Ξk,M ′(κ)/Ξk,M (κ) with (4.5) and (4.15) substituted. In all cases we find that the cascade
relations (3.13) are reproduced correctly.

5 More evidences for cascade relations

In this section, we shall provide some more evidences for the cascade relations (3.13)
with (3.14). In the previous section, we apply the prescription of residue sums (4.9) with (4.11)
uncritically to derive the cascade relations (3.13) in spite of the issue of divergences. It
may be more comfortable if we apply the prescription only in the fundamental domain and
try to extend the domain using the q-Painlevé equations qPVI as when we first reached the
cascade relations (3.13) in [7]. Also, the structure of affine symmetries should be clearer by
presenting the expressions of partition functions explicitly. For these reasons, in this section,
we shall continue the analysis of [7] by computing partition functions of higher ranks in the
fundamental domain and extending the domain using qPVI. It is important to note that the
computation in this section is not completely independent from that in the previous section
since we adopt the same prescription of residue sums. Nevertheless, we stress that the total
consistency among the physical argument of duality cascades in section 3, the formal deriva-
tion of the cascade relations (3.13) in the previous section and the expressions of partition
functions using the prescription only in the fundamental domain in this section is non-trivial.

Let us first recapitulate the computations in [7]. In [7] the cascade relations were identified
at N =0,1 for k=1 and at N =0 for k=2. Here as in [7], we introduce the short-hand
notation for the partition function

Z
[k](N)
M0,M1,M3

= e−iΘk,MZk,M (N), (5.1)
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5-brane exchanges (N ′,M ′
0,M

′
1,M

′
3)

∆ Wk,M (N)/Wk,M ′(N ′)
Zk,M ′(N ′)/Zk,M (N) Ξk,M ′(κ)/Ξk,M (κ)

2◦↔ 1◦, 4•↔ 1◦, 3•↔ 1◦ (N+M0+M1+k,M0+k,M1+k,M3)

∆(1,1,0) Γ(−Z1,0)
[N−M1−M3+k

N +M1−M3+k

]
Ω(0,0)

+
[N−M0−M3+k

N +M0+M1+k

]
Ω(Z3,0)

+
[ N

N +2M0+M1−M3+3k

]
e−2πik(Z1+Z3)(eπiZ1−(−1)2M1e−πiZ1)−2M1 e−2πik(Z1+Z3)fM1(Z1)κM0+M1+k

2◦↔ 1◦, 2◦↔ 3•, 2◦↔ 4• (N−M0+M1+k,M0−k,M1+k,M3)

∆(−1,1,0) Γ(−Z1,0)
[N−M1−M3+k

N +M1−M3+k

]
Ω(−Z1,Z3)
−

[N +M0−M3+k

N−M0+M1+k

]
Ω(−Z1,0)
−

[ N

N−2M0+M1−M3+3k

]
e−2πik(Z1+Z3)(eπiZ1−(−1)2M1e−πiZ1)−2M1 e−2πik(Z1+Z3)fM1(Z1)κ−M0+M1+k

4•↔ 2◦, 4•↔ 1◦, 4•↔ 3• (N+M0+M3+k,M0+k,M1,M3+k)

∆(1,0,1) Ω(0,−Z1)
+

[N−M0−M3+k

N +M0−M1+k

]
Ω(0,0)

+
[N−M1−M3+k

N +2M0+2k

]
Γ(0,Z3)

[N +M0−M3+k

N +M0+M3+k

]
(eπiZ3−(−1)2M3e−πiZ3)−2M3 fM3(Z3)κM0+M3+k

1◦↔ 3•, 2◦↔ 3•, 4•↔ 3• (N−M0+M3+k,M0−k,M1,M3+k)

∆(−1,0,1) Ω(0,Z3)
−

[N +M0−M3+k

N−M0−M1+k

]
Ω(−Z1,Z3)
−

[N−M1−M3+k

N−2M0+2k

]
Γ(0,Z3)

[N−M0−M3+k

N−M0+M3+k

]
(eπiZ3−(−1)2M3e−πiZ3)−2M3 fM3(Z3)κ−M0+M3+k

Table 2. Formal derivations of the cascade relations (3.13) with the prescription of residue
sums. We display the 5-brane exchanges which the discrete translation consists of, the change
of variables (N,M0,M1,M3), Wk,M (N)/Wk,M ′(N ′), and the results of Zk,M ′(N ′)/Zk,M (N) and
Ξk,M ′(κ)/Ξk,M (κ). The function fM (Z) appearing in Ξk,M ′(κ)/Ξk,M (κ) is defined in (3.14).

and use the same notation also in appendix A. Note that the redefinition of the overall
phase factor by eiΘk,M simplifies the expressions of partition functions in tables 3, 5 and 6
in appendix A, although it does not play a role as long as we only consider the ratios
Zk,M (1)/Zk,M (0)=Z

[k](1)
M0,M1,M3

/Z
[k](0)
M0,M1,M3

. Hereafter in this section we shall use the two
notations interchangeably. Also, to explain the computations, we introduce a notation D[k]

N ,
denoting the domain where the partition function Zk,M (N) is non-vanishing. For k=2,
the exact expressions of partition functions Z2,M (0) was determined in the fundamental
domain D[2]

0 and the cascade relations (3.13) were only confirmed on the boundary. For
k=1, besides Z1,M (0), Z1,M (1) was also determined and the cascade relations (3.13) were
confirmed more generally. There, first Z1,M (1) in the fundamental domain D[1]

0 was computed.
Since the grand partition function normalized by Zk,M (0) is expressed by the Fredholm
determinant of a spectral operator conjectured to be invariant under the Weyl group, the
ratio of the partition functions Z1,M (1)/Z1,M (0)=Z

[1](1)
M0,M1,M3

/Z
[1](0)
M0,M1,M3

is expected to be
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classified by the Weyl group,

∆[1]
0 =

Z
[1](1)
0,0,0

Z
[1](0)
0,0,0

, ∆[1]
1 =

Z
[1](1)
{± 1

2 ,± 1
2 ,± 1

2}0

Z
[1](0)
{± 1

2 ,± 1
2 ,± 1

2}0

, ∆[1]
2 =

Z
[1](1)
{±1,0,0}

Z
[1](0)
{±1,0,0}

, ∆[1]
3 =

Z
[1](1)
{± 1

2 ,± 1
2 ,± 1

2}1

Z
[1](0)
{± 1

2 ,± 1
2 ,± 1

2}1

. (5.2)

Here we have changed notations from [7] since the classification is characterized by Z4. As
in appendix A, the subscripts of Z denote (M0,M1,M3) where the curly brackets indicate
that the order can be arbitrary. Also, the subscripts of the curly brackets 0 or 1 imply
respectively that the number of minus signs is even or odd. For example, ∆[1]

1 denotes the
four identical quantities

∆[1]
1 =

Z
[1](1)
1
2 , 1

2 , 1
2

Z
[1](0)
1
2 , 1

2 , 1
2

=
Z

[1](1)
1
2 ,− 1

2 ,− 1
2

Z
[1](0)
1
2 ,− 1

2 ,− 1
2

=
Z

[1](1)
− 1

2 , 1
2 ,− 1

2

Z
[1](0)
− 1

2 , 1
2 ,− 1

2

=
Z

[1](1)
− 1

2 ,− 1
2 , 1

2

Z
[1](0)
− 1

2 ,− 1
2 , 1

2

. (5.3)

In [7], it was found that they are given by

∆[1]
0 =− 1

4π csc(πZ1)csc(πZ3)
(
πZ1Z3−π cot(πZ1)cot(πZ3)−cot(πZ1Z3)

+π
(
Z1 cot(πZ1)+Z3 cot(πZ3)

)
cot(πZ1Z3)

)
,

∆[1]
1,3 =− 1

16π sec(πZ1)sec(πZ3)
(
2±4πiZ1Z3+2π

(
Z1 tan(πZ1)+Z3 tan(πZ3)

)
∓πitan(πZ1)tan(πZ3)−e∓2πiZ1Z3π sec(πZ1)sec(πZ3)

)
,

∆[1]
2 = 1

4Z1Z3 csc(πZ1)csc(πZ3). (5.4)

Here the upper signs in ∆1,3 are for ∆1, while the lower ones are for ∆3. Then, using the 40
bilinear equations (3.8) with Z1,M (1) in D[1]

0 , we can solve for Z1,M (1) outside the fundamental
domain and determine all of them in the whole parameter space. It was found that the domain
for non-vanishing Z1,M (1) (which is D[1]

1 ) extends slightly from the original fundamental
domain D[1]

0 . With the exact expressions Z1,M (1) outside the fundamental domain, we still
find that the cascade relations (3.13) are valid. Note that since the transformation rules
under the translations themselves were identified with the extra phases eiΘk,M removed (5.1),
to obtain (3.13) we need to take care of these phases.

Let us add some more evidences for the cascade relations (3.13) with (3.14) in this paper.
First, for k=1, we computed Z1,M (0) and Z1,M (1) in the fundamental domain D[1]

0 . Besides
the fact that the ratio Zk,M (1)/Zk,M (0) is invariant under the Weyl group, from the physical
argument of duality cascades it is natural to expect that even outside the fundamental
domain the ratio is kept intact as in (3.12). Thus we can build Zk,M (2) on top of Zk,M (1)
in the domain D[k]

1 \D[k]
0 by assuming Zk,M (2)/Zk,M (1)|D[k]

1 \D[k]
0

=Zk,MFD(1)/Zk,MFD(0)|D[k]
0

.
This assumption is reminiscent of the grand partition function of the ABJM theory in
figure 2, where the partition functions of higher ranks are built on top of the lowest non-
vanishing partition function identically even outside the fundamental domain. Then, using
the 40 bilinear equations (3.8) with Zk,M (2) in D[k]

1 , we can determine Zk,M (2) in the whole
parameter space except D[k]

0 , R3\D[k]
0 . The results for k=1 are given in appendix A.1. In
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Figure 7. Plots of the real part (left) and the imaginary part (right) of the ratio ∆[1]
1 of the partition

functions in the limit Zi → 1/2 (5.7). They are not divergent in |Zī| ≤ 1/2.

table 3, expressions in dark grey, grey and light grey denote respectively Z [1](0)
M0,M1,M3

, Z [1](1)
M0,M1,M3

and Z
[1](2)
M0,M1,M3

with the phases dropped from Zk,M (N) (5.1). It is difficult, however, to
determine Z1,M (2) in D[1]

0 from the bilinear equations, since this time we need to solve
intricate difference equations for Z1,M (2).

For k=2, we need to first determine Z2,M (1). Even with the classification under the
Weyl group, it is not easy to compute all of the exact expressions. Instead, since the depth of
the layer from the boundary indicates the complexity of the expression, we note that those on
the boundary of the fundamental domain D[2]

0 are easier to compute and concentrate on them.
Then, using the 40 bilinear equations (3.8), we can determine all of Z2,M (1) on D[2]

1 . This
time Z2,M (1) in the interior of the fundamental domain D[2]

0 is also obtained since some of
the bilinear equations are no more difference equations. The exact expressions of Z2,M (1) are
summarized in appendix A.2.1 for those in the fundamental domain D[2]

0 and in appendix A.2.2
for those outside, D[2]

1 \D[2]
0 . For those inside we disply the ratios Z2,M (1)/Z2,M (0) classified

by the Weyl group, while for those outside we display Z
[2](1)
M0,M1,M3

with the phases dropped.
Using the resulting exact expressions of partition functions at k=1 and k=2 in ap-

pendix A, we can confirm the validity of the cascade relations (3.13) for all the possible cases.
Before closing this subsection, let us comment on an interesting observation for the

convergence of the ratios. Namely, by extending the idea of the fundamental domain
with the Weyl group [40], we note that the resulting ratios for k=1 in (5.4) and k=2
in table 4 are convergent there. Indeed, instead of the three-dimensional fundamental
domain (3.6) for (M0,M1,M3), we can consider the five-dimensional fundamental domain
for (M̃i)5

i=1 =(M0,M1,M3,Z1,Z3)

|M̃i|+|M̃j | ≤ k, (5.5)

which is determined from the D5 Weyl group [40]. Then, we find that the ratios seem to
be convergent in the five-dimensional domain. Let us explain it explicitly with the above
example (5.4) with k=1 and N =1. For ∆[1]

2 , if we substitute the relative ranks (M0,M1,M3)
into the inequalities for the fundamental domain (5.5), the FI parameters (Z1,Z3) are
restricted to the origin. Since we expect that the ratio is well-defined in the fundamental
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Figure 8. The ratio ∆[1]
0 of the partition functions in the limit Zi → 0 (5.8) is not divergent in

|Zī| ≤ 1.

domain, ∆[1]
2 should be convergent in the limit (Z1,Z3)→ (0,0). Indeed, in the limit we find

lim
(Z1,Z3)→(0,0)

∆[1]
2 = 1

4π2 . (5.6)

Similarly, for ∆[1]
1 and ∆[1]

3 , the inequalities for the fundamental domain (5.5) are |Z1| ≤ 1
2 ,

|Z3| ≤ 1
2 . We expect the ratios to be convergent in this domain, in spite of the factors of

sec(πZ1) and sec(πZ3). Indeed by taking the boundary limit, we find (1̄ = 3, 3̄ = 1 as in (3.10))

lim
Zi→± 1

2

∆[1]
1 = sec(πZī)

32π
(
π∓8iZī−4πZ2

ī ±πi
(
1−4Z2

ī tan(πZī)
))
,

lim
Zi→± 1

2

∆[1]
3 = sec(πZī)

32π
(
π±8iZī−4πZ2

ī ∓πi
(
1−4Z2

ī tan(πZī)
))
, (5.7)

which are convergent for |Zī| ≤ 1
2 (see figure 7). For ∆[1]

0 , the inequalities for the fundamental
domain (5.5) reduce to |Z1|+|Z3| ≤ 1 where the ratio is manifestly finite except on Zi =0.
By taking the limit Zi → 0, we find

lim
Zi→0

∆[1]
0 = csc(πZī)

12πZī

(
1−3Z2

ī −πZī cot(πZī)+πZ3
ī cot(πZī)

)
, (5.8)

which converges again (see figure 8).

6 Conclusion

In this paper, we have shown that, once the grand partition function satisfies the bilinear form
of the q-Painlevé equations in the fundamental domain, it also satisfies the same equations
outside the fundamental domain.

The extension from the finite fundamental domain into the infinite parameter space is
possible since we have clarified the affine symmetries including the translations associated to
duality cascades by correctly identifying the transformations of the grand partition function.
The transformation of the lowest power of the fugacity κ or the lowest overall rank is identified
from the physical argument of duality cascades, while the overall factor appearing in the
transformation is proposed by the analysis of the remaining partition function from a few
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slightly different approaches. For the ABJM theory the extra factor is absent (i.e. completely
absorbed into our convention for the overall phase of the partition function (2.5)), while for
the four-node (2,2) model it is conjectured in (3.13).

We have made various progresses compared with previous works. In [3] the grand
partition function of the ABJM theory was found to satisfy the bilinear form of qPIII3 ,
without constructing the extension outside the fundamental domain. In [39] the extension
of the grand partition function outside the fundamental domain was studied explicitly from
the matrix model, though the studies of qPIII3 was missing. In [40, 41] the concept of the
fundamental domain of duality cascades was introduced and pointed out to be the affine
Weyl chamber, though the computation of the grand partition function was missing. In [7]
we made the first step to extend the domain of definition for the grand partition function
of the (2,2) model slightly beyond the fundamental domain, where we found the cascade
relations (3.13) in a few examples. Here we have extended the analysis further and provided
a formal derivation for the cascade relations and show that, with the cascade relations, the
40 qPVI bilinear equations (as well as the qPIII3 bilinear equation) originally found in the
fundamental domain continue to be valid outside.

We shall list in the following several future directions we wish to pursue.
In our studies of the matrix models, the convergence condition is obscure. Nevertheless,

we adopt a prescription with residue sums and study the 5-brane exchanges with it. Especially,
unlike the exchange of 5-branes of different kinds studied in [39], an interesting factor (4.15)
appears in exchanging 5-branes of the same kind. This suggests that a special care is needed
when we discuss parallel 5-branes. Similarly, in the studies of five-dimensional partition
functions with topological vertices [52–55], it was found that, when there are adjacent parallel
5-branes, we need to subtract a factor originating from extra degrees of freedom of U(1) [56–
59]. These two situations with parallel 5-branes look similar and it would be interesting
to clarify their relations.

Although we have clarified symmetries of the affine Weyl groups for the three-dimensional
super Chern-Simons theories, most of questions listed in [7] remain unanswered. Especially,
after clarifying the affine symmetries it is interesting to understand the relation to the
five-dimensional theories.

So far the examples for the q-Painlevé equations and the affine Weyl groups at hand are
only the ABJM theory and the four-node (2,2) model. We would like to explore more examples.
One direction would be the q-Painlevé equations with the affine E7 Weyl group [5, 60, 61]
and another would be the massive ABJM theory [48]. It would be interesting to investigate
their bilinear equations.

It is interesting to observe that the pattern of the non-vanishing partition functions
in figure 2 resembles closely to the representations of the affine A1 Lie algebra (see, for
example, figure 14.4 and table 14.4 in [62]). This is not surprising since, as we have already
explained, the partition functions enjoy symmetries of the affine A1 Weyl group. However,
it is not clear whether the pattern is exactly a representation of the affine A1 Lie algebra.
Especially, for representations of affine Lie algebras, it is crucial to understand multiplicities
of weights. The role of multiplicities in the ABJM theory is unclear to us. This question
also applies to the (2,2) model.
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M0 =−2 −1 0 1
1 ϵ2

0 −1/s2
1 ϵS/(s1s3) ϵ2

−1 −1/s2
3

M0 =−3/2 −3/2 −1/2 1/2 3/2
3/2 ϵ2/(c1c3) ϵ2/c3

1/2 1/c4
1 1/c1 ϵ2 ϵ2/c1

−1/2 ϵ−2/(c4
1c3) 1/(c1c3) 1/c3 ϵ2/(c1c3)

−3/2 ϵ−2/(c1c4
3) 1/c4

3

M0 =−1 −2 −1 0 1 2
2 −ϵ2/s2

3

1 −1/s2
1 ϵS/(s1s3) ϵ2

0 −ϵ−2/s6
1 −ϵ−1S/(s3

1s3) 1 ϵS/(s1s3) −ϵ2/s2
1

−1 ϵ−2/(s2
1s2

3) −ϵ−1S/(s1s3
3) −1/s2

3

−2 −ϵ−2/s6
3

M0 =−1/2 −3/2 −1/2 1/2 3/2
3/2 1/(c4

1c3) 1/(c1c3) ϵ2/c3 ϵ2/(c1c3)
1/2 ϵ−2/c4

1 1/c1 1 ϵ2/c1

−1/2 ϵ−2/(c4
1c3) ϵ−2/(c1c3) 1/c3 1/(c1c3)

−3/2 ϵ−4/(c4
1c4

3) ϵ−2/(c1c4
3) ϵ−2/c4

3 1/(c1c4
3)

M0 = 0 −2 −1 0 1 2
2 1/(s2

1s2
3) −ϵS/(s1s3

3) −ϵ2/s2
3

1 −ϵ−2/s6
1 −ϵ−1S/(s3

1s3) 1 ϵS/(s1s3) −ϵ2/s2
1

0 −ϵ−3S/(s7
1s3) −ϵ−2/s2

1 ϵ−1S/(s1s3) 1 −ϵS/(s3
1s3)

−1 ϵ−4/(s6
1s2

3) ϵ−3S/(s3
1s3

3) −ϵ−2/s2
3 −ϵ−1S/(s1s3

3) 1/(s2
1s2

3)
−2 ϵ−4/(s2

1s6
3) −ϵ−3S/(s1s7

3) −ϵ−2/s6
3

M0 = 1/2 −3/2 −1/2 1/2 3/2
3/2 ϵ−2/(c4

1c3) 1/(c1c3) 1/c3 ϵ2/(c1c3)
1/2 ϵ−2/c4

1 ϵ−2/c1 1 1/c1

−1/2 ϵ−4/(c4
1c3) ϵ−2/(c1c3) ϵ−2/c3 1/(c1c3)

−3/2 ϵ−4/(c4
1c4

3) ϵ−4/(c1c4
3) ϵ−2/c4

3 ϵ−2/(c1c4
3)

M0 = 1 −2 −1 0 1 2
2 −1/s2

3

1 −ϵ−2/s2
1 ϵ−1S/(s1s3) 1

0 −ϵ−4/s6
1 −ϵ−3S/(s3

1s3) ϵ−2 ϵ−1S/(s1s3) −1/s2
1

−1 ϵ−4/(s2
1s2

3) −ϵ−3S/(s1s3
3) −ϵ−2/s2

3

−2 −ϵ−4/s6
3

M0 = 3/2 −3/2 −1/2 1/2 3/2
3/2 ϵ−2/(c1c3) 1/c3

1/2 ϵ−4/c4
1 ϵ−2/c1 ϵ−2 1/c1

−1/2 ϵ−4/(c4
1c3) ϵ−4/(c1c3) ϵ−2/c3 ϵ−2/(c1c3)

−3/2 ϵ−4/(c1c4
3) ϵ−4/c4

3

M0 = 2 −1 0 1
1 ϵ−2

0 −ϵ−4/s2
1 ϵ−3S/(s1s3) ϵ−2

−1 −ϵ−4/s2
3

Table 3. The expressions of the lowest non-vanishing partition functions for k=1. We list them
horizontally by the value of M1 and vertically by the value of M3.

A Exact expressions of partition functions

In this appendix we list results on the exact expressions of partition functions for the four-node
(2,2) model with short explanations. The following two subsections are devoted respectively
to the cases of k=1 and k=2.

A.1 k = 1

Using the strategy explained in section 5, we can study the lowest non-vanishing partition
functions for the four-node (2,2) model with k=1 even outside the fundamental domain.
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Namely, since the grand partition function normalized by the lowest non-vanishing parti-
tion function is given by the Fredholm determinant of a spectral operator invariant under
the Weyl group, the ratio is classified by the Weyl group as in (5.2). Furthermore, from
the physical argument of duality cascades, we expect that even outside the fundamental
domain, the ratio of the second-lowest non-vanishing partition function to the lowest non-
vanishing partition function is identical under the discrete translations of duality cascades,
Z1,M (2)/Z1,M (1)

∣∣
D[1]

1 \D[1]
0

=Z1,MFD(1)/Z1,MFD(0)
∣∣
D[1]

0
. Here, as in (3.12), MFD is the relative

rank in D[1]
0 corresponding to M obtained after applying duality cascades (3.7). Using these

facts, we can fix the partition functions Z1,M (2) in D[1]
1 \D[1]

0 where the lowest non-vanishing
partition function is N =1. Then, we can utilize the 40 qPVI bilinear equations to study
the lowest partition function outside D[1]

1 .
Here we summarize the exact expressions of partition functions for k=1. We introduce

shorthand notations

s1 =2sinπZ1, s3 =2sinπZ3, c1 =2cosπZ1, c3 =2cosπZ3,

ϵ= eπiZ1Z3 , S=2sinπZ1Z3. (A.1)

Then, the exact expressions are given in table 3. The expressions shaded in dark grey
denotes Z [1](0)

M0,M1,M3
in the fundamental domain D[1]

0 , while those shaded in grey and light grey
are respectively Z

[1](1)
M0,M1,M3

in D[1]
1 \D[1]

0 and Z
[1](2)
M0,M1,M3

in D[1]
2 \D[1]

1 . As in [7], we redefine
the partition functions with the phase Θk,M dropped (5.1). The results of the expressions
Z

[1](0)
M0,M1,M3

and Z
[1](1)
M0,M1,M3

are collected from appendix B.1 and C in [7]. Only the results
Z

[1](2)
M0,M1,M3

(in light grey) are new in this paper.

A.2 k = 2

A.2.1 Higher partition functions

This appendix is devoted to the ratios invariant under the Weyl group for k=2, while the
next one is to the lowest partition functions. Since we assume that the exact expressions of
the ratios outside the fundamental domain are repetitions of those inside and those in the
fundamental domain enjoy symmetries of the D5 Weyl group after normalized by those of
the lowest rank, the exact expressions reduce to the ten ratios

∆[2]
0 =

Z
[2](1)
0,0,0

Z
[2](0)
0,0,0

, ∆[2]
1 =

Z
[2](1)
{± 1

2 ,± 1
2 ,± 1

2}0

Z
[2](0)
{± 1

2 ,± 1
2 ,± 1

2}0

, ∆[2]
2 =

Z
[2](1)
{±1,±1,±1}0

Z
[2](0)
{±1,±1,±1}0

, ∆[2]
3 =

Z
[2](1)
{± 3

2 ,± 1
2 ,± 1

2}0

Z
[2](0)
{± 3

2 ,± 1
2 ,± 1

2}0

,

∆[2]
4 =

Z
[2](1)
{±2,0,0}

Z
[2](0)
{±2,0,0}

, ∆[2]
5 =

Z
[2](1)
{± 3

2 ,± 1
2 ,± 1

2}1

Z
[2](0)
{± 3

2 ,± 1
2 ,± 1

2}1

, ∆[2]
6 =

Z
[2](1)
{±1,±1,±1}1

Z
[2](0)
{±1,±1,±1}1

, ∆[2]
7 =

Z
[2](1)
{± 1

2 ,± 1
2 ,± 1

2}1

Z
[2](0)
{± 1

2 ,± 1
2 ,± 1

2}1

,

Γ[2]
4 =

Z
[2](1)
{±1,±1,0}

Z
[2](0)
{±1,±1,0}

, Γ[2]
2 =

Z
[2](1)
{±1,0,0}

Z
[2](0)
{±1,0,0}

. (A.2)

Here, as in section 5, the subscripts of Z denote (M0,M1,M3) though we use the curly
brackets since the order can be arbitrary. The subscripts of the curly brackets 0 or 1 indicate
whether the number of minus signs is even or odd.
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∆[2]
0 (Z1,Z3)=

1
8Z1Z3 csc(πZ1)csc(πZ3)

+ 1
2Y csc(πZ1)csc(πZ3)sin(πZ1Z3)

(
Z1 cot(πZ1)+Z3 cot(πZ3)

)
+ 1
2πY csc2(πZ1)csc2(πZ3)

(
−sin(πZ1)sin(πZ3)sin(πZ1Z3)

+4π
(
sin4

(πZ1

2

)
sin4

(πZ3

2

)
−cos(πZ1)cos(πZ3)sin2

(πZ1Z3

2

)))
,

∆[2]
1,7(Z1,Z3)=± i

8Z1Z3 sec(πZ1)sec(πZ3)

− 1
16πX± sec(πZ1)sec(πZ3)

(
1+π(Z1 tan(πZ1)+Z3 tan(πZ3))

)(
X±+8)

+ 1
64X± sec2(πZ1)sec2(πZ3)

(
4cos(πZ1)+4cos(πZ3)±40isin(πZ1)sin(πZ3)−8e∓2πiZ1Z3

+e∓πiZ1Z3
(
12e±πi

4 e−
πi
2 (Z1+Z3)(1∓ieπiZ1∓ieπiZ3+eπi(Z1+Z3))

+5e± 3πi
4

(
e−

πi
2 (3Z1+Z3)(1±ie3πiZ1±ieπiZ3+eπi(3Z1+Z3))+(Z1 ↔Z3)

)
+2e±πi

4 e−
3πi

2 (Z1+Z3)(1∓ie3πiZ1∓ie3πiZ3+e3πi(Z1+Z3))
))
,

∆[2]
2,6(Z1,Z3)=−1

8Z1Z3 csc(πZ1)csc(πZ3)∓
i

8 csc(πZ1)csc(πZ3)
(
Z1 cot(πZ1)+Z3 cot(πZ3)

)
± i

8π csc(πZ1)csc(πZ3)+
1
8 cot(πZ1)cot(πZ3)csc(πZ1)csc(πZ3)

+ 1
16e

∓πiZ1Z3 csc2(πZ1)csc2(πZ3)
(
1−cos(πZ1)−cos(πZ3)−cos(πZ1)cos(πZ3)

)
,

∆[2]
3,5(Z1,Z3)=∓ i

8Z1Z3 sec(πZ1)sec(πZ3)−
1
16 sec(πZ1)sec(πZ3)

(
Z1 tan(πZ1)+Z3 tan(πZ3)

)
− 1
64π sec2(πZ1)sec2(πZ3)

(
4cos(πZ1)cos(πZ3)∓4πisin(πZ1)sin(πZ3)

−2π
(
e∓2πiZ1Z3(X∓+2)−cos(πZ1)−cos(πZ3)

))
,

∆[2]
4 (Z1,Z3)=

1
8Z1Z3 csc(πZ1)csc(πZ3),

Γ[2]
4 (Z1,Z3)=

1
8Z1Z3 csc(πZ1)csc(πZ3)+

1
16 csc

2(πZ1)csc2(πZ3)Y,

Γ[2]
2 (Z1,Z3)=−1

8Z1Z3 csc(πZ1)csc(πZ3)+
1
8π csc(πZ1)csc(πZ3)cot

(πZ1Z3

2

)
− 1
8 csc(πZ1)csc(πZ3)cot

(πZ1Z3

2

)(
Z1 cot(πZ1)+Z3 cot(πZ3)

)
− 1
16 csc

2(πZ1)csc2(πZ3)
(
1−cos(πZ1)−cos(πZ3)−3cos(πZ1)cos(πZ3)

)
.

Table 4. Exact expressions for various ratios Z2,M (1)/Z2,M (0)=Z [2](1)
M0,M1,M3

/Z
[2](0)
M0,M1,M3

(A.2) of the
partition functions Zk,M (N). For double signs in ∆[2]

1,7(Z1,Z3), ∆[2]
2,6(Z1,Z3) and ∆[2]

3,5(Z1,Z3), the
upper and lower ones denote respectively those for ∆[2]

1 , ∆[2]
2 , ∆[2]

3 and ∆[2]
7 , ∆[2]

6 , ∆[2]
5 .
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As stressed in [7] the rank variable L detects the depth from a boundary of the fundamental
domain and the size of the determinant increases with L. Here we concentrate on the ratios
on the boundary of the fundamental domain, ∆[2]

2,3,4,5,6 and Γ[2]
4 , and compute them with

the techniques equipped in [7]. After that using the 40 qPVI bilinear equations (3.8) we
can determine the remaining ratios away from the boundary. We have found the ratios
for ∆[2]

0,1,7 and Γ[2]
2 only from several selected bilinear equations in (3.8), which are easier

to solve. Once they are found, we can check numerically that the ratios satisfy all of the
40 bilinear equations to very high accuracy (about 400 digits). The results are listed as in
table 4. We simplify the expression by introducing

X±= e∓πiZ1Z3e∓
πi
4 e−

πi
2 (Z1+Z3)

(
1±ieπiZ1±ieπiZ3+eπi(Z1+Z3)

)
−2,

Y =1+cos(πZ1)+cos(πZ3)−cos(πZ1)cos(πZ3)−2cos(πZ1Z3), (A.3)

which enjoy symmetries

X±(Z1,Z3)=X±(Z3,Z1)=X±(−Z1,−Z3), X−(Z1,Z3)=X+(Z1,−Z3),
Y (Z1,Z3)=Y (Z3,Z1)=Y (−Z1,Z3). (A.4)

A.2.2 Lowest partition functions

In this subsection we list the exact expressions of partition functions for k=2, by substituting
the results in table 4 into the 40 qPVI bilinear equations. In addition to (A.1) we also
need to introduce notations

s′1 =2sin π2Z1, s′3 =2sin π2Z3, c′1 =2cos π2Z1, c′3 =2cos π2Z3, S′=2sin π2Z1Z3. (A.5)

Then, the exact expressions are given in tables 5 and 6. This time as in table 3, we list
the results horizontally by the value of M1 and vertically by the value of M3. It is always
understood that M1 increases from left to right and M3 increases from bottom to top. The
expressions of partition functions Z [2](0)

M0,M1,M3
in D[2]

0 and Z
[2](1)
M0,M1,M3

in D[2]
1 \D[2]

0 are shaded
respectively in dark grey and grey. Only the results Z [2](1)

M0,M1,M3
(in grey) are new.
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M0 =−5/2,(M1,M3 ∈{−1/2,1/2})
1/(

√
2c1) ϵ/

√
2

1/(
√

2c1c3) 1/(
√

2c3)

M0 =−2,(M1,M3 ∈{−1,0,1})
−1/(2s2

1) ϵ
1
2 S′/(2s′3s1) ϵ/2

−ϵ−
1
2 S′/(2s′1s2

1s3) 1 ϵ
1
2 S′/(2s′1s3)

ϵ−1/(2s2
1s2

3) −ϵ−
1
2 S′/(2s′3s1s2

3) −1/(2s2
3)

M0 =−3/2,(M1,M3 ∈{−3/2,−1/2,1/2,3/2})
1/(

√
2c3

1) ϵX+/(2
√

2c2
1c3) X−/(2

√
2c1c3) ϵ/

√
2

X+/(2
√

2c4
1c3) 1/(

√
2c1) 1/

√
2 X−/(2

√
2c1c3)

ϵ−2X−/(2
√

2c4
1c2

3) ϵ−1/(
√

2c1c3) 1/(
√

2c3) ϵX+/(2
√

2c1c2
3)

ϵ−2/(
√

2c3
1c3

3) ϵ−2X−/(2
√

2c2
1c4

3) X+/(2
√

2c1c4
3) 1/(

√
2c3

3)

M0 =−1,(M1,M3 ∈{−2,−1,0,1,2})
−1/(2c′3s2

1) ϵ
1
2 S′/(2s1s3) ϵ/(2c′3)

ϵ−1/(2c′1s4
1) −1/s2

1 1/(2c′1) 1 ϵ/(2c′1)
ϵ−

3
2 S′/(2s5

1s3) −ϵ−1/(2c′3s2
1) ϵ−

1
2 S′/(2s1s3) 1/(2c′3) ϵ

1
2 S′/(2s1s3)

−ϵ−2/(2c′1s4
1s2

3) ϵ−2/(s2
1s2

3) −ϵ−1/(2c′1s2
3) −1/s2

3 −1/(2c′1s2
3)

−ϵ−2/(2c′3s2
1s4

3) ϵ−
3
2 S′/(2s1s5

3) ϵ−1/(2c′3s4
3)

M0 =−1/2,(M1,M3 ∈{−5/2,−3/2,−1/2,1/2,3/2,5/2})
1/(

√
2c1c3) ϵ/(

√
2c3)

X+/(2
√

2c4
1c3) 1/(

√
2c1) 1/

√
2 X−/(2

√
2c1c3)

ϵ−2/(
√

2c6
1) ϵ−1/(

√
2c3

1) X+/(2
√

2c2
1c3) ϵ−1X−/(2

√
2c1c3) 1/

√
2 ϵ/(

√
2c1)

ϵ−2/(
√

2c6
1c3) ϵ−2/(

√
2c3

1c3) ϵ−2X−/(2
√

2c2
1c2

3) X+/(2
√

2c1c2
3) 1/(

√
2c3) 1/(

√
2c1c3)

ϵ−3X−/(2
√

2c4
1c4

3) ϵ−2/(
√

2c1c3
3) ϵ−1/(

√
2c3

3) X+/(2
√

2c1c4
3)

ϵ−2/(
√

2c1c6
3) ϵ−2/(

√
2c6

3)

M0 = 0,(M1,M3 ∈{−2,−1,0,1,2})
−ϵ−

1
2 S′/(2s′1s2

1s3) 1 ϵ
1
2 S′/(2s′1s3)

ϵ−
3
2 S′/(2s′3s5

1) −ϵ−1/(2s2
1) ϵ−

1
2 S′/(2s′3s1) 1/2 ϵ

1
2 S′/(2s′3s1)

ϵ−2/s4
1 −ϵ−

3
2 S′/(2s′1s2

1s3) −ϵ−1Y/(s2
1s2

3) ϵ−
1
2 S′/(2s′1s3) 1

−ϵ−
5
2 S′/(2s′3s5

1s2
3) ϵ−2/(2s2

1s2
3) −ϵ−

3
2 S′/(2s′3s1s2

3) −ϵ−1/(2s2
3) −ϵ−

1
2 S′/(2s′3s1s2

3)
−ϵ−

5
2 S′/(2s′1s2

1s5
3) ϵ−2/s4

3 ϵ−
3
2 S′/(2s′1s5

3)

Table 5. The lowest non-vanishing partition functions for k=2.
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M0 = 1/2,(M1,M3 ∈{−5/2,−3/2,−1/2,1/2,3/2,5/2})
1/(

√
2c1c3) 1/(

√
2c3)

ϵ−2X−/(2
√

2c4
1c3) ϵ−1/(

√
2c1) 1/

√
2 ϵX+/(2

√
2c1c3)

ϵ−2/(
√

2c6
1) ϵ−2/(

√
2c3

1) ϵ−2X−/(2
√

2c2
1c3) X+/(2

√
2c1c3) 1/

√
2 1/(

√
2c1)

ϵ−3/(
√

2c6
1c3) ϵ−2/(

√
2c3

1c3) ϵ−1X+/(2
√

2c2
1c2

3) ϵ−2X−/(2
√

2c1c2
3) ϵ−1/(

√
2c3) 1/(

√
2c1c3)

ϵ−2X+/(2
√

2c4
1c4

3) ϵ−2/(
√

2c1c3
3) ϵ−2/(

√
2c3

3) ϵ−2X−/(2
√

2c1c4
3)

ϵ−3/(
√

2c1c6
3) ϵ−2/(

√
2c6

3)

M0 = 1,(M1,M3 ∈{−2,−1,0,1,2})
−ϵ−1/(2c′3s2

1) ϵ−
1
2 S′/(2s1s3) 1/(2c′3)

ϵ−2/(2c′1s4
1) −ϵ−2/s2

1 ϵ−1/(2c′1) 1 1/(2c′1)
ϵ−

5
2 S′/(2s5

1s3) −ϵ−2/(2c′3s2
1) ϵ−

3
2 S′/(2s1s3) ϵ−1/(2c′3) ϵ−

1
2 S′/(2s1s3)

−ϵ−3/(2c′1s4
1s2

3) ϵ−2/(s2
1s2

3) −ϵ−2/(2c′1s2
3) −ϵ−2/s2

3 −ϵ−1/(2c′1s2
3)

−ϵ−3/(2c′3s2
1s4

3) ϵ−
5
2 S′/(2s1s5

3) ϵ−2/(2c′3s4
3)

M0 = 3/2,(M1,M3 ∈{−3/2,−1/2,1/2,3/2})
ϵ−2/(

√
2c3

1) ϵ−2X−/(2
√

2c2
1c3) X+/(2

√
2c1c3) 1/

√
2

ϵ−3X−/(2
√

2c4
1c3) ϵ−2/(

√
2c1) ϵ−1/

√
2 X+/(2

√
2c1c3)

ϵ−2X+/(2
√

2c4
1c2

3) ϵ−2/(
√

2c1c3) ϵ−2/(
√

2c3) ϵ−2X−/(2
√

2c1c2
3)

ϵ−3/(
√

2c3
1c3

3) ϵ−2X+/(2
√

2c2
1c4

3) ϵ−3X−/(2
√

2c1c4
3) ϵ−2/(

√
2c3

3)

M0 = 2,(M1,M3 ∈{−1,0,1})
−ϵ−2/(2s2

1) ϵ−
3
2 S′/(2s′3s1) ϵ−1/2

−ϵ−
5
2 S′/(2s′1s2

1s3) ϵ−2 ϵ−
3
2 S′/(2s′1s3)

ϵ−3/(2s2
1s2

3) −ϵ−
5
2 S′/(2s′3s1s2

3) −ϵ−2/(2s2
3)

M0 = 5/2,(M1,M3 ∈{−1/2,1/2})
ϵ−2/(

√
2c1) ϵ−2/

√
2

ϵ−3/(
√

2c1c3) ϵ−2/(
√

2c3)

Table 6. The lowest non-vanishing partition functions for k=2 (continued).
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