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1 Introduction

Historically the paradigm of asymptotic freedom [1, 2] has been a centre piece for constructing
UV-complete four-dimensional QFTs. More recently, a complementary path was discovered
with the Litim-Sannino model [3] and its equivalent formulations [4]. The crucial difference is
that these QFTs approach conformality via an interacting UV fixed point in the high energy
limit. And yet, the Litim-Sannino model retains all benefits of asymptotic freedom: both
are consistently defined in the deep UV, cutoff-free, and their predictivity is enhanced by
the applicability of perturbation theory. This has enabled a wide range of studies and model
building applications, see e.g. [3–23]. In particular, the UV conformal window has been
investigated with increasingly high precision [24–27], zoning in on the mechanism causing the
eventual demise of the UV fixed point. These studies have systematically uncovered that
the conformal window is entirely within a perturbative regime, and that an instability of
the scalar potential is one of the most plausible explanation for its upper end. Therefore,
a dedicated investigation of vacuum stability is vital to explore the conformal window of
the Litim-Sannino model.

While the fixed-point analysis was conducted up to high loop orders, the vacuum stability
analysis employed in previous works [24–27] is actually a classical one, as first discussed in [28].
Quantum corrections have been investigated in [6] by employing a renormalisation group
(RG) resummation of the classical potential. This was sufficient to match the leading-order
precision of the UV fixed point at the time. Some aspects of symmetry breaking were later
studied in [14]. In this work, we demonstrate that the (semi-) classical approximation of
the potential is not on par with the precision of the latest fixed-point results [26]. We
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then extend the scalar stability analysis by computing the effective potential, which fully
accounts for quantum corrections.

The quantum effective potential was originally put forward in [29] and further developed
in [30]. A comprehensive review of early works is found in [31]. As of today, generalised
formulæ to compute the effective potential for any renormalisable QFT are available up to
three loops [32, 33] in Landau gauge, as well as at two loop in more general choices of gauge
fixing [34]. Since the potential is an observable and overall RG invariant, these fixed-order
results may be enhanced by RG resummations, see e.g. [35–40]. On the other hand, the
potential depends on classical background-field variables, which may introduce an explicit
dependence on gauge-fixing parameters [41–43].

This work is structured as follows: section 2 gives a brief introduction to the Litim-
Sannino model, our notation, and the stability of its scalar potential at classical level.
The computation and discussion of the effective potential follows in section 3. Section 4
investigates how the enhanced precision influences the conformal window. We close with
a final discussion in section 5.

2 Litim-Sannino model

The Litim-Sannino model [3] features a non-abelian SU(Nc) gauge group and an unbroken
chiral flavour symmetry U(Nf )L×U(Nf )R. It containsNf Dirac fermions ψ in the fundamental
representation of the gauge group, as well as N2

f complex but neutral scalars ϕ, which are
bifundamentals under the global symmetry. The renormalisable Lagrangian compatible with
the symmetry group reads

L = −1
4 F

AµνFAµν + Lgf + Lgh

+ tr
[
ψi /Dψ

]
− y tr

[
ψ
(
ϕPR + ϕ† PL

)
ψ
]

+ tr
[
∂µϕ†∂µϕ

]
−m2 tr

[
ϕ†ϕ

]
− u tr

[
ϕ†ϕϕ†ϕ

]
− v tr

[
ϕ†ϕ

]
tr
[
ϕ†ϕ

]
,

(2.1)

where traces are taken over flavour and gauge indices while Lgf and Lgh refer to gauge-fixing
and ghost terms, respectively. This family of theories contains gauge interactions, g, coupled
to the fermions, one real Yukawa coupling, y, mediating between the fermionic and scalar
sector, as well as two scalar self-interactions u and v.

The intriguing aspect of this theory is the occurrence of a weakly interacting UV fixed
point. In particular, this fixed point can be brought under strict perturbative control in the
planar Veneziano limit [44], where Nf,c → ∞ while the ratio Nf/Nc is a finite, continuous
parameter. To that end, we introduce the rescaled couplings [45]

αg =
Nc g

2

(4π)2 , αy =
Nc y

2

(4π)2 , αu = Nf u

(4π)2 , αv =
N2
f v

(4π)2 , (2.2)

which are finite in the Veneziano limit and absorb leading powers of Nf,c. Thus, the explicit
dependence on Nf,c is traded for a single expansion parameter

ϵ = Nf

Nc
− 11

2 , (2.3)
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which is continuously tunable within the range
[
−11

2 ,∞
)
. The couplings at the UV fixed

point can be expanded as power series in ϵ (conformal expansion)

α∗
i =

∞∑
ℓ=1

α
(ℓ)
i ϵℓ , (2.4)

Thus, if ϵ is small but positive, the UV fixed point is perturbative and its existence guaranteed.
The coefficients α(ℓ)

i in (2.4) only receive contributions up to (ℓ+ 1) loops from the gauge-
as well as ℓ loops from the Yukawa and quartic β functions. Currently, the coefficients
are determined up to ℓ = 3 [26].

The UV fixed point prevails within a parameter range (0, ϵmax], known as the UV
conformal window. Its extent and the dynamics constraining it have been investigated
in [24–27]. The primary reason for the demise of the UV fixed point appears to be vacuum
instability, i.e. scalar potential is not bounded from below at the UV fixed point.

The classical stability of the potential has been considered in [28] and will be reviewed
below. The potential consists only a classical field ϕ̄, which can be reduced by the applying
the U(Nf )L × U(Nf )R global flavour symmetry without loss of generality. In particular, the
complex matrix field ϕ̄ can be diagonalised with real components hi:

ϕ̄ = diag(h1, . . . , hNf
) . (2.5)

In order to check if the potential is bounded from below, the asymptotic limit of large
field values |hi| → ∞ is of interest. Thus, only the quartic part of the classical potential
is relevant, which simplifies to

V = u tr
[
ϕ̄†ϕ̄ϕ̄†ϕ̄

]
+ v tr

[
ϕ̄†ϕ̄

]
tr
[
ϕ̄†ϕ̄

]
= u

∑
i

h4i + v
∑
i,j

h2i h
2
j . (2.6)

For the potential is bounded from below, the quartic part has to be positive for all possible
directions (h1, . . . , hNf

)⊺ in the space of real moduli. The initial normalisation of the moduli
vector is irrelevant we can fix it by

∑
i h

2
i = N . Using this condition, the minimum of the

quartic potential is found by solving

∂

∂hk

(
V − Λ

[
N −

∑
i

h2i

])
= 4hk

(
uh2k + vN + 1

2Λ
)
= 0 . (2.7)

where Λ is a Lagrange parameter. The solution of (2.7) implies that each modulus hk is
either 0 or has a non-vanishing value hk = h, which is universal for all moduli. Assuming
that n out of the Nf moduli are non-zero, the quartic potential becomes

Vcl = h4
[
nu+ n2 v

]
. (2.8)

As the potential is manifestly stable (unstable) for u, v ≷ 0, sufficient stability criteria
are found for both couplings have opposite signs. The value of n minimising a positive
potential (2.8) depends on the sign of each coupling, leading to the stability conditions

u > 0 ≥ v : Nf u+N2
f v > 0 ,

u ≤ 0 ≤ v : u+ v > 0 .
(2.9)
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However, only the first condition is compatible with the Veneziano limit

αu > 0 , αu + αv > 0 , (2.10)

while the second one is voided. Thus, we arrive at the expression

Vcl
(4π)2 = [αu + αv]h4 (2.11)

for the classical potential. In the next section, we review and compute quantum corrections
to this potential, extending the results of [6].

3 Effective potential

3.1 Fixed-order potential

Now, we extend the stability consideration to quantum level using the effective potential.
For a more detailed introduction see e.g. [29–31]. Starting from the generating functional
of connected Green’s functions W [J ]

eiW [J ] =
∫

Dϕ ei
∫

d4x [L(ϕ)+Jϕ] , (3.1)

the effective action is given by a Legendre transformation

Γ[ϕ̄] =W [J ]−
∫

d4x Jϕ̄ (3.2)

with a classical field variable ϕ̄ = ⟨ϕ⟩ = δW [J ]
δJ . Note that the procedure (3.2) is equivalent

to expanding each field ϕ around a classical background ϕ 7→ ϕ + ϕ̄ and integrating out
the quantum fluctuations ϕ

eiΓ[ϕ̄] =
∫

Dϕ ei
∫

d4x [L(ϕ̄+ϕ)+Jϕ] . (3.3)

The parameter J is now a functional of the background field and defined via J(ϕ̄) = − δΓ[ϕ̄]
δϕ̄

,
defined such that Γ[ϕ̄] has a minimum at ϕ̄ = 0. The nth functional derivative of Γ[ϕ̄] with
respect to ϕ̄ yields the sum of all connected, 1-particle irreducible n-point graphs when
evaluated at ϕ̄ = 0. The effective potential Veff(ϕ̄) is part of Γ[ϕ̄] with vanishing momenta

Γ[ϕ̄] =
∫

d4x
[
−Veff(ϕ̄) +O(∂ϕ̄)

]
, (3.4)

and includes the classical potential as well as quantum corrections. For determining Veff, it is
sufficient to choose the background field to be constant. Thus, for computational purposes it
is convenient to evaluate Γ[ϕ̄] at ϕ̄(x) = φ, which amounts to the shift of the classical field
by a constant value φ in the action. Subsequently, φ can be absorbed into the masses and
couplings of the theory and hence resummed in loop computations.
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There are two approaches to obtain the potential:

1. The effective action, Γ[φ] may be computed directly from (3.3) [30, 46], by integrating
out the field ϕ(x), which yields

Veff(φ) = Vcl(φ)−
i

2

∫ d4k
(2π)4 ln [det iPϕ(k, φ)] +

〈
exp

(
i

∫
d4x Lint

)〉
(3.5)

for the effective potential. Here Vcl denotes the classical (tree-level) potential, Pϕ
the propagator of the quantum field ϕ, and Lint is Lagrangian of cubic and higher
interaction terms in ϕ, all of which containing the background-field variable φ. Note
that the contribution Jϕ in (3.3) subtracts all tadpole diagrams. The last term of (3.5)
consists of all vacuum diagrams at two-loops and higher. See [30] for more details.

2. Alternatively [47], one may instead use the relation

δΓ[ϕ̄]
δϕ̄

∣∣∣∣∣
ϕ̄=φ

= −∂Veff
∂φ

. (3.6)

Here the left hand side is by definition the 1-particle irreducible tadpole of the quantum
field ϕ in the original theory where the constant shift ϕ→ ϕ+ φ was introduced. Thus,
φ remains as a parameter which has to be integrated in order to obtain the effective
potential.

Note that since φ is classical, it can be defined in a minimal form, reduced by the
application of all anomaly-free global symmetries without loss of generality. In our specific
case, this allows us to choose φ = diag(h1, . . . , hNf

) [28] in accordance with the discussion of
section 2. Since we are only interested in the Veneziano limit, we can further simplify

φij = h δij , (3.7)

which corresponds to the ground state corresponding to (2.10). By absorbing the classical
field h into the couplings of quantum fields, we can resum its effect in loop computations.
This softly breaks the global symmetry group as it introduces additional superrenormalisable
couplings, including mass terms. In our particular case, the U(Nf )L × U(Nf )R symmetry
reduces to the vectorial subgroup U(Nf )V , while the axial part is broken by the classical field.
Overall, the complex scalar decomposes into the classical background field, a real singlet
scalar S and pseudo-scalar S̃, as well as the adjoint fields R and I

ϕjk = h δjk +
δjk√
2Nf

[
S + i S̃

]
+Rjk + iIjk (3.8)

with the respective mass terms

m2
R = m2 + 2h2 (3u+Nf v) ,

m2
I = m2 + 2h2 (u+Nf v) ,

m2
S = m2 + 6h2 (u+Nf v) ,

m2
S̃
= m2 + 2h2 (u+Nf v) ,

m2
ψ = y2 h2 .

(3.9)
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Moreover, eq. (3.8) generates a tadpole interaction

−LTad =
√
2Nfh

[
m2 + 2h2 (u+ v Nf )

]
S . (3.10)

The decomposition of the scalar field leads to a plethora of Yukawa

−LYuk = y√
2Nf

ψia

(
S + iγ5 S̃

)
ψia + y ψia (Rij + iγ5 Iij)ψja , (3.11)

scalar cubic

h−1VCubic = 4u tr [RRR+RII]

+ 2
√

2
Nf

(3u+Nf v)S trRR+ 2
√

2
Nf

(u+Nf v)S tr II

+ 4
√

2
Nf

u S̃ trRI +
√

2
Nf

(u+Nf v)S
(
S2 + S̃2

) (3.12)

and quartic interactions

VQuartic = v tr2 [RR+ II] + u tr [RRRR+ IIII + 4RRII − 2RIRI]

+ 2
√

2
Nf

u
[
S tr (RRR+RII) + S̃ tr (IRR+ III)

]

+
(
v + 3u

Nf

)[
S2 trRR+ S̃2 tr II

]
+
(
v + u

Nf

)[
S2 tr II + S̃2 trRR

]

+ 4u
Nf

SS̃ trRI + 1
4

(
v + u

Nf

)(
S2 + S̃2

)2
.

(3.13)

In the Veneziano limit, it is expected that merely the scalars R and I are contributing to
loop interactions. The same picture emerges for sister theories of the Litim-Sannino model,
featuring orthogonal and symplectic gauge groups, Majorana fermions, and a single SU(Nf )
flavour symmetry [4]. In the orthogonal case, the scalar ϕ is in the symmetric representation
of SU(Nf ). Breaking the diagonal component breaks the global symmetry down to SO(Nf ),
with R and I being in the symmetric representation. In the symplectic case, scalars ϕ
are in the antisymmetric representation of SU(Nf ) while R, I are in the antisymmetric
representation of Sp(Nf ) after the breaking. An overview is found in table 1.

3.2 Renormalisation group improvement

The effective potential depends on renormalisation group scale µ explicitly and implicitly
through the running of the background field h, couplings αi, mass m2 and the Rξ gauge
fixing parameter ξ. However, as the potential is overall renormalisation group invariant
and follows a Callan-Symanzik relation

d
d lnµVeff =

(
∂

∂ lnµ + γhh
∂

∂h
+ βj

∂

∂αj
+ βξ

∂

∂ξ
+ γm2

∂

∂ lnm2

)
Veff = 0 . (3.14)
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Dirac SU(Nc) Majorana SO(Nc) Majorana Sp(Nc)
Unbroken symmetry SU(Nf )L × SU(Nf )R SU(Nf ) SU(Nf )
Weyl fermions 2NcNf NcNf NcNf

Scalar DOF ϕ 2N2
f Nf (Nf + 1) Nf (Nf − 1)

Remnant Symmetry SU(Nf )V SO(Nf ) Sp(Nf )
Weyl fermions 2NcNf NcNf NcNf

Scalar DOF R, I N2
f − 1 1

2Nf (Nf + 1)− 1 1
2Nf (Nf − 1)− 1

Scalar DOF S, P 1 1 1

Table 1. Overview of fermionic and scalar degrees of freedom with and without symmetry breaking
for the Litim-Sannino model and its sister theories [4].

Moreover, we can make the ansatz

Veff
(4π)2 = αh(z, κ, αi, ξ) h4, where z = (4π)2

Nf

h2

µ2
and κ = m2

µ2
, (3.15)

which retains higher orders of the classical field in the variable z. In the same manner, the
scalar mass parameter is swapped for the dimensionless variable κ without loss of generality.
The potential is bounded from below if αh > 0 for all values of z. The RG invariance
condition then reads(

− 2γh
1− γh

+ ∂

∂ ln z + 1
2

βj
1− γh

∂

∂αj
+ 1

2
βξ

1− γh

∂

∂ξ
+ κ

2
γm2 − 2
1− γh

∂

∂κ

)
αh = 0 . (3.16)

Note that the term encoding the running of the gauge fixing parameter can always be
switched off by choosing the Landau gauge ξ = 0, as βξ ∝ ξ. Due to the RG invariance,
it is sufficient obtain a solution of the effective potential close to the fixed point in order
to argue about vacuum stability.

At the fixed point, β functions as well as κ vanish, while z remains a tunable parameter,
containing the background field dependence. We obtain

0 =
(
− 2γ∗h
1− γ∗h

+ ∂

∂ ln z

)
αh(z, 0, α∗

i , ξ
∗) . (3.17)

Solving this equation and expressing α∗
i , ξ∗ through their ϵ expansion yields a resummed

h-dependence

αh(z, 0, α∗
i , ξ

∗) = α∗
w(z0, ϵ)

(
z

z0

)2γ∗
h/(1−γ

∗
h)
, (3.18)

where z0 is chosen as an arbitrary positive parameter. Obviously, a parameter change in
z0 amounts to

α∗
w(z0, ϵ) =

(
z0
z′0

)2γ∗
h/(1−γ

∗
h)
α∗
w(z′0, ϵ) . (3.19)

Thus, terms in the effective potential with higher orders in h, which are contained in z, are
resummed in the last factor of eq. (3.18). Most notably, this term is always positive. Hence
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the boundedness from below of the quantum effective potential at the fixed point is determined
by the sign of α∗

w and independent of the field values z. In particular, α∗
w can be computed

in perturbation theory by calculating the effective potential in a loop expansion at z = z0:

α∗
w =

∞∑
ℓ=0

α(ℓ)
w > 0 . (3.20)

Importantly, the stability of the effective potential does not depend on the choice of the
parameter z0, which can be fixed in a way that optimises the perturbative expansion. In
particular, logarithmic terms ∝ ϵ2 ln ϵ/z0 are already present at one-loop in α∗

w. For e.g. the
trivial choice z0 = 1, such terms are under perturbative control as they vanish for ϵ → 0.
However, these logarithms become much more sizeable than non-logarthmic contributions
in the limit ϵ → 0. On the other hand, the choice z0 = ϵ eliminates all terms ∝ ln ϵ/z0,
which improves the perturbative convergence for every order in α

(ℓ)
w . We will return to

this opportunity in section 4.
The leading term in (3.20) represents the tree-level of the effective potential

α(0)
w = α∗

u + α∗
v , (3.21)

which coincides with the classical potential and is independent of z0. In [6, 24–27], the
condition α

(0)
w > 0 has been adopted as a criterion for vacuum stability. This rests on the

argument in [6] that the classical potential α(0)
w controls the sign of leading-log resummations of

the background field in the effective potential. Ideed, using the loop expansion γ∗h =
∑∞
ℓ=1 γ

(ℓ)
h ,

the resummation (3.18) at the fixed point reads

α∗
h =

∞∑
n=0

2n

n!

[
ln z

z0

]n {
α(0)
w

(
γ
(1)
h

)n
+
[
α(1)
w γ

(1)
h + nα(0)

w

(
γ
(2)
h + γ

(1) 2
h

)] (
γ
(1)
h

)n−1
+ . . .

}
.

(3.22)
The first term in the braces of (3.22) is the leading-log (LL) contribution, which is ∝ α

(0)
w .

The second term is next-to-leading-log (NLL) and hence suppressed with an additional
loop order. In general, powers lnn z involve contributions up NnLL which contain n-loop
quantum corrections to the classical potential α(n)

w . Boundedness from below is determined
in the limit z → ∞ where the term n→ ∞ in (3.22) dominates, which means that all loop
corrections to α∗

w contribute to its coefficient and thus vacuum stability. The classical stability
condition α(0)

w > 0 ensures the positivity of LL term which is naïvely the largest contribution.
Although pertubatively suppressed, the subleading-log corrections may still overpower the LL
numerically, in particular at the edge of classical stability where α(0)

w ≈ 0. This scenario is
accounted for when considering the full α∗

w. Thus, the focus of this work is the computation
of quantum corrections α(ℓ>0)

w , in order to improve the prediction on vacuum stability.

3.3 Fixed-point potential

In this section, the stability of the scalar potential in the high-energy limit is determined by
computing the quantity αw, defined in (3.18) at the UV fixed point. Since all fixed-point values
α∗
g,y,u,v of classically marginal couplings are known up to ∝ ϵ3 in the conformal expansion,

the effective potential needs to be calculated up to two-loop order to reach the same precision

– 8 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
9

for αw. The effective potential has been determined by a direct loop computation using the
computational setup of MaRTIn [48]. Both methods outlined in section 3.1 have been pursued
and yield identical results. Finally, literature expressions applicable to generic renormalisable
QFTs [32, 34] have been utilised to cross check the results. At this loop order, there is no
dependence on the gauge fixing. Concretely, we obtain

α(0)
w = αu + αv , (3.23)

α(1)
w = (αu + αv)2

[
LI −

3
2

]
+ (3αu + αv)2

[
LR − 3

2

]
−
(11

2 + ϵ

)
α2
y

[
LF − 3

2

]
, (3.24)

α(2)
w =

(11
2 + ϵ

)2 [
4ΦRF − (3− LF )2

]
α3
y +

(11
2 + ϵ

) [
9− 8LF + 3L2

F

]
α2
y αg

− (11 + 2ϵ) [9 + 4LF − LI − 15LR + LF (LI + 9LR − 5LF )]α2
y αu

− (11 + 2ϵ) [2 + 2LF − LI − 5LR + LF (LI + 3LR − 2LF )]α2
y αv

− (11 + 2ϵ) [(αu + αv) ΦIF + 2(3αu + αv) ΦRF ]α2
y

+
[
50− 10L2

F + 2(LF − 2)(9LR + LI) + ΦIF + 9ΦRF
]
αy α

2
u

+
[
10− 2L2

F + 2(LF − 2)(LR + LI) + ΦIF +ΦRF
]
αy α

2
v

+
[
40− 8L2

F + 4(LF − 2)(3LR + LI) + 2ΦIF + 6ΦRF
]
αy αu αv

+
[
192− 243S2 − ΦRI − 24LI − 168LR + L2

I + 18LILR + 45L2
R

]
α3
u

+
[
108− 81S2 − 3ΦRI − 40LI − 104LR + 6L2

I + 24LILR + 30L2
R

]
α2
u αv

+ 4(2− LI − LR)(3− LI − 2LR)αu α2
v + (2− LI − LR)2α3

v .

(3.25)

For convenience we define the couplings

αF =
(11

2 + ϵ

)
αy , αI = 2(αu + αv) , αR = 2(3αu + αv) , (3.26)

which stem from the squared masses (3.9) of fermions and adjoint scalars R and I as the
unbroken scalar mass parameter m2 is a relevant operator and vanishes at the fixed point
m2 → 0. We have employed these couplings as arguments for the (poly-) logarithmic terms

LX = ln [αX/z0] , ΦXY = Φ
(
αX
4αY

)
, (3.27)

where X,Y = F,R, I. Note that these contributions are the only dependencies of the
parameter z0. The ΦXY are loop functions defined in [49] in terms of hypergeometric functions

Φ(z) = 4 z
[
(2− ln 4z) 2F1

(
1, 1
3/2

∣∣∣ z)− ∂

∂a
2F1

(
a, 1
3/2

∣∣∣ z) ∣∣∣∣
a=1

− ∂

∂c
2F1

(
1, 1
c

∣∣∣ z) ∣∣∣∣
c=3/2

]
(3.28)

or equivalently

Φ(z) =


4√

1/z−1
Cl2 (2 arcsin

√
z) 0 ≤ z < 1,

8 ln 2 z = 1,
1√

1−1/z

[
π2

3 − ln2 4z + 2 ln2 1−
√

1−1/z
2 − 4Li2

(
1−
√

1−1/z
2

)]
z > 1

(3.29)
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in the non-negative parameter range, where Li2 is a dilogarithm and Cl2 denotes the Clausen
function. For large arguments, the function diverges as

lim
z→∞

Φ(z) = π2

3 + ln2 4z . (3.30)

Finally, S2 is a constant with the value

S2 =
1
9Φ

(1
4

)
= 4

9
√
3
Cl2

(
π

3

)
≈ 0.260434 . . . . (3.31)

In the region where the potential is classically stable αu > 0, αu + αv > 0, the squared
masses (3.9) of fermions and all scalars are positive. This changes at the point of classical
flatness αu + αv = 0 where LI becomes singular. However, the effective potential remains
well-defined

α(0)
w

∣∣
αu+αv=0 = 0 , (3.32)

α(1)
w

∣∣
αu+αv=0 = 4α2

u

[
LR − 3

2

]
−
(11

2 + ϵ

)
α2
y

[
LF − 3

2

]
, (3.33)

α(2)
w

∣∣
αu+αv=0 =

(11
2 + ϵ

)2 [
4ΦRF − (3− LF )2

]
α3
y +

(11
2 + ϵ

) [
9− 8LF + 3L2

F

]
α2
y αg

− (11 + 2ϵ) [7− 10LR + LF (2 + 6LR − 3LF ) + 4ΦRF ]α2
y αu

+ 4
[
5 + ΦRF − L2

F + 2LR(LF − 2)
]
αy α

2
u

+
[
104 + 2

3π
2 − 162S2 − 88LR + 24L2

R

]
α3
u .

(3.34)

In general, there are two symptoms of the effective potential coupling αw that indicate
the breakdown of the UV fixed point:

(i) Reαw < 0 signals that the potential is not bounded from below and therefore no ground
state of finite energy exists.

(ii) Imαw ̸= 0 is an indication that the effective potential ceases to be convex [50], which
suggests an additional minimum with h ̸= 0. The imaginary part can be interpreted as
the decay width between degenerate vacua [31, 51].

In the classical approximation αw = α
(0)
w , both phenomena coincide at α∗

u + α∗
v < 0. For

one, this suggests that the classical potential is not bounded from below as h→ ±∞, and
there is no ground state of finite energy. Furthermore, the condition also turns the tree-level
mass of the I field tachyonic, m2

I < 0, implying symmetry breaking into two non-trivial
vacua and therefore a non-convex potential. At loop level, m2

I < 0 generates an imaginary
part through LI , ΦIF and ΦRI .

However, both mechanisms (i) and (ii) receive corrections at loop level, such that it is
not clear a priori which one is the dominant effect to herald scalar instability. In particular,
even the imaginary part implied by m2

I < 0 may potentially be cancelled by resumming
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higher-order corrections. The question whether Imαw ̸= 0 is of physical consequence or
merely signals a deficiency of the perturbative expansion is indeed non-trivial. The parameter
region close to vacuum instability is numerically problematic as |m2

I | is very tiny or vanishing,
implying large logarithmic contributions ∝ lnm2

I to the effective potential at each loop
order and thus weakening the perturbative convergence. This is known as the Goldstone
catastrophe [39, 52–55]. The impact of the Goldstone catastrophe can be mitigated by
resumming diagrams that correspond to soft contributions to the light or vanishing scalar
mass. This yields corrections to their masses m̃2

I = m2
I + δm2

I . The corrected mass m̃2
I is

then used in place of m2
I , especially in logarithms where the numerical impact of small |m2

I |
is large. This corresponds to resumming higher-order terms in the effective potential. In
our case the strategy is implemented by means of the softened coupling

α̃I = αI +∆I (3.35)

where the shift admits a loop expansion ∆I =
∑∞
ℓ=1∆

(ℓ)
I . In order to retain the non-

logarithmic terms of the effective potential up to ∝ ϵ3 while also addressing the Goldstone
catastrophe with the same precision, we make the replacement αI 7→ α̃I in the logarithmic
terms, yielding the alternative definitions

LI = ln
[
αI +∆I

z0

]
, ΦIF = Φ

[
αI +∆I

4αF

]
, ΦRI = Φ

[
αR

4(αI +∆I)

]
(3.36)

in (3.23)–(3.25) as well as the shift

α(2)
w 7→ α(2)

w − 1
2(αu + αv)∆(1)

I . (3.37)

to avoid double counting of resummed contributions. This mechanism allows to trade the
imaginary part of αw for a real contribution while improving the numerical reliability. The
choice of ∆I is not unique but the impact of different prescriptions diminishes with higher
loop orders of the effective potential. The literature [39, 52–55], advocates choices related to
the self-energy of the Goldstone boson at zero momentum ΠI(0), which can be interpreted as
a resummation of soft leg corrections to its mass. Self-interactions of the Goldstone bosons
are often neglected. In our case, we choose to resum Yukawa and gauge interactions to
implement a sufficiently effective resummation

∆I =
∞∑
ℓ=1

∆(ℓ)
I = Nf

h2
ΠI(0)

∣∣∣
αI,R=0

. (3.38)

We have computed the self-energy to two loop order to extract α̃I up to order ∝ ϵ3, and
obtain in the loop expansion

∆(1)
I = (11 + 2ϵ)α2

y [1− LF ] ,

∆(2)
I = (11 + 2ϵ)αgα2

y

[
5− 5LF + 3L2

F

]
− 1

2(11 + 2ϵ)2α3
y

[
6− 5LF + L2

F − 4ΦRF
]
,

(3.39)

which corresponds to the diagrams

.
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3.4 Away from the UV fixed point

As the effective potential is RG invariant, vacuum stability at the UV fixed point also
guarantees the potential to be bounded from below in the IR. Thus, scalar stability reigns
along the weakly coupled trajectory connecting the interacting UV fixed point with IR
freedom. More explicitly, we follow the relevant trajectory

αg = α∗
g(ϵ) + δ, αy,u,v = α∗

y,u,v(ϵ) +
∞∑
n=1

c(n)y,u,v(ϵ) δn (3.40)

which emanates from the fixed point at δ = 0 and leads into the weakly (δ < 0) or strongly
(δ > 0) coupled regime. The RG flow of the effective coupling δ at leading order is related
to the relevant critical exponent βδ = dδ/d lnµ = ϑ1 δ +O(δ2). The RG invariance of the
effective potential away from the fixed point is encoded in the condition

0 =
(
− 2γh
1− γh

+ ∂

∂ ln z + 1
2

βδ
1− γh

∂

∂δ

)
αh(z, δ, ϵ) . (3.41)

In accordance with (3.18) we apply the ansatz

αh(z, δ, ϵ) = αw(δ, z0, ϵ)
(
z

z0

)2γ∗
h/(1−γ

∗
h)
, (3.42)

yields a condition

0 =
(
γh − γ∗h
1− γ∗h

− βδ
4
∂

∂δ

)
αw(δ, z0, ϵ) (3.43)

that is valid away from the UV fixed point and solved by

αw = α∗
w exp

{
4

1− γ∗h

∫ δ

0
dδ̂ γh(δ̂)− γ∗h

βδ̂

}
. (3.44)

Eqs. (3.42) and (3.44) imply that if the effective potential is stable at the UV fixed point
through α∗

w > 0, it also remains stable away from it.
The scalar mass operator m2 as in (2.1) is relevant and vanishes at the UV fixed point.

If it is switched on at some IR scale m2(µIR) > 0, all scalars eventually decouple and the
theory consists of free fermions and vector bosons in the low-energy limit, with an intact
U(Nf )L×U(Nf )R global symmetry. If m2(µIR) = 0, all fields including scalars remain massless
until IR freedom is reached. For m2(µIR) < 0, spontaneous symmetry breaking occurs and
the scalar sector develops a vacuum expectation value h as in (3.8). Other mechanisms to
violate the global symmetry in the IR without spoiling the UV fixed point require an explicit
breaking by relevant operators [14]. A dynamical symmetry breaking by turning relevant
couplings to be irrelevant via the RG cannot occur in the weak coupling regime.

The other trajectory emanating from the UV fixed point leads away from the weak regime
towards strong couplings. Again, spontaneous symmetry breaking occurs if m2(µIR) < 0. For
m2(µIR) = 0, the theory may reach a putative interacting IR fixed point, a scenario compatible
with the observation of fixed-point mergers [24–26]. Alternatively, the IR trajectory may also
lead into a strongly coupled regime, where an additional scale parameter is generated via
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dimensional transmutation, and non-perturbative phenomena arise such as the breaking of
global symmetries and confinement. For larger value of ϵ, an indication for non-perturbative
effects causing a symmetry breaking in the effective potential is γ∗h = 1, which causes a
breakdown of the solution (3.18).

4 Impact on the conformal window

In this section we discuss the UV conformal window of the Litim-Sannino model, namely
the value ϵmax at which the fixed point ceases to exist. Several mechanisms are known that
may cause such a disappearance [56]. As established by previous works [24, 26, 27], the
conformal window appears to be within a weakly-interacting regime |α∗

g,y,u,v(ϵ)| ≪ 1 and
not limited due to strong-coupling effects. Rather, the UV fixed point may disappear into
the complex plane due to a fixed-point merger. This occurs when an IR fixed-point solution
exists at ϵ < ϵmer that approaches the UV one with increasing ϵ, causing both solutions to
become complex at ϵ > ϵmer. We distinguish two subcategories of this phenomenon: single-
and double-trace mergers. A single-trace merger is characterised by the relevant critical
exponent turning marginal

ϑ1(ϵmer,1) = 0 , (4.1)

signalling the disappearance of the UV fixed point. Typically, the single-trace couplings
α∗
g,y,u(ϵ < ϵmer,1) of the colliding UV and IR fixed point solutions are different before this

merger. The second type of merger is due to the algebraic decoupling in the planar Veneziano
limit. The single-trace RG evolution via βg,y,u is independent of the double-trace quartic
αv, while its own β function is only quadratic in it

βv = f0 + f1 αv + f2 α
2
v (4.2)

up to all loop orders [57]. Thus, each fixed-point solution α∗
g,y,u implies up to two real

solutions α∗±
v for the double-trace quartic with the critical exponents

ϑ±3 = ±
√
f∗21 − 4f∗0 f∗2 . (4.3)

For the UV fixed point, only α∗+
v is physical while α∗−

v exhibits an unstable potential [26]. A
double-trace merger occurs when both solutions collide such that

α∗+
v (ϵmer,2) = α∗−

v (ϵmer,2) and ϑ±3 (ϵmer,2) = 0. (4.4)

While there is evidence of a single-trace merger, a double-trace merger seems to be absent in
the ϵ-expansion [26]. However, constraints to the conformal window due to instability of the
fixed-point potential, ϵvac, appear to be slightly tighter. To settle which mechanism is more
dominant for the upper end of the conformal window, more precision in their determination is
required. Thus, in the following analysis we improve upon previous works [26, 27] by bringing
the stability analysis on par with available loop orders of the β functions. To do so, we first
take stock of all uncertainties for the conformal-window estimate.
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4.1 Uncertainties

Computing the effective potential at the UV fixed point within a finite order in perturbation
theory, we are confronted with the following sources of uncertainty.

1. Uncertainty of the fixed-point couplings α∗
g,y,u,v(ϵ) and critical exponents ϑ1,2,3,4(ϵ). The

state-of-the.art is to extract these quantities from four-loop gauge, three-loop Yukawa
and three-loop quartic β functions, 433 in short. Thus, α∗

g,y,u,v are determined up to
the third coefficient ∝ ϵ3 in the conformal expansion and do not receive contributions
from higher loops. We will also use various techniques to resum higher powers in ϵ,
though the reliability of such approaches will remain an open question and will be used
to estimate the residual uncertainty.

2. Uncertainty from missing loop orders of the effective potential. In order to match
the ∝ ϵ3 expansion of the fixed-point couplings, the effective potential is required to
two-loop order. Given that the fixed point remains in a perturbative regime, higher-
order contributions to the potential should be increasingly irrelevant. To verify this, we
compare the impact of various loop orders in this section.

3. Ambiguity of the Goldstone resummation ∆I . As discussed earlier, a softened parameter
α̃I (3.35) is introduced to improve the numerical stability through resummation. This
procedure moves the hints of instability from the imaginary to the real part of the
effective potential. However, ∆I is not uniquely defined. Here we keep track on how
the choice (3.39) alters the real part of the unresummed potential and ensure that
α̃I(ϵvac) > 0 as αw(ϵvac) = 0.

4. Suitable choice of z0. The overall stability estimate is independent of the choice of
z0. This parameter is introduced in (3.18) as a mediator between the exact field
resummation and the perturbatively determined coefficient αw in the effective potential.
The convergence of the loop expansion of αw can be optimised by a smart choice of z0.
Moreover, an uncertainty estimate may be obtained by varying z0.

Let us now develop a strategy regarding the last point. The parameter z0 only appears
within the logarithms (3.27). Thus, a natural choice of z0 would be one of the couplings αF ,
αR or α̃I to cancel corresponding terms logarithmic terms, or an intermediate value. Values
of z0 outside the range spanned by αF , αR and α̃I cause unnecessarily large logarithmic
contributions. At the fixed point the hierarchy

0 < α̃I ≪ αR ≈ ϵ < αF ≪ 1 (4.5)

usually holds. This is transparently seen in the leading-order expansion

0 < 0.13 ϵ≪ 0.92 ϵ ≈ ϵ < 1.16 ϵ≪ 1 . (4.6)

This suggests that z0 should be chosen within αF ≥ z0 ≥ α̃I to optimize αw. In this range
the largest impact of varying z0 is due to the rift α̃I ≪ αR,F . Fortunately, logarithmic terms
in the effective potential are softened by the couplings in front.
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This can be seen for instance in (3.24), which contains both the terms ∝ α2
R lnαR/z0

and ∝ α2
I ln α̃I/z0. The reader is reminded that by definition (3.35), α̃I and αI differ only by

a higher loop expression. The choice z0 ≈ α̃I cancels the logarithm ∝ α2
I ln α̃I/z0 minimizes.

However, as α2
I ≪ α2

R, the term was already smaller than the other α2
R lnαR/z0. In fact

the latter term ∝ α2
R lnαR/α̃I becomes even more sizeable due to the logarithm. Instead,

the converse choice z0 ≈ αR is more meaningful: the logarithm ∝ α2
R lnαR/z0 is traded in

for a contribution ∝ α2
I ln α̃I/αR. While the logarithm is equally large in both cases, the

perturbative suppression by the coupling in front is much stronger in the second approach.
Conclusively, z0 should be chosen away from α̃I to optimise the perturbativity of loop
corrections to the effective potential. More precisely, the parameter should be varied in the
range of remaining logarithmic scales

αF ≥ z0 ≥ αR , (4.7)

which also yields an uncertainty estimate. For the perturbative expansion of the effective
potential to be reliable, we expect that for each loop order the uncertainty range due to (4.7)
is decreasing and higher-loop ranges are roughly nested within lower-order ones.

4.2 Conformal expansion

In this section, we investigate the implications of scalar stability from the ϵ expansion of the
effective potential. The expansion is reliable up to ∝ ϵ3, after which higher loop orders in
the β functions and the effective potential are required. We start by recalling the classical
stability condition α

(0)
w > 0 with

α(0)
w = α∗

u + α∗
v ≈ 0.0625 ϵ− 0.1915 ϵ2 − 1.6200 ϵ3 +O(ϵ4) . (4.8)

This result is improved by taking quantum corrections into account

αw ≈ 0.0625 ϵ

−
(
0.2127 + 0.0263 ln ϵ

z0

)
ϵ2

−
(
1.0536− 0.0372 ln ϵ

z0
− 0.0055 ln2 ϵ

z0

)
ϵ3 +O(ϵ4) .

(4.9)

At order ∝ ϵ, both conditions are equivalent and the contribution is manifestly positive,
pointing towards stability. At higher orders the quantum effective potential depends on z0.
For z0 = ϵ, the ∝ ϵ2 correction to the effective potential is negative, indicating an instability
at a certain value for ϵvac. Moreover, the coefficient is more negative than the classical one,
implying that the conformal window may be smaller once quantum corrections are included.
The ∝ ϵ3 coefficients are again negative in both cases, reinforcing the evidence for the loss of
vacuum stability. However, the quantum effective coefficient is larger than in the classical
potential, thus relaxing the constraint on the conformal window.

The dependence of the upper values of the conformal windows on the parameter z0 for
tree-level, one and two loops in the effective potential is depicted in figure 1 (solid lines). We
find both one- and two-loop corrections from the effective potential to predict a widening of
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Figure 1. Upper bound of the conformal window ϵvac due to vacuum instability depending on the
parameter z0. The bound is extracted from the conformal expansion up to ∼ ϵ3 (solid) and its [2/1]
Padé resummation (dashed) of the effective potential at tree (green), one-loop (yellow) and two-loop
(blue) level. Red lines mark special choices of z0.

Figure 2. Effective fixed-point coupling α∗
w expanded up to ∝ ϵ3, using only the classical (green),

one- and two-loop approximation in the uncertainty range (4.7) (yellow and blue bands).

the conformal window over the classical bound. However, the two-loop result shows better
convergence as it is less dependent on z0, especially in the range (4.7) (vertical red lines). We
expect this trend to continue to higher loops where the z0 dependence should diminish.

The improvement of the fixed-point potential by quantum corrections in the ϵ expansion
is depicted in figure 2. Classical and improved potential differ notably starting around
ϵ ≈ 0.05. Consequentially, the classical stability estimate ϵexpvac,cl ≈ 0.146 is lifted decisively to

ϵexpvac ≈ 0.166(1) (4.10)
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at two loops. Both results are more stringent than the estimate of the single-trace merger
ϵmer,1 ≈ 0.249 [26]. The width of the uncertainty band of the effective potential is decreases
from one to two loops. However, their overlap diminishes for larger ϵ, slightly hinting at
an inadequacy of the ϵ expansion at such values.

Finally, we note that an imaginary part of αw is not manifest in the ϵ expansion. It
would be heralded by α̃I < 0 (3.35). However, we find that our resummation prescription

1
2 α̃I ≈ 0.0625 ϵ

+
(
0.0166− 0.2438 ln ϵ

z0

)
ϵ2

+
(
0.0519− 0.3509 ln ϵ

z0
− 0.0513 ln2 ϵ

z0

)
ϵ3 +O(ϵ4) ,

(4.11)

is manifestly positive in the conformal expansion within the z0-range (4.7).

4.3 Padé resummations

While the strict ϵ expansion is reliable for small ϵ and consistent with respect to higher-loop
corrections, its convergence is rather poor. To remedy this, we employ Padé resummations
in ϵ, serving as an estimate for the impact of higher powers in the ϵ expansion. There are
two approaches to this strategy. For one, the resummation may be applied to the fixed-point
couplings α∗

i=g,y,u,v =
∑3
n=1 c

(i)
n ϵn. The relevant Padé approximations read

[2/1] : α∗ ≈ c1 ϵ+
c22 ϵ

2

c2 − c3 ϵ
, [1/2] : α∗ ≈ c31 ϵ

c21 + c22 ϵ
2 − c1ϵ(c2 + c3 ϵ)

. (4.12)

The second ansatz is to apply the [2/1] Padé resummation directly to α∗
w(ϵ). The [1/2]

approximant is not helpful as it remains stable by construction. Note that both approaches
are identical if only the classical potential is considered.

The results are summarised in figure 3. As a reference, the [2/1] of the classical potential
with ϵ

[2/1]
vac,cl ≈ 0.0868 is shown in green. The corresponding resummation of the effective

potential α∗
w is shown in red. Unfortunately, the prediction for the loss of vacuum stability

appears to be under poor perturbative control since the two-loop prediction 0.1233(5) (darker
shades) does not overlap with the one-loop result 0.115(5) (lighter shades) and should be
disregarded. Note that the [2/1] approximation is depicted by dashed lines in figure 1,
highlighting that all resummations appear to predict a tighter conformal window than the
ϵ expansion.

Returning to figure 3, perturbative reliablility is slightly better when the Padé resumma-
tion is applied to the couplings α∗

g,y,u,v, where two-loop effective potentials are approximately
contained within the one-loop uncertainties for most values of ϵ. Using a [2/1] resummation
(yellow), the two-loop effective potential falls out of perturbative control around ϵ ≈ 0.1
and never enters an unstable regime. On the other hand, the [1/2] approximant (blue)
yields a two-loop prediction

ϵPadé
vac ≈ 0.0949(6) (4.13)

that is completely within the one-loop uncertainty. Note that this is larger than the single-trace
merger ϵ[2/1]mer,1 ≈ 0.091 obtained by the [3/1] resummation of ϑ1 [26].
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Figure 3. Padé resummed fixed-point potential α∗
w in various approximations. This includes the [2/1]

approximants of the conformal expansion for the classical (green) and quantum effective potential (red),
as well as the [2/1] (yellow) and [1/2] (blue) resummations of couplings α∗

g,y,u,v(ϵ) as they contribute
to α∗

w. The z0 uncertainty range (4.7) for one- and two-loop effective potentials are displayed as
shaded regions.

4.4 Resummation via β functions

Another method to estimate higher powers in the ϵ expansion is to utilise the fixed-point
conditions βg,y,u,v = 0 to fix the couplings α∗

g,y,u,v exactly. As this approach is independent
of the ϵ expansion, it is more sensitive to phenomena beyond strict perturbative control.
In this section, we will investigate these conditions at orders lmn, meaning l loops in the
gauge, m in the Yukawa as well as n loops in the quartic β functions. In order to expand
fixed-point couplings up to ∝ ϵn−1 requires at least the loop combinations (n+1)nn and needs
to be paired with the (n-1)-loop effective potential.

Before discussing scalar stability, we recollect the findings of [24, 27] regarding fixed-point
mergers. Figure 4 displays all fixed-point couplings α∗

g,y,u,v(ϵ) both for 433 (dashed lines) and
the previous order in the conformal expansion 322 (solid lines). The UV fixed point is drawn
in blue and its double-trace counterpart in green; both show good agreement between 433 and
322 for small ϵ. At 322, however, the UV fixed point collides with an IR fixed point outside
of strict perturbative control (red) via a single-trace merger at ϵmer,1 ≈ 0.0972. On the other
hand, the conformal window at 433 persists up to a double-trace merger at ϵmer,2 ≈ 0.152.

We now turn towards the stability analysis, where we will find tighter constraints than
from the mergers. The tree-level and effective potential in the 433 approximation are displayed
in figure 5. The two-loop uncertainty is much smaller and approximately contained within
the one-loop one. It reads

ϵ433
vac ≈ 0.1011(13) , (4.14)

which is a significant improvement over the tree-level result quoted in [27]. In fact, the
tree-level result is not even contained within the uncertainty range at one-loop.
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Figure 4. Fixed-point couplings α∗
g,y,u,v(ϵ) in the 322 (solid) and 433 (dashed) approximation,

showing the UV fixed point (blue), its second double-trace quartic (green), and other solutions (red,
yellow, brown). The single-trace (ϵmer,1) and double-trace merger (ϵmer,2) of 322 and 433, respectively,
are marked by dashed vertical lines.

Figure 5. Fixed-point potential in the 433 approximation at tree- (green), one-loop (yellow) and
two-loops (blue) level, with the z0 uncertainty range (4.7) (shaded).

Furthermore, a range of relevant loop combinations for βg,y,u,v are collected in table 2.
In each case, the merger is only subdominant for the end of the conformal window. Overall,
the same picture as at 433 emerges: each approximation finds that the one- and two-loop
potentials are within a perturbative agreement and admit roughly a 10% widening of the
conformal window with respect to the classical potential. In this sense, the resummation
using β functions appears to be more consistent than Padé approximants.

Next we scrutinise the precision and reliability of our 433 prediction. To that end, we
study the z0-dependence of the stability prediction in more detail in figure 6 (blue curve)
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Approx. Tree level 1 loop 2 loop Merger
433 0.0948 0.1048(42) 0.1011(13) ϵmer,2 ≈ 0.1515
432 0.0883 0.0948(25) 0.0929(5) ϵmer,2 ≈ 0.1364
423 0.1284 0.169(23) 0.1451(58) ϵmer,1 ≈ 0.4223
322 0.0867 0.0913(16) 0.090(4) ϵmer,1 ≈ 0.0972

Table 2. Bound on the UV conformal window at loop order lmn, from vacuum instability (ϵvac),
using the tree-level, one- and two loop effective potential as well as the merger. The uncertainty is
estimated using (4.7).

Figure 6. Upper bound for the UV conformal window ϵvac at 433 and its z0 dependence. The
green line utilises only the classical stability condition. The solid blue curve takes into account the
two-loop effective potential, and two-loop softening of α̃I (3.35). The curve is only drawn for values
of z0 where Imαw(ϵvac) ̸= 0 as Reαw(ϵvac) = 0. The dashed blue line does not employ the soft
resummation (3.35). It shows the bound from Reαw(ϵvac) ignoring the imaginary part of αw entirely.
Several points highlight unique choices of z0, the left and rightmost represent the ones taken into
account for the uncertainty estimate (4.7). Within this range, the prediction lies well above the
classical one.

and contrast with the classical bound (green). The impact of the soft resummation in α̃I is
displayed by comparing the resummed potential (solid) with the real part of the unresummed
one (dashed), ignoring its imaginary part. We observe that both agree well within the
range (4.7). We therefore expect that a different resummation prescription in the definition of
α̃I would have a similarly small impact.Conversely, if z0 inches closer towards α̃I , the difference
between the resummed and unresummed potential increases. Also, the prediction for ϵvac
increases significantly, showcasing the numerical inaccuracies for z0 outside the range (4.7) as
argued before. Naturally, at z0 ≈ α̃I the prediction ϵvac is very sensitive to the definition of
α̃I . As z0 is decreased even further, we eventually see the resummation prescription fail as the
effective potential gains an imaginary part through α̃I < 0 while the real part stays positive.
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Figure 7. Conformal-window estimates from vacuum-instability estimates using the classical (dashed)
or two-loop quantum improved potential (solid) in the conformal expansion (green), Padé resummation
(yellow) and 433 approximation. Dots mark integer choices of Nf,c closest to the conformal window.

5 Discussion

In this work, the prediction for the scalar stability of the UV fixed point in the Litim-
Sannino model has been significantly enhanced using loop corrections, renormalisation-group
improvement, resummation of soft corrections and parameter optimisations. In particular,
the conformal window has been estimated using the conformal expansion (4.10) as well as
resummations based on Padé approximants (4.13) and β functions (4.14). In each of these
approximations, we find a significant widening of the conformal window with respect to
previous works [26, 27]. As a result, smaller integer values of (Nc, Nf ) may be sufficient
for a UV fixed point.

This is displayed in figure 7. Each dot represents an integer value of Nf,c, neglecting
finite-N corrections. The extend of the conformal window for each approximation is marked
in different colours. The difference between dashed and solid lines mark the improvement
due to quantum corrections of the effective potential. It is only due to this enhancement
that the conformal expansion points towards (Nc, Nf ) = (3, 17) as the smallest multiplicity
within the window. Similarly, the 433 approximation admits (5, 28) into the window. Neither
of these theories were considered viable in [26, 27].

In our analysis, we have verified that uncertainties in the stability predictions overall
decrease with higher loops in the effective potential. Moreover, we have used the consecutive
nestedness of these regions as sanity criterion for our approximations.

However, it is not possible to decide conclusively which bound in figure 7 is most
compelling with the inforamtion at hand. The root cause is the remaining uncertainty of
fixed-point couplings due to unknown higher-loop corrections of their β functions. While the
fixed point is most universally described by its conformal expansion, the power series (4.9) is
very short. In fact, we find soft hints that the convergence of the conformal expansion is too
weak for (4.10) to be a reliable prediction of vacuum instability at the current order. Instead,
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resummations in ϵ appear to be more credible. In particular, both (4.13) and (4.14) seem to be
in agreement that the conformal window is substantially smaller than (4.10). Each prediction
represents an educated guess for higher powers in ϵ, with many alternative resummation
strategies being conceivable. As it stands, it cannot be assessed which approach is most
accurate. We expect to find increasingly better agreement between conformal expansion
and resummation techniques with higher loop orders, which will eventually allow a more
conclusive prediction of the UV conformal window.

Moreover, the possible occurrence of a fixed-point merger cannot be ruled out. This
phenomenon may lead to the breakdown of UV conformal window even before vacuum
stability is lost. Mergers are notoriously difficult as they cannot be captured within the
conformal expansion of fixed point couplings, where they cause a sharp decline of convergence.
Instead, they show up in critical exponents which need to be determined with high confidence.
Furthermore, the colliding IR fixed point might not be under strict perturbative control as
ϵ → 0. Both properties can be seen in figure 4 (red curve).

In summary, while this work suggests an enhancement of the UV conformal window for
each of the approximations in figure 7, a confident conclusion about its size and breakdown
mechanism cannot be reached. Higher loops or non-perturbative arguments are required
to settle these questions.
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