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1 Introduction

The array of tools available at our disposal in computing observables in gravitational and
electromagnetic scattering has seen a remarkable increase in the last few years. A central
premise in this resurgence is the realization that on-shell amplitudes in gauge theories and
gravity can be deployed to compute classical observables ranging from scattering angle to
radiative flux in Post Minkowskian scattering [2–40]. One of the most potent formalisms
which uses the quantum S-matrix to generate classical observables was proposed in a seminal
paper by Kosower, Maybee, and O’Connell (KMOC) [41–45]. The KMOC formalism uses
scattering amplitudes to compute a set of “in-in” asymptotic quantities, whose classical
limits are the observables of interest.
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In addition to a large class of state of the art techniques which have been developed in
the last several decades to analyze perturbative amplitudes, there are a few non-perturbative
results in the study of amplitudes (such as soft factorization theorems [46–55]) which can
be used to significantly simplify the computation of the same.

Among the latter category of tools, a technique was proposed in [1] which “spins” the
external states in scalar QED or scalar-GR amplitudes from scalars to massive infinite
spin particles that are coupled minimally to photons or gravitons. These states are known
as

√
Kerr or Kerr particles respectively. The “spinning” technique discovered in [1] was

inspired by the well-known Newman-Janis (NJ) algorithm in classical general relativity and
electromagnetism. The NJ algorithm implements a remarkable symmetry on the space of
solutions of general relativity/electromagnetism. As Newman and Janis showed, a complex
coordinate transformation can be used to derive the metric of a Kerr black hole from the
metric of the Schwarzschild solution [56]. Remarkably, one would get the Kerr solution by
simply deforming the radial coordinate r in the Schwarzschild solution with an imaginary
factor involving the ring radius of the Kerr black hole. Thereafter, various kinds of Newman-
Janis shifts have been explored at great length [57]- providing specific ways to implement
such complex deformation to derive classical solutions for different spinning objects. In
their original work, Newman and Janis also noted that the same shift on the Coulombic
field produces, what is now known, as the

√
Kerr field. The features of this solution were

further expanded upon in [58].
Motivated by the ideas in [59], we propose a “spin dressed” photon propagator and use

this to compute the following observables in a scattering process involving a scalar and a√
Kerr particle.1 All our computations are at leading order in the coupling.2

1. The electromagnetic radiation emitted by the scalar particle. This computation shows
the power of the NJ algorithm even in the non-conservative sector. We show that just
as for the linear impulse, the radiation emitted by scalar particle can also be obtained
via complexification of the impact parameter b⃗ → b⃗ + i⃗a.

2. We use the NJ shift to compute the angular impulse for the scalar and
√

Kerr particles.
We also highlight an important subtlety that underlies the computation of angular
impulse for the spinning particle. This subtlety is crucially tied to the use of spin tensor
(Sµν) as opposed to the spin pseudovector (aµ) as the fundamental variable. These are
related via the following duality relation

aµ = 1
2m2 ϵµνρσpνSρσ . (1.1)

3. We show that to linear order in the initial spin parameter, the total angular impulse (of
the scalar-

√
Kerr system) is consistent with classical results [60] so long as the initial

coherent state of the spinning particle is parametrized in terms of Sµν and pµ.
1We emphasize that we do not use the Lagrangian proposed in [59], which leads to incorrect opposite

helicity Compton amplitude for the spinning particle. We use only the exponentiation of the minimally coupled
3-point amplitudes [1] to compute all the observables in this paper.

2This is the analog of leading order (LO) post-Minkowskian expansion in gravity.
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The plan of the paper is as follows. In section 2, we review the KMOC formalism used
to compute classical observables from scattering amplitudes. In section 3, we give a brief
review of the Newman-Janis algorithm used as a classical solution-generating technique and
its manifestation at the level of three-point amplitudes. In section 4, we reformulate the
NJ algorithm for the case of scattering amplitudes via a specific deformation of the photon
polarisation data. We then use this version of the NJ algorithm to compute the radiation
emitted by the scalar particle in section 5. In section 6 we compute the orbital angular impulse
suffered by the scalar particle, the spin angular momentum change for the

√
Kerr particle

and highlight an important subtlety involved in computing the orbital angular momentum
of the

√
Kerr particle. We conclude by discussing some open questions in section 7. In the

appendices we state our conventions, provide the classical calculations for the observables
and evaluate some integrals that are used in the main text.

2 KMOC formalism in a nut-shell

The KMOC formalism [41, 42] is a framework that is used to compute classical observables
from on-shell scattering amplitudes for large impact parameter scattering.3 The procedure to
compute classical observables is as follows: we start with an initial coherent state, compute
the change in the expectation value of a self-adjoint quantum mechanical operator, and then
take an appropriate classical limit to obtain the classical result. The main feature of the
formalism is that the classical limit is taken before evaluating the full amplitude because of
which the computation becomes significantly simpler. Additionally, radiation reaction effects
are naturally inbuilt within the framework. For a short sample of the results obtained with
the formalism, we refer the reader to [9, 61, 62]. In this section, we shall highlight some
of the features of the formalism relevant to us.

We start by describing the initial state,

|Ψ⟩ =
∫ 2∏

i=1
dΦ(pi)eip2·b/ℏϕi(pi)ζai

i |p⃗1, a1; p⃗2, a2⟩ , (2.1)

where
dΦ(p) = d4p

(2π)4 δ̂(p2 − m2)Θ(p0),
∫

dΦ(p) |ϕ(p)|2 = 1, (2.2)

ϕi(pi)s are the minimum uncertainty wave packets (in momentum space) and ζai
i are the

coherent spin state wave function for the particles with the little group indices for the particles
being denoted by ai. The wavepacket of the second particle is translated, with respect to
the first particle’s wavepacket, by a distance of b — the impact parameter. Since the initial
particles are described by coherent states we have

⟨Pµ
i ⟩ = miu

µ
i + O(ℏ), σ2

i

m2
i

= (⟨P2
i ⟩ − ⟨Pi⟩2)

m2
i

ℏ→0−−−→ 0, (2.3)

3The scattering setups in which the particles don’t deviate from the initial trajectories very much are known
as large impact parameter scattering. Naturally, the characteristic length scale is set by the impact parameter.
Recently, in [42], the formalism has been extended beyond this regime for incoming waves scattering off
massive particles.
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where σ2
i is the variance and mis are the masses of the particles. Here the expectation value

of the momentum operator is with respect to the initial state in eq. (2.1).
The spin of a particle in quantum field theory is given by the expectation value of the

Pauli-Lubanski vector [43],

Wµ = 1
m

ϵµνρσPνSρσ . (2.4)

Hence, it is the expectation value of the above operator which gives the classical spin
pseudovector,

⟨Wµ
i ⟩ = sµ

i + O(ℏ). (2.5)

The variance for the spin is also small, as for the momentum of the particle. For a more
detailed construction of these wavefunctions, we refer the reader to [44].

We now move on to describe the construction of the classical observables. The basic
idea is to compute the change in the expectation value of a quantum mechanical operator
as this is what is relevant from a classical perspective. So we write

⟨∆OA⟩ = ⟨Ψ|S†OAS |Ψ⟩ − ⟨Ψ|OA |Ψ⟩ . (2.6)

where S = I + iT is the S-matrix. For the linear impulse, OA = Pµ, the momentum operator,
OA = Jµν for angular impulse, OA = Wµ/m for the spin kick and OA = Aµ(x), the gauge
field operator, from which we read off the radiation kernel. The expression in eq. (2.6) can
be simplified using the on-shell completeness relation and unitarity of the S-matrix [41].
For the linear impulse, we get

⟨∆pµ⟩ =
∫

d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2) eiq·b/ℏqµA4(p1, p2 → p1 + q, p2 − q) + O(T †T )

(2.7)

and for the orbital angular impulse, we have

⟨∆Lµν⟩ = ℏ
∫ 2∏

i=1
d̂4qi δ̂(2pi · qi + q2

i ) e−iq2·b/ℏ

2∑
j=1

((
pj ∧

∂

∂pj

)µν

+
(

(pj + qj) ∧ ∂

∂(pj + qj)

)µν)
A4(p1, p2 → p1 + q1, p2 + q2)

+ O(T †T ), (2.8)

where we write the full 4-point amplitude as

A4(p1, p2 → p1 + q1, p2 + q2) := A4(p1, p2 → p1 + q1, p2 + q2)δ̂(4)(q1 + q2) . (2.9)

We provide a derivation of the above expression in appendix B. We do not display the higher
order contributions as in this work we will only be interested in calculating the observables to
leading order in coupling. Similarly, for the gauge field, we can read off the radiation kernel [42]

⟨Rµ(k)⟩ = ℏ3/2
∫ 2∏

i=1
d̂4qi δ̂(2pi · qi + q2

i ) e−iq2·b/ℏ

δ̂(4)(q1 + q2 − k) A5(p1 + q1, p2 + q2 → p1, p2,, k) + O(T †T ) . (2.10)
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The spin kick, to leading order in the coupling, is given by [43]

⟨∆aµ⟩ =
∫

d̂4q δ̂(2p1 · q + q2)δ̂(2p2 · q − q2) eiq·b/ℏ(
aµ(p + q)A4(p1, p2 → p1 + q, p2 − q) −A4(p1, p2 → p1 + q, p2 − q) aµ(p)

)
. (2.11)

The classical limit is taken at the level of integrand, by expressing massless momenta in terms
of their wave numbers (e.g. qi = q̄iℏ), appropriately rescaling the dimensionful couplings
and keeping leading order terms in ℏ. In QED, the dimensionful coupling is obtained by4

e → e/
√
ℏ.

For spinning external states, in the classical limit the final state spin pseudovector
can be written as

aµ
i (pi + ℏq̄i) = aµ

i (pi) + ∆aµ
i (pi) ,

∆aµ
i (pi) = ωµ

ν(pi; q̄i)aν(p) ,

ωµ
ν(pi; q̄i) = − ℏ

m2 (pi ∧ q̄)µ
ν , (2.12)

where ωµν(p; q̄) is the infinitesimal boost parameter. With these expressions in hand, we can
write down the classical limit of the linear impulse, the radiation kernel, and the spin kick,
at leading order in the coupling. The expression for the former is

∆pµ =
〈〈∫

d̂4q̄ δ̂(2p1 · q̄)δ̂(2p2 · q̄) eiq̄·b q̄µ (ℏ2A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄))
〉〉

. (2.13)

Here
〈〈

f(p1, p2, q . . .)
〉〉

denotes the integration over the minimum uncertainty wave packets
which localizes the momenta and spin onto their classical values. Similarly, for the radiation
kernel, we get

Rµ(k̄) =
〈〈∫ 2∏

i=1
d̂4q̄i δ̂(2pi · q̄i) e−iq̄2·b δ̂(4)(q̄1 + q̄2 − k̄)

(
ℏ2A5(p1 + ℏq̄1, p2 + ℏq̄2 → p1, p2,, ℏk̄)

)〉〉
, (2.14)

and for the spin kick, we get

∆aµ =
〈〈

iℏ2
∫

d̂4q̄δ̂(2p1 · q̄)δ̂(2p2 · q̄)eiq̄·b
{

[aµ(p),A4] + ℏ
m

(a · q̄)uµA4

}〉〉
. (2.15)

In all of the above expressions, we have taken out the ℏ− scaling of the coupling constant.
For the orbital angular impulse, we shall derive the corresponding expression in section 6
as it is slightly more detailed.

The KMOC formalism has been generalized to describe different types of scattering. For
instance, in [42] the formalism has been extended to include incoming waves in the initial state.
It has also been extended to include additional internal degrees of freedom like color charges
in [63]. Finally, it has been generalized to describe scattering in curved backgrounds [45, 64].

4The dimensionless coupling is the fine structure constant α = e2

ℏ .

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
8

3 The Newman-Janis algorithm for three-point amplitudes

The Newman-Janis (NJ) algorithm has been known for a long time as a classical solution-
generating technique, primarily used in the context of General relativity. In their original
work [56], Newman and Janis showed that one can “derive” the Kerr metric from the
Schwarzschild solution (when written in the so-called Kerr-Schild coordinates) by doing a
complex transformation of the radial coordinate, with the parameter by which it transforms
interpreted as the spin of the Kerr black hole solution. Interestingly, they observed that
there exists a similar mapping between solutions of the free Maxwell’s equations as well. In
electrodynamics, the NJ algorithm generates the so-called

√
Kerr field from the Coulombic

field of charged point particle sitting at the origin [58].
For static electromagnetic fields in vacuum, one can define the magnetostatic potential

exactly as done for electrostatic solutions, since ∇⃗ × B⃗ = 0 ⇒ Bi = ∂iχ. For a static
point charge at the origin, then we have

Φ(x⃗) = ϕ + iχ = Q

r
, (3.1)

where ϕ and χ are the electrostatic and magnetostatic potential, respectively. Now, just
as was done for the Kerr solution in GR, we do a complex transformation on the radial
coordinate. We get

Φ(x⃗) = Q

r
→ Q√

(x⃗ − i⃗a)2 = ϕ + iχ. (3.2)

Here a⃗ is to be interpreted as the ring radius of the field, the radius at which there is a ring
singularity. From the above expression, we can compute the

√
Kerr electromagnetic field [58],

F⃗ = −∇⃗Φ = E⃗ + iB⃗ (3.3)

In the recent past, there have been investigations in understanding the Newman-Janis
algorithm in effective field theory (EFT). As shown in [65], the

√
Kerr field in EFT can be

thought of as being generated by a conserved current. The conserved current then defines a
classical

√
Kerr point particle with an infinite number of multipole moments described solely

in terms of its mass (m), charge (q) and spin (a) [66]. From the conserved current, we can
compute the gauge field created by this configuration [67],

Aµ(x) =
∫

d4x′ Gr(x, x′) Jµ(x′) =
∑
n≥0

Dµ
n(m, q, a) 1

rn
(3.4)

where Dµ
n(m, q, a) are the multipole moments. This is the electromagnetic analog of the Kerr

black hole, studied in [68]. Remarkably, this recent understanding of
√

Kerr field as a particle
can also be understood, within the EFT framework [65], as the classical limit of the three-point
amplitude of a massive spin-S particle interacting with a photon. We shall review this now.

Consider the three-point amplitude for a generic massive spin-S particle of mass m2
“minimally”5 coupled to a photon. In the massive spinor helicity formalism [69], the amplitude

5Here the term “minimally” means that the three-point amplitude is well behaved in the high energy
limit [69].
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is given by

A3[2S , 2′S , q+] = i
√

2Q2 x
⟨22′⟩2S

m2S−1
2

,

A3[2S , 2′S , q−] = i
√

2Q2x−1 [22′]2S

m2S−1
2

. (3.5)

Here the massive spinor helicity variables |2⟩ and |2′⟩ are defined w.r.t. incoming momentum
p2 and outgoing momentum p′2, respectively. The x−factor, which is a hallmark of a minimally
coupled amplitude is defined via the photon polarization: x = 1

m2
(ε+(q) · p2). We now take

the classical limit as described in the previous section. For the above amplitude, we replace
q = ℏq̄ and Q2 → Q2/

√
ℏ. From the three particle kinematics, 2p2 · q̄ = −ℏq̄2, keeping

the leading term in ℏ, we obtain

1
m2

⟨22′⟩ = I + 1
2Sm2

q̄ · s2 + O(ℏ) , (3.6)

where we have suppressed all the SU(2) indices. Here sµ
2 is the Pauli-Lubanski pseudovector

associated with the spin-S particle

sµ
2 = Sℏ

m2
⟨2|σµ|2] . (3.7)

It was shown in [1] that if we take S → ∞, ℏ → 0 such that Sℏ = constant, then the above
three-point amplitude exponentiates

A±
3,
√

Kerr = iQ2
√

2m2 x±1e±q̄·a2 ,

= A±
3,scalar e±q̄·a2 , (3.8)

where aµ
2 = sµ

2
m2

is the rescaled spin of the
√

Kerr particle. We note that the classical limit of
the massive spin-S particle has thus “spun” the three-point amplitude of a minimally coupled
scalar (in the classical limit). This exponentiation is the realization of the Newman-Janis
algorithm for three-point amplitudes, for scalars minimally coupled to the photon.

4 Spin dressing of the photon propagator

In this section, we interpret the exponentiation of the three-point amplitude, in eq. (3.8),
as a “spin dressing” of the photon propagator. This is motivated by the simple observation
that the three-point amplitude in eq. (3.8) can be written as

A±
3,
√

Kerr = iQ2m2 (ε±(q̄) · p2) e±q̄·a2 ,

= iQ2m2(ε′±(q̄, a2) · p2)
(4.1)

where ε′µ±(q̄, a2) = εµ±(q̄)e±a2·q̄. This was first observed in [59]. Building on this observation,
we move on to the construction of the four-point scattering amplitude involving a scalar particle
of charge Q1 and mass m1 and a

√
Kerr particle, mediated by photon. The incoming momenta

– 7 –
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q

2a2

2′a2

10

1′0

Figure 1. The four-point scalar-
√

Kerr amplitude with photon exchange. Here ‘a2’ denotes the
rescaled spin of the

√
Kerr particle.

for the particles are (p1, p2) and the outgoing momenta are (p1 + q, p2 − q). Diagramatically,
the four-point amplitude is represented in figure 1. The amplitude is then

A4
[
p1, p2 → p′1, p′2

]
= Aµ

3,
√

Kerr
[
p′2, p2, ℏq̄

] Pµν

ℏ2q̄2A
ν
3,scalar

[
p′1, p1,−ℏq̄

]
, (4.2)

where p′1 = p1 + ℏq̄, p′2 = p2 − ℏq̄ and Pµν := ∑
h=± εµ

h εν
−h. Using the three-point amplitudes

in eq. (3.8), we note that eq. (4.2) can be written as

A4
[
p1, p2 → p′1, p′2

]
= Aµ

3,scalar
[
p′2, p2, ℏq̄

] P̃µν(q̄)
ℏ2q̄2 Aν

3,scalar
[
p′1, p1, ℏq̄

]
, (4.3)

where Aµ
3,scalar is the three-point minimally coupled scalar amplitude. We now deform the

internal photon projector Pµν as follows

Pµν → P̃µν(q̄) := eq̄·a2εµ
+(q̄)εν

−(q̄) + e−q̄·a2εν
+(q̄)εµ

−(q̄)
= cosh(a2 · q̄)ηµν + sinh(a2 · q̄)Πµν(q̄) . (4.4)

Here we have used ε
(µ
+ ε

ν)
− = ηµν and define the anti-symmetric part of the projector as

Πµν(q̄) := ε
[µ
+ ε

ν]
−(q̄). Since the anti-symmetric part6 of the projector is ambiguous up to a

residual gauge, we shall choose an expression for Πµν(q̄) that can be used in the computation
of all the physical observables. We choose7

Πµν(q̄) = i

(a2 · q̄)ϵµνρσa2ρq̄σ , (4.5)

and substitute in equation eq. (4.3) to obtain the amplitude

A4,scalar−
√

Kerr = 4Q1Q2
ℏ2q̄2

[
(p1 · p2) cosh(q̄ · a2) + i

sinh(q̄ · a2)
(q̄ · a2) ϵ(p1, p2, a2, q̄)

]
, (4.6)

with ϵ(p1, p2, a2, q̄) := ϵµνρσpµ
1 pν

2aρ
2q̄σ. The amplitude depends on the external momenta of

the scattering particles as well as the (classical) spin vector aµ. It is related to the spin
6Usually the anti-symmetric part does not appear in the projector. In this case, we get it due to the helicity

dependence of the exponentiation of the massive spin-S amplitude in eq. (3.8).
7A similar construction of spin dressed photon propagator was obtained in [59].
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tensor Sµν via the dual relation, eq. (1.1). It is rather natural to interpret Sµν as the
independent spin tensor which can be thought of as an “intrinsic” spin angular momentum
of a classical particle. In this case

aµ
2 = aµ

2 (S2, p2) . (4.7)

We will denote the projection of Sµν
2 orthogonal to the time-like vector pµ

2 as S⊥µν
2 . Thus

we will interpret the spin pseudovector as a function of S⊥µν
2 and pµ

2 . We will not explicitly
indicate the dependence of aµ

2 on Sµν
2 except in section 6, when we derive the angular impulse.

Using the above amplitude, the linear impulse for the scalar particle is

∆pµ
1 = iQ1Q2

∫
d̂4q̄ δ̂(q̄ · p1) δ̂(q̄ · p2)eiq̄·b

q̄2 q̄µ

[
cosh(a2 · q̄) (p1 · p2) + i

sinh(a2 · q̄)
(a2 · q̄) ϵ(p1, p2, a2, q̄)

] (4.8)

Using the identities

q̄µ sinh w = iϵµνρσuν
1uρ

2q̄σ , sinh w =
√

γ2 − 1 , γ = (u1 · u2) , (4.9)

and rewriting the cosh(a2 · q̄) and sinh(a2 · q̄) terms as exponential functions, we obtain

∆pµ
1 = Q1Q2

2πγβ
Re

[
γ(b + iΠa2)µ − iϵµ(b + iΠa2, u1, u2)

(b + iΠa2)2

]
. (4.10)

This is the expression obtained in [1]. Hence, we see that the NJ algorithm, within the EFT
for a

√
Kerr particle, can also be interpreted as a deformation on the photon data rather

than on the impact parameter as shown in [1].

5 Radiation kernel to all order in spin

In this section, we use the spin-dressed photon propagator (4.4) to compute the leading
order radiative gauge field emitted by a scalar particle as it scatters in the background of a√

Kerr particle. The basic ingredient for computing the radiative field via KMOC formalism
is the inelastic five-point amplitude as shown in figure 2. We will only compute the radiation
emitted from the scalar particle using the NJ algorithm. It is straightforward to compute the
five-point amplitude when the photon is emitted from the scalar particle since, in this case, the
complexity due to the spin is completely contained within the three-point amplitude involving
the

√
Kerr particle. The other sub-amplitude needed to obtain the full amplitude is then the

ordinary scalar-Compton amplitude as indicated in figure 3. Following the construction of the
four-point massive amplitude in section 4, we use the deformed internal photon projector (4.4)

P̃µν(q̄2) = cosh(a2 · q̄2)ηµν + i
sinh(a2 · q̄2)

a2 · q̄2
ϵµνρσa2ρq̄2σ . (5.1)

to obtain the five-point amplitude as follows

Aδ
5 = 1

q2
2
Aµ

3,
√

KerrPµνAνδ
4,Scalar-Compton

= 1
q2

2
Aµ

3,ScalarP̃µνAνδ
4,Scalar-Compton . (5.2)
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Figure 2. The five-point amplitude appearing in the radiation kernel at leading order in coupling.

Here Aµ
3,Scalar and Aνδ

4,Scalar-Compton are the three-point massive scalar-photon and the scalar-
Compton amplitude in scalar QED. To derive the amplitude, we’ll be using the following
momentum convention

(p̄1, p̄2) → (p1, p2, k) , with p̄1 = p1 + q1 , p̄2 = p2 + q2 , k = (q1 + q2) , (5.3)

as indicated in figure 3. There are three scattering diagrams. We start with diagram I
in figure 3. It is given by

Aδ
5,I = 4Q2

1Q2
(2p2 + q2)µpν

1(p1 − q2)δ

q2
2[(p1 − q2)2 − m2

1]

[
cosh(a2 · q̄2)ηµν + i sinh(a2 · q̄2)

a2 · q̄2
ϵµνρσa2ρq̄2σ

]
= 4Q2

1Q2(p1 − q2)δ

q2
2[(p1 − q2)2 − m2

1]

[
cosh(a2 · q̄2)(2p1 · p2 + k · p1) + 2i

sinh(a2 · q̄2)
a2 · q̄2

ϵ(p2, p1, a2, q̄2)
]

.

(5.4)

Similarly, from diagram II, we obtain

Aδ
5,II = 4Q2

1Q2
q2

2(k · p1)pδ
1

[
cosh(a2 · q̄2)

(
p1 · p2 + k · p2 + k · p1

2 + k · q2
2

)
+ i sinh(a2 · q̄2)

a2 · q̄2
ϵ(p2, p1 + k, a2, q̄2)

]
. (5.5)

We use the usual Feynman rule for the scalar-photon four-point vertex in scalar QED theory
to obtain the contribution from diagram III in figure 3

Aδ
5,III = −2Q2

1Q2ηρδ 1
q2

2
(2p2 + q2)ν

[
cosh(a2 · q̄2)ηρν + i sinh(a2 · q̄2)

a2 · q̄2
ϵνρσαaσ

2 q̄α
2

]
,

= −4Q2
1Q2

1
q2

2

[
cosh(a2 · q̄2)

(
p2 + q2

2

)δ

− i sinh(a2 · q̄2)
a2 · q̄2

ϵδ(p2, a2, q̄2)
]

. (5.6)

Next, we scale the massless momentum qµ
2 as ℏq̄µ

2 and collect the terms of O(ℏ−2) needed
to compute the leading order radiation kernel. But unlike the four-point case, individual
diagrams in this tree-level amplitude contain superclassical terms. As expected, they cancel
after summing up all the diagrams. To see this first of all we rewrite the massive propagator
in diagram I as

[(p1 − q2)2 − m2
1]−1 = − 1

2ℏk̄ · p1

(
1 − ℏ

k̄ · q̄2

k̄ · p1

)−1

, (5.7)
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k
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2a2

2̄a2

1̄0

1̄0k

III

Figure 3. Diagrams contributing to the tree level five-particle amplitude with a photon emitted from
the scalar particle.

where we set k2 = 0 and p2 · q2 = − q2
2
2 . The second condition is due to one of the two

on-shell delta functions present in the radiation kernel. Expanding the contribution from
diagram I upto O(ℏ−2), we find

Aδ
5,I,O(ℏ−2) = 4Q2

1Q2

ℏ2q̄2
2(k̄ · p1)

[
cosh(a2 · q̄2)(p1 · p2) + i

sinh(a2 · q̄2)
a2 · q̄2

ϵ(p2, p1, a2, q̄2)
]

×
(

q̄δ
2 −

pδ
1(k̄ · q̄2)
k̄ · p1

)
− 2Q2

1Q2
ℏ2q̄2

2
cosh(a2 · q̄2)pδ

1 , (5.8)

and

Aδ
5,I,O(ℏ−3) = 4Q2

1Q2pδ
1

ℏ3q̄2
2(k̄ · p1)

[
(−p1 · p2) cosh(a2 · q̄2) − i

sinh(a2 · q̄2)
a2 · q̄2

ϵ(p2, p1, a2, q̄2)
]

(5.9)

Similarly, from diagram II, we get both O(ℏ−2) and O(ℏ−3) terms but the latter cancels
with the contribution from I.

Aδ
5,II,O(ℏ−2) = 4Q2

1Q2pδ
1

ℏ2q̄2
2(k̄ · p1)

[
cosh(a2 · q̄2)

(
k̄ · p2 + k̄ · p1

2

)
+ i

sinh(a2 · q̄2)
a2 · q̄2

ϵ(p2, k̄, a2, q̄2)
]

,

Aδ
5,II,O(ℏ−3) = 4Q2

1Q2pδ
1

ℏ3q̄2
2(k̄ · p1)

[
(p1 · p2) cosh(a2 · q̄2) + i

sinh(a2 · q̄2)
a2 · q̄2

ϵ(p2, p1, a2, q̄2)
]

(5.10)

The O(ℏ−2) terms from diagram III can be found trivially. We collect all the terms of
O(ℏ−2) below

Aδ
5,O(ℏ−2) = 4Q2

1Q2
ℏ2q̄2

2

m1m2

k̄ · p1

[
cosh(a2 · q̄2)

{
γq̄δ

2 − uδ
2(k̄ · u1) − pδ

1
k̄ · p1

(
γ(k̄ · q̄2)−(k̄ · u2)(k̄ · u1)

)}
+ i sinh(a2 · q̄2)

{
ϵδ(u2, u1, q̄2) − pδ

1
k̄ · p1

ϵ(k̄, u2, u1, q̄2)
}]

. (5.11)

Using the formula of eq. (2.14), we obtain the radiation kernel as

Rµ
1 (k̄, a2) = Q2

1Q2

∫
d̂4q̄δ̂[u1 · (q̄ − k̄)]δ̂(u2 · q̄)e−iq̄·b

q̄2
1

k̄ · p1
(5.12)

×
[

cosh(a2 · q̄){γq̄µ − uµ
2 (u1 · k̄)} + i sinh(a2 · q̄)ϵµ(u2, u1, q̄)

− pµ
1

k̄ · p1

{
cosh(a2 · q̄)

(
γ(k̄ · q̄) − (k̄ · u2)(u1 · k̄)

)
+ i sinh(a2 · q̄)ϵ(k̄, u2, u1, q̄)

}]
.
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This expression agrees with the result in (C.24), which is obtained using classical equations
of motion.

The radiation kernel for the scalar can also be implemented as a complex shift in the
impact parameter space, just as it was done for linear impulse in [1]. Consider the radiation
kernel for scalar-scalar scattering in electrodynamics

Rµ
1 (k̄) = Q2

1Q2

∫
d̂4q̄δ̂(u2 · q̄)δ̂[u1 · (q̄ − k̄)]e

−iq̄·b

q̄2
1

k̄ · u1

×
[
k̄α(u1 ∧ ∂u1)µα(u1 · u2) + (u1 · u2)

{
q̄µ − (k̄ · q̄)uµ

1
k̄ · u1

}]
. (5.13)

Inside this expression for the radiation kernel, we complexify b = b + ia2 and re-write the
expression as follows.

Rµ
1 (k̄, a2) = Q2

1Q2

∫
d̂4q̄δ̂(u2 · q̄)δ̂[u1 · (q̄ − k̄)] 1

q̄2(k̄ · u1)

×
[
kα(u1 ∧ ∂u1)µα(e−iq̄·b⋆

ew + e−iq̄·be−w)

+ (e−iq̄·b⋆
ew + e−iq̄·be−w)

{
q̄µ − (k̄ · q̄)uµ

1
k̄ · u1

}]
, (5.14)

with u1 · u2 = cosh w = γ. We can now factor out the overall e−iq̄·b in the second line

(e−iq̄·b⋆
ew + e−iq̄·be−w) = e−iq̄·b

[
γ cosh(q̄ · a2) −

√
γ2 − 1 sinh(q̄ · a2)

]
, (5.15)

where we use γ = cosh w and
√

γ2 − 1 = sinh w. We can now evaluate the derivatives with
respect to initial velocity u1,

(u1 ∧ ∂u1)µν
[
γ cosh(q̄ · a2) −

√
γ2 − 1 sinh(q̄ · a2)

]
= (u1 ∧ u2)µν

[
cosh(a2 · q̄) − 1

β
sinh(a2 · q̄)

]
, (5.16)

with sinh w = βγ. Using the following identity, consistent with the two on-shell delta function
constraints: u2 · q̄ = 0 and u1 · q̄ = k̄ · u1, we find that

q̄µ sinh w = k̄ · u1
sinh w

(γuµ
2 − uµ

1 ) + iϵµ(q̄, u1, u2) , (5.17)

and we recover the radiation kernel in scalar-
√

Kerr scattering when the photon is emitted
from the scalar particle in (5.12).

We note that to compute the total radiative flux (which includes the radiation emitted by
the

√
Kerr particle), we require the expression for the five-point amplitude where the incoming√

Kerr and scalar states are scattered into
√

Kerr, scalar and a photon. A diagrammatic
representation of this amplitude is in figure 4.

One avenue to compute the inelastic amplitude A5(
√

Kerr+scalar →
√

Kerr+scalar+γ)
is via an EFT computation of the Compton sub-amplitude which has been pursued extensively
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Figure 4. Diagrams contributing to the tree level five-point amplitude with a photon emitted from
the

√
Kerr particle.

in the literature recently [10, 59, 60, 70–91]. Hence a possible strategy to compute the leading
order radiation kernel in the present case would be to use the Compton sub-amplitude to
evaluate all the diagrams in figure 4.

However, a more natural route is to start with a gauge invariant bare Lagrangian of QED
with

√
Kerr charged matter and compute the five-point amplitude directly using the resulting

Feynman rules. Given that the three-point coupling of
√

Kerr with a photon is known, one
can in principle use gauge invariance to fix all the higher point couplings. In [59], it was
shown that just as in the case of scalars and fermions, a gauge-invariant Lagrangian which
describes the minimal coupling of a

√
Kerr particle with the electromagnetic field is simply

the scalar QED lagrangian in which the gauge covariant derivative is replaced by a twisted
covariant derivative, D

(a)
µ = ∂µ − ie exp {ϵν

µ(a, ∂)}Aν . It would be rather natural to simply
use this Lagrangian and compute the radiative field emitted during scalar−

√
Kerr scattering.

However as the author emphasizes in [59], such a Lagrangian is not consistent with all the
Compton amplitudes, and as a result, it is unclear how it would lead to the correct answer for
classical radiation. We stress that the computation of the complete radiation kernel emitted
during scalar−

√
Kerr scattering using the KMOC formalism has the potential to unravel the

full power of the NJ algorithm. This will be pursued elsewhere [92].

6 Leading order angular impulse

In this section, we use the NJ algorithm to compute the leading order angular impulse ∆Jµν

for the scalar and
√

Kerr particles. Angular impulse is an intriguing observable in D = 4
dimensions. Already for the scattering of scalar particles, it was shown in [93] that the net
angular impulse of the particles (in a 2 → 2 scattering) does not add up to zero even at
leading order in the coupling. The missing contribution is due to angular momentum stored
in the late-time Coloumbic modes. In [93] this contribution was called electromagnetic scoot.
We will denote the scoot as δµν

scalar-scoot, where the subscript indicates that the scoot has been
computed for the case of scalar-scalar scattering.

The NJ algorithm offers a powerful tool to compute angular impulse for the scalar-√
Kerr system. We will denote the angular impulse for the scalar particle as ∆Lµν

1 . It can be
computed to all orders in spin using the NJ algorithm and the final result is given in eq. (6.17).
The computation of total angular impulse (i.e. change in orbital angular momentum, ∆Lµν

2
plus the change in spin angular momentum, ∆S⊥µν

2 ) for the
√

Kerr particle can also be
done using the NJ algorithm. We will denote it as ∆Jµν

2 . As noted below eq. (4.7), for

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
8

the computation of the orbital angular impulse for the
√

Kerr particle, we take S⊥µν
2 as

the independent variable and take aµ
2 (S⊥

2 , p2).8 A result (in the integral form) for ∆Lµν
2

and ∆S⊥µν
2 appears in eq. (6.23) and (6.41), respectively. In principle, this completes the

computation of angular impulse for the scalar-
√

Kerr system to leading order in coupling.
To test our results, we compute the net angular impulse of the scattering particles and

subject it to the conservation law.
Based on [93] we deduce that to leading order in the coupling,

∆Lµν
1 + ∆Jµν

2 + δµν
scoot = 0 (6.1)

On general grounds, we expect that the entire contribution to the electromagnetic scoot is
independent of the spin of the particles as it simply arises due to the late-time Coloumbic
effects which do not depend on the spin,

δµν
scoot = δµν

scalar-scoot . (6.2)

We thus expect that

∆Lµν
1 + ∆Jµν

2 + δµν
scalar-scoot = 0 . (6.3)

We verify the conservation to next to leading (i.e. linear) order in Sµν
2 in a perturbative

expansion which is valid when |a2| ≪ |b|. As we will argue, verifying conservation for finite
spin |a2| ∼ |b| is rather subtle and will be pursued elsewhere [92].

We start with the computation of the orbital angular impulse for the scalar-
√

Kerr
scattering, to leading order in coupling.

6.1 Orbital angular impulse

The leading order orbital angular impulse in the KMOC formalism is given by

∆Lµν
i = ℏ2

4

∫
d̂4q̄1d̂4q̄2δ̂(p1 · q̄1)δ̂(p2 · q̄2)e−i(b·q̄2)

[(
p̃i ∧

∂

∂p̃i

)µν

+
(

pi ∧
∂

∂pi

)µν]
δ̂(4)(q̄1 + q̄2) A4(p1, p2 → p̃1, p̃2) , (6.4)

where pi’s are initial momenta and we denote the final momenta as p̃i = pi + ℏq̄i. Here
A4(p1, p2 → p̃1, p̃2) is the four-point scalar−

√
Kerr scattering amplitude given in (4.6). Since

we express the amplitude as a function of (pi, q̄i), we shall treat them as independent variables
and consider the transformation (pi, p̃i) → (p′i, q′i) and then set p′i = pi to obtain the correct
differential operator for the angular impulse. With

p′i = pi , q′i = p̃i − pi , (6.5)

we obtain the differential operators in new variables by treating pi = pi(p′i, q′i) and p̃i =
p̃i(p′i, q′i). We find

∂µ
pi

:= ∂

∂piµ
= ∂µ

p′i
− ∂µ

q′i
, ∂µ

p̃i
:= ∂

∂p̃iµ
= ∂µ

q′i
. (6.6)

8A moment of reflection reveals that for orbital angular impulse of
√

Kerr particle, the choice of aµ
2 versus

Sµν
2 as independent variable in A4 will produce inequivalent results as Lµν

2 = iℏ(p2 ∧ ∂p2 )µν .
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Using these transformations, we write the orbital angular impulse where we treat p′i = pi

and q′i as independent variables9

∆Lµν
i = ℏ2

4

∫
d̂4q̄1d̂4q̄2δ̂(p1 · q̄1)δ̂(p2 · q̄2)e−ib·q̄2 [(pi ∧ ∂pi)µν + (q̄i ∧ ∂q̄i)µν ]{

δ̂(4)(q̄1 + q̄2)A4(p1, p2 → p1 + ℏq̄1, p2 + ℏq̄2)
}

. (6.7)

6.1.1 Orbital angular impulse of the scalar particle

For the scalar particle, we do integration by parts on the second term in the first line in
eq. (6.7) and integrate over q̄2 to obtain

∆Lµν
1 = ∆Lµν

1,I + ∆Lµν
1,II , (6.8)

with

∆Lµν
1,I = ℏ2

4

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄)

(
p1 ∧

∂

∂p1

)µν

A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄)

∆Lµν
1,II = −ℏ2

4

∫
d̂4q̄eiq̄·b δ̂

′(p1 · q̄) δ̂(p2 · q̄)(q̄ ∧ p1)µν A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) . (6.9)

where A4 is given in eq. (4.6). As

∂

∂pµ
j

pα
i = δj

i δα
µ , ∂pµ

1
aα

2 = 0 ,

we will suppress the explicit dependence of aµ
2 on pµ

2 as in the radiation kernel derivation.
It is straightforward to evaluate the expression in ∆Lµν

1,I . Since p1 and q̄ are indepen-
dent, we get

∆Lµν
1,I = Q1Q2

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄)

× 1
q̄2

[
(p1 ∧ p2)µν cosh(a2 · q̄) + i

sinh(a2 · q̄)
(a2 · q̄) p

[µ
1 ϵν](p2, a2, q̄)

]
. (6.10)

Evaluation of ∆Lµν
1,II on the other hand needs a more careful analysis since it involves

derivative of the on-shell delta function. In order to simplify this, we shall decompose the
momentum q̄µ along p1,2 and in the transverse direction

q̄µ = α1pµ
1 + α2pµ

2 + q̄µ
⊥ , pi · q̄⊥ = 0 , (6.11)

where the coefficients are given by

α1 = 1
D

[(p1 · p2)x2 − m2
2x1] , α2 = 1

D
[(p1 · p2)x1 − m2

1x2] , (6.12)

with x1,2 := (p1,2 · q̄). Due to this change of variables, the measure transforms as follows

d̂4q̄ = 1√
D

d̂2q̄⊥dx1dx2 , D = (p1 · p2)2 − m2
1m2

2 . (6.13)

9We have for convenience replaced p′
i = pi and q′

i = qi from now on.
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In terms of x1,2 and q̄⊥ variables, we rewrite

∆Lµν
1,II = − Q1Q2√

D

∫
d̂2q̄⊥dx1δ̂′(x1)eiq̄⊥·b

q̄2 (q̄ ∧ p1)µν
{

(p1 · p2) cosh(a2 · q̄)

+ i
sinh(a2 · q̄)

(a2 · q̄) ϵ(p1, p2, a2, q̄)
}

, (6.14)

where we have done the x2 integral and used b · p1,2 = 0. Next, we perform an integration by
parts in x1. At this stage, we note that from eq. (6.11) we can write

q2 = α2
1p2

1 + α2
2p2

2 + q2
⊥ + 2α1α2(p1 · p2) (6.15)

Therefore any first order derivative of 1
q̄2 w.r.t. x1 or x2 vanishes due to the on-shell delta

function constraints: x1 = x2 = 0. Using ∂x1(a2 · q̄) = −m2
2

D (a2 · p1), we get

∆Lµν
1,II = Q1Q2√

D

∫
d̂2q̄⊥eiq̄⊥·b 1

q̄2
⊥

[
p1 · p2
D

(p2 ∧ p1)µν

×
{

(p1 · p2) cosh(a2 · q̄⊥) + i
sinh(a2 · q̄⊥)

(a2 · q̄⊥) ϵ(p1, p2, a2, q̄⊥)
}

+ m2
2

D
(a2 · p1)(p1 ∧ q̄⊥)µν {(p1 · p2) sinh(a2 · q̄⊥) + iYϵ(p1, p2, a2, q̄⊥)}

]
, (6.16)

where Y =
[

cosh (a2·q̄⊥)
(a2·q̄⊥) − sinh (a2·q̄⊥)

(a2·q̄⊥)2

]
. Summing the two expressions ∆Lµν

1,I and ∆Lµν
1,II , we

obtain the orbital angular impulse of the scalar particle

∆Lµν
1 = Q1Q2

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·b

q̄2

[
(p1 ∧ p2)µν cosh(a2 · q̄)

(
1 − (p1 · p2)2

D

)

+ i
sinh(a2 · q̄)

(a2 · q̄)

(
p

[µ
1 ϵν](p2, a2, q̄) + p1 · p2

D
ϵ(p1, p2, a2, q̄)(p2 ∧ p1)µν

)

+ m2
2

D
(a2 · p1)(p1 ∧ q̄)µν {(p1 · p2) sinh(a2 · q̄) + iYϵ(p1, p2, a2, q̄)}

]
. (6.17)

In appendix C.2 we have verified the result in classical theory.
We use the results of the integrals from appendix D and obtain the orbital angular

impulse as follows

∆Lµν
1 = Q1Q2

2π
√
D

Re
[

1
γ2β2 (p2 ∧ p1)µν

{(
1 +

∑
n=1

(−a2 · i∂b)2n

(2n)!

)
log |µ1b|

}

+
(

p
[µ
1 ϵν]σαβp2αa2β + p1 · p2

D
ϵρσαβp1ρp2αa2β(p2 ∧ p1)µν

)
Xσ

+ m2
2

D
(a2 · p1)

{
i(p1 ∧ (b + iΠa2))µν (p1 · p2)

(b + iΠa2)2 + ϵρσαβp1ρp2αa2β

(
p1∧

∂

∂a2

)µν

Xσ

}]
.

(6.18)
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Here we have defined

Xσ := bσ

b2 + i(b · a2) + i
(Πa2)σ

(Πa2)2

[ Πa2
Πa2 − ib

+ log
∣∣∣∣ b

b + iΠa2

∣∣∣∣] , (6.19)

where Πν
ρ is the projector into the plane orthogonal to both u1 and u2 [43],

Πν
ρ = δν

ρ + 1
γ2β2 [uν

1(u1ρ − γu2ρ) + uν
2(u2ρ − γu1ρ)] , (6.20)

with Πa2 =
√

Πa2 · Πa2 and b =
√
−b2. In eq. (6.18), µ1 is the infrared (IR) cut-off. Note

that the spin dependent terms in first line are not IR divergent as it involves derivative over
b and the scalar term contributes to the electromagnetic scoot.

The angular impulse for the scalar particle to linear order in spin written in terms
of S⊥µν

2 is

∆Lµν
1 = Q1Q2

2π
√
D

[ 1
β2γ2 (p2 ∧ p1)µν log |µ1b| + 1

b2

(
p

[µ
1 S

⊥ν]ρ
2 bρ + (p2 ∧ p1)µν (p1 · p2)

D
S⊥ρσ

2 p1ρbσ

)]
+ O(S⊥2

2 ) . (6.21)

6.1.2 Orbital angular impulse of the
√

Kerr particle

The integral expression for the leading order orbital angular impulse of
√

Kerr particle can
be written as,

∆Lµν
2 = ℏ2

4

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄)

[(
p2 ∧

∂

∂p2

)µν

− i(q̄ ∧ b)µν
]
A4(p1, p2 → p1+ ℏq̄, p2 −ℏq̄)

− ℏ2

4

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂′(p2 · q̄) (q̄ ∧ p2)µν A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄). (6.22)

We use the formula for linear impulse to rewrite the above integral as follows

∆Lµν
2 = −(b ∧ ∆p2)µν + ∆Lµν

2,I + ∆Lµν
2,II , (6.23)

where

∆Lµν
2,I = ℏ2

4

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄)

(
p2 ∧

∂

∂p2

)µν

A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) ,

∆Lµν
2,II = −ℏ2

4

∫
d̂4q̄eiq̄·b δ̂(p1 · q̄) δ̂

′(p2 · q̄) (q̄ ∧ p2)µν A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) .

∆pµ
2 = ℏ2

4

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄) eiq̄·b (−iq̄µ) A4(p1, p2 → p1 + ℏq̄, p2 − ℏq̄) (6.24)

The evaluation of ∆Lµν
2,I is rather subtle as for any function f(a2, q̄) we obtain terms involving

∂
∂pµ

2
f |a2(S⊥

2 , p2).

∂

∂pµ
2

f(a2, q̄) = − 1
2m2

2

∂f(a2, q̄)
∂aα

2
ϵµ

αρσS⊥
2ρσ , (6.25)

where we have used
∂aα

2
∂pµ

2
= 1

2m2
2
ϵαβρσS⊥

2ρσδµβ ,
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using the dual relation (1.1). The derivation of ∆Lµν
2,I (and hence ∆Lµν

2 ) (for |a2| ∼ |b|) will
be pursued elsewhere [92]. In this paper, we simply evaluate the orbital angular impulse
to linear order in S⊥µν

2 .
Using the dual relation (1.1), we obtain

∆Lµν
2 = Q1Q2

∫
d̂4q̄δ̂(q̄ · p1)δ̂(q̄ · p2)eiq̄·b 1

q̄2

[ 1
β2γ2 (p1 ∧ p2)µν − (b ∧ q̄)µν (S⊥ρσ

2 p1ρq̄σ)

+ i(p1 ∧ p2)µν (p1 · p2)
D

S⊥ρσ
2 p1ρq̄σ

]
= Q1Q2

2π
√
D

[ 1
β2γ2 (p1 ∧ p2)µν log |µ2b|

− 1
b2

(
b[µS

⊥ν]ρ
2 p1ρ − (p1 ∧ p2)µν (p1 · p2)

D
S⊥ρσ

2 p1ρbσ

)]
, (6.26)

where µ2 is the IR cutoff. This matches with the result obtained in classical theory given
in appendix C.3.

6.2 Spin angular impulse

The computation of the spin angular impulse ∆S⊥µν
2 is rather straightforward via the NJ

algorithm. Using the inverse of the dual relation in eq. (1.1),

S⊥µν = ϵµνρσpρaσ (6.27)

we obtain [94]

∆S⊥µν
2 = ϵµνρσ∆p2ρa2σ + ϵµνρσp2ρ∆a2σ , (6.28)

where ∆aµ
2 is known as the spin kick. We note that although S⊥µν

2 is the fundamental spin
degree of freedom, the NJ algorithm lets us directly compute the spin kick which can then be
used to deduce ∆S⊥µν

2 . Since the linear impulse doesn’t receive any radiative contribution at
leading order in the coupling, the expression for the linear impulse ∆pµ

2 is exactly opposite
to ∆pµ

1 , derived in section 4 and it is given by

∆pµ
2 = −iQ1Q2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2

[
γ cosh (a2 · q̄)q̄µ + i sinh(a2 · q̄)ϵµ(q̄, u1, u2)

]
,

(6.29)

where we rewrite the sinh(a2 · q̄) term using the identity

(a2 · q̄)ϵν(u1, u2, q̄) = q̄νϵ(u1, u2, a2, q̄) . (6.30)

We study the leading order spin kick using the following formula [43]

∆aµ
2 =

〈〈
iℏ2

4

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·b

{
[aµ

2 (p2),A4] + ℏ
m2

(a2 · q̄)uµ
2A4

}〉〉
. (6.31)

The commutator in the first term is defined in the SU(2) little group space. The SU(2) indices
are left implicit under the double angle bracket notation, explained in section 2. Note that,
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the formula (6.31) appears to be non-uniform in the order of ℏ, however, the commutator
term also includes an additional factor of ℏ and it is given by

[aµ
2,IK , aν

2,KJ ] = iℏ
m2

ϵµνρσu2ρa2σ,IJ , (6.32)

where we display the SU(2) indices (I, J, K). From hereafter, we shall drop the SU(2) indices
and the double angle bracket notation altogether. Using (6.32), we get

[aµ
2 , cosh(a2 · q̄)] = iℏ

m2
sinh (a2 · q̄)ϵµ(q̄, u2, a2) . (6.33)

Next we consider the following commutator[
aµ

2 ,
sinh(a2 · q̄)

(a2 · q̄) ϵ(u1, u2, a2, q̄)
]

= iℏ
m2

Yϵµ(q̄, u2, a2)ϵ(u1, u2, a2, q̄)

+ iℏ
m2

sinh (a2 · q̄)
(a2 · q̄) ϵµν(u2, a2)ϵν(u1, u2, q̄) . (6.34)

where we defined Y :=
(

cosh (a2·q̄)
(a2·q̄) − sinh (a2·q̄)

(a2·q̄)2

)
. Using eq. (A.5) it can be shown that,

(a2 · q̄)ϵν(u1, u2, q̄) = q̄νϵ(u1, u2, a2, q̄) , (6.35)

to get[
aµ

2 ,
sinh(a2 · q̄)

(a2 · q̄) ϵ(u1, u2, a2, q̄)
]

= iℏ
m2

cosh (a2 · q̄)
(a2 · q̄) ϵµ(q̄, u2, a2)ϵ(u1, u2, a2, q̄) . (6.36)

Next, we use the identity

ϵµ(q̄, u2, a2)ϵ(u1, u2, a2, q̄) = (a2 · q̄) [(a2 · q̄)(uµ
1 − γuµ

2 ) − q̄µ(a2 · u1)] , (6.37)

where we have set (a2 · u2) = 0 = (u1,2 · q̄) and (u1 · u2) = γ, to finally get[
aµ

2 ,
sinh(a2 · q̄)

(a2 · q̄) ϵ(u1, u2, a2, q̄)
]

= iℏ
m2

cosh (a2 · q̄)[−γuµ
2 (a2 · q̄) + uµ

1 (a2 · q̄) − q̄µ(a2 · u1)] .

(6.38)

Substituting various commutator expressions, we obtain the leading order spin kick as

∆aµ
2 = iQ1Q2

m2

∫
d̂4q̄

1
q̄2 δ̂(u1 · q̄)δ̂(u2 · q̄)eiq̄·b

{
cosh (a2 · q̄)[uµ

1 (a2 · q̄) − q̄µ(a2 · u1)]

− i sinh (a2 · q̄)ϵµ(u1, a2, q̄)
}

, (6.39)

where we make use of the identity

uµ
2 ϵ(u1, u2, a2, q̄) = γϵµ(u2, a2, q̄) − ϵµ(u1, a2, q̄) . (6.40)

This matches with the spin kick obtained in [65] using classical equations of motion. Plugging
these expressions into (6.28), we obtain the following expression for spin angular impulse

∆S⊥µν
2 = − Q1Q2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2

[
cosh (a2 · q̄)

{
iu

[µ
1 ϵν](q̄, u2, a2)

− iq̄[µϵν](u1, u2, a2)
}

+ sinh(a2 · q̄)
{

u
[µ
2 u

ν]
1 (a2 · q̄) − u

[µ
2 q̄ν](a2 · u1) + γa

[µ
2 q̄ν]

}]
.

(6.41)
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Using the integral results, we get

∆S⊥µν
2 = Q1Q2

2πγβ
Re
[ 1

(b + iΠa2)2

{
b[µϵν](u1, u2, a2) − u

[µ
1 ϵν](u2, a2, b) + u

[µ
2 u

ν]
1 a2

2

+ 1
γ2β2 u

[µ
2 a

ν]
2 (a2 · u1) + (a2 · u1)

γβ2 a
[µ
2 u

ν]
1

+ i

(
a

[µ
2 ϵν](u1, u2, a2) − (a2 · u1)

γβ2 u
[µ
2 ϵν](u1, u2, a2)

− u
[µ
2 u

ν]
1 (a2 · b) + u

[µ
2 bν](a2 · u1) + γa

[µ
2 bν]

)}]
. (6.42)

It can be verified that the r.h.s. of eq. (6.42) is ∆S⊥µν
2 as it satisfies the SSC constraint

to leading order in the coupling.

∆S⊥µν
2 p2ν + S⊥µν

2 ∆p2ν = 0 . (6.43)

At linear order in S⊥µν
2 , the spin angular impulse can be evaluated.

∆S⊥µν
2 = −iQ1Q2

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)eiq̄·b 1

q̄2

[
p

[µ
1 S

⊥ν]σ
2 q̄σ − q̄[µS

⊥ν]σ
2 p1σ

]
+ O(S⊥2

2 ) (6.44)

∆S⊥µν
2 = Q1Q2

2π
√
D b2

(
b[µS⊥ν]αp1α − p

[µ
1 S⊥ν]αbα

)
. (6.45)

This expression is in agreement with the result of [60], which was derived using the classical
equations of motion.

We now have all the expressions to compute the total angular impulse, ∆Jµν in
eq. (6.1) for the scalar-

√
Kerr scattering to linear order in spin. This is given by the

sum of eqs. (6.21), (6.26) and (6.44). We obtain the following result

∆Jµν = Q1Q2

2π
√
D

1
β2γ2 (p1 ∧ p2)µν log

∣∣∣µ2
µ1

∣∣∣+ δµν
scalar-scoot = 0 , (6.46)

where

δµν
scalar-scoot = − Q1Q2

2π
√
D

1
β2γ2 (p1 ∧ p2)µν log

∣∣∣τ1
τ2

∣∣∣ . (6.47)

The IR cutoffs are related to the proper times of the two particles via µ2
µ1

= τ1
τ2

[20, 95]. Hence,
the total angular momentum for scalar-

√
Kerr scattering is conserved, to linear order in spin.

The study of conservation of angular momentum to all orders in spin is under investigation [92].

7 Discussion

Building upon the synthesis of the Newman-Janis (NJ) algorithm with the KMOC formalism
in [1], in this work, we have used the NJ algorithm to compute classical observables beyond
the linear impulse for electromagnetic scattering involving

√
Kerr particles. As is well known,

the real power of the NJ algorithm lies in all orders in spin results for classical observables.
We hope that by combining the on-shell methods along with the NJ algorithm one can
build “loop integrands” associated with the scattering of

√
Kerr particles such that our
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analysis can be extended beyond leading order in the coupling. For some early attempts
in this direction, see [28].

Our main idea is to simply re-interpret the three-point coupling involving
√

Kerr as a
“spin dressing” of the photon polarisation data while computing higher point amplitudes. Our
work shows that the resulting “spin-dressed” photon propagator is particularly useful for
constructing the five-point amplitude where the photon is emitted from the external scalar
state. We used this five-point amplitude to derive the radiation emitted by the scalar to all
orders in the spin and found perfect agreement with its calculation using equations of motion.

We then used the four-point amplitude computed using the spin-dressed photon prop-
agator to compute the angular impulse of the scalar as well as

√
Kerr particles. Here we

encountered a subtlety. We used the spin tensor Sµν
2 instead of the spin-vector aµ

2 as the
fundamental spin degree of freedom. With this choice, we found that the result for the
angular impulse of the

√
Kerr particle is consistent with the angular momentum conservation.

As explained in section 6 the reason for this choice becomes evident if one recalls that the
calculation of the angular impulse via the KMOC formalism involves the expectation value of
differential operators acting on amplitudes. Choosing the spin to be parametrized by either
a2 or S2 leads to different results as a consequence. To leading order in S2 (valid as long
as |a2| ≪ |b|) we have checked that our results are consistent with [60].

Using the NJ algorithm, we also calculated the leading-order orbital angular impulse
of a scalar particle to all order in the spin of the

√
Kerr particle. In addition we gave a

closed form expression for the total angular impulse of the
√

Kerr particle to leading order in
spin. An all-order-in spin evaluation of the total angular momentum of the

√
Kerr particle

is beyond the scope of this paper and will be pursued in [92].
Our broader goal is to compute classical gravitational observables for the Kerr black hole.

In this context, the double copy will be an important tool [96]. For conservative observables
(at leading order in coupling), the double copy of the three-point amplitudes is the only
ingredient that is needed. It has been observed in [69] that the three-point amplitude for
a massive spin-S minimally coupled to gravity can be obtained by simply squaring the ‘x’
factors in eq. (3.5). Using this in [1], the 1PM linear impulse for the scalar-Kerr system
was obtained. It will be interesting to use this double copy to study the angular impulse
for the same system and check the conservation of angular momentum. However, to study
radiation from gravitational scattering involving Kerr black holes, we need the double copy
of the non-abelian counterpart of the

√
Kerr solution. Since we do not have a consistent bare

Lagrangian for the latter we leave the question of computing gravitational radiation for Kerr
black holes from amplitudes, to future work. In the meantime, it might be instructive to study
gravitational radiation from Kerr black holes directly using the equations of motion derived
in [87]. However, recently the waveform for the scattering of a Kerr1-Kerr2 black hole system
has been computed in both the perturbative spin parameter to O(a4), the highest order to
which the answer is unambiguous [97]. The case of a Schwarzschild black hole scattering with
a Kerr black hole has also been studied in [86] and the waveform has been computed for the
Schwarzschild black hole to all orders in spin and for the Kerr black hole to O(a4). The former
case is the gravitational analogue of the radiative gauge field in eq. (5.12). Additionally, the
waveform for this system has also been computed to NLO in [98] to linear order in spin.
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Finally, it is also important to note that in [99], the waveform for the Kerr1-Kerr2 system has
been computed to all orders in spin for both the black holes. These result will be interesting
to compare with, once we have a result from our NJ perspective.
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A Conventions

Throughout the paper, we will use the metric signature as (+,−,−,−), unless otherwise stated.
So, the on-shell condition is p2 = m2. Since the impact parameter is spacelike we have −b2 > 0.
We will use ϵ0123 = +1. The rescaled delta functions appearing in section 2 are defined as

δ̂(p · q) := 2πδ(p · q), δ̂(4)(p + q) := (2π)4δ(4)(p + q). (A.1)

where pµ and qµ are generic four vectors. We also absorb the 2π factor in the measure d4q

and define the rescaled the rescaled measure as

d̂4q := d4q

(2π)4 . (A.2)

The anti-symmetric bracket in all the expressions are defined as

(A ∧ B)µν = A[µBν] = AµBν − BµAν . (A.3)

We use the following compact notations in the main text for convenience

ϵµν(A, B) = ϵµναβAαBβ

ϵµ(A, B, C) = ϵµναβAνBαCβ

ϵ(A, B, C, D) = ϵµναβAµBνCαDβ , (A.4)

where (Aµ, Bµ, Cµ, Dµ) are generic 4-vectors. The following identity is used throughout
this paper.

A[µϵν](B, C, D) = −(A · B)ϵµν(C, D) − (A · C)ϵµν(D, B) − (A.D)ϵµν(B, C) . (A.5)
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B Orbital angular impulse in KMOC formalism

In this appendix, we derive the expression for the change in the orbital angular momentum
in the KMOC formalism, given in eq. (2.8). The change in the angular momentum of the
particles can be defined analogous to the linear impulse

∆Lµν
i = i ⟨Ψ| [Lµν

i ,T] |Ψ⟩ + ⟨Ψ|T†[Lµν
i ,T] |Ψ⟩ . (B.1)

We are interested only in the leading order term and hence, we concentrate only on the first
term. Plugging in the expression for the initial state in eq. (2.1), we get

∆Lµν
i = i

∫ 2∏
i=1

dΦ(ri)dΦ(pi) e−ir2·b/ℏeip2·b/ℏ ϕ∗(ri)ϕ(pi)

(⟨r⃗1, r⃗2|Lµν
i T |p⃗1, p⃗2⟩ − ⟨r⃗1, r⃗2|TLµν

i |p⃗1, p⃗2⟩) .

(B.2)

Here we have suppressed the little group indices ai. Now, we use

⟨r⃗1, r⃗2|TLµν
i |p⃗1, p⃗2⟩ := iℏ

(
pi ∧

∂

∂pi

)µν

⟨r⃗1, r⃗2|T |p⃗1, p⃗2⟩ , (B.3)

to write the first term in terms of the differential operator, we use the hermiticity of the
orbital angular momentum operator i.e.

⟨r⃗1, r⃗2|Lµν
i T |p⃗1, p⃗2⟩ =

(
⟨p⃗1, p⃗2|T†Lµν

i |r⃗1, r⃗2⟩
)† (B.4)

= −iℏ
(

ri ∧
∂

∂ri

)µν

(⟨p⃗1, p⃗2|T† |r⃗1, r⃗2⟩)† (B.5)

= −iℏ
(

ri ∧
∂

∂ri

)µν

⟨r⃗1, r⃗2|T |p⃗1, p⃗2⟩ (B.6)

Plugging the last equation and eq. (B.3) into eq. (B.2), we get

∆Lµν
i = ℏ

∫ 2∏
i=1

dΦ(ri)dΦ(pi) e−ir2·b/ℏeip2·b/ℏ ϕ∗(ri)ϕ(pi)[(
pi ∧

∂

∂pi

)µν

+
(

ri ∧
∂

∂ri

)µν]
⟨r⃗1, r⃗2|T |p⃗1, p⃗2⟩

(B.7)

By relabelling from ri = pi + qi, we get

⟨∆Lµν
i ⟩ = ℏ

∫ 2∏
i=1

d̂4qi δ̂(2pi · qi + q2
i ) e−iq2·b/ℏ

((
pi ∧

∂

∂pi

)µν

+
(

(pi + qi) ∧
∂

∂(pi + qi)

)µν)
A4(p1, p2 → p1 + q1, p2 + q2)

(B.8)

where ⟨∆Lµν
i ⟩ denotes the integration over the wave functions. This is the same expression

in eq. (2.8), where we have substituted the defnition of the 4-point scattering amplitude

A4(p1, p2 → p1 + q1, p2 + q2) := ⟨p⃗1 + q⃗1, p⃗2 + q⃗2|T |p⃗1, p⃗2⟩ . (B.9)
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C Classical calculations

In this appendix, we present the classical calculations of angular impulse and the radiation
kernel for scalar in scalar-

√
Kerr scattering to leading order in coupling.

C.1 Equations of motion

We present all the equations of motion that will be used to derive the physical observables
discussed in the main text. The equation of motion for the scalar particle in scalar-

√
Kerr

scattering [65] is

dpµ
1

dτ
= Q1ReF µν

2,+(x + ia2)u1ν , (C.1)

where F µν
+ (x + ia2) is the self-dual part of the electromagnetic field strength of the

√
Kerr

particle. The self dual and anti-self dual field strengths are defined w.r.t. to Minkowski
metric as follows

F µν
± (x + ia2) = F µν ± i

2ϵµνρσFρσ . (C.2)

Note that, the self dual and anti-self dual fields are related to each other via complex
conjugation10

F−
µν(x − ia) =

[
F +

µν(x + ia)
]†

. (C.4)

Therefore we can rewrite the real part of the self dual field strength as

2ReF µν
2,+(x1 + ia2) = F µν

+ (x1 + ia2) + F µν
− (x1 − ia2) (C.5)

We then use the definition (C.2) to express the equation of motion as follows

dpµ
1

dτ
= Q1

[
cos(a2 · ∂)F µν(x) − 1

2ϵµνρσ sin(a2 · ∂)Fρσ(x)
]

u1ν . (C.6)

Note that, the field strength appearing here is due to a charged scalar particle! We now use
the following expression for the field strength in momentum space

F µν
2 (q̄) = (iQ2)e−iq̄·bδ̂(u2 · q̄) 1

q̄2 (q̄µuν
2 − q̄νuµ

2 ) , (C.7)

to substitute in (C.6) to obtain an expression for ṗµ
1 to all order in spin aµ

2

ṗµ
1 (τ) = iQ1Q2

∫
d̂4q̄δ̂(u2 · q̄)e−iq̄·x(τ) e−iq̄·b

q̄2

[
cosh(a2 · q̄){γq̄µ − uµ

2 (u1 · q̄)}

+ i sinh(a2 · q̄)ϵµνρσu1ν q̄ρu2σ

]
. (C.8)

10We assume that (for all cn be real)

Fµν(x ± ia) =
∑

n

cn(x ± ia)n ⇒ [Fµν(x ± ia)]† = Fµν(x ∓ ia) . (C.3)
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C.2 Orbital angular impulse for the scalar particle

Classically, the orbital angular impulse is defined as
dLµν

dτ
= (x ∧ ṗ)µν , (C.9)

where pµ = mẋµ. Now using the parametrization of the classical trajectory of particle 1
xµ

1 (τ) = uµ
1 τ , the orbital angular momentum impulse to leading order in coupling is

dLµν
1

dτ
= τ(u1 ∧ ṗ1)µν . (C.10)

We use the following identity from appendix A.5:

(a2 · q̄)ϵµ(p1, p2, q̄) = q̄µϵ(p1, p2, a2, q̄) − (p1 · q̄)ϵµ(a2, q̄, p2) , (C.11)

to rewrite (C.8) as follows

ṗµ
1 (τ) = iQ1Q2

m1

∫
d̂4q̄δ̂(p2 · q̄)e+iq̄·b

q̄2 e
−i(q̄·p1) τ

m1

[
cosh(a2 · q̄){(p1 · p2)q̄µ − (p1 · q̄)pµ

2}

+ i
sinh(a2 · q̄)

a2 · q̄
{(q̄ · p1)ϵµ(a2, p2, q̄) + q̄µϵ(a2, q̄, p1, p2)}

]
, (C.12)

to derive the LO expression for the orbital angular impulse for the scalar particle

∆Lµν
1 = iQ1Q2

m1

∫
dτ d̂4q̄δ̂(p2 · q̄)e+iq̄·b

q̄2

(
i∂p1·q̄e

−i(q̄·p1) τ
m1
) [

cosh(a2 · q̄){(p1 · p2)(p1 ∧ q̄)µν

− (p1 · q̄)(p1 ∧ p2)µν}

+ i
sinh(a2 · q̄)

a2 · q̄
{(q̄ · p1)p[µ

1 ϵν](a2, p2, q̄) + (p1 ∧ q̄)µνϵ(a2, q̄, p1, p2)}
]

. (C.13)

Here we need the derivative w.r.t. u1 · q̄ due to the factor of τ in (C.10). Now in the classical
computation, we shall replace

q̄µ = α1pµ
1 + α2pµ

2 + q̄µ
⊥ , (C.14)

where the coefficients are given in equation (6.11). Again, we can do the x2 = p2 · q̄ integral
in the above integral and write

∆Lµν
1 = − Q1Q2

m1
√
D

∫
dτd2q̄⊥dx1

e+iq̄⊥·b

q̄2

(
∂x1e

−i
x1τ

m1

)[
cosh(a2 · q̄){(p1 · p2)(p1 ∧ q̄)µν

− (p1 · q̄)(p1 ∧ p2)µν} + i
sinh(a2 · q̄)

a2 · q̄
{x1p

[µ
1 ϵν](a2, p2, q̄) + (p1 ∧ q̄)µνϵ(a2, q̄, p1, p2)}

]
,

(C.15)

where x1 = p1 · q̄. Integrating by parts in x1 variable and then completing the τ integral,
we obtain

∆Lµν
1 = Q1Q2√

D

∫
d2q̄⊥dx1δ̂(x1)eiq̄⊥·b

q̄2
⊥

[ 1
β2γ2 cosh(a2 · q̄)(p1 ∧ p2)µν

− i
sinh(a2 · q̄)

a2 · q̄

{
p

[µ
1 S

ν]σ
2 q̄σ + p1 · p2

D
(p2 ∧ p1)µνS⊥ρσ

2 p1ρq̄⊥σ

}
− m2

2(a2 · p1)
D

[
sinh(a2 · q̄)(p1 · p2) + iYS⊥ρσ

2 p1ρq̄⊥σ

]
(p1 ∧ q̄⊥)µν

]
(C.16)
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To linear order in spin, we find

∆Lµν
1,O(S2) = − iQ1Q2√

D

∫
d2q̄⊥

e+iq̄⊥·b

q̄2
⊥

{
p

[µ
1 S

ν]σ
2 q̄σ + p1 · p2

D
(p2 ∧ p1)µνS⊥ρσ

2 p1ρq̄⊥σ

}
(C.17)

C.3 Angular impulse for
√

Kerr particle

The orbital angular impulse for the
√

Kerr particle is given by

∆Lµν
2 = (b ∧ ∆p2)µν +

∫
dττ(u2 ∧ ṗ2)µν = (b ∧ ∆p2)µν + Iµν . (C.18)

Using the equation of motion for the
√

Kerr particle to linear order in spin

ṗρ
2 = Q1F ρσ

1 p2σ − Q1
2 S⊥µc

2 ∂ρF1,µc , (C.19)

we obtain the following integral expression for ṗ2ρ

ṗ2ρ = − iQ1Q2
m2

∫
d̂4q̄eiq̄·be

i(p2·q̄) τ
m2

δ̂(p1 · q̄)
q̄2

[
(p1 · p2)q̄ρ − (p2 · q̄)p1ρ + iq̄ρS⊥ρσ

2 p1ρq̄σ

]
. (C.20)

We use this expression in (C.18) to obtain

Iµν = − Q1Q2
m2

∫
d̂4q̄dτeiq̄·b ∂

∂(p2 · q̄)
(
e

i(p2·q̄) τ
m2
)

× δ̂(p1 · q̄)
q̄2

[
(p1 · p2)(p2 ∧ q̄)µν − (p2 · q̄)(p2 ∧ p1)µν + i(p2 ∧ q̄)µνS⊥ρσ

2 p1ρq̄σ

]
. (C.21)

Again, in order to evaluate this integral we use the decomposition in (C.14) and following
similar steps as we did in evaluating ∆Lµν

1 . Finally, we expand ∆pµ
2 to O(S2) and get the

orbital angular impulse as

∆Lµν
2 = Q1Q2√

D

∫
d̂2q̄⊥eiq̄⊥·b 1

q̄2
⊥

[ 1
β2γ2 + i

(p1 · p2)
D

S⊥ρσ
2 p1ρq̄⊥σ

]
(p2 ∧ p1)µν

− i
Q1Q2√

D

∫
d̂2q̄⊥eiq̄⊥·b 1

q̄2
⊥

(b ∧ q̄⊥)µν
[
(p1 · p2) + iS⊥ρσ

2 p1ρq̄⊥σ

]
. (C.22)

C.4 Radiation from the scalar particle

The classical current from particle 1 in momentum space is given by

Jµ
1 (x) = Q1

∫
dτ1eik̄·x1(τ1) i

k̄ · p1

[
ṗµ

1 − k̄ · ṗ1

k̄ · p1
pµ

1

]
. (C.23)

Using the expression in (C.8), we obtain the current to all order in spin

Jµ
1 (k̄, a2) = Q2

1Q2

∫
d̂4q̄δ̂(u1 · q̄ − u1 · k̄)δ̂(u2 · q̄)e−iq̄·b

q̄2
1

k̄ · p1
(C.24)

×
[

cosh(a2 · q̄){γq̄µ − uµ
2 (u1 · q̄)} + i sinh(a2 · q̄)ϵµνρσu1ν q̄ρu2σ

− pµ
1

k̄ · p1

{
cosh(a2 · q̄)

(
γ(k̄ · q̄) − (k̄ · u2)(u1 · q̄)

)
+ i sinh(a2 · q̄)ϵ(k̄, u1, q̄, u2)

}]
.
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We now take a soft limit of the current and show that, on comparing with the classical
sub-leading soft factor, it reproduces the angular impulse for the scalar particle. We use
the following identity from appendix A.5:

(a2 · q̄)ϵµ(u1, u2, q̄) = q̄µϵ(u1, u2, a2, q̄) − (u1 · k̄)ϵµ(a2, q̄, u2) . (C.25)

The classical current is then rewritten as

Jµ
1 (k̄, a2) = Q2

1Q2

∫
d̂4q̄δ̂[u1 · (q̄ − k̄)]δ̂(u2 · q̄)e−iq̄·b

q̄2
1

k̄ · p1

×
[

cosh(a2 · q̄)
{

γq̄µ − uµ
2 (u1 · k̄) − pµ

1
p1 · k̄

(
γ(k̄ · q̄) − (k̄ · u2)(k̄ · u1)

)}
− i

sinh(a2 · q̄)
a2 · q̄

{
q̄µϵ(u1, u2, a2, q̄) − (u1 · k̄)ϵµ(a2, q̄, u2)

− pµ
1

k̄ · p1

(
(q̄ · k̄)ϵ(u1, u2, a2, q̄) − (u1 · k̄)ϵ(k̄, a2, q̄, u2)

)}]
. (C.26)

Next, we do a soft expansion in k̄ where kµ = ω(1, n̂). We expand the delta function
as follows

δ̂(p1 · q̄ − p1 · k̄) = δ̂(p1 · q̄) − (p1 · k̄)δ̂′(p1 · q̄) + O(k̄2) , (C.27)

and write the sub-leading soft terms of the classical current as follows

Jµ
1 (k̄, a2)|O(ω0) = Q2

1Q2

∫
d̂4q̄δ̂(p1 · q̄)δ̂(p2 · q̄)e−iq̄·b

q̄2

[
cosh(a2 · q̄)

{
− pµ

2 + pµ
1

(k̄ · p2)
(k̄ · p1)

}
− i

sinh(a2 · q̄)
a2 · q

{
− ϵµ(a2, q̄, p2) + pµ

1
(k̄ · p1)

ϵ(k̄, a2, q̄, p2)
}]

− Q2
1Q2

∫
d̂4q̄δ̂′(p1 · q̄)δ̂(p2 · q̄)e−iq̄·b

q̄2

[
cosh(a2 · q̄)(p1 · p2)

{
q̄µ− pµ

1
p1 · k̄

(k̄ · q̄)
}

− i
sinh(a2 · q̄)

a2 · q̄

{
q̄µϵ(p1, p2, a2, q̄) − pµ

1
k̄ · p1

(q̄ · k̄)ϵ(p1, p2, a2, q̄)
}]

. (C.28)

Comparing with the classical sub-leading soft factor [100],

S
(1)µ
1 = Q1

[
∆Jµν

1 k̄ν

(p1 · k̄)
− (∆p1 · k̄)

(p1 · k̄)2 Jµν
−1k̄ν

]
, (C.29)

where ∆pµ
1 is the LO linear impulse of the scalar particle, ∆Jµν

1 is the LO total angular
impulse of the scalar particle and Jµν

−1 is the initial angular momentum tensor, we obtain

∆Jµν
1 = Q1Q2

∫
d̂4q̄e−iq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄) 1

q̄2

[
(p1∧ p2)µν cosh(a2 · q̄) − i

sinh (a2 · q̄)
(a2 · q̄) p

[µ
1 S

⊥ν]σ
2 q̄σ

]
− Q1Q2

∫
d̂4q̄e−iq̄·bδ̂′(p1 · q̄)δ̂(p2 · q̄) 1

q̄2 (q̄ ∧ p1)µν
[

cosh (a2 · q̄)(p1 · p2)

− i
sinh (a2 · q̄)

(a2 · q̄) S⊥ρσ
2 p1ρq̄σ

]
. (C.30)
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Replacing q̄ → −q̄, we get

∆Jµν
1 = Q1Q2

∫
d̂4q̄eiq̄·bδ̂(p1 · q̄)δ̂(p2 · q̄) 1

q̄2

[
(p1 ∧ p2)µν cosh(a2 · q̄) + i

sinh (a2 · q̄)
(a2 · q̄) p

[µ
1 S

⊥ν]σ
2 q̄σ

]
− Q1Q2

∫
d̂4q̄eiq̄·bδ̂′(p1 · q̄)δ̂(p2 · q̄) 1

q̄2 (q̄ ∧ p1)µν
[

cosh (a2 · q̄)(p1 · p2)

+ i
sinh (a2 · q̄)

(a2 · q̄) S⊥ρσ
2 p1ρq̄σ

]
, (C.31)

which matches with the computation of angular impulse of the scalar particle of eq. (6.9).
Here Jµν

−1 = (b1 ∧ p1)µν = 0 in our setup as b1 = 0, b2 = b.

D Evaluation of integrals

In this appendix, we perform the integrals required to calculate the angular impulse for the
scalar−

√
Kerr scattering. To obtain an expression for ∆Lµν

1 from eq. (6.17), we need to
evaluate a series of integrals which are discussed below.

• We start with the following integral

I1 =
∫

d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2 cosh(a2 · q)

=
∫

d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2

(
1 +

∑
n=1

(a2 · q)2n

(2n)!

)

= 1
2πγβ

[
1 +

∑
n=1

(−a2 · i∂b)2n

(2n)!

]
log |µb| , (D.1)

where µ is the infrared (IR) cutoff. Note that the spin dependent terms are not IR
divergent as it involves derivative over b.

• Next, we consider

I2,σ = i

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2
sinh (a2 · q)

(a2 · q) qσ

= i

2

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2

∫ 1

0
dλ
(
eλ(a2·q) + e−λ(a2·q)

)
qσ

= Re
∫

d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)
∫ 1

0
dλeiq̄·(b+iλa2) i

q̄2 qσ

= 1
2πγβ

Re
∫ 1

0
dλ

(b + iλΠa2)σ

b2 + 2iλ(b · Πa2) − λ2(Πa2)2 . (D.2)

Now we do the λ integral as follows∫ 1

0
dλ

(b + iλΠa2)σ

b2 + 2iλ(b · Πa2) − λ2(Πa2)2

= bσ

∫ 1

0

dλ

b2 + 2iλ(b · Πa2) − λ2(Πa2)2 + i(Πa2)σ

∫ 1

0

λdλ

b2 + 2iλ(b · Πa2) − λ2(Πa2)2

= bσ

(b2 + i(b · Πa2)) + i
(Πa2)σ

(Πa2)2

( Πa2
Πa2 − ib

+ log
∣∣∣∣ b

b + iΠa2

∣∣∣∣) . (D.3)
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Therefore, we get

I2,σ = 1
2πγβ

Re
[

bσ

(b2 + i(b · Πa2)) + i
(Πa2)σ

(Πa2)2

( Πa2
Πa2 − ib

+ log
∣∣∣∣ b

b + iΠa2

∣∣∣∣)] . (D.4)

• We consider the integral

Iα
3 =

∫
d̂4qeiq·bδ̂(u1 · q)δ̂(u2 · q) 1

q2 sinh(a2 · q)qα

= 1
2

∫
d̂4qeiq·bδ̂(u1 · q)δ̂(u2 · q) 1

q2 qα
(
e(a2·q) − e−(a2·q)

)
= 1

2πγβ
Re

[
i(b + iΠa2)α

(b + iΠa2)2

]
. (D.5)

• Lastly, we evaluate the integral

Iαβ
4 = i

∫
d̂4qeiq·bδ̂(u1 · q)δ̂(u2 · q) 1

q2Yqαqβ

= i

∫
d̂4qeiq·bδ̂(u1 · q)δ̂(u2 · q) 1

q2

(cosh (a2 · q)
(a2 · q) − sinh (a2 · q)

(a2 · q)2

)
qαqβ

= i
∂

∂a2α

∫
d̂4qeiq·bδ̂(u1 · q)δ̂(u2 · q) 1

q2
sinh (a2 · q)

(a2 · q) qβ . (D.6)

Using the result for I2,σ in (D.4), we find

Iαβ
4 = 1

2πγβ

∂

∂a2α
Re
[

bβ

(b2 + i(b · Πa2)) + i
(Πa2)β

(Πa2)2

( Πa2
Πa2 − ib

+ log
∣∣∣∣ b

b + iΠa2

∣∣∣∣)] .

(D.7)

We use the results of these integrals to derive the expression for ∆Lµν
1 in (6.18). For the

spin angular impulse presented in eq. (6.41), we need the integral in (D.5) and evaluate
the following integral

Iµν
5 = i

∫
d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·b

q̄2

[
q[µS

ν]ρ
2 u1ρ − u

[µ
1 S

ν]σ
2 qσ

]
cosh(a2 · q)

= Re
∫

d̂4q̄δ̂(q̄ · u1)δ̂(q̄ · u2)eiq̄·(b+ia2) i

q̄2

[
q[µS

ν]ρ
2 u1ρ − u

[µ
1 S

ν]σ
2 qσ

]
= 1

2πγβ
Re

[(b + iΠa2)[µS
ν]ρ
2 u1ρ − u

[µ
1 S

ν]σ
2 (b + iΠa2)σ

(b + iΠa2)2

]
. (D.8)

We use this and (D.5) to obtain the expression for ∆Sµν
2 in (6.42).

Note that in all of the above integrals, Πν
ρ is the projector into the plane orthogonal

to both u1 and u2,

Πν
ρ = δν

ρ + 1
γ2β2 [uν

1(u1ρ − γu2ρ) + uν
2(u2ρ − γu1ρ)] , (D.9)

with Πa2 =
√

Πa2 · Πa2 and b =
√
−b2.
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