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Abstract: We investigate the reflected entropy for various mixed state configurations in the
two dimensional holographic conformal field theories sharing a common interface (ICFTs). In
the AdS3/ICFT2 framework, we compute the holographic reflected entropy for the required
configurations in the vacuum state of the ICFT2 which is given by twice the entanglement
wedge cross section (EWCS) in a spacetime involving two AdS3 geometries glued along a thin
interface brane. Subsequently, we evaluate the EWCS in the bulk geometry involving eternal
BTZ black strings with an AdS2 interface brane, which is dual to an ICFT2 in the thermofield
double (TFD) state. We explore the system from a doubly holographic perspective and
determine the island contributions to the reflected entropy in the two dimensional semi-
classical description involving two CFT2s coupled to an AdS2 brane. We demonstrate that
the results from the island formula match precisely with the bulk AdS3 results in the large
tension limit of the interface brane. We illustrate that the phase structure of the reflected
entropy is quite rich involving many novel induced island phases and demonstrate that it
obeys the expected Page curve for the reflected entropy in a radiation bath coupled to
the AdS2 black hole.
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1 Introduction

In recent years, the measure of entanglement entropy has been central to a novel resolution
of the black hole information loss puzzle. This new resolution involves the appearance of
certain regions termed “islands” in the late time entanglement wedge of a bath collecting the
Hawking radiation. This in turn results in a particular formula to obtain the fine grained
entropy of the bath by including the contributions from the island regions [1–5]. Furthermore,
it has been demonstrated that the island formula leads to the expected Page curve for the
entanglement entropy of the bath/radiation subsystem and hence indicates towards the
unitarity of black hole evaporation process. The island formula has been demonstrated
to naturally arise in the context of doubly holographic models and the holographic duals
of conformal field theories with boundaries (AdS/BCFT scenarios) in certain limits. This
AdS/BCFT construction involves a d-dimensional strongly coupled conformal field theory
with a boundary (BCFTd) which is dual to a bulk AdSd+1 spacetime truncated by an end of
the world (EOW) brane [6, 7]. The holographic entanglement entropy in the AdS/BCFT
scenario was demonstrated to naturally contain the island contributions whenever the RT
surfaces end on the EOW brane [8–19].
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Another interesting related system consists of two conformal field theories that share
a common boundary. If the boundary is also conformally invariant then such a quantum
system is termed as Interface Conformal Field Theory (ICFT). Furthermore, as described
in [20] the holographic dual of such a two dimensional ICFT is described by two AdS3
geometries sharing a common AdS2 brane at which the Israel junction conditions are satisfied.
Considering the bulk to be semi-classical, it is possible to describe the above model in a
two dimensional effective field theory picture.

Furthermore, the ratio of central charges of the two CFTs plays a crucial role, and in
the limit in which the ratio vanishes, the ICFT reduces to a BCFT.1 In [20], the authors
determined the entanglement entropy of a subsystem described by two semi-infinite intervals
(one in each CFT) of such a holographic ICFT2. They obtained the entanglement entropy
by computing the length of the appropriate geodesics in the bulk AdS3 geometry and
demonstrated that there are various novel phases, such as the one in which the geodesic
double crosses the bulk interface and is partially in both the AdS3 geometries. Following
this, the authors also obtained the entanglement entropy in the semi-classical picture in two
dimensions using the island formalism. In the large tension limit, the results from the 3d
bulk computation and the 2d computation from the island formula match precisely.

Furthermore, the entanglement entropy of the semi-infinite intervals in a holographic
ICFT in the thermo-field double state obeys the expected Page curve in the context of a 2d
black hole on the AdS2 brane induced by an eternal black hole in AdS3. An intriguing feature
of this construction involves RT surfaces which cross the interface AdS2 brane and return
to the original AdS3 geometry. These RT surfaces unique to the AdS/ICFT correspondence
were demonstrated to be derived from novel replica wormhole saddles for the entanglement
entropy which results in what are known as induced islands in one of the CFT2 [21].

In the context of the above mentioned AdS/ICFT correspondence, it would be quite
interesting to probe further aspects of entanglement and correlations in ICFTs through various
other measures described in quantum information theory. An interesting measure in this regard
is the reflected entropy which characterizes the correlations between subsystems in holographic
quantum theories.2 This quantity, introduced in [26], is holographically dual to the cross-
section of the entanglement wedge (EWCS) in the dual bulk AdS geometry. Furthermore, the
difference between the reflected entropy and the mutual information known as the Markov gap
is expected to contain information about tripartite entanglement in the system [27–29]. Hence,
this measure is crucial to understanding the deeper entanglement structure of holographic
quantum systems especially in the context of black hole information loss paradox. The island
contributions to the reflected entropy and the Markov gap have been studied in various
interesting scenarios [30–33]. In the present article, we compute the holographic reflected
entropy for various mixed state configurations involving adjacent and disjoint intervals in

1Note that if the ICFT itself is holographic both the central charges are large cI, cII. In this scenario, the
BCFT limit is defined by considering cI ≪ cII or vice versa such that the ratio goes to zero.

2Recently in [22, 23] it was shown that the reflected entropy for certain states does not obey a desired
property for any correlation measure which is the monotonicity under partial trace. However, for holographic
states, it has been demonstrated to obey the above mentioned property through the entanglement wedge
nesting of the dual EWCS [24–26]. So although it might not serve as a correlation measure for generic quantum
systems, it is still useful to characterize correlations between subsystems in the context of holography.
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the vacuum and the TFD state of an ICFT2.3 Furthermore, we will also compute the island
contributions to the reflected entropies of the above mentioned configurations in the two
dimensional semi-classical effective field theory picture and demonstrate that the results
obtained match exactly with the corresponding bulk computation in the large tension limit
of the interface brane. We will demonstrate that the phase structure of reflected entropy is
much richer than that of the entanglement entropy of the corresponding subsystems. Quite
interestingly, we will see that in the 3d bulk geometry whenever the RT surfaces cross the
interface brane to the second side and then return back to the original AdS3 geometry
it leads to induced reflected entropy islands for one of the CFT, similar to the induced
entanglement entropy islands resulting from the novel saddles mentioned earlier. In the two
dimensional effective theory, we will show that these induced reflected entropy islands always
correspond to certain asymetric factorizations of the twist correlation functions. Finally, for
the configurations involving the TFD state we determine the analogues of the Page curves
for the reflected entropy of the bath coupled to the AdS2 black hole induced by the eternal
black hole in the three dimensional bulk.

The paper is organized as follows: in section 2.1 we present a short review of the
holographic ICFT2 model considered in this article. Following this, in section 3 we compute
the holographic reflected entropy for the adjacent and disjoint intervals in the vacuum state
of an ICFT2 by determining the entanglement wedge cross section (EWCS) in the dual
bulk pure AdS3 geometries glued at the interface. Subsequently, in section 4 we obtain
the reflected entropy of various configurations explained above in effective two dimensional
island perspective and demonstrate that the results from the bulk and the island formulation
match precisely in the large brane tension limit. In section 5 we compute the holographic
reflected entropy of adjacent intervals by analyzing the EWCS in the geometry involving
two eternal black hole geometries sharing an AdS2 brane dual to the TFD state of an ICFT.
Subsequently we obtain the analogues of the Page curves of the reflected entropy for mixed
states in the bath collecting the Hawking radiation from the AdS2 black hole. Furthermore,
in section 6 we determine the island contributions for the reflected entropy of the above
mentioned subsystems which match exactly with the results from the bulk computations in
the large brane tension limit. Finally in section 7 we summarize and present our conclusions.

2 Review of earlier literature

2.1 Holographic ICFT2

As described in [20], the vacuum state of an interface CFT2 (ICFT2) is dual to two pure AdS3
geometries that are smoothly glued along a thin interface brane (figure 1). Here we briefly
review the details of the bulk AdS3 geometry. The bulk action in this scenario is given by

I = 1
16πGN

[∫
BI

d3x
√
−gI

(
RI +

2
L2
I

)
+
∫
BII

d3x
√
−gII

(
RII +

2
L2
Π

)]

+ 1
8πGN

[∫
Σ
d2y

√
−h (KI −KII)− T

∫
Σ
d2y

√
−h
]

(2.1)

3Note that recently reflected entropy of various configurations has been investigated for interface CFTs in
a slightly different context in [34, 35].
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Figure 1. Holographic dual of an interface CFT2. Figure modified from [20].

where GN corresponds to the AdS3 Newton’s constant, BI,II denote the bulk AdS3 geometries
and Σ denotes the EOW brane with tension T . Note that in the above equation gI,II are
the metric determinants of the two AdSI,II

3 geometries with AdS length scales given by LI,II
and RI,II are the corresponding Ricci scalars. The determinant of the induced metric on the
interface brane is denoted by h and KI,II correspond to the extrinsic curvature on either side
of the brane. The two AdS3 geometries have to be joined smoothly at the interface. This is
imposed through the standard Israel junction conditions given by

(KI,ab −KII,ab)− hab (KI −KII) = −T hab. (2.2)

The second Israel junction condition ensures that the metric hab on the interface brane
induced from the two AdS3 geometries to be the same. The AdS3 geometries on either side
may be expressed as foliation of AdS2 metrics as described below

ds2Bi
= dρ2i + L2

i cosh2
(
ρi
Li

)(dy2i + dτ2i
y2i

)
, i = I, II . (2.3)

It may then be shown that the locations of the brane ρ∗I,II in the two geometries, are related
to the tension by the junction condition (2.2) as follows [20]

tanh
(
ρ∗I
LI

)
= LI

2T

(
T 2 + 1

L2
I
− 1
L2
II

)
, tanh

(
ρ∗II
LII

)
= LII

2T

(
T 2 + 1

L2
II
− 1
L2
I

)
. (2.4)

From the above expression, it is clear that the tension is bounded from above and below,

Tmin =
∣∣∣∣ 1LI

− 1
LII

∣∣∣∣ < T <
1
LI

+ 1
LII

= Tmax . (2.5)

The brane location ρ∗I,II may alternatively be parametrized through the (trigonometric) angles
made by the brane with the verticals to the two boundaries as

sinψI,II = tanh
(
ρ∗I,II
LI,II

)
. (2.6)

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
3

As described in [20], the holographic dual of the bulk geometry described above is given by
two CFT2s (referred to as CFTI and CFTII henceforth) with large central charges cI,II ≫ 1,
interacting via a quantum dot (holographically dual to the gravity theory on brane). The
central charges are related to the bulk Newton’s constant via the standard Brown Henneaux
formula [36]

ci =
3Li
2GN

, i = I, II . (2.7)

Remarkably, in the limit of a large tension the EOW brane is pushed towards the asymptotic
boundary and one may obtain an effective intermediate picture by integrating out the bulk
degrees of freedom [20]. In such an effective picture, two non-gravitating CFT reservoirs are
coupled to a gravitating theory on the brane and the entanglement entropy of a subsystem
is described by the island formalism. The large tension limit discussed above is significant
because it is in this limit the holographic entanglement entropy of any subsystem computed
from the bulk geometry precisely matches with the corresponding result obtained from the
island formula in the two dimensional effective field theory involving two CFTs coupled to the
brane. In order to take the large tension limit of the brane appropriately, T is parametrized
by δ as described below

T 2 = 1
L2
I
+ 1
L2
II
+ 2− δ2

LILII
. (2.8)

It is clear from the above expression that the limit δ → 0 the tension is maximum T → Tmax.
In this limit, the angles ψI,II may be expanded as [20]

ψI =
π

2 − LI
LI + LII

δ +O
(
δ2
)
, ψII =

π

2 − LII
LI + LII

δ +O
(
δ2
)
. (2.9)

2.2 Reflected entropy

In this subsection, we provide a brief review the mixed state entanglement measure known as
the reflected entropy which involves both classical and quantum correlations [26]. To this
end it is required to consider a bipartite quantum system A∪B in a mixed state ρAB and its
canonical purification |√ρAB⟩ in a doubled Hilbert space HA ⊗HB ⊗HA⋆ ⊗HB⋆ , where A⋆
and B⋆ represent the CPT conjugates of the subsystems A and B respectively [37, 38]. The
reflected entropy SR(A : B) between the two parties may then be defined as the von Neumann
entropy of the reduced density matrix ρAA⋆ = TrHB⊗H⋆

B
|√ρAB⟩ ⟨

√
ρAB| [26] as follows

SR(A : B) ≡ SvN (ρAA⋆)√ρAB
. (2.10)

It satisfies several interesting properties including suitable upper and lower bounds, monogamy,
polygamy while the monotonicity property holds only in certain (holographic) states. Fur-
thermore, in separable states involving classical mixtures, the reflected entropy reduces to
the Shannon entropy indicating its affinity towards classical correlations.

Interestingly the authors in [26] developed a novel replica technique to compute the
reflected entropy between two subsystems A and B which we briefly review below. To begin
with, one constructs the state |ρm/2AB ⟩ ≡ |ψm⟩ as the canonical purification of the state ρmAB

– 5 –
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by considering an m-fold replication of the original manifold where m ∈ 2Z+. Subsequently
the Rényi reflected entropy for this state |ψm⟩ is obtained as the Rényi entropy Sn (AA⋆)ψm

of the reduced density matrix

ρ
(m)
AA⋆ = TrHB⊗H⋆

B
|ρm/2AB ⟩ ⟨ρm/2AB | , (2.11)

which involves yet another replication in the Rényi index n and results in a nm-sheeted replica
manifold.4 Similar to the case of EE, one introduces branch cuts A(µ, ν)± and B(µ, ν)±
on each replica labeled by (µ, ν) ∈ Zm × Zn, where the ± denotes the bra and kets of ρAB.
These branch cuts are subsequently sewed under certain elements gA and gB of the group
Smn preserving the replica permutation symmetry. The actions of the permutation group
elements are as follows [26, 30]

gA : (µ, ν) → (µ+ 1, ν + δµ,m/2−1 − δµ,m−1) ,
gB : (µ, ν) → (µ+ 1, ν) . (2.12)

The Rényi reflected entropy is then given in terms of a properly weighted partition function
Zn,m on the above replica manifold which may, in turn, be obtained as the correlation functions
of twist operators5 σgA and σgB inserted at the endpoints of the subsystems A ≡ [z1, z2] and
B ≡ [z3, z4] in the orbifold theory CFT⊗mn/Smn (obtained via quotienting by the replica
symmetry group Smn) as follows [26]

Sn (AA⋆)ψm
= 1

1− n
log Zn,m

(Z1,m)n

= 1
1− n

log

〈
σgA

(z1)σg−1
A
(z2)σgB

(z3)σg−1
B
(z4)

〉
CFT⊗mn/Smn(〈

σgm
(z1)σg−1

m
(z2)σgm

(z3)σg−1
m
(z4)

〉
CFT⊗m/Sm

)n . (2.13)

In the denominator of the above equation the partition function Z1,m arises from the
normalization of the state |ρm/2AB ⟩ and σgm are the twist fields at the endpoints of the intervals
in m-replicated manifold. Subsequently, the reflected entropy for the bipartite state may
be computed in the replica limit, where both replica parameters are analytically continued
along the real line and finally taken to unity.6

Remarkably, in [26], the authors also established that in holographic theories (with two
derivative gravity duals), the reflected entropy is given by twice the minimal cross-section of
the bulk entanglement wedge, which we will briefly review below.

4See [26, 39] for details about replica construction of the state |ρm/2
AB ⟩ and the sewing mechanism of such

replica sheets.
5Although the elements gA and gB are conjugate to each other, the twist operators are not strictly local

due to their sensitivity to the homology with the subsystem that defines them. As a result, the dominant
operator exchanged between σ

g−1
A

and σg
B

is not identity:

σ
g−1

A
σg

B
→ σ

g−1
A

g
B

+ . . . .

6The two replica limits m → 1 and n → 1 do not always commute [40, 41]. However, for the cases considered
here, these two limits may be implemented interchangeably without affecting the final result.
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(a) (b)

Figure 2. Schematics of the bulk entanglement wedge corresponding to two disjoint subsystems A
and B in the dual CFT. Figure modified from [26].

2.3 Entanglement wedge cross section

In the context of AdS/CFT correspondence, for a subsystem A in the dual CFT, the
codimension-one bulk region ΞA bounded by A and the corresponding (H)RT surface ΓA is
referred to as the entanglement wedge dual to the reduced density matrix ρA [24, 42, 43]. For
a bipartite system described by ρAB, the minimal cross-section of the entanglement wedge
(EWCS) quantifies the quantum entanglement and correlation between the two parties. When
the subsystems A and B are large enough so that the entanglement entropy is obtained through
the extremal surface ΓAB as depicted in figure 2(a), one obtains a connected entanglement
wedge ΞAB bounded by the union of the hypersurfaces A ∪ B ∪ ΓAB [25, 44], namely7

∂ ΞAB ≡ A ∪B ∪ ΓAB . (2.14)

As described in [25, 44], to obtain the minimal EWCS, one first divides ΓAB in two segments
as ΓAB = Γ(A) ∪ Γ(B) and subsequently constructs the extremal curve ΣAB homologous to
A ∪ Γ(A) in the entanglement wedge. The EWCS is then defined as the minimal area of
the curve sought out from all the candidate ΣABs, where the minimization is performed
over all possible partitions (cf. figure 2(a)):

EW (A : B) = min ext
Γ(A)

AB⊂ΓAB

[Area (ΣAB)
4GN

]
. (2.15)

We now briefly sketch the derivation of the holographic prescription for the reflected entropy,
following the Lewkowycz-Maldacena procedure for EE [45]. The bulk dual description of the
canonical purification |√ρAB⟩ features two copies of the entanglement wedge dual to ρAB
glued along the (H)RT surfaces ΓAB [37, 38] in the form of a wormhole geometry. From
figure 2(b), the EE for the subsystem AA⋆ may be computed through the area of a cosmic

7For small subsystems A and B, if they are separated enough, the entanglement entropy is computed
through the combination of two disconnected HRT surfaces and consequently the entanglement wedge is
disconnected with a trivial cross-section.
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brane homologous to AA⋆ [46] (in the replica limit, this cosmic brane reduces to the reflected
minimal surface [26]) as follows

S(AA⋆) = Area (ΓAA⋆)
4GN

+O
(
G0

N

)
, (2.16)

where ΓAA⋆ is the RT surface homologous to AA⋆ in this wormhole geometry. The holo-
graphic duality is then established through the remnant Z2 symmetry which dictates that
Area (ΓAA⋆) = 2Area(∂a ∩ ∂b), where a and b denote the two portions of the bulk entan-
glement wedge through the minimal cross-section.

3 EWCS in Poincaré AdS3 dual to vacuum state of ICFT2

In this section, we determine the minimal (extremal) entanglement wedge cross section (EWCS)
in the above described bulk AdS3 geometry dual to half of the reflected entropy of mixed
state configurations involving adjacent and disjoint subsystems in an ICFT2.8 Furthermore,
we will determine the corresponding expressions for EWCS in the large tension limit of the
interface brane. In the subsequent sections we will demonstrate that the results derived
from the island formula for the reflected entropy match precisely with the corresponding
expressions for twice the area of EWCS obtained in the large tension limit.

3.1 Adjacent subsystems

In this section, we compute the minimal (extremal) entanglement wedge cross section
corresponding to two adjacent subsystems in a holographic ICFT2. Consider the bipartite
mixed state configuration of two adjacent subsystems A and B at a constant time slice
τ = τ0, described by

A =
[
b̃1, b̃2

]
I
∪ [b1, b2]II and B =

[
b̃2, b̃3

]
I
∪ [b2, b3]II ,

where the subscripts I, II denote whether the subsystem resides in the CFTI or CFTII. The
schematics of this configuration is depicted in figure 3. The computation of the minimal EWCS
for A ∪B consists of two parts. As there are many choices for the RT surface corresponding
to a subsystems A ∪ B, the first step involves determining all such RT saddles and their
corresponding entanglement wedges. Now, depending on the size of the subsystems and their
distances from the interface, EWCS can have many different phases within each RT saddle or
the entanglement wedge of A ∪B. In the following, we will divide the possible configurations
of RT saddles into two sub-classes, namely those corresponding to the RT surfaces crossing
the EOW brane once and those where multiple crossovers are possible [20]. For each phase of
the RT saddle we will construct the bulk entanglement wedge and subsequently compute the
corresponding minimal (extremal) cross-section dual to the reflected entropy SR(A : B).

8Note that for a different set of mixed state configurations, quite recently EWCS dual to the vacuum state
of an ICFT2 on a circle has been determined in [35].
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Figure 3. Configuration of single crossing RT saddles for adjacent subsystems in the boundary CFT2s.

3.1.1 Configurations involving single crossover of RT surfaces

In this subsection, we consider the cases where the RT surface crosses the EOW brane once
and subsequently compute the minimal EWCS for various phases in that RT saddle. In
particular, the RT surfaces connecting the ends points of the subsystems on both CFTs
consists of circular segments9 which cross the EOW brane at the points y1 and y3. The
entanglement wedge and the RT surfaces are depicted by the shaded region and the green
curves respectively in figure 3. Note that, according to the Israel junction conditions [20], the
distances y1,3 along the EOW brane are identical as seen from either AdS3 geometry.

To find to the length of the RT surface, we utilize the fact that the length of a geodesic
connecting two bulk points (τ1, x1, z1) and (τ2, x2, z2) in the Poincaré AdS3 geometry is
given by

d = L cosh−1
[
(x1 − x2)2 + (τ1 − τ2)2 + z21 + z22

2z1z2

]
, (3.1)

where L is the AdS3 length scale. The Poincaré coordinates of the points yi on the EOW
brane as seen from the AdSII

3 and AdSI
3 geometry respectively, are given by

(τ0, yi sinψII, yi cosψII) from AdSII
3 ,

(τ0, yi sinψI, yi cosψI) from AdSI
3 , (3.2)

where ψI,II are the angles made by the EOW brane with the holographic directions zi in
each AdS3 geometry. Therefore, the total length of the geodesic segments connecting the

9Such RT saddles have already been considered in [20], where the authors utilized techniques from hyperbolic
geometry to obtain the lengths of these surfaces. In the following, however, we will use an alternative method
more suited to our purpose and find agreement with earlier results.
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points b̃1,3 and b1,3 may be obtained using eq. (3.1) as

d = LI log


(
b̃1 + y1 sinψI

)2
+ (y1 cosψI)2

y1 cosψI

+ LII log
[
(b1 + y1 sinψII)2 + (y1 cosψII)2

y1 cosψII

]

+ LI log


(
b̃2 + y2 sinψI

)2
+ (y2 cosψI)2

y2 cosψI

+ LII log
[
(b2 + y2 sinψII)2 + (y2 cosψII)2

y2 cosψII

]
.

(3.3)
Extremizing with respect to y1,3, the locations of the crossing points may be expressed as10

y∗i =

(
bi − b̃i

)
sin
(
ψI−ψII

2

)
+
√
(bi − b̃i)2 sin2

(
ψI−ψII

2

)
+ 4bib̃i cos2

(
ψI+ψII

2

)
2 cos

(
ψI+ψII

2

) , (3.4)

where i = 1, 3. Substituting the above extremal values in eq. (3.3) and subsequently utilizing
the Ryu-Takayanagi prescription [47], we may obtain the entanglement entropy for A ∪B
when the single crossing RT saddles dominate.

Phase-I
In phase-I the subsystems A and B are comparable and close to the interface. The candidate
for the minimal EWCS depicted by the red curve in figure 3, is given by two circular geodesic
segments connecting the points P = (τ0, b2) and Q = (τ0, b̃2) on both sides of the interface
which meet smoothly11 at the EOW brane at the point which is at a distance y from the
interface. The total length of the geodesic segments connecting the points P and Q may
now be obtained using eq. (3.1) and eq. (3.2) as

dPQ = LI log


(
b̃2 + y sinψI

)2
+ (y cosψI)2

ϵ y cosψI

+ LII log
[
(b2 + y sinψII)2 + (y cosψII)2

ϵ y cosψII

]
.

(3.5)

Extremizing the total length with respect to y, the location of the crossing point is given by
eq. (3.4) with i = 2. We now consider the large tension limit T → Tmax described in eq. (2.8)
where the EOW brane is pushed towards the asymptotic boundary. We may now utilize
eq. (2.9) to obtain the minimal EWCS in the large tension limit δ → 0, for this phase as follows

EW (A : B) = LI
4GN

log
[
(y∗ + b̃2)2

2y∗ϵ

]
+ LII

4GN
log

[
(y∗ + b2)2

2y∗ϵ

]
+ S

(δ)
int , (3.6)

where the location of the intersection point y∗ is now given by

y∗ =
(LII − LI)

(
b2 − b̃2

)
+
√
(LII − LI)2

(
b2 − b̃2

)2
+ 4b2b̃2 (LI + LII)2

2 (LI + LII)
, (3.7)

10To extremize the above expression, we are required to impose the Israel-Lanczos junction condition [20]
LI secψI = LII secψII.

11The smoothness of the geodesics segments across the EOW brane is a consequence of the Israel-Lanczos
gluing conditions [20].
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Figure 4. Adjacent subsystems: phase-II.

and S
(δ)
int is the large tension limit of the interface entropy Sint =

ρ∗I +ρ
∗
II

4GN
, defined as

S
(δ)
int = cI

6 log
[2(LI + LII)

LI δ

]
+ cII

6 log
[2(LI + LII)

LII δ

]
+O (δ) . (3.8)

Phase-II

In phase-II, we consider the subsystem A to be smaller compared to B. The minimal EWCS
in this phase depicted by red curve in figure 4(a), consists of two circular arcs each connecting
the common boundary of A and B and the smaller RT surface joining b1 and b̃1 on either
side of the EOW brane. The coordinates of the end point Q of the geodesic segment PQ
in the AdSII

3 may be parametrized by an angle ϕII as follows

Q : (τII, xII, zII) = (τ0, OM,MQ) = (τ0, b1 −R+R sinϕII, R cosϕII) , (3.9)

where the overline in OM and MQ simply denote that they are Euclidean distances (here
we have followed the notation in [20]), R is the radius of the circular arc joining the points
b1 and y∗1 on the AdSII

3 side as shown in figure 4(b). Note that, as described earlier, the
location of the point y∗1 is given in eq. (3.4).

Similarly for the AdSI
3 region, the coordinates of the point T may be parametrized by

an arbitrary angle ϕI as

T : (τI, xI, zI) =
(
τ0, b̃1 − r + r sinϕI, r cosϕI

)
, (3.10)

where, r is the radius of the circular arc joining the points b̃1 and y∗1 on the AdSII
3 side. To

compute the radii R and r, we utilize the equations of the circular arc as follows

R2 = (b1 −R)2 − 2y∗1(b1 −R) cos
(
ψII +

π

2

)
+ y∗

2
1 ,

r2 =
(
r − b̃1

)2
− 2y∗1

(
r − b̃1

)
cos

(
π

2 − ψI

)
+ y∗

2
1 ,

(3.11)
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which may be solved to obtain

R = b1 +
y∗

2
1 − b21

2(b1 + y1 sinψII)
, r = b̃1 +

y∗
2

1 − b̃21
2(b̃1 + y1 sinψI)

. (3.12)

Now using eq. (3.1), the total length of the circular arcs is obtained to be

d = dPQ + dST

= LI log


(
b̃2 −

(
b̃1 + r sinϕI − r

))2
+ (r cosϕI)2

rϵ cosϕI


+ LII log

[
(b2 − (b1 +R sinϕII −R))2 + (R cosϕII)2

Rϵ cosϕII

]
.

(3.13)

Extremizing the above length with respect to the arbitrary angles ϕI and ϕII, we have

ϕI = tan−1

 2r
(
r + b̃2 − b̃1

)
(
b̃2 − b̃1

) (
2r + b̃2 − b̃1

)
 , ϕII = tan−1

[ 2R (R− b1 + b2)
(b2 − b1) (2R+ b2 − b1)

]
.

(3.14)

Substituting the above extremal values, the total minimal EWCS may be obtained as

EW (A : B) = LI
4GN

log


(
b̃2 − b̃1

) (
2r + b̃2 − b̃1

)
ϵ r

+ LII
4GN

log
[(b2 − b1) (2R+ b2 − b1)

ϵR

]

= LI
4GN

log

2
(
b̃2 − b̃1

) (
y∗

2
1 + b̃1b̃2 + y∗1

(
b̃1 + b̃2

)
sinψI

)
ϵ
(
y∗

2
1 + b̃21 + 2y∗1 b̃1 sinψI

)


+ LII
4GN

log

2 (b2 − b1)
(
y∗

2
1 + b1b2 + y∗1 (b1 + b2) sinψII

)
ϵ
(
y∗

2
1 + b21 + 2b1y∗1 sinψII

)
 . (3.15)

We now utilize eq. (2.9) to obtain the minimal EWCS in the large tension limit δ → 0,
as follows

EW (A : B) = LI
4GN

log

2
(
b̃2 − b̃1

) (
b̃2 + y∗1

)
ϵ
(
b̃1 + y∗1

)
+ LII

4GN
log

[2(b2 − b1)(b2 + y∗1)
ϵ(b1 + y∗1)

]
. (3.16)

Phase-III
In phase III, the subsystem B is small compared to A and the minimal EWCS lands on
the outer RT surface on both AdS3 regions as depicted in figure 5. The computation of the
minimal EWCS for this phase follows a procedure similar to the previous subsection. The
total length of the candidate EWCS in this case is given by

d = LI log


(
b̃2 −

(
b̃3 + r sinϕI − r

))2
+ (r cosϕI)2

ϵ r cosϕI


+ LII log

[
(b2 − (b3 +R sinϕII −R))2 + (R cosϕII)2

ϵR cosϕII

]
.

(3.17)
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Figure 5. Adjacent subsystems: phase-III.

In the above expression, we have parametrized two arbitrary points on the RT surface
connecting b̃3 and b3 on the asymptotic boundary. As earlier, r and R denote the radii
of the circular geodesic segments joining the set of points (b̃3, y∗3) and (b3, y∗3) respectively.
These radii may be obtained by utilizing the equations of the respective circular segments,
similar to the previous subsection (cf. eq. (3.12)).

Now extremizing eq. (3.17) with respect to the arbitrary angles ϕI and ϕII, the minimal
EWCS in phase III may be obtained by the following replacements: y∗1 with y∗3, and b1, b̃1
with b3, b̃3 in eq. (3.15). In the large tension limit, the EWCS reduces to

EW (A : B) = LI
4GN

log
[
2(b̃3 − b̃2)(b̃2 + y∗3)

ϵ(b̃3 + y∗3)

]
+ LII

4GN
log

[2(b3 − b2)(b2 + y∗3)
ϵ(b3 + y∗3)

]
. (3.18)

3.1.2 Configurations involving double crossing of RT surfaces

We now consider the RT saddles homologous to A ∪B which cross the EOW brane multiple
times before ending on either of the asymptotic boundaries. Recall that, following the
convention in [20], we have set cI < cII. With this convention, it was demonstrated in [20]
that for a sufficiently large subsystem in the CFTII

2 , there exists at least one such geodesic
homologous to the subsystem which finds it more efficient to cross the EOW brane, traverse
a finite distance in the AdSI

3 geometry and then returns to the AdSII
3 geometry.12 The

computation of the length of such “double-crossing” geodesics was outlined in the appendix
of [20] utilizing purely geometrical methods. In the following, however, we pursue a different
route more suited to our purpose and find agreement with their result.

Consider a subsystem D = [bi, bj ]II entirely in the CFTII
2 . The double crossing RT saddle

homologous to D consists of three semi-circular geodesic arcs as sketched in figure 6; two of
them connect bi,j with arbitrary bulk points ȳi,j on the brane13 and the third arc connecting

12Note that, it was further argued in [20] that the RT saddles crossing the brane more than twice always
have greater length and hence do not contribute to the correlation functions or the entanglement entropy at
the leading order.

13We have denoted the locations of the points where the geodesics cross the brane by ȳk to emphasize
that these points are, in principle, different than those corresponding to a pair of single crossing geodesics
emanating from bk.
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Figure 6. Schematics of the (double-crossing) bulk geodesic homologous to the subsystem D described
by a finite subsystem [bi, bj ] in dual CFTII.

ȳi with ȳj residing entirely in the AdSI
3 geometry. The Poincaré coordinates of the bulk

points are same as given in eq. (3.2). Using the geodesic length formula in eq. (3.1), we may
obtain the total length of these three circular arcs as follows

dPQ = LII log
[
(bj + ȳj sinψII)2 + (ȳj cosψII)2

ϵ2 ȳj cosψII

]
+ LII log

[
(bi + ȳi sinψII)2 + (ȳi cosψII)2

ϵ2 ȳi cosψII

]

+ LI cosh−1

(ȳj − ȳi)2 sin2 ψI +
(
ȳ2i + ȳ2j

)
cos2 ψI

2ȳiȳj cos2 ψI

 . (3.19)

We are required to extremize the above length over the arbitrary locations ȳi,j . To this end,
we make the following change of variables bj , ȳj to ΘD, kD:

bj = ΘDbi , ȳj = k2DΘDȳi . (3.20)

Extremization of the length with respect to ȳi leads to(
k2Dȳ

2
i − b2i

) ((
k2D + 1

)
ȳibi sinψII + k2Dȳ

2
i + b2i

)
= 0 , (3.21)

and the only real non-negative solution is given by ȳi = bi
kD

. Substituting this in eq. (3.19) and
furthermore extremizing over the remaining variable kD, we obtain the following algebraic
equation

cosψI secψII
(
1 + k2DΘD

) (
1 + k2D + 2kD sinψII

)√
1 + k4DΘ2

D + 2k2DΘD cos 2ψI
= 1− k2D . (3.22)

The above eighth order polynomial equation may be readily solved for kD. However, the
solutions are not very illuminating and we will omit the details here. Substituting the extremal
value kD = k∗D (corresponding to the extremal locations ȳ∗i,j on the brane) in eq. (3.19) we
may now obtain the length of the RT saddle connecting bi and bj on the right boundary as
sketched in figure 6. Utilizing the RT prescription [47], the holographic entanglement entropy
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(a) (b)

Figure 7. (a) Schematics of the EWCS in phase-I when the RT surface crosses the brane twice. (b)
Schematic of circular arc joining y1 and y3 in the AdSI geometry.

of subsystem D for the double crossing configuration is given by

S(ρD) ≡ Sdouble ([bi, bj ]) =
LI
4GN

cosh−1
[
1 + k∗D

2ΘD cos (2ψI) + k∗D
2ΘD

(
k∗D

2ΘD − 1
)

2k∗D2ΘD cos2 ψI

]

+ LII
2GN

log
[√

bibj
(
1 + k∗D

2 + 2k∗D sinψII
)

k∗D cosψII

]
. (3.23)

Large tension limit: in the large tension limit, the extremal value of ȳ1 remains the same
while the extremization conditions in eq. (3.22) reduce to the cubic equation

LII (kD − 1)
(
k2DΘD − 1

)
+ LI(kD + 1)

(
k2DΘD + 1

)
= 0 . (3.24)

In the following, we will consider various phases for the entanglement entropy of A ∪B
such that the corresponding RT surface homologous to [b1, b3] in AdSII geometry crosses the
EOW brane twice at the points ȳ∗1 and ȳ∗3. It consists of three semi-circular arcs, one of
which resides solely in the AdSI geometry. Note that, the extremal values of the locations
ȳ1,2 may be obtained from eq. (3.22) (or, from eq. (3.24) in the large tension limit). On the
other hand, the RT surface on the AdSI side is a semi-circle depicted in figure 7(a) by the
green curve which connects b̃1 and b̃3, that does not cross the brane. The bulk entanglement
wedge is now the region bounded by these geodesics and the corresponding subsystems as
depicted by the shaded regions in figure 7(a). Furthermore, we will systematically investigate
the phase transitions of the minimal EWCS for different subsystem sizes and geometry.

Phase-I

We begin with the phase where the subsystems in CFTII
2 are comparable in size and the

minimal EWCS consists of two extremal curves as shown by the red curves in figure 7(a).
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The minimal EWCS EI
W residing entirely in the AdSI geometry may be computed using

standard AdS3/CFT2 techniques [25, 44] as

EI
W (A : B) = LI

4GN
log

[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ1(b̃3 − b̃1)

]
. (3.25)

The minimal EWCS EII
W in the AdSI geometry consists of two circular geodesic segments NM

and ML as shown by the red curve in figure 7(a). The segment NM starts from the point b2
and ends at the point M on the EOW brane which is at a distance ȳ from the interface O.
The other circular arc ML connects the point ȳ on the EOW brane and ends on the geodesic
segment connecting ȳ∗1 and ȳ∗3 in the AdSI region. Hence, the total length of these curves is
given by dNL = dNM + dML. The Poincaré coordinates of the point L are similar to that
given in eq. (3.9). From figure 7(b), the coordinates of L can be parametrized as

L : (xI, zI) =
(
OK,LK

)
=
(
OB −BK,LK

)
= (x0 − r̄ sinϕI, r̄ cosϕI) (3.26)

where overline on OK, LK once again denote that they are Euclidean distances, BL = r̄

corresponds to the radius of the circular arc connecting ȳ∗1 and ȳ∗3 and K is a point where the
perpendicular dropped from L intersects OB. x0 is the center coordinate of the circular arc,
and the arbitrary angle ϕI parametrizes the position of L on this circular arc. The center
and the radius of the circular arc are given by

r̄ =

√
ȳ∗21 + ȳ∗23 + 2ȳ∗1 ȳ∗3 cos (2ψI)

2 sinψI
, x0 =

ȳ∗1 + ȳ∗3
2 sinψI

. (3.27)

We may now obtain the total length of the two circular geodesic arcs using eq. (3.1) as

dNL = LI cosh−1
[
(x0 − r̄ sinϕI + ȳ sinψI)2 + (ȳ cosψI)2 + (r̄ cosϕI)2

2ȳ cosψI r̄ cosϕI

]

+ LII log
[
(b2 + ȳ sinψII)2 + (ȳ cosψII)2

ȳϵ2 cosψII

]
.

(3.28)

On extremizing with respect to ϕI, we obtain

ϕI = sin−1
[ 2r̄(x0 + ȳ sinψI)
r̄2 + x20 + 2x0ȳ sinψI + ȳ2

]
. (3.29)

Now, substituting the value of ϕI in eq. (3.28) followed by extremizing over ȳ, we obtain a
polynomial equation in ȳ whose physical solution leads to the minimal EWCS

EII
W (A : B) = LI cosh−1


√(

r̄2 + x20 + 2x0ȳ∗ sinψI + ȳ∗2
)2 − 4r̄2(x0 + ȳ∗ sinψI)2

2r̄ȳ∗ cosψI


+ LII log

[
b22 + ȳ∗2 + 2b2ȳ∗ sinψII

ϵ ȳ∗ cosψII

]
. (3.30)

In the large tension limit δ → 0, using eq. (3.27), the result simplifies to

EII
W (A : B) = LI

4GN
log

[(ȳ∗ − ȳ∗1)(ȳ∗ − ȳ∗3)
ȳ∗(ȳ∗1 − ȳ∗3)

]
+ LII

4GN
log

[
(b2 + ȳ∗)2

2ȳ∗ ϵ

]
+ S

(δ)
int , (3.31)
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Figure 8. Adjacent subsystems: double-crossing phase-II and III.

where ȳ∗ corresponds to the solution of the extremization condition in the δ → 0 limit
which is given by

LI

(
ȳ∗1

ȳ − ȳ∗1
+ ȳ

ȳ − ȳ∗2

)
+ LII

ȳ − b2
ȳ + b2

= 0 . (3.32)

Note that, in eq. (3.31), S(δ)
int denotes the large tension limit of the interface entropy given

in eq. (3.8).

Phase-II
In phase-II, the subsystem B is smaller compared to A in CFTII

2 and the minimal EWCS
consists of two circular geodesic segments, one of which is similar to the previous subsection.
The other geodesic starts from b2 and ends on the outer RT surface in AdSII geometry. Both
the segments are depicted by the red curves in figure 8(a). The portion of the minimal EWCS
in AdSI

3 geometry is again given by eq. (3.25). The endpoint of the other portion in AdSII
3

on the outer RT surface may be parametrized by an arbitrary angle ϕII, similar to eq. (3.9).
Using eq. (3.1) the length of this geodesic segment may be expressed as

dII = LII log


(
b2 −

(
b3 + R̄ sinϕII − R̄

))2
+ (R̄ cosϕII)2

R̄ϵ2 cosϕII

 (3.33)

where R̄ is the radius of the outer RT surface,

R̄ = b3 +
ȳ∗

2
3 − b23

2(b3 + ȳ∗3 sinψII)
. (3.34)

After extremizing over ϕ2, we may readily obtain the minimal EWCS for this phase,
with ȳ∗3 obtained from eq. (3.22). In the limit of large brane tension δ → 0, the minimal
EWCS reduces to

EW (A : B) = LI
4GN

log
[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ1(b̃3 − b̃1)

]
+ LII

4GN
log

[2(b3 − b2)(b2 + ȳ∗3)
ϵ2(b3 + ȳ∗3)

]
, (3.35)

with ȳ∗3 now given by the physical solution to eq. (3.24).
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Figure 9. Adjacent subsystems: no crossing.

Phase-III

For phase-III, we consider the subsystem A in CFTII
2 to be smaller than B such the minimal

EWCS lands on the smaller RT surface crossing the brane at ȳ1 as depicted in figure 8(b).
The computation for the EWCS in this phase is similar to the previous subsection and

in the large tension limit, it reduces to the following expression

EW (A : B) = LI
4GN

log
[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ1(b̃3 − b̃1)

]
+ LII

4GN
log

[2(b2 − b1)(b2 + ȳ∗1)
ϵ2(b1 + ȳ∗1)

]
, (3.36)

where ȳ∗1 = b1
k∗D

, k∗D being the solution of the extremization equation in eq. (3.24).

3.1.3 RT saddles with no brane crossing

When the total system A ∪ B is small compared to their distance from the interface, the
corresponding RT surface becomes disconnected as shown in figure 9. The minimal EWCS
consist of two circular arcs which correspond to the EWCS of two adjacent subsystems
in AdSI

3 and AdSII
3 regions respectively. So, the minimal EWCS for this phase may be

expressed as [25, 44]

EW (A : B) = LI
4GN

log

2
(
b̃2 − b̃1

) (
b̃3 − b̃2

)
ϵ
(
b̃3 − b̃1

)
+ LII

4GN
log

[2(b2 − b1)(b3 − b2)
ϵ(b3 − b1)

]
. (3.37)

3.2 Disjoint subsystems

In this section, we consider the bipartite mixed state configuration ρAB described by unions
of two disjoint intervals [b1, b2] and [b3, b4] on the two CFT2 s at a constant time slice τ = τ0
on either side of the interface. In particular, we take the bipartition of ρAB as follows:

A = [b1, b2]I ∪ [b1, b2]II and B = [b3, b4]I ∪ [b3, b4]II .

The schematics of this configuration is sketched in figure 10. The computation of the
holographic entanglement entropy for ρAB consists of different saddles of the bulk Ryu-
Takayanagi (RT) surfaces homologous to A ∪B which we investigate systematically in the
following. For each phase of the RT saddle we will construct the bulk entanglement wedge
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and subsequently compute the corresponding minimal (extremal) cross-section which is dual
to the reflected entropy SR(A : B). Note that, within each phase of the entanglement entropy
for A ∪B, the minimal cross section dividing the entanglement wedge of A ∪B experiences
phase transitions depending upon the subsystem sizes as well as their distances from the
interface. Besides we will disregard all possible RT saddles for which the bulk entanglement
wedge is disconnected and consequently the EWCS is vanishing. In the following, we will
further divide the possible configurations of RT saddles into two sub-classes, namely those
corresponding to the RT surfaces crossing the EOW brane once and those where multiple
crossovers are possible for a single RT surface as described in [20].

3.2.1 Configurations involving single crossover of RT surfaces

We begin by considering the configurations of bulk extremal surfaces ΓAB homologous to
A∪B which cross the EOW brane at the points y1 and y4 along with two usual dome shaped
geodesics connecting b2 and b3 in each of the AdS3 geometries as sketched in figure 10. The
Poincaré coordinates of the points on the brane are given as

(τ0, yk sinψI, yk cosψI) , from AdSI
3

(τ0, yk sinψII, yk cosψII) , from AdSII
3 (3.38)

with k = I, II. In the above parametrization, we have used the fact that the Israel junction
conditions enforce the distances yk along the EOW brane to be identical as seen from either
side of the geometry. Note that the locations yk of the bulk points along the EOW brane
are chosen arbitrarily. The total length of the geodesics homologous to A ∪ B may now
be computed14 using eq. (3.1) as follows

d = LI log
[
(b1 + y1 sinψI)2 + (y1 cosψI)2

ϵ y1 cosψI

]
+ LII log

[
(b1 + y1 sinψII)2 + (y1 cosψII)2

ϵ y1 cosψII

]

+ LI log
[
(b4 + y4 sinψI)2 + (y4 cosψI)2

ϵ y4 cosψI

]
+ LII log

[
(b4 + y4 sinψII)2 + (y4 cosψII)2

ϵ y4 cosψII

]

+ 2 (LI + LII) log
(
b3 − b2
ϵ

)
. (3.39)

Extremizing eq. (3.39) over the bulk points y1 and y4, we obtain the extremal values to be

y∗1 = b1 , y∗4 = b4 . (3.40)

Substituting these in the expression for the geodesic length and subsequently using the RT
formula, the entanglement entropy for the mixed state ρAB reads

S (A ∪B) = LI + LII
4GN

[
log

(2b1
ϵ

)
+ log

(2b4
ϵ

)
+ 2 log

(
b3 − b2
ϵ

)]
+ ρ∗I + ρ∗II

2GN
, (3.41)

where we have utilized the following relation between the angles ψk and the brane location
ρ∗k in the Poincaré slicing coordinates [20],

secψk = cosh
(
ρ∗k
Lk

)
, (k = I, II) . (3.42)

14Here we are using the same technique described in section 3.1.1.
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Figure 10. Configurations of single crossing RT saddles for two disjoint subsystems in the bound-
ary CFT2s.

Once we have obtained the RT saddles corresponding to the configuration of disjoint intervals,
the entanglement wedge dual to the reduced density matrix can be constructed as the
codimension one bulk region bounded by the RT surfaces and the subsystems on the boundary.
This is shown by the shaded region in figure 10. As we shall see below, there are three
possible phases of the minimal EWCS for this configuration of the RT saddles corresponding
to ρAB. In the following, we will investigate the phase transition of the minimal EWCS
for different sizes of A and B.

Phase-I

The first phase of EWCS corresponds to sufficiently small separations between rather large
subsystems A and B in both CFT2s (recall that, we have considered configurations of A and
B to be symmetric with respect to the interface). In this case, as depicted in figure 10, the
minimal EWCS connects the dome-shaped geodesics joining b2 and b3 on both sides of the
interface by crossing the EOW brane once at the point R. The candidate EWCS depicted
by the red curve in figure 10, consists of two circular geodesic arcs emanating respectively
from the points P and Q on the geodesic connecting b2 and b3 on the CFTII/I

2 and landing
on the EOW brane at the common15 location denoted by R. Therefore, the total length of
the red curve is given by the sum of geodesic lengths as dPQ = dPR + dQR. Note that the
points P and Q are only constrained to be on the geodesics connecting b2 and b3 and hence
possess a degree of arbitrariness. We set the location of P by introducing the (arbitrary)
angle ϕII as sketched in figure 11 and a similar parametrization of the point Q on the other
geodesic is dependent on an angle ϕI. Therefore, in the Poincaré AdSII

3 geometry on the right

15Note that the two geodesic segments on either sides of the brane must join smoothly at the location of
the brane as discussed in [20]. We observed that the smoothness of the geodesic crossing the EOW brane is
achieved naturally through the extremization of the total geodesic length with respect to the point R.
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Figure 11. Disjoint intervals: phase-I.

side of the brane, the coordinate of P are obtained as

P : (τII, xII, zII) =
(
τ0,

b3 + b2
2 + b3 − b2

2 sinϕII,
b3 − b2

2 cosϕII

)
. (3.43)

The coordinates of Q in AdSI
3 may be found similarly. Furthermore, the Poincaré coordinates

of the point R on the brane may be written as

R : (τ0, y sinψI, y cosψI) , from AdSI
3

(τ0, y sinψII, y cosψII) , from AdSII
3 (3.44)

Therefore, utilizing eq. (3.1), we obtain the length of the candidate EWCS as follows

dPQ = LI cosh−1


(
b3+b2

2 + b3−b2
2 sinϕI + y sinψI

)2
+
(
b3−b2

2 cosϕI
)2

+ (y cosψI)2

2
(
b3−b2

2 cosϕI
)
y cosψI



+ LII cosh−1


(
b3+b2

2 + b3−b2
2 sinϕII + y sinψII

)2
+
(
b3−b2

2 cosϕII
)2

+ (y cosψII)2

2
(
b3−b2

2 cosϕII
)
y cosψII

 .
(3.45)

Extremizing the above expression over the arbitrary angles ϕI and ϕII, we obtain

ϕI = sin−1
[ (b2 − b3)(b2 + b3 + 2y sinψI)
b22 + b23 + 2y2 + 2y(b2 + b3) sinψI

]
,

ϕII = sin−1
[ (b2 − b3)(b2 + b3 + 2y sinψII)
b22 + b23 + 2y2 + 2y(b2 + b3) sinψII

]
. (3.46)

Substituting these values back and subsequently extremizing over the location y along the
EOW brane, we obtain

∂y dPQ = 0 =⇒ y =
√
b2b3 . (3.47)

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
3

Finally, the minimal EWCS is obtained using eq. (3.47) as follows

EW (A : B) = LI
4GN

cosh−1
[(
b2 + b3 + 2

√
b2b3 sinψI

)
(b3 − b2) cosψI

]

+ LII
4GN

cosh−1
[(
b2 + b3 + 2

√
b2b3 sinψII

)
(b3 − b2) cosψII

]
. (3.48)

Using standard trigonometric identities, the above result may be re-expressed as

EW (A : B) = LI + LII
4GN

log
(
b2 + b3 + 2

√
b2b3

b3 − b2

)
+ LI

4GN
cosh−1

( 1
cosψI

)

+ LII
4GN

cosh−1
( 1
cosψII

)
. (3.49)

Utilizing the relation between the angles ψk and the location of the brane ρ∗k given in eq. (3.42),
the above minimal EWCS may be written in the following instructive form

EW (A : B) = LI + LII
4GN

log
(
b2 + b3 + 2

√
b2b3

b3 − b2

)
+ ρ∗I + ρ∗II

4GN

= cI + cII
6 log

(√
b3 +

√
b2√

b3 −
√
b2

)
+ Sint , (3.50)

where Sint = ρ∗I +ρ
∗
II

4GN
is termed the interface entropy [20].

We now take the large tension limit, T → Tmax, and expand around δ → 0 as described in
eq. (2.9). Consequently the leading order term in the interface entropy Sint is given by eq. (3.8).

Phase-II

Next we consider the situation when the subsystem B is small compared to both A and the
separation between A and B. In this case, the minimal EWCS comprises of two separate semi-
circular arcs emanating from the geodesics connecting b2 and b3 which lands on the RT surface
connecting b4 on either side. The schematics of the configuration is sketched in figure 12.

As seen from figure 13, the Poincaré coordinates of the points P and Q are given in
eq. (3.43) while those for the point R in the AdSII

3 geometry are parametrized by the angle
ϕR as follows

R : (τII, xII, zII) = (τ0, b4 sinϕR, b4 cosϕR) , (3.51)

where we have utilized the fact that the radius of the circular geodesic connecting b4 from
either side is R = b4, as seen from eq. (3.40). Similarly, the Poincaré coordinates of the point
S on the AdSI

3 geometry is given in terms of the angle ϕS as

S : (τI, xI, zI) = (τ0, b4 sinϕS , b4 cosϕS) . (3.52)
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Figure 12. Disjoint intervals: phase-II.

Figure 13. Calculation of the minimal EWCS in phase-II.

Now utilizing eq. (3.1), the total length of the geodesics may be obtained as follows

dII = dPR + dQS

= LI cosh−1


(
b4 sinϕS −

(
b2+b3

2 + b3−b2
2 sinϕI

))2
+
(
b3−b2

2 cosϕI
)2

+ (b4 cosϕS)2

2
(
b3−b2

2 cosϕI
)
b4 cosϕS



+ LII cosh−1


(
b4 sinϕR −

(
b2+b3

2 + b3−b2
2 sinϕII

))2
+
(
b3−b2

2 cosϕII
)2

+ (b4 cosϕR)2

2
(
b3−b2

2 cosϕII
)
b4 cosϕR

 .
(3.53)

Extremizing over the arbitrary angles ϕI, ϕII, ϕR, ϕS we obtain

ϕI = ϕII = sin−1
[

b22 − b23
b22 + b23 − 2b24

]
, ϕR = ϕS = sin−1

[(b2 + b3) b4
b24 + b2b3

]
. (3.54)

– 23 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
3

Figure 14. Disjoint intervals: phase-III.

Substituting the above extremal values in eq. (3.53), we obtain the minimal EWCS to be

EW (A : B) = LI + LII
4GN

cosh−1
[
b24 − b2b3
b4(b3 − b2)

]

= LI + LII
4GN

log

b24 − b2b3 +
√
(b24 − b22)(b24 − b23)

b4(b3 − b2)

 . (3.55)

Note that the above expression does not contain any contribution from the brane as the
EWCS land on the RT surface (R and S in figure 12) connecting the b4 points. As a result
we observe the absence of any δ dependent term in the expression of minimal EWCS.

Phase-III

The last phase concerns small A and large B with a small separation between them. In this
phase, the minimal EWCS is anchored on the RT surface connecting b1 on either side as
depicted in figure 14. Once again, we consider two arbitrary points R and S parametrized
by the angles ϕR and ϕS , now on the smaller single crossing RT surface. The Poincaré
coordinates of these points may be read off from eqs. (3.51) and (3.52) with b4 replaced by
b1. Utilizing eq. (3.1), the total length of the candidate EWCS may be computed as follows t

dIII = dPR+ dQS

= LI cosh−1


(
b1 sinϕS −

(
b2+b3

2 + b3−b2
2 sinϕI

))2
+
(
b3−b2

2 cosϕI
)2

+(b1 cosϕS)2

2
(
b3−b2

2 cosϕI
)
b1 cosϕS



+LII cosh−1


(
b1 sinϕR−

(
b2+b3

2 + b3−b2
2 sinϕII

))2
+
(
b3−b2

2 cosϕII
)2

+(b1 cosϕR)2

2
(
b3−b2

2 cosϕII
)
b1 cosϕR

 .
(3.56)
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Extremizing over the arbitrary angles ϕI, ϕII, ϕR, ϕS we obtain

ϕI = ϕII = sin−1
[

b22 − b23
b22 + b23 − 2b21

]
, ϕR = ϕS = sin−1

[(b2 + b3) b1
b21 + b2b3

]
. (3.57)

Substituting the above extremal values in eq. (3.56), we obtain the minimal EWCS to be

EW (A : B) = LI + LII
4GN

cosh−1
[
b2b3 − b21
b1 (b3 − b2)

]

= LI + LII
4GN

log

b2b3 − b21 +
√(

b22 − b21
) (
b23 − b21

)
b1 (b3 − b2)

 . (3.58)

3.2.2 Double crossing configurations

Next, we consider configurations of the RT saddles corresponding to the entanglement entropy
of A ∪ B such that one or more RT surfaces cross the brane twice. Within each such
configuration, we will construct the bulk entanglement wedge dual to ρAB and systematically
investigate the phase transitions of the minimal EWCS for different subsystem sizes and the
geometry. To proceed, we further divide the possible RT saddles into two sub-classes. First
we consider the RT surfaces homologous to C = [b2, b3]I ∪ [b2, b3]II which do not cross the
brane. In the second case we explore the possibility of C owning an island by considering
the RT surfaces homologous to C which crosses the brane and comes back.16

A. RT surfaces homologous to C which do not cross the brane

We begin with the configuration where in the AdSII
3 geometry, the geodesics homologous to

the intervals [b1, b2]I ∪ [b3, b4]II in the CFTII
2 have the following topology:

• the geodesic connecting b1 and b4 crosses the EOW brane twice at the bulk points
distant ȳ∗1 and ȳ∗4 along the brane from the interface. In other words, the geodesic is
made up of three semi-circular segments, one of which resides entirely in the AdSI

3
geometry. Note that the locations of the points ȳ∗1 and ȳ∗4 on the EOW brane should be
determined by solving the extremization conditions17 given in eq. (3.22) and ȳ1 = b1

kABC
.

We note that such configurations occur when ΘABC is larger than a critical value [20].

• the geodesic semi-circle connecting b2 and b3 never crosses the brane and has a dome
like structure.

On the other hand, the geodesics homologous to the subsystems in the CFTI
2 consist of

single semi-circles and have the topology of a dome. The schematics of this configuration is
sketched in figure 15. The bulk entanglement wedge is the region of the spacetime bounded

16There is yet another possibility where both the RT surfaces homologous to C and ABC has a double
crossing topology. However, we have checked numerically that this situation fails to arise for a sufficiently
large range of parameter values and hence in the following we shall drop this possibility from our discussion.

17In this case, as is clear from the context, the parameters ΘD and kD in eq. (3.22) should be replaced by
ΘABC = b4

b1
and kABC =

√
y4

ΘABC y1
respectively.
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Figure 15. Disjoint intervals: double-crossing phase-I.

by these geodesics and the corresponding subsystems as shown by the shaded regions in
figure 15. The entanglement entropy for A ∪ B in this phase is given by

S(A ∪B) = Sdouble ([b1, b4]) +
LI + LII
2GN

log
(
b3 − b2
ϵ

)
+ LI

2GN
log

(
b4 − b1
ϵ

)
, (3.59)

where Sdouble is defined in eq. (3.23).
The minimal EWCS for this configuration consists of two extremal curves, one of which

resides entirely in the AdSI
3 geometry and corresponds to the usual notion of EWCS in

standard AdS3/CFT2 scenario. The minimal EWCS residing entirely in the AdSI
3 region may

be computed using the standard AdS3/CFT2 techniques [25, 44] and the result reads as

E I
W (A : B) = LI

4GN
log

[
1 + 2η + 2

√
η(η + 1)

]
, (3.60)

where the cross-ratio η is given by

η = (b2 − b1) (b4 − b3)
(b3 − b2) (b4 − b1)

. (3.61)

On the other hand, there are three possible choices for the other extremal curve which
we shall consider below.

Phase-I

In the first phase, we allow the candidate extremal curve for the minimal EWCS originating in
the AdSII

3 geometry to cross the brane and probe the geometry beyond the “end of the world”.
This phase occurs when the sizes of the subsystems A and B are comparable. The schematics
of this configuration is sketched in figure 15. To compute the length of this candidate extremal
curve, note that it consists of two circular geodesic segments joined smoothly at the location
of the brane. The segment MP starts from the point P on the dome shaped RT surface
connecting b2 and b3 and ends on the EOW brane at the point M on the EOW brane which is
at a distance ȳ from the interface O. The other circular arc MN ends on the geodesic segment
which connects the bulk points ȳ1 and ȳ4. Therefore, the total length of this surface is given
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Figure 16. Computation of the minimal EWCS for the disjoint intervals in double-crossing phase-I.

by dNP = dMP + dMN . The Poincaré coordinates of the points P and M may be read off
from eqs. (3.43) and (3.44). To obtain the coordinates of the point N , consider the diagram in
figure 16, where r and x0 are the radius and center coordinates of the circular arc connecting
ȳ1 and ȳ4, and the arbitrary angle ϕI parametrizes the position of N on this circular arc.

From figure 16, the Poincaré coordinates of N may be read off as

N : (xI, zI) =
(
C1L,NL

)
=
(
OC1 −OL,NL

)
= (x0 − r sinϕI, r cosϕI) , (3.62)

where the center and the radius of the circular arc are given as

r =

√
ȳ∗21 + ȳ∗24 + 2ȳ∗1 ȳ∗4 cos (2ψI)

2 sinψI
, x0 =

ȳ∗1 + ȳ∗4
2 sinψI

. (3.63)

Now utilizing the length formula in eq. (3.1), we may obtain the length of the candidate
EWCS as follows

dNP = LII cosh−1


(
b3+b2

2 + b3−b2
2 sinϕII + ȳ sinψII

)2
+
(
b3−b2

2 cosϕII
)2

+ (ȳ cosψII)2

2
(
b3−b2

2 cosϕII
)
ȳ cosψII


+ LI cosh−1

[
(x0 − r sinϕI − ȳ sinψI)2 + (ȳ cosψI)2 + (r cosϕI)2

2 (ȳ cosψI) (r cosϕI)

]
. (3.64)

Extremizing the above length over ϕI and ϕII, we obtain the following extremal values

ϕI = sin−1
[ 2r(x0 − ȳ sinψI)
r2 + x20 − 2x0ȳ sinψI + ȳ2

]

ϕII = sin−1
[ (b2 − b3)(b2 + b3 + 2ȳ sinψII)
b22 + b23 + 2ȳ2 + 2ȳ(b2 + b3) sinψII

]
. (3.65)

Substituting these and subsequently extremizing over the remaining parameter ȳ, we obtain
LI
(
r2 − x20 + ȳ2

)
ȳ
√(

r2 − 2x0ȳ sinψI + x20 + ȳ2
) 2 − 4r2 (x0 − ȳ sinψI) 2

= LII
(
ȳ2 − b2b3

)
ȳ
√(

2b2ȳ sinψII + b22 + ȳ2
) (

2b3ȳ sinψII + b23 + ȳ2
) . (3.66)
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Figure 17. Disjoint intervals: double-crossing phase-II.

The algebraic equation in eq. (3.66) may now be solved for ȳ and the corresponding extremal
value ȳ = ȳ∗ determines the minimal EWCS to be

EW (A : B) = LII
4GN

cosh−1


√(

ȳ∗2 + b22 + 2b2ȳ∗ sinψII
) (
ȳ∗2 + b23 + 2b3ȳ∗ sinψII

)
ȳ∗ (b3 − b2) cosψII



+ LI
4GN

cosh−1


√(

r2 − 2x0ȳ∗ sinψI + x20 + ȳ∗2
) 2 − 4r2 (x0 − ȳ∗ sinψI) 2

2ȳ∗r cosψI


+ LI

4GN
log

[
1 + 2η + 2

√
η(η + 1)

]
, (3.67)

where we have included the contribution from the left geometry in the final expression. In
the large tension limit δ → 0, the extremization condition in eq. (3.66) reduces to

LII
(
ȳ2 − b2b3

)
(b2 + ȳ) (b3 + ȳ) + LI

(
ȳ

ȳ − ȳ∗4
+ ȳ∗1
ȳ − ȳ∗1

)
= 0 . (3.68)

Substituting the extremal value ȳ = ȳ∗, the EWCS may now be obtained in the large
tension limit to be

EW (A : B) = LI
4GN

log
[(ȳ∗4 − ȳ∗) (ȳ∗ − ȳ∗1)

ȳ∗ (ȳ∗4 − ȳ∗1)

]
+ LII

4GN
log

[(ȳ∗ + b2) (ȳ∗ + b3)
ȳ∗ (b3 − b2)

]
+ S

(δ)
int

+ LI
4GN

log
[
1 + 2η + 2

√
η(η + 1)

]
, (3.69)

where S(δ)
int is the δ → 0 limit of the interface entropy, defined in eq. (3.8).

Phase-II

In the next phase, when the size of the subsystem A is small compared to that of B, the
minimal EWCS ends on the smaller segment of the double crossing RT surface anchored
on b1, as depicted in figure 17.
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To compute the length of the minimal EWCS we consider a candidate surface which
ends on an arbitrary point K parametrized by an angle ϕK , on the segment of the RT
surface anchored on b1. From figure 18, the Poincaré coordinates of the point K may be
read off as follows

K : (xII, zII) =
(
OT, TK

)
=
(
C1T −OC1, TK

)
= (r1 sinϕK − xC1 , r1 cosϕK) , (3.70)

where the radius r1 and the center coordinate |xC1 | of the circular geodesic connecting b1
and ȳ∗1 are given by

r1 = b1 + xC1 , xC1 = − ȳ∗21 − b21
2 (b1 + ȳ∗1 sin (ψII))

. (3.71)

The other endpoint of the candidate EWCS may be parametrized by another arbitrary angle
ϕII similar to eq. (3.43). Now, utilizing, the general formula for the geodesic length in eq. (3.1),
we may obtain the length of the candidate surface as follows

dPK = LII cosh−1


(
xC1 − r1 sinϕK + b2+b3

2 + b3−b2
2 sinϕII

)
2+

(
b3−b2

2 cosϕII
)
2+(r1 cosϕK) 2

2
(
b3−b2

2 cosϕII
)
r1 cosϕK

 .
(3.72)

Extremizing the above length over the arbitrary angles ϕII and ϕK , we obtain the extremal
solutions to be

ϕK = sin−1
[

r1 (b2 + b3 + 2xC1)
r21 + (b2 + xC1) (b3 + xC1)

]

ϕII = sin−1
[

(b2 − b3) (b2 + b3 + 2xC1)
−2r21 + b22 + b23 + 2 (b2 + b3)xC1 + 2x2C1

]
. (3.73)

Substituting these in eq. (3.72) the minimal EWCS is obtained as follows

EW (A : B) = LI
4GN

log
[
1+2η+2

√
η(η+1)

]
+ LII

4GN
cosh−1

[
r21 − (xC1 + b2) (xC1 + b3)

r1 (b3− b2)

]

= LI
4GN

log
[
1+2η+2

√
η(η+1)

]

+ LII
4GN

cosh−1
[
2
(
b21− b2b3

)
ȳ∗1 sinψII + b1 (b1 (b2+ b3)− 2b2b3)+ (2b1− b2− b3) ȳ∗21

(b3− b2)
(
2b1ȳ∗1 sinψII + b21+ ȳ∗21

) ]
.

(3.74)
In the above expression, we have included the contribution from the left geometry as well.
In the δ → 0 limit, the minimal EWCS reduces to

EW (A : B) = LI
4GN

log
[
1 + 2η + 2

√
η(η + 1)

]
+ LII

4GN
cosh−1

[
1 + 2(b1 − b2) (b3 + ȳ∗1)

(b2 − b3) (b1 + ȳ∗1)

]
.

(3.75)
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Figure 18. Computation of the minimal EWCS for two disjoint subsystems in double-crossing
phase-II.

Figure 19. Disjoint intervals: double-crossing phase-III.

Phase-III

The final phase of the EWCS considering the present structure of the entanglement entropy
of A ∪B concerns a geodesic in the AdSII

3 geometry, emanating from the dome connecting
b2 and b3 and ending on the larger segment of the double crossing RT surface anchored on
b4. The schematics of the configuration is depicted in figure 19.

The radius r2 and the coordinate of the center of the circular geodesic segment connecting
b4 and ȳ∗4 are given by

r2 = b4 + xC2 , xC2 = b24 − ȳ∗24
2 (ȳ∗4 sin (ψII) + b4)

. (3.76)

The computation of the length of the minimal EWCS follows very closely the analysis in
the previous subsection and hence we skip the details here. The minimal EWCS, including
the contribution from the left geometry, is then given by

EW (A : B) = LI
4GN

cosh−1 [1 + 2η] + LII
4GN

cosh−1
[
r22 − (xC2 − b2) (xC2 − b3)

r2 (b3 − b2)

]
. (3.77)
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Figure 20. Disjoint intervals: double-crossing phase-IV.

In the large tension limit, the above expression simplifies to

EW (A : B) = LI
4GN

log
[
1 + 2η + 2

√
η(η + 1)

]
+ LII

4GN
cosh−1

[
1 + 2(b3 − b4) (b2 + ȳ∗4)

(b2 − b3) (b4 + ȳ∗4)

]
.

(3.78)

B. Double crossing RT surface for subsystem C

Next we consider another phase for the RT saddles corresponding to the entanglement entropy
of A ∪ B sketched in figure 20. In this phase, there exists a double crossing RT surface
homologous to the interval [b2, b3]II on the CFTII

2 , which crosses the EOW brane twice at the
bulk points ȳ∗2 and ȳ∗3 respectively. This phase becomes dominant when ΘC = b3

b2
is greater

than its critical value. The locations of these bulk points are determined by solving the
extremization condition in eq. (3.22) together with ȳ2 = b2

kC
, where k2C = ȳ3

ΘC ȳ2
.

This configuration may be understood from the single-crossing one in figure 10 as the
dome shaped geodesic connecting b2 and b3 undergoes a phase transition to a double-crossing
one. Recall that, as determined earlier, the single crossing geodesics in figure 10 cross the
EOW brane at the bulk points y∗1 = b1 and y∗4 = b4 respectively. Therefore, in this phase,
the entanglement entropy of A ∪ B is given by

S(A ∪B) = Sdouble ([b2, b3]) +
LI + LII
4GN

[
log

(2b1
ϵ

)
+ log

(2b4
ϵ

)]
+ ρ∗I + ρ∗II

2GN
. (3.79)

The entanglement wedge dual to the density matrix ρAB is depicted by the shaded
region in figure 20. Within this phase of S(A ∪B), the minimal EWCS can undergo phase
transitions depending upon the subsystem sizes and their relative distances from the interface.
Note that, in principle, segments of the candidate curves for the EWCS may penetrate
into the AdSII

3 geometry. However, similar to [20], we may argue that passing through the
geometry which is less curved (recall that LII > LI) increases the total length. Hence, we
may conclude that the minimal curves reside within the AdSI

3 geometry and never probe
the AdSII

3 as depicted in figures 20 to 22.
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Phase-IV

In the first phase sketched in figure 20, the EWCS is given by the minimal geodesic between
the double crossing RT surface emanating from the right asymptotic boundary and the dome-
shaped RT surface connecting b2 and b3 on the left asymptotic boundary. We may parametrize
an arbitrary point N on the double-crossing geodesic by the angle ϕN , similar to eq. (3.62),
with the radius and center coordinate of the semi-circular arc in AdSI

3 given as follows

r =

√
ȳ∗22 + ȳ∗23 + 2ȳ∗3 ȳ∗2 cos (2ψ1)

2 sin (ψ1)
, x0 =

ȳ∗2 + ȳ∗3
2 sin (ψ1)

. (3.80)

On the other hand the Poincaré coordinates of the arbitrary point Q on the dome-shaped RT
in the left geometry are given in eq. (3.43) with ϕII replaced by ϕQ. Therefore, utilizing the
formula in eq. (3.1), the length of this candidate surface may be computed as follows

dNQ = LI cosh−1


(
b3+b2

2 + b3−b2
2 sinϕQ+x0− r sinϕN

)
2+

(
b3−b2

2 cosϕQ
)
2+(r cosϕN) 2

2
(
b3−b2

2 cosϕQ
)
r cosϕN

 .
(3.81)

Extremizing over the arbitrary angles ϕN and ϕQ, we obtain the extremal values to be

ϕN = sin−1
[

r (b2 + b3 + 2x0)
(b2 + x0) (b3 + x0) + r2

]

ϕQ = sin−1
[ (b2 − b3) (b2 + b3 + 2x0)
2 (b2 + b3)x0 + b22 + b23 − 2r2 + 2x20

]
. (3.82)

Substituting these in the expression for the length, we obtain the minimal EWCS to be

EW (A : B) = LI
4GN

cosh−1
[
(b2 + x0) (b3 + x0)− r2

(b3 − b2) r

]

= LI
4GN

cosh−1

2 (b2b3 + ȳ∗2 ȳ
∗
3) sin (ψ1) + (b2 + b3) (ȳ∗2 + ȳ∗3)

(b3 − b2)
√
ȳ∗22 + ȳ∗23 + 2ȳ∗3 ȳ∗2 cos (2ψ1)

 . (3.83)

In the limit of large brane tension δ → 0, the above expression reduces to

EW (A : B) = LI
4GN

log
[
1 + 2ζ + 2

√
ζ(ζ + 1)

]
, (3.84)

where the cross-ratio ζ is given by

ζ = (b3 + ȳ∗2) (b2 + ȳ∗3)
(b3 − b2) (ȳ∗2 − ȳ∗3)

. (3.85)

Phase-V

Next, we consider the configuration where the candidate EWCS comprises of two disconnected
geodesic segments one of which connects the double crossing RT surface and the bigger single
crossing one connecting b4 on either side. On the other hand, the second segment connects
the dome shaped RT surface and the bigger single crossing one. The schematics of the
configuration is depicted in figure 21.
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Figure 21. Disjoint intervals: double-crossing phase-V.

As described earlier, we may parametrize the endpoints of these geodesic segments on the
double crossing and dome-shaped RT surfaces similar to eqs. (3.43) and (3.62). Furthermore,
recall that the single crossing RT surface cross the EOW brane at y∗4 = b4 and hence the
endpoints of the geodesic segments on this surface may be parametrized as in eq. (3.52).
Therefore, utilizing eq. (3.1), the total length of the two geodesics segments in figure 21
may be computed as follows

d = dNR + dQS

= LI cosh−1
[
(x0 − r sinϕN + b4 sinϕR) 2 + (r cosϕN) 2 + (b4 cosϕR) 2

2rb4 cosϕN cosϕR

]

+ LI cosh−1


(
b4 sinϕS −

(
b2+b3

2 + b3−b2
2 sinϕQ

))2
+
(
b3−b2

2 cosϕQ
)2

+ (b4 cosϕS)2

2
(
b3−b2

2 cosϕQ
)
b4 cosϕS

 .
(3.86)

Extremizing over the arbitrary angles ϕN, ϕQ, ϕR and ϕS , we obtain

ϕR = − sin−1
[ 2b4x0
−r2 + b24 + x20

]
, ϕN = sin−1

[ 2rx0
r2 − b24 + x20

]

ϕQ = sin−1
[

b22 − b23
b22 + b23 − 2b24

]
, ϕS = sin−1

[(b2 + b3) b4
b24 + b2b3

]
. (3.87)

Substituting these extremal values, we obtain the minimal EWCS to be

EW (A : B) = LI
4GN

(
cosh−1

[
b24 − b2b3
(b3 − b2) b4

]
+ cosh−1

[ 2rb4
r2 + b24 − x20

])

= LI
4GN

cosh−1
[
b24 − b2b3
(b3 − b2) b4

]
+ cosh−1

 sinψI
(
b24 − ȳ∗2 ȳ

∗
3
)

b4
√
2ȳ∗3 ȳ∗2 cos (2ψI) + ȳ∗22 + ȳ∗23

 .
(3.88)
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Figure 22. Disjoint intervals: double-crossing phase-VI.

In the δ → 0 limit, the above expression reduces to

EW (A : B) = LI
4GN

(
cosh−1

[
b24 − b2b3
(b3 − b2) b4

]
+ log

[
1 + 2ξ + 2

√
ξ(ξ + 1)

])
(3.89)

where the cross ratio ξ is given by

ξ = (b4 − ȳ∗2) (b4 + ȳ∗3)
2b4 (ȳ∗2 − ȳ∗3)

. (3.90)

Phase-VI

There is one more possibility for the EWCS where two disconnected geodesic segments land
on the smaller single crossing RT surface, as depicted in figure 22. The computation of the
lengths are similar to that in the previous subsection and we may obtain the expression from
eq. (3.88) via the replacement b4 → b1 as follows

EW (A : B) = LI
4GN

cosh−1
[
b2b3 − b21
(b3 − b2) b1

]
+ cosh−1

 sinψI
(
b21 − ȳ∗2 ȳ

∗
3
)

b1
√
2ȳ∗3 ȳ∗2 cos (2ψI) + ȳ∗22 + ȳ∗23

 .
(3.91)

In the large tension limit (δ → 0), the above expression reduces to

EW (A : B) = LI
4GN

(
cosh−1

[
b2b3 − b21
(b3 − b2) b1

]
+ cosh−1

[
b21 − ȳ∗2 ȳ

∗
3

b1 (ȳ∗2 − ȳ∗3)

])
. (3.92)

RT saddles with no brane crossing

Finally, we consider the simplest RT saddle homologous to A∪B which never cross the EOW
brane and has dome-shaped structures in each AdS3 geometry as sketched in figure 23. Once
again, we only consider the configuration with a connected (though disjoint into two parts in
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Figure 23. Disjoint intervals: EWCS without brane-crossing.

each spacetime) entanglement wedge. The corresponding entanglement wedge cross-section
may be computed utilizing standard AdS3/CFT2 techniques as follows [25, 44]

EW (A : B) = LI + LII
4GN

log
[
1 + 2η + 2

√
η(η + 1)

]
, (3.93)

where the cross-ratio η is given in eq. (3.61).

4 Reflected entropy from island prescription: vacuum state

In this section, we will discuss the effective lower dimensional perspective of the setup where
the gravitational theory on the brane is coupled to two non-gravitating bath CFT2s. As
described in [20], the gravitational theory on the brane in the effective intermediate picture
is obtained by integrating out the bulk AdS3 degrees of freedom on either side of the brane.

In the large tension limit T → Tmax, the theory on the brane is given by two CFT2s
coupled to the weakly fluctuating (AdS2) metric. The nature of the CFTs on the brane also
follows from the dimensional reduction of the bulk geometry. In the large tension regime,
we obtain a non-local action [8, 48] which may be rewritten in terms of the Polyakov action
by introducing two auxiliary fields φk (k = I, II) as follows [20, 21]:

I =
∑
k=I,II

Lk
32πGN

∫
Σ

d2y
√
−h

[
−1
2h

ab∇aφk∇bφk + φkR
(2) − 2

Lk
e−φk

]
, (4.1)

where hab is the induced metric on the brane and R(2) is the corresponding Ricci scalar.
The above Polyakov action may be interpreted as two CFT2s with central charges ck = 3Lk

4GN
located on the AdS2 brane Σ. Hence, as advocated in [20], we have two CFT2s on the whole
real line interacting through the common metric on the AdS2 brane and decoupled on the
other halves as depicted in figure 24. This constitutes the setup of a QFT coupled to gravity
on a hybrid manifold, usual in the island paradigm [3, 4, 49, 50].
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Figure 24. Two-dimensional effective model obtained from integrating out the three-dimensional
bulk geometry in the AdS/ICFT model. Figure modified from [20].

From the Polyakov action eq. (4.1), the transverse area term of a co-dimension two
surface χ appearing in the island formula may be obtained as follows [21, 48]

Area(χ)
4G(2)

N
= 1

8GN

∑
k=I,II

Lk φk(χ) =
1

8GN

∑
k=I,II

Lk log
[
− 2
L2
k R

(2)

]

= cI
6 log

( 1
cosψI

)
+ cII

6 log
( 1
cosψII

)
≡ Φ0 , (4.2)

where in the last equality, we have used the Brown-Henneaux relations as well as the fact
that the Ricci scalar on the brane Σ is given by [20, 21]

R(2) = − 2
ℓ2eff

≡ − 2
L2
k

cos2 ψk , k = I, II . (4.3)

Now we discuss the computation of entanglement entropy of subsystems in the bath
CFT2s utilizing the concept of generalized entropy and the island formalism. The generalized
Rényi entropy for subsystems in the baths is computed through an Euclidean path integral
on the replica manifold obtained by sewing n copies of the original manifold along branch
cuts present on the subsystems under consideration [49, 51]. As the bath CFT2s couple to
the gravitational theory on the brane, in certain saddles to the gravitational part of the path
integral, additional smooth branch points may emerge at the replica fixed points on copies
of the brane theory. These are the endpoints of the so called island region corresponding
to the bath subsystems.

However, unlike the usual scenario with a single bath coupled to gravity [3, 4, 49, 50],
in the present case, the existence of an additional bath leads to novel saddle points to
the gravitational path integral. In [21], these novel island saddles were termed as induced
islands. In the presence of two baths, consider the entanglement entropy of the union of two
subsystems on either bath. In the usual scenario, both these subsystems are responsible for
the appearance of additional branch points on the brane. However, when the central charge
of one of the CFT2s is larger than the other, branch points in the gravitating manifold may
emerge solely due to the subsystem in the CFT with the larger central charge. Since the
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CFTs interact on the gravitating manifold, the other CFT also realizes the same branch
points and perceives an induced island. Note that, as the island region is induced from the
CFT with larger central charge, it bears no signature of the subsystem in the other CFT.18

In the following we will assume cII > cI without loss of generality, and hence the induced
islands will only appear under the influence of the subsystem in CFTII

2 .
The origin of the conventional and induced islands may also be understood from the

doubly holographic (three dimensional bulk) perspective. The conventional island appears in
the effective intermediate picture when the RT saddle homologous to the subsystems crosses
the brane only once. On the other hand for a double-crossing RT saddle homologous to the
subsystem in CFTII

2 , we obtain an induced island in the lower dimensional perspective. In
both the cases, the island region is bounded by the crossing points on the brane.

The generalized entanglement entropy for A ∪B in the presence of an island Is(AB) =
[−y3,−y1] may be expressed as19 [4, 49]

Sgen(AB) = A (∂ Is(AB))
4GN

+ lim
n→1

S
(n)
eff (AB ∪ Is(AB)) (4.4)

= Φ0 + lim
n→1

1
1− n

log

 ∏
i=1,3

ΩI(yi)∆
(I)ΩII(yi)∆

(II)
G̃nCFTIG

n
CFTII

 , (4.5)

where ΩI,II(yi) = |yi| is the Weyl factor corresponding to the point yi on the brane, Is(X)
denotes the island region contributing to the entanglement entropy of subsystem X and S(n)

eff
is the effective Renyi entanglement entropy of quantum matter fields on the fixed background.
In eq. (4.5), the conformal dimensions of the twist operators ∆(I,II) are given by [52]

∆(k) = ck
24

(
n− 1

n

)
, k = I, II. (4.6)

The island prescription now dictates that the entanglement entropy is obtained by extremizing
the generalized entropy over all possible island configurations as follows [4, 49]

S(AB) = Min Ext
Is(AB)

[Sgen(AB)] . (4.7)

Once the entanglement entropy island Is(AB) for A∪B is determined, the reflected entropy
in the effective intermediate perspective is obtained by splitting Is(AB) into the respective
reflected entropy islands IsR(A) and IsR(B) at the island cross section Q = ∂IsR(A)∩∂IsR(B)
as follows20 [30, 31]

SR(A : B) = Ext
Q

[
Area(Q)
2G(2)

N
+ lim
n→1

lim
me→1

S eff
R (A ∪ IsR(A) : B ∪ IsR(B))

]
. (4.8)

18See [21] for more details and the corresponding generalized island formulae.
19Note that the correlation functions of the twist operators, G̃n

CFTI and Gn
CFTII , generically need not have

the same structure due to the presence of induced islands.
20Note that the above expression may intuitively be understood as the island prescription applied to

SvN (ρAA⋆ )√ρAB
[30]. Similar to the case of EE islands, a gravitational replica technique featuring replica

wormhole saddles to the gravitational path integral may be utilized to obtain the formula (4.8). Furthermore,
eq. (4.8) may be intuitively understood in the corresponding doubly holographic formalism [32, 53] as the EWCS
ending on the EOW brane precisely at the location of the QECS in the lower dimensional effective theory.
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In eq. (4.8), the effective reflected entropy may be computed through its Rényi generalization
as the (normalized) partition function Zn,m on the m×n sheeted replica manifold as follows [26]

S
(m,n),eff
R (A ∪ IsR(A) : B ∪ IsR(B)) = 1

1− n
log

[
Zn,m

(Z1,m)n

]

= 1
1− n

log
[∏

iΩ(yi)∆i G̃m,nCFTI
Gm,nCFTII

(G̃mCFTI
GmCFTII

)n

]
.

(4.9)

In the above expression, Ω(yi) corresponds to the Weyl factor corresponding to the point yi
on the AdS2 brane, G̃m,nCFTI

and Gm,nCFTII
are appropriate correlation functions of twist operators

inserted at the endpoint of the subsystems and their corresponding reflected entropy islands
on the replica manifold.

4.1 Adjacent subsystems

Here we compute the entanglement entropy and reflected entropy for the configuration of
adjacent subsystems A = [b̃1, b̃2]I∪[b1, b2]II and B = [b̃2, b̃3]I∪[b2, b3]II in the lower dimensional
effective perspective described above, by employing the replica technique developed in [26].
To this end we first consider different saddles for the entanglement island for A ∪ B and
subsequently discuss the phase transitions of reflected entropy between A and B within
each phase of the entanglement entropy.

4.1.1 Conventional island

We begin by considering the case of conventional islands, where the entanglement entropy
island Is(AB) = [−y3,−y1] conceived on the brane depends on the degrees of freedom of
the subsystems in both CFT2s. In this case, the correlation functions G̃nCFTI

and GnCFTII

have the same large-c structure:21

G̃nCFTI = ⟨σgn(b̃1)σg−1
n
(b̃3)σgn(−y3)σg−1

n
(−y1)⟩

≈ ⟨σgn(b̃1)σg−1
n
(−y1)⟩⟨σg−1

n
(b̃3)σgn(−y3)⟩, (4.10)

with a similar factorization for GnCFTII
= ⟨σgn(b1)σg−1

n
(b3)σgn(−y3)σg−1

n
(−y1)⟩. We are going

to follow this convention for the rest of the article. Now from eqs. (4.2) and (4.5), we obtain

Sgen(y1, y3) = Φ0 +
c I
6 log

[
(y1 + b̃1)2(y3 + b̃3)2

ϵ2y1y3

]
+ cII

6 log
[
(y1 + b1)2(y3 + b3)2

ϵ2y1y3

]
. (4.11)

where the constant area contribution denoted as Φ0 is defined in eq. (4.2). On extremizing
the above equation with respect to y1 and y3, the positions of the endpoints of the island
are given by

y∗i =
(cII − cI)(bi − b̃i) +

√
4bib̃i(cI + cII)2 + (cI − cII)2(bi − b̃i)2

2(cI + cII)
, (i = 1, 3). (4.12)

21Note that on the right hand side, we have suppressed the subscripts CFT⊗n
I for compactness of the

expressions. In the following, unless specified explicitly, we will continue to adopt this simplification of
notations.
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The entanglement entropy for the adjacent subsystems in the effective intermediate perspective
may be obtained by substituting eq. (4.12) in eq. (4.11). Utilizing eqs. (2.8) and (2.9), in the
δ → 0 limit, the above expression is seen to match identically with the large tension limit
of eq. (3.4). Incidentally, in the δ → 0 limit one obtains

Φ(δ)
0 = cI

6 log
[(LI + LII)

LI δ

]
+ cII

6 log
[(LI + LII)

LII δ

]
+O (δ) ≡ S

(δ)
int −

cI + cII
6 log 2 , (4.13)

and hence the large tension limit of the entanglement entropy obtained from eq. (3.3) also
matches with eq. (4.11).

We now compute the island contributions to the reflected entropy for the configuration of
two adjacent subsystems when the entanglement entropy island is conventional. We divide the
entropy island Is(A∪ B) into the respective reflected islands as follows: IsR(A) = [−y,−y∗1 ] and
IsR(B) = [−y∗3,−y] at the island cross-section Q = y such that IsR(A)∪IsR(B) = Is(A∪B) [30].
The twist correlation function computing the effective reflected entropy between A ∪ IsR(A)
and B ∪ IsR(B) is generically obtained through the six point function which is given as

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(b3)σgB (−y∗3)σgAg

−1
B
(−y)σg−1

A
(−y∗1)⟩ . (4.14)

The expression for G̃ is of the same form as above with coordinates b replaced by b̃ while
points on the brane remain the same. The correlation function GmCFTII

on the m-sheeted
Riemann surface for the configuration of adjacent subsystems may be expressed as

GmCFTII = ⟨σgm(b1)σg−1
m
(b3)σgm(−y∗3)σg−1

m
(−y∗1)⟩. (4.15)

It has the same form for the CFTI with b replaced by the b̃ coordinates. The scaling
dimensions of the relevant twist operators are given as follows (k = I, II) [26]

∆(k)
σgA

= ∆(k)
σ

g−1
A

= ∆(k)
σgB

= ∆(k)
σ

g−1
B

= n ck
12

(
m− 1

m

)
= n∆(k)

m

∆(k)
σ

g−1
A

gB

= ∆(k)
σ

g−1
B

gA

= ck
12

(
n− 1

n

)
= 2∆(k)

n . (4.16)

The form of the six point function in a CFT is not known explicitly, however it can be
determined in the large central charge limit leading to various phases which we discuss in
the following subsections.

Phase-I

We choose the size of the subsystems A and B such that both subsystems admit their own
islands on the brane region. In this case, the six point twist correlator factorizes into three
two point functions (cf. figure 25(a)) as

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(b3)σgB (−y∗3)σgAg

−1
B
(−y)σg−1

A
(−y∗1)⟩

= ⟨σgA(b1)σg−1
A
(−y∗1)⟩⟨σgBg

−1
A
(b2)σgAg

−1
B
(−y)⟩⟨σg−1

B
(b3)σgB (−y∗3)⟩.

(4.17)

The correlation function Gm in this phase is given by

GmCFTII = ⟨σgm(b1)σg−1
m
(−y∗1)⟩⟨σgm(b3)σgm(−y∗3)⟩. (4.18)
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Figure 25. Various phases depicting the island contribution to the reflected entropy of adjacent
subsystems. We replace y by ȳ for the case of induced islands.

Similar factorizations occur for G̃ and G̃m. We now utilize eqs. (4.17) and (4.18) in eq. (4.9)
to obtain the generalized reflected entropy in the replica limit as

Sgen
R (y) = 2Φ0 +

cI
3 log

[
(y + b̃2)2

ϵ y

]
+ cII

3 log
[
(y + b2)2

ϵ y

]
, (4.19)

where the area term Φ0 is defined in eq. (4.2). After extremizing the above expression with
respect to y, the location of the island cross-section is given by eq. (4.12) with i = 2. The
reflected entropy for this phase may now be obtained in the limit δ → 0 as

SR(A : B) = cI
3 log

[
(y∗ + b̃2)2

2y∗ ϵ

]
+ cII

3 log
[
(y∗ + b2)2

2y∗ ϵ

]
+ S

(δ)
int . (4.20)

where S(δ)
int is the interface entropy in the δ → 0 limit, defined in eq. (3.8). In this limit, we

observe that the location of the brane crossing point y∗ in the 3d bulk picture given in eq. (3.7)
matches with the island cross-section obtained in the effective lower dimensional scenario.
Furthermore, the large tension limit of the EWCS given in eq. (3.6) matches identically with
half of the reflected entropy obtained in eq. (4.20).
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Phase-II

In phase-II, the size of the subsystem B is much larger than A such that the entire island
belongs to B and A does not have a corresponding island. This configuration is depicted in
figure 25(b). Note that, there is no non-trivial island cross-section for this phase and hence
no extremization is involved. The corresponding twist correlation function computing the
effective reflected entropy in this phase is given by

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(b3)σgB (−y∗3)σg−1

B
(−y∗1)⟩

≈ ⟨σgA(b1)σgBg
−1
A
(b2)σg−1

B
(−y∗1)⟩⟨σg−1

B
(b3)σgB (−y∗3)⟩. (4.21)

As earlier, the correlation function on the m-sheeted surface factorizes following eq. (4.18).
Similar factorizations occur for the CFTI correlators and the two point functions cancel
from the numerator and denominator. Furthermore, note that y1 and y3 are fixed to the
extremal values y∗1 and y∗3 respectively, by the entanglement island corresponding to the
subsystem A ∪ B. The three point function is fixed by the conformal symmetry up to an
OPE coefficient which for the present case is given by [26]

C(k)
n,m = (2m)2∆

(k)
n . (4.22)

Therefore, the reflected entropy may be obtained in this phase by utilizing eqs. (4.16)
and (4.22) followed by taking the replica limit as

SR(A : B) = cI
3 log

[
2(b̃2 − b̃1)(b̃2 + y∗1)

ϵ1(b̃1 + y∗1)

]
+ cII

3 log
[2(b2 − b1)(b2 + y∗1)

ϵ2(b1 + y∗1)

]
, (4.23)

where y∗1 is given in eq. (4.12). We observe that the above result matches exactly with twice
the large tension limit of the EWCS in the bulk perspective, obtained in eq. (3.16).

Phase-III

As opposed to the previous case, the size of the subsystem A is much larger than that of B
in this phase. Hence the entire entanglement entropy island now belongs to A and B does
not posses an island as shown in figure 25(c). Similar to the previous phase, the correlation
function in this phase factorizes as

Gm,nCFTII
= ⟨σgBg

−1
A
(b2)σg−1

B
(b3)σgA(−y∗3)⟩⟨σgA(b1)σg−1

A
(−y∗1)⟩ ,

GmCFTII = ⟨σg−1
m
(b3)σgm(−y∗3)⟩⟨σgm(b1)σg−1

m
(−y∗1)⟩ . (4.24)

The reflected entropy in phase III may now be obtained in a similar manner to the previous
phase as follows

SR(A : B) = cI
3 log

[
2(b̃2 − b̃3)(b̃2 + y∗3)

ϵ1(b̃3 + y∗3)

]
+ cII

3 log
[2(b2 − b3)(b2 + y∗3)

ϵ2(b3 + y∗3)

]
. (4.25)

Once again, since the δ → 0 limit of eq. (3.4) is identical to eq. (4.12), it is easy to verify that
the reflected entropy obtained above matches identically with twice the corresponding large
tension expression for the EWCS in the doubly holographic framework, as given in eq. (3.18).
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4.1.2 Induced island
Next we consider the induced island Is(AB) = [−ȳ3,−ȳ1] where the island region for the
subsystem in CFTI

2 is induced by the subsystem in CFTII
2 . As a result, although the CFTII

2
correlator has the same structure as earlier, the CFTI

2 correlator G̃nCFTI
has a different

factorization in the large central charge limit (the island region is independent of the degrees
of freedom on the CFTI subsystem)

G̃nCFTI = ⟨σgn(b̃1)σg−1
n
(b̃3)σgn(−ȳ3)σg−1

n
(−ȳ1)⟩

≈ ⟨σgn(b̃1)σg−1
n
(b̃3)⟩⟨σgn(−ȳ3)σg−1

n
(−ȳ1)⟩. (4.26)

The generalized entropy may now be obtained using eqs. (4.2) and (4.5) as follows

Sgen(ȳ1, ȳ3) = 2Φ0 +
cI
3 log

[
b̃3 − b̃1
ϵ

]
+ cI

6 log
[
(ȳ1 − ȳ3) 2
ȳ1ȳ3

]

+ cII
6 log

[
(ȳ1 + b1) 2 (ȳ3 + b3) 2

ϵ2ȳ1ȳ3

]
. (4.27)

Extremizing over the locations of the quantum extremal surfaces ȳ∗1 and ȳ∗3, we obtain

cII (ȳ∗1 − ȳ∗3) (ȳ∗1 − bk) + cI (ȳ∗1 + ȳ∗3) (bk + ȳ∗1) = 0 , (k = 1, 3). (4.28)

The entanglement entropy may be obtained upon substituting the physical solution to the
above equations in eq. (4.27) and subsequently choosing the minimal saddle. Using the
parametrization given in eq. (3.20), it is now straightforward to verify that eq. (3.24) together
with the solution ȳ∗i = bi

k∗D
, conforms to the locations of the quantum extremal surfaces in

the 2d effective theory as obtained from eq. (4.28).
In the following, we compute the induced island contributions to the reflected entropy

between the adjacent subsystems A and B. Once again, we divide the induced entanglement
island Is(A ∪ B) into the respective reflected islands IsR(A) = [−ȳ,−ȳ∗1] and IsR(B) =
[−ȳ∗3,−ȳ] such that IsR(A) ∪ IsR(B) = Is(A ∪ B). Note that, similar to the entanglement
island, the reflected entropy islands for the CFTI degrees of freedom appearing on the AdS2
brane is induced by the subsystem in CFTII. As earlier, the twist correlators computing
the effective reflected entropy between A ∪ IsR(A) and B ∪ IsR(B) are generically given
by the six point function

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(b3)σgB (−ȳ∗3)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗1)⟩ , (4.29)

in CFTII, with a similar expression holding in CFTI. Unlike the earlier phases, these
correlators factorize differently in CFTI and CFTIIs as discussed in the following subsections.

Phase-I
In the first phase, the portions of the subsystems A and B residing in CFTII admit their own
islands and correspondingly induce islands for their counterparts in CFTI. The correlation
function in the CFTI (cf. figure 25(a)) factorizes as

G̃m,nCFTI
= ⟨σgA(b̃1)σgBg

−1
A
(b̃2)σg−1

B
(b̃3)⟩⟨σgB (−ȳ3)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗1)⟩,

G̃mCFTI = ⟨σgm(b̃1)σg−1
m
(b̃3)⟩CFT⊗m

I
⟨σgm(−ȳ∗3)σg−1

m
(−ȳ∗1)⟩CFT⊗m

I
,

(4.30)
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while the correlator in the CFTII factorizes into two point twist correlators as

Gm,nCFTII
= ⟨σgA(b1)σg−1

A
(ȳ∗1)⟩⟨σgBg

−1
A
(b2)σgAg

−1
B
(ȳ)⟩⟨σg−1

B
(b3)σgB (ȳ∗3)⟩

GmCFTII = ⟨σgm(b1)σg−1
m
(ȳ∗1)⟩⟨σg−1

m
(b3)σgm(ȳ∗3)⟩.

(4.31)

Now, the generalized reflected entropy in this phase may be obtained using eqs. (4.22), (4.30)
and (4.31) in eq. (4.9) in the replica limit as follows

Sgen
R (A : B) = 2Φ0 +

cI
3 log

[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ(b̃3 − b̃1)

]
+ cI

3 log
[2(ȳ − ȳ∗1)(ȳ − ȳ∗3)

ȳ(ȳ∗1 − ȳ∗3)

]

+ cII
3 log

[
(b2 + ȳ)2

ϵ ȳ

]
.

(4.32)

Extremization of the above expression with respect to the (induced) island cross-section ȳ

leads precisely to eq. (3.32), where ȳ∗1 and ȳ∗3 are fixed according to the solution of eq. (4.28).
Utilizing eq. (4.13), the reflected entropy in the effective lower dimensional perspective
matches identically with twice the large tension limit of the corresponding EWCS obtained
in eq. (3.31) in the doubly holographic perspective.

Phase-II

In the next phase, we consider the subsystem A to be much larger than B as described
in figure 25(c), so that the entire (induced) island belongs to A. In this case, there is no
non-trivial island cross section on the AdS2 region and the following factorization occurs

G̃m,nCFTI
= ⟨σgA(b̃1)σgBg

−1
A
(b̃2)σg−1

B
(b̃3)⟩⟨σgB (−ȳ∗3)σg−1

A
(−ȳ∗1)⟩,

G̃mCFTI = ⟨σgA(b̃1)σg−1
B
(b̃3)⟩⟨σgm(−ȳ∗3)σg−1

m
(−ȳ∗1)⟩.

(4.33)

The correlation function in the CFTII factorizes in the following way

Gm,nCFTII
= ⟨σgBg

−1
A
(b2)σg−1

B
(b3)σgA(−ȳ∗3)⟩⟨σgA(b1)σg−1

A
(−ȳ∗1)⟩,

GmCFTII = ⟨σg−1
m
(b3)σgm(−ȳ∗3)⟩⟨σgm(b1)σg−1

m
(−ȳ∗1)⟩.

(4.34)

The reflected entropy for this phase may now be determined as follows

SR(A : B) = cI
3 log

[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ(b̃3 − b̃1)

]
+ cII

3 log
[2(b3 − b2)(b2 + ȳ∗3)

ϵ(b3 + ȳ∗3)

]
, (4.35)

where ȳ∗3 is fixed by the entanglement island of A ∪B, as given in eq. (4.28). This matches
identically with the large tension limit of the EWCS in the doubly holographic picture,
given in eq. (3.35).

Phase-III

In this phase, the subsystem B is much larger than the subsystem A as shown in figure 25(b).
Hence the factorization of correlator remains same as in the previous case for CFTI while
for CFTII we have

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(−ȳ∗1)⟩⟨σg−1

B
(b3)σgB (−ȳ3)⟩. (4.36)
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The reflected entropy for this phase may be obtained in a similar manner to the previous
phase as follows

SR(A : B) = cI
3 log

[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ(b̃3 − b̃1)

]
+ cII

3 log
[2(b2 − b1)(b2 + ȳ∗1)

ϵ(b1 + ȳ∗1)

]
, (4.37)

where ȳ∗1 is given by eq. (4.28) and the corresponding minimal EWCS obtained in eq. (3.36)
from the double holographic perspective, matches with the above expression in the limit
of large brane tension.

4.1.3 No island saddle

When the sizes the subsystems A and B are small enough such that they do not posses
any entanglement entropy islands as shown in figure 25(d), the corresponding entanglement
entropies are computed via the usual two-point functions in either CFT [52]. The correlation
function computing the reflected entropy between A and B may be written as a three point
function in either CFT:

Gm,nCFTII
= ⟨σgA(b1)σgBg

−1
A
(b2)σg−1

B
(b3)⟩ . (4.38)

The CFTII correlator G̃m,n is given by a similar two point function with b replaced by b̃.
Therefore, the reflected entropy may be obtained in a straightforward manner as follows

SR(A : B) = cI
3 log

[
2(b̃2 − b̃1)(b̃3 − b̃2)

ϵ(b̃3 − b̃1)

]
+ cII

3 log
[2(b2 − b1)(b3 − b2)

ϵ(b3 − b1)

]
, (4.39)

which matches identically with the corresponding EWCS in the 3d bulk perspective, given
in eq. (3.37).

4.2 Disjoint subsystems

In this section we determine the island contributions to the reflected entropy for two disjoint
subsystems A = [b1, b2]I ∪ [b1, b2]II and B = [b3, b4]I ∪ [b3, b4]II in the lower dimensional
effective theory described by dynamical gravity on the AdS2 manifold coupled to two flat
Minkowski baths, utilizing the replica technique [26, 30].

Similar to the earlier investigation with adjacent subsystems, in the following, we will
discover both conventional and induced island regions conceived in the gravitating manifold
depending on the locations and (relative) sizes of the subsystems.

4.2.1 Conventional island

We begin by considering the case of the conventional entanglement island for A ∪B, denoted
as Is(AB) = [−y1,−y4]. Recall that a conventional island on the gravitational manifold
depends on the degrees of freedom from the subsystems on both baths. Hence, the twist
correlators computing the effective Rényi entropy corresponding to A∪B have the same kind
of factorization in the large-c limit. For the present configuration of two disjoint subsystems
with the corresponding conventional island Is(AB), the effective Rényi entropy is computed
through six point correlation functions of twist operators as follows

GnCFTI/II
= ⟨σgn(b1)σg−1

n
(b2)σgn(b3)σg−1

n
(b4)σgn(−y4)σg−1

n
(−y1)⟩ .
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In the large central charge limit, the above twist correlator may be factorized as fol-
lows [4, 49, 54]

GnCFTI/II
= ⟨σg−1

n
(b2)σgn(b3)⟩⟨σgn(b1)σg−1

n
(−y1)⟩⟨σg−1

n
(b4)σgn(−y4)⟩ . (4.40)

Substituting the above correlation in eq. (4.5) and accounting for the appropriate Weyl factors
for the points yi on the AdS2 region given as Ω(yi) = |yi|, the generalized entanglement
entropy may be obtained as follows

Sgen(AB) = Φ0 +
cI + cII

6

(
2 log

(
b3 − b2
ϵ

)
+ log

[
(b4 + y4)2

ϵ y1

]
+ log

[
(b4 + y4)2

ϵ y4

])
.

(4.41)

Extremizing the above expression with respect to yi we obtain y∗i = bi leading to the following
expression for the entanglement entropy

S(AB) = Φ0 +
cI + cII

6 log 2 + cI + cII
6

[
2 log

(
b3 − b2
ϵ

)
+ log

(2b1
ϵ

)
+ log

(2b4
ϵ

)]
.

(4.42)

In the large tension regime, utilizing eq. (4.13), the above result is seen to be an exact match
of the corresponding expression obtained from the bulk geometry given in eq. (3.41).

Having obtained the entanglement entropy we now compute the reflected entropy of
two disjoint subsystems for phases involving the conventional islands utilizing the replica
technique developed in [26].

Phase-I

We begin by considering the configuration described by figure 26(a). The twist correlation
function characterizing the reflected entropy of AB in this phase is given by Gm,nCFTI/II

which
corresponds to the following seven point correlation function

Gm,nCFTI/II
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgB (−b4)σgAg

−1
B
(−y)σg−1

A
(−b1)⟩ .

Note that the two correlations Gm,nCFTI
and Gm,nCFTII

are identical in this case because of the
symmetry of chosen configuration. Since the seven point function is hard to determine
analytically even in the large-c limit, we take b4, b1 away from b2, b3 such that the following
factorization occurs

Gm,nCFTI/II
= ⟨σgA(b1)σg−1

A
(−b1)⟩σg−1

B
(b4)σgB (−b4)⟩⟨σg−1

A
(b2)σgB (b3)σgAg

−1
B
(−y)⟩ . (4.43)

Note that CFTI/II on l.h.s. indicates that the structure is same for both CFTII and CFTI.
The corresponding correlation functions of the m-sheeted Riemann surface which for this
phase are given as

GmCFTI/II
= ⟨σgm(b1)σg−1

m
(b2)σgm(b3)σg−1

m
(b4)σgm(−b4)σg−1

m
(−b1)⟩ (4.44)

= ⟨σgm(b1)σg−1
m
(−b1)⟩⟨σg−1

m
(b4)σgm(−b4)⟩⟨σg−1

m
(b2)σgm(b3)⟩ (4.45)
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(a) (b)

(c) (d)

Figure 26. Various phases depicting the island contributions to the reflected entropy of disjoint
intervals in a zero temperature holographic ICFT2.

where the second equality comes from the factorization specific to this phase. Note that
the two point functions in the numerator and denominators exactly cancel. Also the Weyl
factors in the numerator and denominators cancel for all the operators except σgAg

−1
B
(y). We

may now obtain the generalized Renyi reflected entropy by substituting the expressions for
the correlators in eqs. (4.43) and (4.45) in (4.9) as follows

S
(m,n,eff)
R (A ∪ IsR(A) : B ∪ IsR(B))

= 1
1− n

log

ΩI(−y)
∆(I)

gAg−1
B ⟨σg−1

A
(b2)σgB (b3)σgAg

−1
B
(−y)⟩CFT⊗mn

I(
⟨σg−1

m
(b2)σgm(b3)⟩CFT⊗m

I

)n
+ (I ↔ II).

(4.46)

The three point function is fixed by the conformal symmetry up to the OPE constant given
in eq. (4.22). This leads to the following expression for the generalized reflected entropy
in the replica limit

Sgen
R (b0) = 2Φ0 +

cI + cII
3 log

[2(y + b2)(y + b3)
y(b3 − b2)

]
. (4.47)
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Extremizing the above expression over the island cross-section Q = −y leads to y =
√
b2b3

and hence we may obtain the following expression for the reflected entropy in this phase

SR(A : B) = 2
(
Φ0 +

cI + cII
6 log 2

)
+ cI + cII

3 log
(√

b2 +
√
b3√

b3 −
√
b2

)
. (4.48)

Utilizing eqs. (3.8) and (4.13), it is straightforward to verify that the above expression matches
identically with twice the large tension limit of the EWCS given in eq. (3.50).

Phase-II

We now consider the reflected entropy for phase-II of the disjoint interval configuration which
is described in figure 26(b). In this phase-II the subsystem-B does not posses an island
and hence the entire island belongs to A. The corresponding correlation function may be
factorized in the corresponding OPE channel as follows

Gm,nCFTI/II
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgA(−b4)σg−1

A
(−b1)⟩

= ⟨σgA(b1)σg−1
A
(−b1)⟩⟨σgA(−b4)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)⟩ . (4.49)

A similar factorization holds for the correlation function on m-sheeted surface. As earlier,
the two point functions cancel from the numerator and the denominator which leads to the
following expression for the reflected entropy

S
(m,n,eff)
R (A ∪ IsR(A) : B ∪ IsR(B))

= 1
1− n

log

 ⟨σgA(−b4)σg−1
A
(b2)σgB (b3)σg−1

B
(b4)⟩CFT⊗mn

I(
⟨σgm(−b4)σg−1

m
(b2)σgm(b3)σg−1

m
(b4)⟩CFT⊗m

I

)n
+ (I ↔ II) . (4.50)

Note that since the subsystem B does not posses any island there is no island cross-section
and hence no extremization involved in this phase. The conformal block that gives dominant
contribution to the above four point function(s) is well known in the large central charge
limit [26] to be of the following form

logF(k)(n∆m, 2∆n|x) = −2n∆(k)
m log x− 2∆(k)

n log
(
1 +

√
x

1−
√
x

)
(4.51)

where x = b12b34
b13b24

is the cross-ratio. Hence, in the replica limit the above expression directly
leads to the reflected entropy as follows

SR(A : B) = cI + cII
3 log

b24 − b2b3 +
√
(b23 − b24)(b22 − b24)

b4(b3 − b2)

 , (4.52)

which matches identically with half of the corresponding EWCS in the 3d bulk description,
given in eq. (3.55).

– 47 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
3

Phase-III

Phase-III of the disjoint interval configuration with the conventional island saddle for entan-
glement entropy is depicted in figure 26(c). In this phase the subsystem A does not possess
any reflected entropy island whereas B does. The computation of the generalized Renyi
reflected entropy proceeds similar to the previous phase and we may as well replace b4 by
b1 in eq. (4.52) for the present case, to obtain

SR(A : B) = cI + cII
3 log

b21 − b2b3 +
√
(b23 − b21)(b22 − b21)

b1(b3 − b2)

 . (4.53)

The above expression is trivially seen to match with the corresponding EWCS in eq. (3.58).

4.2.2 Induced islands

Next we consider situation involving induced islands for various subsystems under consid-
eration. This can be further subdivided into phases based on whether the subsystem C

sandwiched between A and B in either baths claims an induced island as follows:

• The subsystem A ∪B ∪ C is large enough to possess an induced island. This situation
arises when ΘABC = b4

b1
exceeds its critical value (cf. the discussion in section 3.2.2).

We simultaneously require the subsystem C to be small enough to be lacking any
induced island.

• In the second case, A ∪B ∪ C possesses the conventional island while ΘC = b3
b2

exceeds
its critical value giving access to the induced island for subsystem C.

• Both C and A∪B∪C possess their induced islands. However, as discussed in footnote 16,
we do not encounter this scenario for a large range of parameter values and hence will
be omitted in the following discussion.

In the following, we will investigate each of these situations individually and discuss the
phase transitions for the reflected entropy within each scenario.

A. Subsystem C lacking an island

We begin with the case where C does not have an island which results in the following
expression for the correlation functions computing the Rényi entropy for A ∪ B,

GnCFTI/II
= ⟨σgn(b1)σg−1

n
(b2)σgn(b3)σg−1

n
(b4)⟩⟨σgn(−ȳ4)σg−1

n
(−ȳ1)⟩ .

As mentioned above in the large-c limit the above correlators factorize differently in the
two CFTs as follows

GnCFTI = ⟨σgn(b1)σg−1
n
(b4)⟩⟨σg−1

n
(b2)σgn(b3)⟩⟨σgn(−ȳ1)σg−1

n
(−ȳ4)⟩

GnCFTII = ⟨σgn(b1)σg−1
n
(−ȳ1)⟩⟨σg−1

n
(b2)σgn(b3)⟩⟨σgn(−ȳ4)σg−1

n
(b4)⟩ . (4.54)
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Since the above correlation functions are expressed in terms of the two point functions
completely fixed by conformal symmetry, we may readily obtain the generalized entanglement
entropy from eq. (4.5) as follows

Sgen(AB) = Φ0 +
cI
6 log

[
(b2 − b3)2(b1 − b4)2(ȳ1 − ȳ4)2

ϵ4ȳ1ȳ4

]

+ cII
6 log

[
(b2 − b3)2(b1 + ȳ1)2(b4 + ȳ4)2

ϵ4ȳ1ȳ4

]
. (4.55)

Extremizing the above equation w.r.t. y1 and y4 we get

cII (ȳ1 − ȳ4) (ȳ1 − bi) + cI (ȳ1 + ȳ4) (bi + ȳ1) = 0 , (i = 1, 4). (4.56)

The above result exactly matches with the corresponding expression obtained from the bulk
geometry given in eq. (3.24), together with the solution ȳ∗1 = b1

k∗ABC
in the large tension

limit.22 Finally, the entanglement entropy for the present configuration may be obtained by
substituting the solutions ȳ∗1 and ȳ∗4 to the above extremization equations in the expression
for the generalized entropy in eq. (4.55).

We now proceed to compute the islands contributions to the reflected entropy for phases
involving induced islands for A∪B∪C. As earlier, we divide the induced entanglement island
Īs(AB) = [−ȳ∗4,−ȳ∗1] into the corresponding reflected entropy islands ĪsR(A) = [−ȳ,−ȳ∗1]
and ĪsR(B) = [−ȳ∗4,−ȳ] by placing the island cross-section at Q = −ȳ. The twist correlator
computing the effective Rényi reflected entropy is then given by a seven point function

Gm,nCFTI/II
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgB (−ȳ∗4)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗1)⟩ .

In this case, the corresponding correlation functions of both CFTI and CFTII factorize
differently. These phases correspond to the double crossing geodesics in the dual bulk
geometry. Note that the diagrams depicting induced island phases remain same as figure 26.
The difference however is in the way correlators factorize.

Phase-I

We now compute the reflected entropy for the disjoint subsystems when both A and B

admit their reflected entropy islands. In this phase depicted in figure 26(a) (replace y with ȳ
and yi with ȳi) Gm,nCFTI

, G̃m,nCFTII
corresponds to the seven point correlation functions which

factorize in the large-c limit as follows

Gm,nCFTI
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgB (−ȳ∗1)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗4)⟩

= ⟨σgA(b1)σg−1
A
(b2)σgB (b3)σg−1

B
(b4)⟩⟨σgB (−ȳ∗1)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗4)⟩

Gm,nCFTII
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgB (−ȳ∗1)σgAg

−1
B
(−ȳ)σg−1

A
(−ȳ∗4)⟩

= ⟨σgA(b1)σg−1
A
(−ȳ∗1)⟩⟨σg−1

A
(b2)σgB (b3)σgAg

−1
B
(−ȳ)⟩⟨σgB (−ȳ∗4)σg−1

B
(b4)⟩ . (4.57)

22Note that in the present context, kD ≡ kABC and ΘD ≡ ΘABC = b4
b1

in the parametrization given in
eq. (3.20) (cf. footnote 17) with i = 1, 4.
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Note that [−ȳ∗1,−ȳ∗4] corresponds to the entanglement entropy island of AB which were
obtained in eq. (4.56). Observe that in the second line we have specific factorization of the
correlation function in the large-c limit in this phase. Also a similar factorization exists
for the corresponding correlation functions on the m-sheeted Riemann surface which are
expressed as follows

GmCFTI = ⟨σgm(b1)σg−1
m
(b2)σgm(b3)σg−1

m
(b4)σgm(−ȳ∗1)σg−1

m
(−ȳ∗4)⟩

= ⟨σgm(b1)σg−1
m
(b2)σgm(b3)σg−1

m
(b4)⟩⟨σgm(−ȳ∗1)σg−1

m
(−ȳ∗4)⟩

G̃mCFTII = ⟨σgm(b1)σg−1
m
(b2)σgm(b3)σg−1

m
(b4)σgm(−ȳ∗1)σg−1

m
(−ȳ∗4)⟩

= ⟨σgm(b1)σg−1
m
(−ȳ∗1)⟩⟨σg−1

m
(b2)σgm(b3)⟩⟨σgm(−ȳ∗4)σg−1

m
(b4)⟩ . (4.58)

Utilizing the above expressions given by eq. (4.57), eq. (4.58) in eq. (4.9) we determine the
following result for the generalized or effective reflected entropy in the replica limit

SR(A : B) = 2
(
Φ0 +

cI + cII
6 log 2

)
+ cI

3 log
[
1 +

√
x

1−
√
x

]
+ cI

3 log
[(ȳ − ȳ∗1)(ȳ∗4 − ȳ)

ȳ(ȳ∗4 − ȳ∗1)

]

+ cII
3 log

[(ȳ + b2)(ȳ + b3)
ȳ(b3 − b2)

]
(4.59)

where x = b12b34
b13b24

is the cross-ratio. Extremizing the above expression w.r.t. ȳ we obtain
the following relation

cI(ȳ2 − ȳ∗1 ȳ
∗
4)(ȳ + b2)(ȳ + b3) + cII(ȳ2 − b2b3)(ȳ − ȳ∗1)(ȳ − ȳ∗4) = 0 (4.60)

which is identical to its doubly holographic counterpart in eq. (3.68) in the large tension limit.
Consequently upon utilizing eq. (4.13), the large tension limit of the reflected entropy matches
identically with the corresponding large tension value of the EWCS given in eq. (3.69).

Phase-II
In this phase only the reflected entropy island for A receives the entire island contribution as
depicted in figure 26(b) (with yi → ȳi). Hence, the required correlation function factorize
in this phase as follows

Gm,nCFTI
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)⟩⟨σgA(−ȳ∗1)σg−1

A
(−ȳ∗4)⟩

Gm,nCFTII
= ⟨σgA(b1)σg−1

A
(−ȳ∗1)⟩⟨σgA(−ȳ∗4)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)⟩ . (4.61)

A similar factorization holds for the correlation function on m-sheeted surface. Once again
the two point functions cancel from the numerator and the denominator leading to the
following expression for the reflected entropy

S
(m,n,eff)
R (A ∪ IsR(A) : B ∪ IsR(B))

= 1
1− n

log

 ⟨σgA(b1)σg−1
A
(b2)σgB (b3)σg−1

B
(b4)⟩CFT⊗mn

I(
⟨σgm(b1)σg−1

m
(b2)σgm(b3)σg−1

m
(b4)⟩CFT⊗m

I

)n


+ 1
1− n

log

 ⟨σgA(−ȳ∗4)σg−1
A
(b2)σgB (b3)σg−1

B
(b4)⟩CFT⊗mn

II(
⟨σgm(−ȳ∗4)σg−1

m
(b2)σgm(b3)σg−1

m
(b4)⟩CFT⊗m

II

)n
 . (4.62)
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Note that since the subsystem-B does not posses any island there is no island cross-section
and hence no extremization involved in this phase. Now utilizing eq. (4.51), the replica limit
of the above expression directly leads to the reflected entropy as follows

SR(A : B) = cI
3 log

[
1 +

√
x

1−
√
x

]
+ cII

3 log
[
1 +√

x0
1−√

x0

]
, (4.63)

where the cross ratios are given by x = b12b34
b13b24

and x0 = (ȳ∗4+b2)(b3−b4)
(ȳ∗4+b3)(b2−b4) . Once again, the

reflected entropy obtained above matches identically with twice the large tension limit of the
bulk EWCS in eq. (3.75), obtained in the doubly holographic framework.

Phase-III

The computation of the reflected entropy in this phase proceeds exactly as the previous
phase except that the subsystem-B receives the reflected island contribution whereas A does
not. This phase may be described by replacing yi with ȳi in figure 26(c). As earlier, the
correlation functions Gm,nCFTI,II

factorize as follows

Gm,nCFTI
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)⟩⟨σgB (−ȳ∗4)σg−1

B
(−ȳ∗1)⟩ ,

Gm,nCFTII
= ⟨σgB (−ȳ∗4)σg−1

B
(b4)⟩⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(−ȳ∗1)⟩ , (4.64)

leading to the following expression for the reflected entropy in the replica limit

SR(A : B) = cI
3 log

[
1 +

√
x

1−
√
x

]
+ cII

3 log
[
1 +√

x1
1−√

x1

]
, (4.65)

where x = b12b34
b13b24

and x1 = (b1−b2)(b3+ȳ∗1)
(b1−b3)(b2+ȳ∗1)

are the corresponding cross ratios. The above
expression matches with twice the EWCS obtained in eq. (3.78) in the doubly holographic
perspective.

B. Subsystem C with an induced island

Next we will focus on the computations of the reflected entropy for specific configurations
where A∪B∪C possesses a conventional island Is(A∪B∪C) = [−y∗4,−y∗1 ] and the subsystem
C claims an induced island Īs(C) = [−ȳ3∗,−ȳ2∗] (figure 26(d)). Following the extremization
of eq. (4.41), we have y∗4 = b4 and y∗1 = b1 respectively. However for ȳ∗2 and ȳ∗3 we need to
extremize the expression for the entanglement entropy of C which leads to a similar set of
equations given in eq. (4.28) or eq. (4.56). Note that when C has an induced island of its own,
the corresponding induced reflected entropy islands for A and B are disconnected as depicted
in figure 26(d). This is a novel aspect of the induced islands absent in earlier investigations
of reflected entropy involving islands. The relevant twist correlators for this case are given as

Gm,nCFTI,II
= ⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σg−1

A
(−b1)σgA(−ȳ∗2)σg−1

B
(−ȳ∗3)σgB (−b4)⟩,

(4.66)

There are three different phases I, II and III for this configuration depending on how the
above correlators factorize.
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Phase-IV

In this phase the subsystems A and B are comparable in size where the correlators in
eq. (4.66) factorize as follows

Gm,nCFTI
= ⟨σgA(−ȳ∗2)σg−1

A
(b2)σgB (b3)σg−1

B
(−ȳ∗3)⟩⟨σgA(b1)σg−1

A
(−b1)⟩⟨σg−1

B
(b4)σgB (−b4)⟩,

Gm,nCFTII
= ⟨σgA(b1)σg−1

A
(−b1)⟩⟨σgA(−ȳ∗2)σg−1

A
(b2)⟩⟨σgB (b3)σg−1

B
(−ȳ∗3)⟩⟨σgB (−b4)σg−1

B
(b4)⟩.

(4.67)

A similar factorization holds for the correlation function on the m-sheeted Riemann surface.
Substituting the above expressions in eq. (4.9) and utilizing eq. (4.51) we determine the
reflected entropy to be as follows

SR(A : B) = cI
3 log

[
1 +

√
w

1−
√
w

]
, (4.68)

where w = (ȳ2+b2)(b3+ȳ3)
(ȳ2+b3)(b2+ȳ3) is the cross ratio. This matches identically with the large tension

limit of twice the EWCS in the doubly holographic picture, given in eq. (3.84).

Phase-V

In phase-V, the size of the subsystem A is sufficiently large compared to the subsystem
B. Here the eight point correlation function Gm,nCFTI

in eq. (4.66) factorizes into a six point
function and a two point function as follows

Gm,nCFTI
= ⟨σgA(b1)σg−1

A
(−b1)⟩⟨σg−1

A
(b2)σgB (b3)σg−1

B
(b4)σgA(−ȳ∗2)σg−1

B
(−ȳ∗3)σgB (−b4)⟩.

(4.69)

The six point function on the r.h.s. of the above equation further factorizes into a product
of two four point function in the large-c limit23

Gm,nCFTI
= ⟨σgA(b1)σg−1

A
(−b1)⟩⟨σg−1

A
(b2)σgB (b3)σgA(−ȳ∗2)σg−1

B
(−ȳ∗3)⟩

× ⟨σg−1
A
(b2)σgB (b3)σg−1

B
(b4)σgB (−b4)⟩. (4.70)

The CFTII correlation function in eq. (4.66) on the other hand factorizes into product of
two point function as follows

Gm,nCFTII
= ⟨σgA(b1)σg−1

A
(−b1)⟩⟨σgA(−ȳ∗2)σg−1

A
(b2)⟩⟨σgB (b3)σg−1

B
(−ȳ∗3)⟩⟨σgB (−b4)σg−1

B
(b4)⟩.

(4.71)

Substituting the above expressions in eq. (4.9) and utilizing eq. (4.51) we determine the
reflected entropy to be as follows

SR(A : B) = cI
3 log

[
1 +√

w0
1−√

w0

]
+ cI

3 log
[
1 +√

w1
1−√

w1

]
, (4.72)

23As demonstrated in [55], in the OPE channel corresponding to the present configuration the six point
conformal black factorizes into two four point conformal blacks in the large central charge limit. Assuming the
dominance of the |σ

g−1
A

gB
⟩ block, the corresponding six point correlator may in turn be factorized into two

four point correlators. Note that a similar factorization has been demonstrated in [56].
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with cross ratios w0 = (b4−ȳ∗3)(b4+ȳ∗2)
(b4+ȳ∗3)(b4−ȳ∗2)

and w1 = (b3−b4)(b2+b4)
(b2−b4)(b3+b4) . Note that the reflected entropy

computed in the effective lower dimensional perspective in eq. (4.72) is exactly the twice of
EWCS in the large tension limit evaluated in eq. (3.89) in the context of double holography.

Phase-VI

In this phase, we observe the opposite situation compared to the previous phase, the subsystem
B is larger than A. As a result, the correlator Gm,nCFTI

in eq. (4.66) again factorizes into a
six point function and a two point function. However, the factorization is different from
the earlier case,

Gm,nCFTI
= ⟨σgB (−b4)σg−1

B
(b4)⟩⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

A
(−b1)σgA(−ȳ∗2)σg−1

B
(−ȳ∗3)⟩.

(4.73)

As earlier the six point function on the r.h.s. of the above equation once again factorizes
into a product of two four point function in the large-c limit

Gm,nCFTI
= ⟨σgB (−b4)σg−1

B
(b4)⟩⟨σgA(b1)σg−1

A
(b2)σgB (b3)σg−1

A
(−b1)⟩

× ⟨σgA(b1)σg−1
A
(−b1)σgA(−ȳ∗2)σg−1

B
(−ȳ∗3)⟩. (4.74)

The CFTII correlation function in eq. (4.66) on the other hand factorizes into product of two
point functions as in eq. (4.71). Substituting the above expressions in eq. (4.9) and utilizing
eq. (4.51) we may determine the reflected entropy as

SR(A : B) = cI
3 log

[
1 +√

w2
1−√

w2

]
+ cI

3 log
[
1 +√

w3
1−√

w3

]
, (4.75)

where w2 = (b3+b1)(b1−b2)
(b1−b3)(b1+b2) and w3 = (ȳ∗3+b1)(b1−ȳ∗2)

(b1+ȳ∗2)(b1−ȳ∗3)
are the cross ratios. Similar to the earlier

phases, the reflected entropy calculated here matches with the twice of EWCS computed
in eq. (3.92).

4.2.3 No island saddle

In this phase all the subsystems A, B and C are very small in size such that neither of A, B,
C and A ∪B ∪ C has any island. The effective Renyi reflected entropy is therefore given by

S
(m,n,eff)
R (A ∪ IsR(A) : B ∪ IsR(B))

= 1
1− n

log

 ⟨σgA(b1)σg−1
A
(b2)σgB (b3)σg−1

B
(b4)⟩CFT⊗mn

I(
⟨σgm(b1)σg−1

m
(b2)σgm(b3)σg−1

m
(b4)⟩CFT⊗m

I

)n
+ (I ↔ II) . (4.76)

Considering the contributions from both the CFTs and taking the replica limit we obtain

SR(A : B) = cI + cII
3 log

[
1 +

√
x

1−
√
x

]
, (4.77)

where x = b12b34
b13b24

is the cross-ratio. We observe an exact agreement between the above
expression and the corresponding EWCS given in eq. (3.93).
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5 Black hole evaporation: time evolution of EWCS

In this section, we study the time evolution of the EWCS dual to the reflected entropy for
bipartite mixed states in the AdS/ICFT setup, in the context of the black hole information
loss paradox. We will consider bipartite mixed state configurations in the thermal baths
located outside an eternal black hole, where these baths collect Hawking radiation emitted
from the black hole. The holographic dual of the eternal black hole in AdS3 is the thermofield
double (TFD) state [57], which may be obtained from the vacuum state of the ICFT2 via
a conformal map. As described in [20], the TFD state in the ICFT2 may be prepared
from a path integral on half of an infinite cylinder with a circular interface between the
two CFT2s dividing the cylinder into two distinct parts. Furthermore, as explained in [20],
the TFD state on the cylinder may be obtained via a series of conformal transformations
from the vacuum state of the ICFT on the complex plane described by ζ = x + itE . The
planar interface xi = 0 between the two CFT2s may be mapped into a circle of length ℓ,
x̃2 + t̃2 = ℓ2 by utilizing the transformation

p = 4ℓ2
2ℓ− ζ

− ℓ , (5.1)

where p = x̃+ it̃E is the complex coordinate on the plane where the CFTI/IIs are defined
respectively on the interior and exterior of the circle of length ℓ centered at the origin.
Subsequently, the conformal transformation

p = ℓ e
2πq

β , (5.2)

maps the planar geometry into the infinite cylinder with the interface mapped to a disk
Re(q) = 0 with q = u + ivE denoting the complex coordinate on the thermal cylinder on
which the TFD state is defined.

The bulk dual geometry corresponding to the ICFT defined on the plane with a circular
interface will be important for computational purposes in the following. Note that the
transformation in eq. (5.1) is nothing but a SL(2, R) transformation24 for which the bulk
dual geometry may be easily found by looking for the AdS3 isometry which maps straight
lines into circles25 [6]. The corresponding coordinate transformations are given as follows

x̃i =
xi −

x2
i +z

2
i −t

2
i

2ℓ

1− xi
ℓ + x2

i +z
2
i −t

2
i

4ℓ2
+ l , z̃i =

zi

1− xi
ℓ + x2

i +z
2
i −t

2
i

4ℓ2
, t̃i =

ti

1− xi
ℓ + x2

i +z
2
i −t

2
i

4ℓ2
, (i = I, II)

(5.3)

where we have Wick rotated the time coordinate to t = −itE . Being an isometry, the above
bulk transformations do not change the metric and hence we have Poincaré AdS3 on either
side of the spherical EOW brane with profile

x̃2I − t̃2I + (z̃I − ℓ tanψI)2 = ℓ2 sec2 ψI ,

x̃2II − t̃2II + (z̃II + ℓ tanψII)2 = ℓ2 sec2 ψII . (5.4)
24In particular, it is given by a special conformal transformation followed by a translation.
25Alternatively, one may use the Banados formalism [58, 59].
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On the cylinder, we will consider Lorentzian time evolution utilizing the Wick rotation
v = −ivE . Having described the required notations and conventions we will now compute the
EWCS dual to the reflected entropy of the mixed state configuration involving two adjacent
subsystems of an ICFT2 in a TFD state. Note that unlike the vacuum case, here we will
restrict ourselves to the computation for the adjacent intervals as we do not expect that the
disjoint interval case will reveal any novel physical aspects that are qualitatively different
from those observed in the adjacent interval scenario.

Consider the mixed state configuration of adjacent subsystems A∪B where A = AL∪AR
and B = BL ∪ BR with

AL = [(u0, v), (u1, v)]I ∪ [(−u0, v), (−u1, v)]II ,

BL = [(u1, v), (∞, v)]I ∪ [(−u1, v), (−∞, v)]II ,

AR =
[(
u0,−v +

iβ

2

)
,

(
u1,−v +

iβ

2

)]
I
∪
[(

−u0,−v +
iβ

2

)
,

(
−u1,−v +

iβ

2

)]
II
,

BR =
[(
u1,−v +

iβ

2

)
,

(
∞,−v + iβ

2

)]
I
∪
[(

−u1,−v +
iβ

2

)
,

(
−∞,−v + iβ

2

)]
II
.

(5.5)

The entanglement entropy for A ∪ B has been investigated in [20], where it was observed
that in the doubly holographic picture the entanglement entropy is computed through the
lengths of two competing sets of RT surfaces: the Hartman-Maldacena (HM) surfaces [57]
and a pair of geodesics which cross the EOW brane. The Page time at which these two
saddles change dominance, was found to be [20]

vP = β

2π cosh−1
[
sinh

(2πu0
β

) 6Sint
cI + cII

]
, (5.6)

where Sint denotes the interface entropy. Within each phase of the entanglement entropy of
A∪B, the entanglement wedge cross section corresponding to the mixed state ρAB undergoes
various phase transitions with time v. In the following, we will systematically investigate
all these phases and compute the EWCS in each case.

5.1 Before Page time

Before the Page time, the RT saddle contributing to the entanglement entropy of A ∪ B
consists of two HM surfaces which connect the endpoints of the subsystems from both copies.
In the effective intermediate picture, this corresponds to the non-island phase. In this phase,
the EWCS between A and B is either HM surface connecting the shared boundary of A and
B on each copy or terminates on the smaller HM surface, as sketched in figure 27.

Phase-I

To compute the length of the EWCS, we employ the trick utilized in [20], namely perform
the computations in the planar tilde coordinates in eq. (5.3) and finally transform back to
the cylinder. From eq. (5.2) the Lorentzian trajectories of the endpoints of A and B in
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(a) (b)

Figure 27. Phase transitions of the EWCS corresponding to two adjacent subsystems in the radiation
bath, before the Page time: (a) the EWCS does not terminate on the RT of A ∪ B, (b) EWCS
terminates on the smaller HM surface.

the left copy of the ICFT are given by

x̃I(uk, v) = ℓe
− 2πuk

β cosh
(2πv
β

)
, t̃I(uk, v) = ℓe

− 2πuk
β sinh

(2πv
β

)
x̃II(uk, v) = ℓe

2πuk
β cosh

(2πv
β

)
, t̃II(uk, v) = ℓe

2πuk
β sinh

(2πv
β

)
, (5.7)

while similar expressions hold for the TFD copy with x̃ replaced by −x̃. For the present phase,
as described earlier, the EWCS is a HM surface whose length has already been computed
in [20]. Following this, we may write down the EWCS as follows

EW (ρAB) =
LI
2GN

log
[2x̃I(u1, v)
ϵ̃I(u1, v)

]
+ LII

2GN
log

[2x̃II(u1, v)
ϵ̃II(u1, v)

]
= LI + LII

2GN
log

[
β

πϵ
cosh

(2πv
β

)]
, (5.8)

where we have utilized the fact that the cut-off in tilde coordinates is related to the cylinder
cut-off as follows (cf. eq. (5.2))

ϵ̃ =
(
β

2πℓe
−π(q+q̄)

β

)
ϵ. (5.9)

Phase-II

Next, we compute the lengths of the EWCS landing on the HM surfaces, utilizing the Poincaré
AdS3 geometry described by the tilde coordinates.

In the following, we will suppress the subscripts I, II to keep the notation simple. Due to
the symmetry of the setup, the computation reduces to finding the length of a minimal surface
from (x̃1, t̃1) to the RT surface described by equation x̃2 + z̃2 = x̃20 at t̃ = t̃0. Parametrizing
a point P : (x̃, t̃, z̃) = (x̃0 sin θ, t̃0, x̃0 cos θ) on the RT surface, we may obtain the length of
the surface from Q = (x̃1, t̃1) as follows

dPQ = L cosh−1
[
(x̃0 sin θ − x̃1)2 − (t̃0 − t̃1)2 + (x̃0 cos θ)2

2ϵ̃1x̃0 cos θ

]
. (5.10)
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(a) (b) (c)

Figure 28. Phase transitions of the EWCS corresponding to two adjacent subsystems in the radiation
bath, after the Page time: (a) the EWCS is a HM surface connecting the shared boundary of A and
B on both copies, (b) EWCS terminates on the RT surface of A ∪B, (c) the EWCS crosses the brane.
In the intermediate braneworld perspective, non-trivial island cross-sections for the reflected entropy
appear on the brane.

Extremization with respect to the arbitrary angle θ leads to

∂θdPQ = 0 ⇒ θ = sin−1
[ 2x̃0x̃1
x̃20 + x̃21 − (t̃0 − t̃1)2

]
. (5.11)

Substituting this back into eq. (5.10), we obtain the minimal length to be

dmin
PQ = L log


√(

x̃20 + x̃21 − (t̃0 − t̃1)2
)2 − 4x̃20x̃21

ϵ̃1x̃0

 . (5.12)

Now restoring the subscripts I, II, utilizing eqs. (5.7) and (5.9) and accounting for the pair of
geodesics for both TFD copies of the setup, we obtain the minimal EWCS for this phase to be

EW (ρAB) =
LI + LII
2GN

log


β

(
e

2πu1
β − e

2πu0
β

)√
e

4πu0
β + e

4πu1
β + 2e

2π(u0+u1)
β cosh

(
4πv
β

)
2πϵ e

2π(u0+u1)
β cosh

(
2πv
β

)
 .

(5.13)

5.2 After Page time

After the Page time vP , the RT saddle for A ∪B crosses the EOW brane which corresponds
to the appearance of an island in the intermediate braneworld picture. In this case, the
minimal EWCS has three possible phases which are depicted in figure 28.

Phase-III

As shown in figure 28(a), this phase corresponds to a HM surface connecting the shared
boundary of A and B on both copies, which is identical to phase-I. Hence, the EWCS is given by

EW (ρAB) =
LI + LII
2GN

log
[
β

πϵ
cosh

(2πv
β

)]
. (5.14)
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Note that although the expression is identical to that of phase-I, this phase gets activated only
after the Page time and hence contributes non-trivially to the Page curve of the holographic
reflected entropy.

Phase-IV

In phase-IV, the EWCS terminates on the RT surfaces which cross the EOW brane. We find
it easier to perform the computations in the original planar coordinates26 (xi, ti, zi) given in
eq. (5.3), where the equations for the RT surfaces may be easily obtained as [7]

x2i + z2i = x20 , t = t0 , (5.15)

where (u0, v) has been mapped to (x0, t0) utilizing the transformations in eqs. (5.2) and (5.3).
In these coordinates, the task of finding the EWCS reduces to that for a minimal curve
starting on the above RT surface and terminating on (x1, t1). We have already performed
an identical computation in the tilde coordinates for phase-II. Hence, utilizing eq. (5.12) we
may write down the corresponding length as follows

dmin = L log


√(

x20 + x21 − (t0 − t1)2
)2 − 4x20x21

ϵ(x1, t1)x0



= L log

2
√(

(x̃0 − x̃1)2 − (t̃0 − t̃1)2
) (
ℓ4 + 2ℓ2(t̃0t̃1 − x̃0x̃1) + (t̃20 − x̃20)(t̃21 − x̃21)

)
ϵ̃1
(
x̃20 − t̃20 − ℓ2

)
 ,

(5.16)

where in the second equality, we have used eq. (5.3) and the fact that the cut-off in tilde
and non-tilde coordinates are related by

ϵ(x, t) = 4ℓ2ϵ̃
(x̃+ ℓ)2 − t̃2

. (5.17)

Finally transforming to the cylinder coordinates using eqs. (5.2) and (5.9), restoring the
subscripts I, II and accounting for the pair of geodesics in both copies of the geometry, we
obtain the EWCS for this phase as follows

EW (ρAB) =
LI + LII
2GN

log

 β
πϵ

cosh
(
2πu1
β

)
− cosh

(
2πu0
β

)
sinh

(
2πu0
β

)
 . (5.18)

Phase-V

In the final phase depicted in figure 28(c), the EWCS between A and B consists of two
geodesics connecting the shared boundary of A and B in CFTI

2 and CFTII
2 , which cross the

EOW brane. The length of such geodesics has already been computed in [20] and hence
the EWCS is given as

EW (ρAB) =
LI + LII
2GN

log
[
β

πϵ
sinh

(2πu1
β

)]
+ 2Sint , (5.19)

where Sint is the interface entropy defined in eq. (3.50).
26Once again, owing to the symmetry of the setup, we are suppressing the subscripts I, II, which will be

restored at the end of computations.
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(a) β = 5π, u0 = 0.1, u1 = 8. (b) β = 10π, u0 = 0.1, u1 = 50.

(c) β = 5.5π, u0 = 0.5, u1 = 10. (d) β = 0.5π, u0 = 0.5, u1 = 10.

(e) β = 35π, u0 = 20, u1 = 100.

Figure 29. Page curves (red): for cI = 1, cII = 20, LI = 0.1, LII = 0.2, ϵ = 0.01, δ = 0.01.

5.3 Page curves

In this subsection, we plot the evolution of the EWCS with time in figure 29 which correspond
to the analogues of the Page curves for reflected entropy from the holographic duality
mentioned earlier. We note that the EWCS between nearby radiation and distant radiation
experiences two phases. At early times the entanglement entropy of A∪B is in the connected
phase and correspondingly the EWCS is given by the minimum of phase-I and phase-II. On
the other hand, after the Page time for A ∪ B given in eq. (5.6), the disconnected phase
dominates and the EWCS is given by the minimum of phase-III, phase-IV and phase-V.

6 Reflected entropy from island prescription: TFD state

In this section, we compute the island contributions to the reflected entropy for the mixed
state of adjacent subsystems A and B in two copies of ICFT2s in a TFD state. As depicted
in figure 30 we consider one of the two intervals denoted by B to be semi-infinite in order
to simplify our computations. As described in section 5, the two copies of the ICFT2s in a
TFD state are on a cylinder which is obtained from the vacuum state on the complex plane
through a series of conformal transformations. Note that on such a cylinder we denote the
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(a) (b)

(c) (d)

Figure 30. Schematic for a mixed state configuration involving adjacent subsystems A and B in the
two copies of thermal ICFT2s in a TFD state and their corresponding reflected entropy islands on the
brane in the effective two dimensional theory. Note that we have denoted the points on brane in the
left and the right subsystem by y′ and y respectively for clarity but their numerical values are same.

complex coordinates on the two copies ICFTL and ICFTR by q̃ and q respectively. Since
the intervals chosen in the CFTI and CFTII are identical, the spatial u coordinates differ
only by sign whereas the temporal v coordinates are same i.e. if

qI
i = ui + ivE , qII

i = −ui + ivE

q̃I
i = ui − ivE − iβ

2 , q̃II
i = −ui − ivE − iβ

2 (6.1)

where i = 0, 1, 2. Note that the points on the brane are denoted by

qI
b = −y + ivE , qII

b = y + ivE

q̃I
b = −y − ivE − iβ

2 , q̃II
b = y − ivE − iβ

2 . (6.2)

When we require multiple points on the brane we will denote them as qa, qb, qc . . . and
q̃a, q̃b, q̃c . . . . At the end of computation we will analytically continue to Lorentzian coordinates
by Wick rotation vE = −iv. Note that in the above definitions the Roman numerals I, II in
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the superscript indicate whether the coordinate is in CFTI or CFTII within a single copy of
the ICFT2. The two subsystems are given by A = AL ∪ AR and B = BL ∪ BR where

AL = [qI
0, q

I
1] ∪ [qII

0 , q
II
1 ],

BL = [qI
1, q

I
2] ∪ [qII

1 , q
II
2 ],

AR = [q̃I
0, q̃

I
1] ∪ [q̃II

0 , q̃
II
1 ],

BR = [q̃I
1, q̃

I
2] ∪ [q̃II

1 , q̃
II
2 ]. (6.3)

Note that we have chosen B to be semi-infinite and therefore qI
2 = [∞, v], qII

2 = [−∞, v]
and q̃I

2 =
[
∞,−v − iβ

2

]
, q̃II

2 =
[
−∞,−v − iβ

2

]
. In the rest of this article we will drop the

superscripts I, II for brievity. However note that there is a sign difference between the spatial
coordinate depending on whether it is occuring in the correlation function of CFTI or CFTII.
As discussed in the previous section there are two phases for the bulk entanglement wedge
corresponding to the semi-infinite subsystem AB. These two phases correspond to the presence
or absence of the entanglement entropy islands for AB. For each phase of the entanglement
entropy there are multiple sub-phases for the reflected entropy which we describe below.

6.1 Before Page time

We begin by considering the case when the subsystem AB does not receive any island
contribution as depicted in figure 30(a). When there are no island contributions the required
correlation function corresponding to the reflected entropy is given by

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σgA(q̃0)σg−1

A gB
(q̃1)⟩ (6.4)

where k = I, II indicates that the correlators in CFTI and CFTII have the same form. As
earlier we have dropped the subscript CFT⊗mn

k on the r.h.s. for brevity. Apart from these
we would also require the following correlator which occurs in the denominator in the r.h.s.
of eq. (4.9) for the effective reflected entropy

GmCFTk = ⟨σgm(q0)σgm(q̃0)⟩ . (6.5)

Phase-I

In phase-I the four point correlator above simply factorizes into product of 2 two-point
correlators in the large-c limit as follows

Gm,nCFTk
= ⟨σgA(q0)σgA(q̃0)⟩⟨σg−1

A gB
(q1)σg−1

A gB
(q̃1)⟩ . (6.6)

From the above result and eq. (6.5) we have all the correlation functions required to compute
the reflected entropy in eq. (4.9) in terms of the two point functions. Hence substituting
them in eq. (4.9), we obtain the reflected entropy to be as follows

SR(A : B) = 2cI + cII
3 log

[
β

πϵ
cosh

(2πv
β

)]
. (6.7)

Note that the above result for the reflected entropy exactly matches with twice the area of
EWCS in the bulk geometry given in eq. (5.8) upon utilizing the Brown-Henneaux relation.
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Phase-II

In this phase, the size of the subsystem A is considered to be small compared to that of B
and in the large-c limit the four point function in eq. (6.4) receives maximum contribution
from the block corresponding to the operator σgB (|σgB ⟩⟨σgB |) which leads to the following
factorization27

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σgB (q̃0)⟩⟨σgB (q0)σgA(q̃0)σg−1

A gB
(q̃1)⟩

GmCFTk = ⟨σgm(q0)σgm(q̃0)⟩ . (6.8)

Since the form of the three point correlators are fixed by conformal symmetry we obtain
the following expression for the reflected entropy

SR(A : B) = 2cI + cII
3 log


β

(
e

2πu1
β − e

2πu0
β

)√
e

4πu0
β + e

4πu1
β + 2e

2π(u0+u1)
β cosh

(
4πv
β

)
2πϵ e

2π(u0+u1)
β cosh

(
2πv
β

)
 .
(6.9)

Once again this precisely matches with twice the EWCS given in eq. (5.13) verifying the
holographic duality between the two.

6.2 After Page time

We now proceed to compute the reflected entropy for phases in which the subsystem-AB
possesses an entanglement entropy island.

Phase-III

The island phase for the entanglement entropy of the subsystem-AB leads to three sub-phases
for the reflected entropy (phase III, phase IV and phase V). In phase III, the subsystem-A
is so large that the entire entanglement entropy island belongs to the reflected entropy
island of A as depicted in the above figure 30(b). The correlator required to determine
the reflected entropy is given as

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σg−1

A
(qb)σg−1

A
(q̃b)σgA(q̃0)σg−1

A gB
(q̃1)⟩ (6.10)

GmCFTk = ⟨σgm(q0)σg−1
m
(qb)σg−1

m
(q̃b)σgm(q̃0)⟩ . (6.11)

In the large-c limit, each six point correlator in eq. (6.10) factorizes into the product of a
two point correlator of the composite operator σg−1

A gB
and a four point correlator of non-

composite operators. The four point function of non-composite operators further factorizes
into a product of 2 two-point correlators which leads to the following result

Gm,nCFTk
= ⟨σgA(q0)σg−1

A
(qb)⟩⟨σg−1

A
(q̃b)σgA(q̃0)⟩⟨σg−1

A gB
(q1)σg−1

A gB
(q̃1)⟩ (6.12)

GmCFTk = ⟨σgm(q0)σg−1
m
(qb)⟩⟨σg−1

m
(q̃b)σgm(q̃0)⟩ . (6.13)

27Note that this phase corresponds to the channel in which the operators σ
g−1

A
gB

and σgB come close
by. Since the leading operator in their OPE expansion is σgB , it provides the dominant contribution in the
large-c limit.
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Since the full correlator is now expressed in terms of the two point correlators, we obtain
the following expression for the reflected entropy

SR(A : B) = 2cI + cII
3 log

[
β

πϵ
cosh

(2πv
β

)]
. (6.14)

Observe that this is exactly equal to twice the EWCS in the bulk 3D geometry obtained in
eq. (5.14) which once again verifies the holographic duality between the two.

Phase-IV

In phase IV, the subsystem-A is so small that the entire entanglement entropy island belongs
the reflected entropy island of B as depicted in the above figure 30(c). The correlation
function required to determine the reflected entropy is given as

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σg−1

B
(qb)σg−1

B
(q̃b)σgA(q̃0)σg−1

A gB
(q̃1)⟩ (6.15)

GmCFTk = ⟨σgm(q0)σg−1
m
(qb)σg−1

m
(q̃b)σgm(q̃0)⟩ . (6.16)

In the large-c limit the above correlation functions factorizes as follows

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σg−1

B
(qb)⟩⟨σg−1

B
(q̃b)σgA(q̃0)σg−1

A gB
(q̃1)⟩ . (6.17)

Utilizing the conformal transformation from the cylinder to the plane (where the form of the
three point functions is known) and introducing the appropriate Weyl Factors for points on the
brane, we may compute the Renyi reflected entropy by substituting the above correlators in
eq. (4.9). This leads to the following result for reflected entropy upon taking the replica limit

SR(A : B) = 2cI + cII
3 log

 β
πϵ

cosh
(
2πu1
β

)
− cosh

(
2πu0
β

)
sinh

(
2πu0
β

)
 . (6.18)

which precisely matches with twice the corresponding EWCS given in eq. (5.18) upon using
Brown Henneaux relations for the central charges of the two CFTs.

Phase-V

In this phase both the subsystems A and B posses their respective reflected entropy islands
as depicted in the figure 30(d) above. In this case we require the following correlators to
compute the reflected entropy

Gm,nCFTk
= ⟨σgA(q0)σg−1

A gB
(q1)σgAB−1 (qa)σg−1

A
(qb)σg−1

A
(q̃b)σgAB−1 (q̃a)σgA(q̃0)σg−1

A gB
(q̃1)⟩

GmCFTk = ⟨σgm(q0)σg−1
m
(qb)σg−1

m
(q̃b)σgm(q̃0)⟩ . (6.19)

In the large-c limit, the above correlation functions factorize as follows

Gm,nCFTk
= ⟨σgA(q0)σg−1

A
(qb)⟩⟨σg−1

A gB
(q1)σgAB−1 (qa)⟩⟨σgA(q̃0)σg−1

A
(q̃b)⟩⟨σgAB−1 (q̃a)σg−1

A gB
(q̃1)⟩

GmCFTk = ⟨σgm(q0)σg−1
m
(qb)⟩⟨σg−1

m
(q̃b)σgm(q̃0)⟩ . (6.20)
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Substituting the above correlators in eq. (4.9) and adding the area term in eq. (4.2) to
it, followed by an extremization similar to that in [20], we obtain the following expression
for the reflected entropy

SR(A : B) = 2cI + cII
3 log

[2β
πϵ

sinh
(2πu1

β

)]
+ 2Φ0. (6.21)

Utilizing eq. (4.13) it is straightforward to verify that the above expression for the reflected
entropy is exactly twice the large tension limit of the EWCS given in eq. (5.19) which
validates the holographic duality between the two.

7 Summary

To summarize, in this article we investigated the mixed state entanglement structure for
various bipartite states in such theories through the bulk EWCS. In this connection, we
considered adjacent and disjoint subsystems (spanning over both CFTI and CFTII) in the
vacuum state of the ICFT2 and constructed appropriate entanglement wedges by identifying
all possible RT saddles, depending on the relative sizes and locations of the subsystems
with respect to the interface. We were able to demonstrate that the smoothness of RT
surfaces across the brane naturally follows from an extremization of their total length. As
discussed in [20], certain RT saddles inevitably cross the interface brane more than once.
Consequently, we observed novel phases of the EWCS with probe the geometry behind the
brane. Subsequently, we also considered the TFD state of the ICFT2 defined on half of a
thermal cylinder with a circular interface, obtained through a series of conformal maps from
the vacuum state. The entanglement entropy of semi-infinite subsystems in the dual eternal
black string geometry endowed with an interface brane had already been investigated in [20].
We considered the time evolution of the EWCS for two adjacent subsystems before and past
the Page time and obtained the analogues of the Page curve.

Interestingly, our bulk computations of the EWCS may be re-interpreted as an investiga-
tion of higher-point correlation functions of heavy operators in an ICFT2, in the geodesic
approximation. Due to lack of conformal symmetry, the coordinate dependence of such
correlation functions of primary operators are not necessarily fixed by symmetry (unless, of
course, the operators are placed symmetrically across the conformal interface and the folding
trick may be applied [20, 60]). However, as described in [20] for the case of the two-point
function, our results (viewed as saddle-point approximations in the worldline formalism)
resemble the geodesic Witten diagrams [61] describing the large central charge structure
of higher-point correlation functions.

The effective intermediate picture consists of dynamical gravity on a AdS2 brane coupled
to two flat non-gravitating CFT2 reservoirs, with transparent boundary conditions for the
CFTI,II degrees of freedom at the interface [20]. Interestingly, the effective theory may be
obtained in the large tension limit T → Tmax of the interface brane upon integrating out
the bulk degrees of freedom and consists of two copies of the Polyakov action describing
two CFT2s coupled to the weakly fluctuating AdS2 metric. In this context, we investigated
the island contributions to the reflected entropy for bipartite mixed states in the bath
CFT2s. Similar to [21], when the size of the subsystem in the CFT2 with a larger central
charge exceeds a certain critical value, we observed the dominance of certain novel replica
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wormhole saddles to the gravitational path integral which gives rise to induced islands for
the entanglement entropy. Correspondingly, the reflected entropy islands were determined
through an extremization over the induced island cross-section. Remarkably, in the limit of
large brane tension, the island cross-sections were in perfect agreement with the locations
where the bulk EWCS crosses the interface brane in the doubly holographic perspective. We
have also investigated the reflected entropy for various bipartite states in the effective lower
dimensional perspective obtained from a dimensional reduction of the eternal black string
geometry. As the black string horizon crosses the interface brane, the gravitational theory on
the brane inherits a lower dimensional black hole and consequently the flat CFT2s act as
reservoirs for the Hawking radiation emitted by this black hole. Once again, we observed
a rich phase structure of the reflected entropy between subsystems in the radiation baths.
Remarkably, our field theoretic computations including the island contributions matched
exactly with the corresponding bulk EWCS in the limit of a large brane tension, providing a
non-trivial consistency check of the applicability of the island prescription in such scenarios.

Several possible interesting directions may be explored in the near future. It would be
exciting to explore the rich phase structure of entanglement negativity in the AdS/ICFT
framework utilizing the holographic proposals described in [62–64] and the corresponding
island formulation [53, 65–67]. It would also be interesting to compare the behaviour of
the reflected entropy to other quantum information theoretic measures with holographic
description such as the entanglement of purification [25], the odd entanglement entropy [68],
and the balanced partial entanglement [69, 70]. Furthermore it would be fascinating to
explore how the rich phase structure of the reflected entropy and other such measures are
useful in the information recovery from the Hawking radiation emitted during the black hole
evaporation process. We hope to come back to these exciting issues soon.
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