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1 Introduction

The study of scattering amplitudes has unveiled remarkable structures that are satisfied by
these observables, which are obscured in the standard perturbative expansion in terms of
Feynman diagrams. One striking step in this direction was made in [1], where a geometric
description of scattering amplitudes was proposed in the context of the planar N = 4
super Yang Mills (sYM) theory. More precisely, it was shown that the L-loop integrand
for the n-point scattering amplitude in the planar limit of N = 4 sYM can be obtained
as the canonical form of a certain positive geometry, the Amplituhedron [1–9]. This result
provided an alternative perturbative framework for the study of scattering amplitudes, and
was later generalized to various contexts, including non-supersymmetric theories [10] and
cosmology [11]. In particular, a similar geometric description was recently proposed [12–16]
for the three-dimensional N = 6 super Chern-Simons theory known as ABJM [17].

Performing loop integrals is usually a bottleneck step in the computation of scattering
amplitudes, and when doing so one often has to deal with infrared (IR) divergences.1

In [14, 15, 19] it was proposed that, both for the N = 4 sYM and the ABJM theories, the
integrand for the logarithm of the scattering amplitude is described by the canonical forms of
negative geometries. Interestingly, this description in terms of negative geometries was shown
to imply that the result of performing L−1 of the loop integrals over the L-loop integrand for

1Recently, a geometry-based approach to regulate IR divergences was initiated in [18].
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the logarithm of the amplitude is IR-finite [19], i.e. all the IR divergences concentrate on the
last loop integral. In other words, the geometric description provides an IR-finite result that
is one integral away from the logarithm of the amplitude, and therefore motivates its study.

The result of performing L − 1 of the loop integrations over the L-loop integrand for
the logarithm of the amplitude has been previously studied at four points both in N = 4
sYM [19–26] and in ABJM [27, 28], up to L = 4 and L = 3 respectively. Based on the Wilson
loops/scattering amplitudes duality [29–36], prescriptions have been proposed to compute
the cusp anomalous dimension Γcusp of each theory by applying certain functionals on the
integrated results [19, 24, 25, 27, 28]. This has allowed to obtain the full four-loop value of
Γcusp in N = 4 sYM, including the first non-planar corrections [25]. In the ABJM case, these
prescriptions were used to compute the three-loop contribution to Γcusp [27, 28], in agreement
with the all-loop integrability-based proposals [37]. Moreover, the integrated results have been
shown to have uniform transcendental weight in their coupling expansion [19, 20, 23–28], and
the corresponding leading singularities have been proven to be conformally invariant [26, 27].
Remarkably, all-loop sums have been obtained for certain subsets of integrated negative
geometries in the N = 4 sYM theory [19] (more specifically, for the ladder and tree diagrams
in the diagrammatic notation of [19]). Higher-point integrated results have also been studied
for the N = 4 sYM case, up to L = 3 for five particles [38] and up to L = 2 for arbitrary
number of particles [26]. Interestingly, this analysis has suggested a duality between the
integrated results in N = 4 sYM and all-plus scattering amplitudes in the pure Yang-Mills
theory [26]. Finally, strong-coupling results have been obtained in the N = 4 sYM case
for the four- and six-particle cases [20, 39].

The above discussion poses the natural problem of computing the integrated negative
geometries to higher loops. In this paper we give a step forward in that direction by computing
the L = 4 contribution to the four-point integrated negative geometries of the ABJM theory.
A better understanding of the higher-loop structure of the integrated negative geometries of
ABJM could shed light on an all-loop computation of the cusp anomalous dimension Γcusp
of the theory.2 In turn, this knowledge of Γcusp could give insight on the non-perturbative
structure of the interpolating function h(λ) of ABJM [41–49], which percolates in every
integrability-based computation made in this three-dimensional theory. An all-loop proposal
for h(λ) was made in [48].

Following the diagrammatic representation of [19], negative geometries organize scattering
amplitudes of the ABJM theory in a perturbative expansion in terms of connected and bipartite
graphs [14, 15]. It is at the L = 4 loop order that one encounters the first “loops of loops”
diagram in the expansion of the four-point negative geometry [14].3 More precisely, at this
perturbative order one has to consider a box diagram, which contributes with a non-trivial
three-loop integral to our computation. To perform this and other loop integrals we have
used the method of differential equations [51], that has been widely applied to compute loop
integrals in perturbative quantum field theory.

2A Thermodynamic Bethe Ansatz approach for the computation of Γcusp was recently studied for the
ABJM theory in [40].

3For the negative geometries in the N = 4 sYM theory the first “loops of loops” diagram shows up at
L = 3 [19, 50]. The canonical forms of all one-cycle geometries are given in [50].
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As we will show, the integrated results have uniform transcendentality up to L = 4
loops, with transcendental weight L − 1 for odd values of L and with weight L − 2 for
even values of L. Moreover, at the integrated level the results follow an alternating sign
pattern within the Euclidean region. Remarkably, the leading singularities are restricted
to the set {s

√
t, t

√
s,
√

st(s + t)} in the limit at which the unintegrated loop variable goes
to infinity. Finally, we will use the L = 4 integrated negative geometry to compute the
four-loop contribution to the cusp anomalous dimension of the theory. This result is the
first explicit four-loop computation of Γcusp in the ABJM theory, and it agrees with the
all-loop integrability-based proposal [37].

The plan of the paper is as follows. In section 2 we will give a short review of the
Amplituhedron construction in the ABJM theory, with a focus on the current results for the
corresponding integrated negative geometries. In section 3 we will present the computation of
the L = 4 integrated negative geometry, and in section 4 we will discuss the main properties
of this result. Section 5 is devoted to the computation of the four-loop contribution to the
cusp anomalous dimension of the theory. Finally, we give our conclusions in section 6. We
also include an appendix and supplementary material that complement the results presented
in the main body of the paper.

2 Geometric description of amplitudes in the ABJM theory

In the reference [1], a description of amplitudes in terms of positive geometries was proposed
for the N = 4 sYM theory. In turn, it was later shown that this result provided a description
of the logarithm of the amplitude in terms of negative geometries [19], which allowed to
prove that the result of performing L − 1 loop integrations over the L loop integrand for
the logarithm of the amplitude is free of IR divergences. The geometric construction of
amplitudes has also been extended to the ABJM theory [12–16]. Moreover, the analysis
of integrated negative geometries in ABJM was performed up to L = 3 loops in [27, 28].
This section is devoted to a short review of the ABJM Amplituhedron and its corresponding
integrated negative geometries.

2.1 The ABJM Amplituhedron

Throughout this paper we will focus on a four-particle scattering process, with external
momenta pi, i = 1, . . . , 4. To describe the kinematic data we will usually recur to dual-space
coordinates (xi = pi+1 − pi, i = 1, . . . , 4), for which we will often use five-dimensional
notation. We will employ capital X letters when using five-dimensional notation, and we
refer to the appendix A of [27] for a discussion on its properties. Alternatively, we will also
use momentum-twistors [52] to describe the kinematics.

Let us start by defining the L-loop integrands IL and LL for the amplitude and its
logarithm as

M
∣∣∣∣
L loops

:=

4+L∏
j=5

∫
d3xj

iπ3/2

 IL , logM
∣∣∣∣
L loops

:=

4+L∏
j=5

∫
d3xj

iπ3/2

 LL , (2.1)

where x5, x6, . . . , x4+L describe the loop variables and M := A/Atree, with A the color-ordered
scattering amplitude and Atree its corresponding tree-level value. In [14] it was proposed that

– 3 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
2

the L-loop integrand IL for the four-particle ABJM amplitude can be obtained as

IL = nL ΩL , (2.2)

where ΩL is the canonical form of a positive geometry known as the L-loop ABJM Ampli-
tuhedron, and nL is a normalization given as4

nL = 1
L!

(
i

2
√

π

)L

. (2.3)

We refer to appendix B of [27] for a discussion on the above relative normalization. In order to
define the L-loop ABJM Amplituhedron we need to consider the region in momentum-twistor
space characterized by the constraints

⟨1234⟩ < 0 , (2.4)
⟨li12⟩ < 0, ⟨li23⟩ < 0, ⟨li34⟩ < 0, ⟨li14⟩ < 0 , (2.5)

⟨li13⟩ > 0, ⟨li24⟩ > 0 , (2.6)
⟨lilj⟩ < 0 , (2.7)

for all i, j = 5, . . . , 4 + L. Above we are using the notation ⟨klmn⟩ = ϵIJKLZI
kZJ

l ZK
m ZL

n ,
where Zi, i = 1, . . . , 4 are the momentum-twistors that characterize the external kinematic
data and lIJ

5 := ZI
AZJ

B, lIJ
6 := ZI

CZJ
D, lIJ

7 := ZI
EZJ

F , . . . are the lines in momentum-twistor
space that describe the loop variables. Let us also consider the symplectic constraints given by

ΣIJZI
i ZJ

i+1 = 0 , (2.8)
ΣIJ lIJ

k = 0 , (2.9)

for all i = 1, . . . , 4 and k = 5, . . . , 4 + L all, where Σ is defined as

Σ =
(

0 ϵ2×2
ϵ2×2 0

)
, (2.10)

with ϵ2×2 a totally anti-symmetric tensor. The L-loop ABJM Amplituhedron is then defined
as the region in momentum-twistor space characterized by (2.4)–(2.9).

Interestingly, the above geometry imposes strong constraints on the L-loop integrand LL

for the logarithm of the amplitude. In order to discuss such constraints it is useful to consider
the diagrammatic notation of [19]. We will use a node to represent a one-loop geometry
defined by the constraints (2.4)–(2.6), and we will recur to red thick lines to indicate a
negativity condition between the loop momenta associated to two nodes, i.e.5

⟨lilj⟩ > 0 . (2.11)
4We are using the convention λ = N/k for the ’t Hooft coupling of the theory, with N the number of colors

and k the Chern-Simons level.
5Let us note that the negativity condition (2.11) has the opposite sign to the one of the N = 4 sYM

case [19]. In fact, all signs are reversed in the ABJM Amplituhedron with respect to the N = 4 sYM
geometry. This is due to the fact that the symplectic condition (2.8) implies ⟨1234⟩ < 0 for real-valued
momentum-twistors [14, 15].
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Then, the results of [14] imply that the L-loop integrand LL for the logarithm of the
amplitude is given as

LL = ñL Ω̃L , (2.12)

with [27]

ñL = 1
L!

(
i

2
√

π

)L

, (2.13)

and where the canonical form Ω̃L can be obtained as

(2.14)

with E(G) the number of edges of each graph G and where we are summing over the canonical
forms of all possible connected and bipartite graphs that connect L nodes with negativity
conditions. We define a bipartite graph as one in which one can assign an orientation to each
line in such a way that each node behaves either as a source (green nodes) or as a sink (white
nodes). In comparison to the N = 4 sYM case, in which at L loops one has to consider every
possible connected graph with L nodes, the restriction to bipartite graphs that appears in
the ABJM case implies a significant reduction in the number of diagrams at each loop order.
Using (2.14), the canonical forms Ω̃L were computed up to L ≤ 5 in [14].

Finally, let us note that the above construction was extended to all loops and all
multiplicities in [15]. There the authors used the proposed ABJM Amplituhedron to obtain
explicit results for the integrands for n ≤ 10 and n ≤ 8 particles at L = 1 and L = 2,
respectively.

2.2 Integrated negative geometries for L ≤ 3

As discussed in [19], one advantage of expressing the L-loop integrand LL in terms of negative
geometries is that it implies that the result of integrating L − 1 of the loop momenta is free
of IR divergences. Following the ideas of [20], it was shown in [27, 28] that dual conformal
symmetry6 constrains the integrated result to be4+L∏

j=6

∫
d3Xj

iπ3/2

 LL =
√

π

(
X2

13X2
24

X2
15X2

25X2
35X2

45

) 3
4

FL−1 (z) +
i ϵ (1, 2, 3, 4, 5)
X2

15X2
25X2

35X2
45

GL−1 (z)√
π

, (2.15)

with7

z = X2
15X2

35X2
24

X2
25X2

45X2
13

, (2.16)

and where

ϵ(1, 2, 3, 4, 5) := ϵµνρσηXµ
1 Xν

2 Xρ
3 Xσ

4 Xη
5 . (2.17)

6Evidence of dual-superconformal and Yangian symmetry has been found for ABJM amplitudes in [35, 53–
56].

7Let us note that we are changing the definition of z with respect to the conventions of [27]. Moreover, we
are also using a different normalization for the F function.
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Dual conformal symmetry does not further constrain the functions FL−1 and GL−1, which
should be computed by integration of the canonical forms Ω̃L. Those forms are given, up
to L ≤ 3, as [14]

(2.18)
with

si := ⟨li12⟩⟨li34⟩ , ti := ⟨li23⟩⟨li14⟩ , Dij := −⟨lilj⟩ , (2.19)

c := ⟨1234⟩ , ϵi :=
√
⟨li13⟩⟨li24⟩⟨1234⟩ , (2.20)

and where the permutations are over all nonequivalent configurations of the loop momenta.
Let us note that up to L ≤ 3 the only contributions to Ω̃L come from ladder diagrams, i.e.
graphs in which all nodes are concatenated within a chain. By performing direct integration
over (2.18) it was shown in [27, 28] that

F0(z) = 0 , G0(z) = −2 , (2.21)

F1(z) = −1
4

(
z1/4 + 1

z1/4

)
, G1(z) = 0 , (2.22)

F2(z) = 0 , G2(z) =
2
3

[
H(z) + π2
√
1 + z

+ π2

2 +
(

z → 1
z

)]
, (2.23)

where

H(z) = −Li2

(
2
(√

z + 1− 1
)

z

)
+ Li2

(
−2

(√
z + 1 + 1

)
z

)

+ 2 log
(4

z

)
log

(√
z + 1 + 1√

z

)
.

(2.24)

3 L = 4 integrated negative geometry

In this section we will turn to the main goal of this paper, the three-loop integration of
the L = 4 negative geometry of the ABJM theory. After presenting the L = 4 canonical
form, we will focus on its integration by the method of differential equations. We will show
how to decompose the integrals into a basis of master integrals, which can be computed
from a set of first order differential equations. We will discuss how to take those differential
equations into a canonical form, which highly simplifies their analysis. Finally, we will solve
the canonical differential equations and we will use their solution to compute the L = 4
integrated negative geometries.
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3.1 L = 4 canonical form

As shown in [14], the bipartite constraint that must be imposed in (2.14) implies that only
three type of negative geometries contribute to the L = 4 canonical form Ω̃4. On the one
hand, one has to consider the ladder diagrams

whose canonical form is

Ω̃Ladd
4 = 8c2 ϵ6ϵ7

s5t6s7t8D56D67D78
+ (s ↔ t) + perms. (3.1)

On the other hand, there is a contribution from the star diagrams

with
Ω̃Star

4 = 8c3 t5
s5t6t7t8D56D57D58

+ (s ↔ t) + perms. (3.2)

Finally, one has to take into account also the box diagrams

that have

Ω̃Box
4 = 4

4ϵ5ϵ6ϵ7ϵ8 − c(ϵ5ϵ7N t
68 + ϵ6ϵ8N s

57)− c2N cyc
5,6,7,8

s5t6s7t8D56D67D78D58
+ (s ↔ t) + perms. (3.3)

and where

N s
57 = ⟨l512⟩⟨l734⟩+ ⟨l712⟩⟨l534⟩ , (3.4)

N t
68 = ⟨l614⟩⟨l823⟩+ ⟨l814⟩⟨l623⟩ , (3.5)

N cyc
ijkl = ⟨li12⟩⟨lj34⟩⟨lk12⟩⟨ll34⟩+ ⟨li23⟩⟨lj14⟩⟨lk23⟩⟨ll14⟩ . (3.6)

The canonical form Ω̃4 is then given as

Ω̃4 = −Ω̃Ladd
4 − Ω̃Star

4 + Ω̃Box
4 . (3.7)

3.2 Star diagrams

Before turning to the computation of the integrals over Ω̃Ladd
4 and Ω̃Box

4 with the method
of differential equations, let us discuss the integration over Ω̃Star

4 , which can be easily done
by direct integration.

– 7 –
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We should recall that in order to compute the F3 and G3 functions that were defined
in (2.15) one should freeze one of the loop integrations in L4 and then perform the remaining
three-loop integrations. With the freedom of arbitrarily choosing a frozen node, we will always
leave the X5 variable unintegrated. In order to diagrammatically represent this integration
process we will use a squared node to denote the loop variable that is left unintegrated. For
example, for the star diagrams we have two possibilities: on the one hand, one can freeze
the node that is at the center of the graph, i.e.

(3.8)

On the other hand, the unintegrated node can be in one of the legs of the star, i.e.

(3.9)

where the factor of 3 comes from the permutation of the loop variables that are being
integrated. Interestingly, both the IStar

1 and the IStar
2 integrals can be straightforwardly

solved by taking into account the triangle integral∫
d3X6
iπ3/2

1
X2

26X2
46X2

56
= π3/2√

X2
25X2

45X2
24

, (3.10)

which can be easily computed using Feynman parametrization. Then, one gets

IStar
1 = 8

∫
d3l6
iπ3/2

∫
d3l7
iπ3/2

∫
d3l8
iπ3/2

c3 t5
s5t6t7t8D56D57D58

+ (s ↔ t)

= −8π9/2
(

X2
13X2

24
X2

15X2
25X2

35X2
45

)3/4 (
z1/4 + 1

z1/4

)
,

(3.11)

and
IStar

2 = 24
∫

d3l6
iπ3/2

∫
d3l7
iπ3/2

∫
d3l8
iπ3/2

c3 t6
s6t5t7t8D56D67D68

+ (s ↔ t)

= −24π9/2
(

X2
13X2

24
X2

15X2
25X2

35X2
45

)3/4 (
z1/4 + 1

z1/4

)
.

(3.12)

Therefore, summing up (3.11) and (3.12) and taking into account the normalization (2.13)
(which gives n4 = 1

4!

(
i

2
√

π

)4
at L = 4) we arrive at

FStar
3 (z) = −π2

12

(
z1/4 + 1

z1/4

)
, GStar

3 (z) = 0 . (3.13)

3.3 Ladder and box diagrams

Let us now discuss the integration of the ladder and box diagrams. For the case of the ladders
we can either integrate a node at the end of the chain, i.e.

(3.14)

– 8 –
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or a node in the middle of the chain, i.e.

(3.15)

On the other hand, for the integration of the box diagram we have only one contribution,
given by

(3.16)

To be more specific, the integrals that we seek to compute are

ILadd
1 = 48

∫
d3l6
iπ3/2

∫
d3l7
iπ3/2

∫
d3l8
iπ3/2

c2ϵ6ϵ7
s5t6s7t8D56D67D78

+(s ↔ t) , (3.17)

ILadd
2 = 48

∫
d3l6
iπ3/2

∫
d3l7
iπ3/2

∫
d3l8
iπ3/2

c2ϵ5ϵ7
t6s5t7s8D56D57D78

+(s ↔ t) , (3.18)

IBox = 12
∫

d3l6
iπ3/2

∫
d3l7
iπ3/2

∫
d3l8
iπ3/2

4ϵ5ϵ6ϵ7ϵ8−c(ϵ5ϵ7N t
68+ϵ6ϵ8N s

57)−c2N cyc
5,6,7,8

s5t6s7t8D56D67D78D58
+(s ↔ t) .

(3.19)

3.3.1 Differential equations

In the remaining of this section we will discuss the computation of (3.17)–(3.19) by the
method of differential equations [51]. As the first step towards that goal, let us begin by
defining the family of integrals given as

Ga1, a2, a3, ..., a15 =
∫

dDl1
iπ3/2

∫
dDl2
iπ3/2

∫
dDl3
iπ3/2

15∏
j=1

1
P

aj

j

, (3.20)

with D = 3 − 2ϵ and

P1 = −(l1 + p1)2 , P6 = −(l3 − p4)2 , P11 = −(l2 + p1)2 ,

P2 = −(l1 − p4)2 , P7 = −(l1 − l2)2 , P12 = −(l2 − p4)2 ,

P3 = −l22 , P8 = −(l2 − l3)2 , P13 = −l23 ,

P4 = −(l2 + p1 + p2)2 , P9 = −l21 , P14 = −(l3 + p1 + p2)2 ,

P5 = −(l3 + p1)2 , P10 = −(l1 + p1 + p2)2 , P15 = −(l1 − l3)2 ,

and where the momenta pi, i = 1, . . . , 4 are all massless. In order to express (3.17)–(3.19) as
a linear combination of integrals of the family (3.20) we use the identity

ϵ(1, 2, 3, 4, i) ϵ(1, 2, 3, 4, j) = X4
13X4

24
32

(
X2

1iX
2
3j + X2

1jX2
3i

X2
13

+
X2

2iX
2
4j + X2

2jX2
4i

X2
24

− X2
ij

)
,

(3.21)
which allows us to rewrite (3.17)–(3.19) in terms of integrals that only depend on X2

ij distances.
However, let us note that these integrals still do not belong to the family defined in (3.20),
given that there is still a non-trivial dependence on x5. One can get rid of that dependence by

– 9 –
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taking into account the dual conformal covariance of the integrals (3.17)–(3.19), that allows
one to go to the x5 → ∞ frame. Therefore, we define

ÎLadd
1 = lim

x5→∞
(x2

5)3 ILadd
1 , (3.22)

ÎLadd
2 = lim

x5→∞
(x2

5)3 ILadd
2 , (3.23)

ÎBox = lim
x5→∞

(x2
5)3 IBox . (3.24)

The advantage of taking the x5 → ∞ limit relies in that it allows us to express the inte-
grals (3.22)–(3.24) solely in terms of four-particle kinematic variables, i.e. in that limit one
can rewrite (3.22)–(3.24) as a linear combination of integrals of the type defined in (3.20).
Moreover, we can further decompose (3.22)–(3.24) in terms of a set of master integrals for
the family (3.20). In order to look for that basis we have used the FIRE [57] and LiteRed [58]
algorithms, that have allowed us to find the following basis of 19 master integrals:

M1 = s−1/2+3ϵ Ĝ0,1,0,0,1,0,1,1 , M2 = s3/2+3ϵ Ĝ0,1,0,1,1,1,1,1 ,

M3 = s3/2+3ϵ Ĝ0,1,1,1,0,1,1,1 , M4 = s3/2+3ϵ Ĝ0,1,1,1,1,0,1,1 ,

M5 = s5/2+3ϵ Ĝ0,1,1,1,1,0,1,2 , M6 = s3/2+3ϵ Ĝ0,1,1,1,1,1,1,0 ,

M7 = s5/2+3ϵ Ĝ0,1,1,1,1,1,1,1 , M8 = s7/2+3ϵ Ĝ0,1,1,1,1,1,1,2 ,

M9 = s7/2+3ϵ Ĝ0,1,1,1,1,1,2,1 , M10 = s3/2+3ϵ Ĝ1,1,0,0,1,1,1,1 , (3.25)

M11 = s3/2+3ϵ Ĝ1,1,0,1,1,1,0,1 , M12 = s5/2+3ϵ Ĝ1,1,0,1,1,1,1,1 ,

M13 = s3/2+3ϵ Ĝ1,1,1,1,1,1,0,0 , M14 = s5/2+3ϵ Ĝ1,1,1,1,1,1,0,1 ,

M15 = s7/2+3ϵ Ĝ1,1,1,1,1,1,0,2 , M16 = s7/2+3ϵ Ĝ1,1,1,1,1,1,1,1 ,

M17 = s9/2+3ϵ Ĝ1,1,1,1,1,1,1,2 , M18 = s7/2+3ϵ Ĝ1,1,1,1,1,2,0,1 ,

M19 = s9/2+3ϵ Ĝ1,1,1,1,1,2,1,1 ,

where we are using the shorthand notation

Ĝa1,a2,a3,a4,a5,a6,a7,a8 := Ga1,a2,a3,a4,a5,a6,a7,a8,0,0,0,0,0,0,0 . (3.26)

Let us note that we have choosen to normalize each element of the basis with a factor

s−
9
2 +3ϵ+

∑15
i=1 ai , (3.27)

in order to get dimensionless integrals.
As it is well known, for a given basis of master integrals one can generically derive a

set of first order differential equations that formally allows for their computation. For the
case of interest to us, we have

∂ωM⃗ = A(ω, ϵ) M⃗ , (3.28)

where M⃗ is a vector constructed with the 19 master integrals presented in (3.25), A is a
19 × 19 matrix presented in the file non_can_DE.txt, ϵ is the dimensional regularization
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parameter (defined as D = 3 − 2ϵ), and ω is defined by8

t

s
= 1

4

(
ω − 1

ω

)2
, (3.29)

where the Mandelstam variables are taken to be s = (p1 + p2)2 and t = (p1 + p4)2. The
reason for introducing the ω variable defined in (3.29) will become clear soon.

As shown in [51], in order to solve (3.28) it is better to look for a change of basis

M⃗ = T C⃗ , (3.30)

that takes the differential equation (3.28) into a canonical form

∂ωC⃗ = ϵ Ac(ω) C⃗ , (3.31)

where the matrix Ac(ω) is given as

Ac(ω) =
n∑

j=1
aj dlog[Wj(ω)] , (3.32)

with constant aj matrices and where the Wj are a set of algebraic functions of ω. The Wj

functions are known as letters, and the set of all letters is known as the alphabet. Then,
expanding the canonical basis as9

C⃗(ω, ϵ) =
∞∑

k=0
ϵk C⃗(k)(ω) , (3.33)

one gets

C⃗(0)(ω) = const. , (3.34)

and
C⃗(k)(ω) = C⃗(k)(0) +

∫ ∞

0
dτ Ac(τ) C⃗(k−1)(τ) , (3.35)

for k ≥ 1, where C⃗(k)(0) are boundary constants at the boundary point ω = 0.10 Therefore,
from (3.32) and (3.35) one can see that the solution to the differential equation (3.31) will
be a set of integrals with uniform transcendental weight in their ϵ expansion, provided the
C⃗(0) vector has a given transcendental weight w0.

In order to take the differential equation (3.28) into the canonical form we have used the
algorithm CANONICA [59]. We have found that, given the change of basis presented in the file
change_of_basis.txt (which corresponds to the T matrix in (3.30)), the alphabet is

W1 = ω , W2 = 1 + ω , (3.36)
W3 = 1− ω , W4 = 1 + ω2 . (3.37)

8For each value of t/s there are four possible solutions of (3.29). Throughout this paper we will always
choose to work with the solution that lies in the 0 < ω < 1 interval.

9In order to get (3.33) one has to properly normalize the canonical basis so that all integrals are finite
in ϵ → 0.

10The choice of the boundary point is arbitrary.
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The corresponding aj matrices are presented in the supplementary material a1.txt, a2.txt,
a3.txt and a4.txt. At this point we are in the position of arguing the choice of ω as the
kinematic variable to construct the differential equations. Had we used z = t/s instead of
ω, we would not have got a rational alphabet, and the letters would have included square
roots of z. The decompositions of (3.22)–(3.24) into the canonical basis C⃗ are presented in
the supplementary material I1_ladd_dec.txt, I2_ladd_dec.txt and I_box_dec.txt.

3.3.2 Solving the differential equations

As discussed in the previous section, given a set of canonical differential equations, their
solution reduces to the process of finding the boundary values C⃗(k)(0), k ≥ 0. As we expect
the F3 and G3 functions to have transcendental weight 2, we will only be interested in solving
the differential equations up to second order in the ϵ expansion. Therefore, we only need to
compute C⃗(0)(0), C⃗(1)(0) and C⃗(2)(0). To that aim we take into consideration that

1. Given that we are working with planar integrals, we should not have discontinuities for
real negative values of z = t/s. Therefore, the symbol [60] of the C⃗ integrals should
always have z = (1−ω2)2

4ω2 as its first letter. Moreover, there should not be singularities
for u → 0, which taking into account the pole structure of the Ac matrix implies

lim
ω2→−1

a4 C⃗(k)(ω) = 0 , (3.38)

for all k ≥ 0.

2. Four out of the nineteen integrals in the canonical basis can be computed exactly by
Feynman parametrization [61]. More precisely, we have

C1(z) = −z−3ϵ
9
(
24ϵ2 − 10ϵ + 1

)
Γ
(

1
2 − ϵ

)4
Γ
(
3ϵ − 1

2

)
10ϵ3(2ϵ + 1)3Γ(2− 4ϵ) , (3.39)

C6(z) = z−ϵ
54Γ

(
1
2 − ϵ

)4
Γ(−2ϵ)Γ

(
ϵ + 1

2

)
Γ
(
ϵ + 3

2

)
Γ(2ϵ + 2)

ϵ2(2ϵ + 1)5Γ
(

1
2 − 3ϵ

)
Γ(1− 2ϵ)

, (3.40)

C11(z) = z−3ϵ
216Γ

(
1
2 − ϵ

)4
Γ(−2ϵ)Γ

(
ϵ + 1

2

)
Γ
(
ϵ + 3

2

)
Γ(2ϵ + 2)

ϵ2(2ϵ + 1)5Γ
(

1
2 − 3ϵ

)
Γ(1− 2ϵ)

, (3.41)

C13(z) = z−2ϵ
108Γ

(
1
2 − ϵ

)6
Γ
(
ϵ + 1

2

)3

ϵ(2ϵ + 1)3Γ(1− 2ϵ)3 . (3.42)

Consequently, the solutions obtained from (3.31) should agree with (3.39)–(3.42).

3. Within the euclidean region, which in our conventions11 is defined by the s > 0 and
t > 0 constraints (or, equivalently, 0 < ω < 1), all the integrals in the C⃗ basis should
be real.

11We are taking the metric to have signature (−,+,+) and we are defining s := (p1+p2)2 and t := (p1+p4)2.
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We have used the PolyLogTools package [62] to manipulate the iterated integrals that
appear when solving the differential equations. All the above considerations allow us to
completely fix the zeroth-order and first-order constants C⃗(0) and C⃗(1). As for the second-order
boundary vector C⃗(2), the previous constraints leave only two unknown constants. We have
fixed them by demanding consistence of the C⃗ integrals with their numerical evaluations. The
C⃗ canonical basis is presented, up to second order in its ϵ-expansion, in the supplementary
material DE_sol.txt.

3.3.3 Integrated results
The solution to the canonical differential equations discussed in previous sections allows us to
compute the ladder and box integrals defined in (3.22)–(3.24). We get

ÎLadd
1 = −24 s

√
t π5/2

[
(log(z)− 2 log(2))2 + 2π2

]
− 24 t

√
s π5/2

[
(log(z) + 2 log(2))2 + 2π2

]
, (3.43)

ÎLadd
2 = −48π5/2

√
st(s + t)

[
H(z) +H

(1
z

)
+ 2π2

]
, (3.44)

ÎBox = −48π5/2
√

st(s + t)
[
H(z) +H

(1
z

)]
− 32π9/2

(
3
√

st(s + t)− s
√

t − t
√

s

)
, (3.45)

where the H function was defined in (2.24). Let us note that the ILadd
2 integral can also

be easily obtained from direct integration using the two-loop integrals computed in [27, 28],
in agreement with the result presented in (3.44). Reversing the x5 → ∞ limit introduced
in (3.22)–(3.24) and taking into account the normalizations presented in (2.12) we arrive at

FLadd
3 (z) = −z−1/4

16
[
(log(z)− 2 log(2))2 + 2π2

]
− z1/4

16
[
(log(z) + 2 log(2))2 + 2π2

]
− z−1/4√1 + z

8

[
H(z) +H

(1
z

)
+ 2π2

]
(3.46)

FBox
3 (z) = −z−1/4√1 + z

8

[
H(z) +H

(1
z

)]
− π2

12
(
3z−1/4√1 + z − z1/4 − z−1/4

)
, (3.47)

and

GLadd
3 (z) = GBox

3 (z) = 0 . (3.48)

Finally, adding up the contributions from the different diagrams as in (3.7), we get

F3(z) = −FLadd
3 (z)−FStar

3 (z) + FBox
3 (z) (3.49)

= z−1/4

16 [log(z)− 2 log(2)]2 + z1/4

16 [log(z) + 2 log(2)]2

+ 7π2

24
(
z1/4 + z−1/4

)
, (3.50)

G3(z) = 0 . (3.51)
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We note that the above L = 4 formulas, together with the L ≤ 3 results presented in (2.21)–
(2.23), suggest that

F2k+1(z) and G2k(z) have transcendental degree 2k (3.52)

for k ≥ 0.

4 Properties of the L = 4 result

After computing the L = 4 integrated negative geometries of the ABJM theory, we will
turn now to the analysis of the integrated results. We will begin with a discussion on their
leading singularities, and then we will move to an analysis of the sign patterns that are
observed in the integrated results.

4.1 Leading singularities

One can always generically write the integrated negative geometries as4+L∏
j=6

∫
d3xj

iπ3/2

 LL =
k∑

i=1
RL−1,i TL−1,i , (4.1)

for some integer k, where the TL−1,i are transcendental functions and the RL−1,i are rational
functions known as leading singularities. For the sake of more generality, we will separately
study the contributions of each individual negative geometry diagram, without considering
the cancellations that may occur when adding up all contributions according to (2.14). Taking
into account the L ≤ 3 results of [27, 28] and the L = 4 results presented in the previous
section, we see that the only leading singularities that contribute to the integrated results are12

R1 = 4 ϵ(1, 2, 3, 4, 5)
X2

15X2
25X2

35X2
45

, R2 = R1√
1 + z

, R3 =
√

z

z + 1 R1 , (4.2)

R4 =
(

X2
13X2

24
X2

15X2
25X2

35X2
45

)3/4

z−1/4 , R5 =
√

z R4 , R6 =
√
1 + z R4 . (4.3)

As discussed in [27], in order to work only with four-particle kinematic variables it is best to
perform the analysis of leading singularities in the frame in which the unintegrated variable
goes to infinity. Therefore, defining

r = lim
x5→∞

(x2
5)3 R , (4.4)

we see that in the x5 → ∞ limit the leading singularities reduce to

r1 =
√

s t (s + t) , r2 = s
√

t , r3 = t
√

s , (4.5)

r4 = s
√

t , r5 = t
√

s , r6 =
√

s t (s + t) . (4.6)

12The R6 leading singularity appears when integrating the box and ladder diagrams at L = 4, but it cancels
when summing all contributions as in (2.14).
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That is, we get that up to L ≤ 4 the leading singularities of each individual integrated
negative geometry diagram belong to the set

{
√

st(s + t), s
√

t, t
√

s} . (4.7)

Finally, let us comment about the conformal symmetry of the integrated results. In [27],
it was shown that the leading singularities of the L ≤ 3 integrated results are conformally
invariant in the x5 → ∞ limit and after normalization with a three-dimensional generalization
of the Parke-Taylor factor. We should note that this result is in fact general for every arbitrary
function of s and t with dimension 1 in energy units. As a corollary, the complete integrated
results (i.e. including also the transcendental functions) are conformally invariant in the
x5 → ∞ limit and after normalization with the three-dimensional Parke-Taylor factor (or
any other factor of dimension −2 in energy units). We refer to appendix A for a detailed
analysis of this statement.

4.2 Sign patterns

We will close this section with a positivity analysis of the integrated negative geometries.
To that end, let us first comment on the sign properties that have been observed for the
integrated results of the N = 4 sYM theory. As discussed in [20], dual conformal symmetry
constrains the four-particle integrated negative geometries of N = 4 sYM to have the form4+L∏

j=6

∫
d4xj

iπ2

 LL = x2
13x2

24
x2

15x2
25x2

35x2
45

FL−1 (z)
π2 , (4.8)

where z is defined as in (2.16). From an inspection of the L ≤ 3 results, it was suggested in [19]

FL−1(z) < 0 for odd L , (4.9)
FL−1(z) > 0 for even L , (4.10)

when restricted to the Euclidean region z > 0. Moreover, similar results were found for the
five-particle case in [38]. There it was found that

f
(0)
5
∣∣
Eucl+ > 0 , f

(1)
5
∣∣
Eucl+ < 0 , f

(2)
5
∣∣
Eucl+ > 0 , (4.11)

where

f
(L−1)
5 = lim

x6→∞

5+L∏
j=7

∫
d4xj

iπ2

 L(n=5)
L , (4.12)

with L(n=5)
L the five-particle L-loop integrand for the logarithm of the amplitude. Let us

note that x5 is no longer an unintegrated loop variable in (4.11), and such a role is played
by x6 in that case. Furthermore, the region Eucl+ in (4.11) is defined as the one were all
adjacent five-particle Mandelstam invariants are negative and

4iϵµνρσpµ
1 pν

2pρ
3pσ

4 > 0 . (4.13)
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Let us turn now to the analysis of the ABJM case. For the L ≤ 3 the results reviewed
in (2.21)–(2.23) one can read that in the Euclidean region, i.e. for z > 0,

G0(z)
∣∣
z>0 < 0 , F1(z)

∣∣
z>0 < 0 , G2(z)

∣∣
z>0 > 0 . (4.14)

Moreover, from section 3 we see that in the L = 4 case the individual negative geometry
diagrams behave as

FLadd
3 (z)

∣∣
z>0 < 0 , FStar

3 (z)
∣∣
z>0 < 0 , FBox

3 (z)
∣∣
z>0 > 0 , (4.15)

and, therefore, from (3.7) we get

F3(z)
∣∣
z>0 > 0 . (4.16)

Consequently, we conjecture that

F2k+1(z)
∣∣
z>0 < 0 , and G2k(z)

∣∣
z>0 < 0 , for even k , (4.17)

F2k+1(z)
∣∣
z>0 > 0 , and G2k(z)

∣∣
z>0 > 0 , for odd k , (4.18)

for k ≥ 0.

5 Cusp anomalous dimension

Wilson loops with light-like cusps have divergences that can not be renormalized by a
redefinition of the couplings of the theory [63–66]. Instead, to regularize the expectation
value of cusped Wilson loops one has to introduce a Zcusp renormalization factor, which as
usual allows to define a cusp anomalous dimension as

Γcusp = µ
d logZcusp

dµ
, (5.1)

where µ is the renormalization scale of the theory. The appearance of the cusp anomalous
dimension is ubiquitous in Quantum Field Theory, as it does not only control the UV
divergences of light-like Wilson loops, but also governs the IR divergences of scattering
amplitudes [67]. In the context of the AdS/CFT correspondence this can be seen as a
consequence of the Wilson loops/scattering amplitudes duality [29–36], that relates amplitudes
with polygonal light-like Wilson loops.

Based on a proposal for the all-loop asymptotic Bethe Ansatz that describes the anomalous
dimensions of large-charge single-trace operators in the ABJM theory [37, 68], it was stated
in [37] that the cusp anomalous dimension of ABJM is related to its N = 4 sYM counterpart by

ΓABJM
cusp = 1

4Γ
N=4
cusp

∣∣∣∣
hN =4→hABJM

, (5.2)

where hN=4 and hABJM are the interpolating functions that appear in the dispersion relation
of magnons in N = 4 sYM and ABJM, respectively [41–43, 69, 70]. The hN=4 function
was shown to be

hN=4(λ) =
√

λ

4π
, (5.3)

– 16 –



J
H
E
P
0
5
(
2
0
2
4
)
1
4
2

to all loops [71]. On the other hand, for the ABJM case an all-loop conjecture was made
in [48],13 where it was proposed that

λ = sinh(2πhABJM)
2π

3F2

(1
2 ,

1
2 ,

1
2; 1,

3
2;− sinh2(2πhABJM)

)
, (5.4)

which is in perfect agreement with the four-loop results for h2 of [45–47]. Combining (5.2), (5.3)
and (5.4), one gets

Γcusp(λ) = λ2 − π2λ4 + 49π4

30 λ6 + . . . , (5.5)

for the ABJM theory, which agrees with the leading order computations made in [27, 28, 72].
As discussed in [19, 24, 25] for the N = 4 sYM theory and in [27, 28] for the ABJM

case, one of the advantages of computing integrated negative geometries is that the cusp
anomalous dimension of the corresponding theory can be read from them by applying a
certain functional on the integrated results. More precisely, for the ABJM theory it was
shown in [27, 28] that the L-loop contribution Γ(L)

cusp to the cusp anomalous dimensions can
be computed from the integrated negative geometries FL−1(z) as

Γ(L)
cusp = IF [FL−1] , (5.6)

where

IF [FL−1] :=

−√
π

2

∫
dDX5
iπD/2

(
X2

13X2
24

X2
15X2

25X2
35X2

45

) 3
4

FL−1 (z)


1/ϵ2 term

. (5.7)

In particular, using

IF [zp] = − 2
√

π

Γ
(

3
4 + p

)
Γ
(

3
4 − p

) , (5.8)

it was proved in [27, 28] that the L ≤ 3 integrated results (see (2.21)–(2.23)) give

IF [F0] = 0 , IF [F1] = 1 , IF [F2] = 0 , (5.9)

and therefore Γcusp(λ) = λ2 + O(λ4), in agreement with (5.5) and the two-loop Feynman
diagram computation of [72].

Let us now discuss the computation of the four-loop contribution Γ(4)
cusp from the L = 4

integrated negative geometries computed in section 3. To do so it is useful to notice that,
as in the N = 4 sYM case,

IF [zp loga(z)] = lim
ζ→0

∂a

∂ζa
IF [zp+ζ ] . (5.10)

In particular, this allows us to get

IF

[
z−1/4√1 + z

(
H(z) +H

(1
z

))]
= 4π2

3 . (5.11)

13See [49] for a generalization to the ABJ theory.
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Then, applying (5.8) and (5.10) to the different L = 4 integrated negative geometry diagrams
we arrive at

IF
[
FLadd

3

]
= 2π2

3 , (5.12)

IF
[
FStar

3

]
= π2

3 , (5.13)

IF
[
FBox

3

]
= 0 . (5.14)

Interestingly, the box diagram has a vanishing contribution to the cusp anomalous dimension.
It would be interesting to see if this result continues to be valid for higher-loop “loops of
loops” diagrams. Combining all contributions we get

IF [F3] = −IF
[
FLadd

3

]
− IF

[
FStar

3

]
+ IF

[
FBox

3

]
. (5.15)

Therefore, we obtain that the four-loop contribution to the cusp anomalous dimension of
ABJM is

Γ(4)
cusp = −π2 . (5.16)

This constitutes the first direct four-loop computation of the cusp anomalous dimension of
the ABJM theory, and shows perfect agreement with the integrability-based proposal (5.5).

Finally, let us end this section by discussing an integral representation of the IF functional.
To that end, it is useful to note that the result (5.8) can be rewritten as

IF [zp] = − 4
B
(

3
4 + p, 3

4 − p
) , (5.17)

where B is the well-known Euler Beta function. Then, we can use the identity

1
B(a, b) = b

∫ c+i∞

c−i∞

dz

2π
z−a(1− z)−1−b , 0 < c < 1 , Re(a + b) > 0 , (5.18)

to get

IF [zp] = −4
(3
4 − p

)∫ c+i∞

c−i∞

dz

2π
z−3/4(1− z)−7/4

[1− z

z

]p

. (5.19)

Therefore,

IF [F ] = −
∫ c+i∞

c−i∞

dz

2π
z−3/4(1− z)−7/4

[
3F

(1− z

z

)
+ 4 z(1− z) dF

dz

(1− z

z

)]
, (5.20)

for 0 < c < 1. One of the advantages of this representation of the IF is that it is more
amenable for numerical computations of the cusp anomalous dimension. As an example, we
have tested (5.20) at L = 4 loops, finding excellent numerical agreement with (5.16).
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6 Conclusion

We have studied the IR-finite functions that arise when performing a three-loop integration
over the four-loop integrand for the logarithm of scattering amplitude in the ABJM theory.
With a focus on the four-particle case, we have performed the corresponding loop integrals
by means of the differential equations method [51], therefore providing an application of
this method to a three-dimensional theory. Along the lines of [27, 28], the L-loop integrated
negative geometries splits into a parity-even term, proportional to a function FL−1, and
a parity-odd contribution, described by a function GL−1. Extending the ideas of [27, 28],
our results show that both the parity-even function F2k+1 and the parity-odd function G2k

have transcendentality degree 2k for k ≤ 1. Moreover, we have found that the leading
singularities are surprisingly simple in the limit in which the unintegrated variable goes
to infinity. More precisely, in this frame the leading singularities are restricted to the set
{s
√

t, t
√

s,
√

st(s + t)}, up to the loop order we have studied. Furthermore, we have found
that in the Euclidean region z > 0 the signs of F2k+1(z) and G2k(z) alternate with k for
k ≤ 1, suggesting a pattern for all k. This generalizes the results found for the N = 4
super Yang Mills theory in [19, 38], both at the four- and at the five-particle case. Finally,
starting from the integrated negative geometries we have provided a direct computation of
the four-loop contribution to the cusp anomalous dimension Γcusp of ABJM, in agreement
with the integrability-based prediction that follows from [37, 68].

Let us conclude by discussing some of the interesting questions that arise from our
results. Firstly, it would be interesting to further extend the computation of the integrated
negative geometries of ABJM to higher loops. While the integration of the L = 5 order is
expected to give a vanishing contribution to the cusp anomalous dimension, reaching the
L = 6 order would serve as the first six-loop test of the all-loop integrability-based conjecture
for Γcusp [37, 68]. In turn, it would allow for a O(λ5) test of the current all-loop proposal for
the interpolating function h(λ) of ABJM [48], that appears in all integrability-based results
performed in this theory. It would be interesting to explore if a bootstrap analysis [73–79]
could give access to these higher-loop integrated results. Another promising way to explore
higher-loop integrated negative geometries relies in the Laplace-operator trick studied in [19],
which in the N = 4 sYM case provided an all-loop sum of ladder and tree diagrams.

Another question to address is the structure of higher-point negative geometries. To
that end, the six- and eight-point integrands presented in [15] could serve as a starting point.
It would be interesting to see if some of the properties found for the four-particle case also
extend to the higher-multiplicity integrated results, such as the sign patterns and the apparent
simplicity of the leading singularities. Furthermore, an interesting problem to study would
be the description of the leading singularities of the n-point integrated negative geometries in
terms of a Grassmannian formula [80–83], as done in [26] for an arbitrary number of particles
and in the context of the N = 4 sYM theory.

Finally, one interesting direction to explore is the computation of the last loop integral
that steps in the way between the integrated negative geometries and the logarithm of the
corresponding scattering amplitude. Starting from our L = 4 result, that integration would
give the four-loop four-particle scattering amplitude of ABJM, which is currently unknown.14

14Up to L = 3 loops, ABJM amplitudes have been studied in [34, 35, 54, 55, 84–91].
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A Conformal invariance of integrated results

In this section we will show that the integrated negative geometries (including both the leading
singularities and the transcendental functions) are conformally invariant in the x5 → ∞
limit and after normalization with the three-dimensional Parke-Taylor factor (or any other
factor of dimension −2 in energy units).

To start with, let us recall that in d = 3 dimensions the spinor-helicity variables are
defined as

pab =
(

p0 − p1 p2

p2 p0 + p1

)
= λaλb . (A.1)

In this context, Lorentz invariants can be constructed as

⟨ij⟩ = ϵabλ
a
i λb

j , (A.2)

where we are using ϵ12 = 1, and therefore

s = (p1 + p2)2 = −⟨12⟩2 , t = (p2 + p3)2 = −⟨23⟩2 . (A.3)

Moreover, the generator of special conformal transformations is given as [55]

Kab =
4∑

i=1
∂i

a∂i
b . (A.4)

Let us consider a general function f(α, β), where α = ⟨12⟩ and β = ⟨23⟩. Then,

Kabf = ∂2
αf (⟨1|a⟨1|b + ⟨2|a⟨2|b) + ∂2

βf (⟨2|a⟨2|b + ⟨3|a⟨3|b)− ∂α∂βf (⟨1|a⟨3|b + ⟨1|b⟨3|a) ,

(A.5)
where we are defining ⟨i|a := ϵabλ

b
i . It is useful to note that to completely characterize the

Kabf matrix we only need to compute the matrix elements Kabf |1⟩a|1⟩b, Kabf |2⟩a|2⟩a and
Kabf |1⟩a|2⟩b, where |i⟩a := λa

i . Consequently, (A.5) is equivalent to
α2∂2

αf − β2∂2
βf = 0 ,

α2∂2
αf + β2∂2

βf + 2αβ∂α∂βf = 0 ,

β∂2
βf + α∂α∂βf = 0 .

(A.6)
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At this point we should note that by dimensional analysis we can always write

V(α, β)

4+L∏
j=6

∫
d3Xj

iπ3/2 LL

 ∣∣∣∣
x5→∞

= αN
(

β

α

)
, (A.7)

for some function N and where V(α, β) is some factor with dimension −2 in units of energy
(for example, the three-dimensional Parke-Taylor factor PT(3) = 1

αβ ). We see that (A.7)
will always satisfy the constraints (A.6), regardless of the function N . Consequently, we
conclude that the integrated negative geometries of ABJM are conformally invariant in the
x5 → ∞ limit and after normalization with a factor of dimension −2 in units of energy. This
generalizes the result presented in [27], where it was found that the leading singularities of
the integrated negative geometries of ABJM were conformally invariant in the x5 → ∞ frame
and after normalization with the three-dimensional Parke-Taylor factor.
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any medium, provided the original author(s) and source are credited.
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