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1 Introduction

The motivation for this work is the question of whether a theory with a single massive spin-2
particle coupled to gravity, which has a gap to any other spin-2 or higher-spin particles,
is consistent. Our analysis will crucially rely on the assumption that the theory includes
gravity, and the consistency of the theory will be tested due to this coupling. In this sense,
we are motivated to understand if a theory with an isolated massive spin-2 particle is in the
Swampland (see [1, 2] for reviews). Swampland constraints which relate the existence of a
massive spin-2 particle to the cutoff of the effective theory were proposed in [3]. Indeed, the
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Figure 1. Figure showing the setup of the effective theory that we consider. There is a parametric
gap between the mass of the massive spin-2 particle m and the cutoff of the effective theory Λ. The
Regge growth regime we consider is between m and Λ. As well as gravity, there can be other massive
or massless spin-0 or spin-1 particles in the theory, though we demand that their masses are also
below the Regge regime. The question we address is whether the amplitude Regge growth can be no
faster than s2.

statement was made that a massive spin-2 particle with a parametric gap to the cutoff is
not consistent. We find further evidence for this statement in this work. We discuss more
details on the connection to the spin-2 conjecture in section 1.2.

The approach we take to this question in this work is the behaviour of two-to-two classical
scattering amplitude A of the massive spin-2 particle. In particular, we consider how the
amplitude grows with the centre-of-mass energy parameter s, in the regime where s is much
larger than the momentum exchange parameter t and the mass of the spin-2 particle m,
but still much smaller than the cutoff scale Λ of the theory. In such a regime there is a
leading power of s that will dominate the amplitude, and we aim to constrain the theory by
demanding that this power cannot be too large, more precisely, cannot be larger than two:

s ∂s logA(s, t) ≤ 2 for Λ ≫
√

s ≫ m ,
√
|t| . (1.1)

The question we address is whether there exists a theory with an isolated massive spin-2
particle which can satisfy the constraint (1.1). We will allow the theory also to have further
(a finite number of) massless or massive spin-0 and spin-1 particles, but with a mass below
the Regge regime defined above. This is illustrated in figure 1.

The constraint (1.1) is a version of the Classical Regge Growth conjecture (CRG) proposed
in [4]. The original conjecture, as formulated in [4], is the statement that the classical (tree-
level) S-matrix of any consistent theory cannot grow faster than s2 in the Regge limit, that is
for s → ∞ at fixed t. This is not precisely (1.1), but it certainly inspires it.

The bound (1.1) is a local bound in the language of [5]. Some strong results on such a
bound were developed in [5], for example, showing that it holds in five dimensions or higher
for scattering of scalar particles. We refer to [5] for references on the topic, to [6] for a recent
review, and to [7–10] for other recent work.1

1In this work we will consider only flat space scattering amplitudes. In AdS, there is some evidence that
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The theories that we consider, below the cutoff Λ, are the most general local effective
theories with a finite number of derivatives. So we allow for arbitrary higher-derivative
operators, but do not account for the possibility of an infinite number of correlated higher
derivative operators that can resum into non-analyticities. Such series must correspond to
integrating out a particle and are controlled by the mass scale of the particle that has been
integrated out. If the particle is spin-0 or spin-1, we include this possibility explicitly by
allowing for such states in the effective theory below the cutoff Λ. If the particle that has
been integrated out has spin-2 or higher, then by construction it must have a mass above
the cutoff Λ. Since we are working in the regime Λ ≫

√
s, we can reliably neglect such

possibilities. In other words, we are interested in theories where one massive spin-2 particle
is isolated from other massive spin-2 (or higher) particles, and that includes their effects
through an infinite number of correlated higher-derivative operators.

The primary quantity that we are interested in is the growth of the scattering amplitude
with s. There are many other ways to constrain theories with massive (and massless) spin-2
particles. A small selection of relevant papers follows. Perhaps most similar in nature to our
analysis are the papers [14–17], on which we rely heavily. These papers studied the total
energy dependence of scattering amplitudes in the type of theories we are considering. They
then used this to bound the cutoff scale through unitarity, or to constrain the spectrum of
particles. In particular, in [17] the constraint on the energy growth was shown to lead to
a beautiful bound on the spectrum of Kaluza-Klein states in compactifications of higher
dimensional pure gravity. There are similar papers which study constraints imposed by
superluminality [11, 18, 19]. There are also many papers studying theories of purely massive
spin-2 states, so without the massless spin-2 gravity present. We refer to [20, 21] for reviews,
and to [22–28] for some relevant work.

1.1 Summary of results

It is simple to summarise our results: we find that there are no possible theories, so any
values of the couplings of any operators, which have tree-level scattering that can satisfy
the Regge growth bound (1.1).

As stated, this result holds up to the assumption that there are no relevant infinite
correlated series of higher dimension operators, that is, that there is a gap to any poles
of further massive spin-2 particles.

We also restrict to four dimensions: d = 4. This makes the computation more tractable
as there are identities which reduce the number of operators. We do not expect our results
to change in higher dimensions.

The implications of our results for theories with isolated massive spin-2 particles, coupled
to gravity, depend on how strongly one expects the classical Regge growth bound (1.1) to hold.
There is very strong evidence for this, but to the best of our knowledge, it remains to be proven.

1.2 Relation to the spin-2 conjecture

In this section we discuss some aspects of the spin-2 conjecture proposed in [3]. The conjecture
states that in a theory with gravity and a massive spin-2 particle of mass m, there is a

the Regge growth bound is related to the Chaos bound in the dual CFT [4, 11–13].
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bound on the cutoff Λ of the theory

Λ ∼ mMp

Mw
. (1.2)

Here Mp is the Planck scale and Mw is a mass scale which sets the interactions of the massive
spin-2 particle. So it is a scale which appears in the coupling of the field, hµν , to the tensor
current T µν which defines its interactions

1
Mw

hµνT µν . (1.3)

If hµν was the graviton, then Mw would be Mp, and T µν would be the energy-momentum
tensor.

The scale Mw is somewhat subtle, because the interaction strength may vary for different
fields. It is therefore natural to suggest that the cutoff is set by the weakest interaction scale
(largest value of Mw), otherwise the proposal is not well-posed and leads to different cutoffs
associated with different fields. A universal interaction which is always present is gravity,
and this is always controlled by the mass scale Mp. This means that if the massive spin-2
field is coupled to gravity we should take Mw ∼ Mp. This is then the natural application of
the spin-2 conjecture to our setup, which gives the proposed constraint of Λ ∼ m, so that
there cannot be a parametric gap from the mass of the spin-2 to an infinite tower of states.

2 Classifying scattering amplitudes

This section aims to present all the ingredients needed to compute the most general 2 → 2
tree-level scattering amplitude of a massive spin-2 particle. To do so, we will consider that
the massive spin-2 particle can couple to a (massive or massless) scalar particle, a massive
spin-1 particle and a massless spin-2 particle. Fermions do not need to be introduced since
by momentum conservation they cannot be exchanged between bosons. Massless spin-1
particles can also be ignored, since its coupling with two massive spin-2 particles is not
allowed by gauge symmetry.

Tree-level scattering amplitudes can be computed directly, without reference to specific
Lagrangian terms, in a model-independent way. One can use the fact that the result has
to satisfy Lorentz invariance, crossing symmetry, locality and unitarity to chart all the
possible contributions. This can be done using on-shell methods, as explained for instance
in [29]. The basic idea behind on-shell amplitudes is that they are invariant under field
redefinitions and integration by parts in the Lagrangian, making the classification of the
vertices easier. Most of the computations of this part were already developed in [14–16], in
a different context.2 For that reason, we will only explain the basic steps in the main text,
relegating some details to appendices A–D and referring the reader to the aforementioned
references for a more detailed discussion.

Let us start by fixing the notation. A particle i has momentum pi, spin li and mass
mi. We denote its polarisation tensor by ϵi. This tensor is symmetric, traceless and satisfies

2The authors of these papers were interested in the high energy limit, {s → +∞ , t → −∞ , s/t → fixed},
of the same scattering.
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Figure 2. Contributions to the tree-level 2 → 2 scattering of any self-interacting particle.

Figure 3. The exchange amplitude can be computed using on-shell three-point vertices. Each vertex
is assigned a coefficient ai.

pµ
i ϵiµ = 0. Momentum conservation in our conventions reads p1 +p2 +p3 = 0. Formally, when

constructing the amplitudes, we will write the polarisation matrices as a product of vectors,
ϵi = ϵiµν ≡ ϵiµϵiν , with these vectors satisfying ϵiµϵµ

i = 0, ϵiµpµ
i = 0. This does not mean

that we are assuming the physical polarisations matrices to have rank one: it is only a way
in which one can keep track of the contractions more easily. At any point of the computation
one can always go back to the ϵµν formalism. In the new language, gauge invariance of the
massless spin-1 and spin-2 particles means invariance under ϵiµ → ϵiµ + αpiµ, being α an
arbitrary constant. We will denote ϵiµpµ

j ≡ Aij , ϵiµϵµ
j ≡ Bij = Bji. All the fields are taken to

be canonically normalised, with mass dimension one. Parity-odd interactions always involve
contractions with the Levi-Civita tensor ε, ε (pi, pj , ϵk, ϵl) ≡ εµναβ piµ pjν ϵkα ϵlβ . Finally, we
denote by Ma,b,c (ma, mb, mc) a three-point interaction of particles with spin a, b, c and
masses ma, mb, mc, where the particle c will be the one exchanged.

Two sources of diagrams contribute to any 2 → 2 tree-level scattering amplitude: exchange
diagrams and contact terms, A2→2 = Acontact + Aexhcange, pictorially represented in figure 2.
We discuss them case by case.

2.1 On shell three-point interactions

The exchange diagrams can be computed in two steps. First, we need to list all the possible on-
shell three-point vertices between the two massive spin-2 particles and the exchanged particle.
Then, we take two sets of these vertices, and connect them through the corresponding
propagator, see figure 3.

This reduces the problem to find all possible on-shell 3-point interactions allowed by
Lorentz invariance, crossing symmetry, unitarity, locality and gauge invariance. We discuss
how to do this in appendix B, presenting directly the results in the next subsections.

2.1.1 Massive-2, massive-2, massive-2

In this section, we are looking at three-point couplings between three identical massive spin-2
particles of mass m. There are in general ten contributions, five of them are parity-even and
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the other five are parity-odd [14, 30]. One of them (parity-even) comes from a renormalizable
piece in the Lagrangian and the rest from non-renormalizable pieces. In four dimensions,
d = 4, this list can be reduced by taking into account that any set of more than four vectors
cannot be linearly independent. We discuss these redundancies in appendix B.2, showing
directly in table 1 the independent functions.

M2,2,2 (m, m, m)
µB12B13B23 ≡ M1

1
Λ2

(
B2

13A2
21 + B2

23A2
12 + B2

12A2
31
)
≡ M2

1
Λ3

(B12B23A12A32 + B12B13A21A31 + B13B23A12A21) ≡ M3

1
Λ5

4
A2

12A2
23A2

31 ≡ M4

1
Λ5

(B13 B23 ε (p1, p2, ϵ1, ϵ2)− B12 B23 ε (p1, p2, ϵ1, ϵ3) + B12 B13 ε (p1, p2, ϵ2, ϵ3)) ≡ M5

1
Λ5

6
(A12A23A31 (A31 ε (p1, p2, ϵ1, ϵ2)− A23 ε (p1, p2, ϵ1, ϵ3) + A12 ε (p1, p2, ϵ2, ϵ3))) ≡ M6

Table 1. Independent three-point amplitudes for three identical massive spin 2-particles with mass
m in d = 4.

Here the spin-2 particle is taken to have mass m, and the coefficients µ and Λi have
energy dimension one. Generally, we assume, here and in the next sections, that the scale Λi

at which every term becomes relevant can be different. A table with the complete list of the
ten contributions is shown in appendix B.2. A Lagrangian basis generating the parity-even
elements (the full list, not only the ones presented in table 1) can be found in appendix C.1.3

The total cubic vertex we will be considering for this interaction is therefore (restricting
ourselves to four dimensions):

V2,2,2(m, m, m) ≡ a1M1 + a2M2 + a3M3 + a4M5 + a5M5 + a6M6 , (2.1)

with ai being arbitrary coefficients.

2.1.2 Massive-2, massive-2, massless-2

In this case we start with six parity-even and nine parity-odd three-point operators at high
enough dimension. We can exploit again the fact that we are working in d = 4 to write
some of them as linear combinations of the others. A list with the fifteen interactions is
given in appendix B.2, in table 6, whereas below, in table 2, we only write the nine (five
even and four odd) linearly independent contributions [19].

3This basis is not one-to-one since, as explained above, Lagrangians related by field redefinitions or total
derivatives give rise to the same on-shell vertices.

– 6 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
9

G2,2,2 (m, m, 0)
1

Mp
A2

31B2
12 ≡ G1

1
Mp

A31B12 (A12B23 + A23B13) ≡ G2

1
Mp

(A23B13 + A12B23) 2 ≡ G3

1
MpΛ̂2

4
A12A21A2

31B12 ≡ G4

1
MpΛ̂4

5
A2

12A2
23A2

31 ≡ G5

1
Mp

(B23A12 + B13A23) ε (p3, ϵ1, ϵ2, ϵ3) ≡ G6

1
Mp

B12A31 ε (p3, ϵ1, ϵ2, ϵ3) ≡ G7

1
MpΛ̂2

8
A12A23A31 ε (p3, ϵ1, ϵ2, ϵ3) ≡ G8

1
MpΛ̂4

9
A12A23A2

31 ε (p1, p2, ϵ1 ϵ2) ≡ G9

Table 2. Basis of independent three-point amplitudes for two (identical) massive spin-2 particles, one
massless spin 2-particle in four dimensions.

The massless spin-2 particle is the graviton, and so each vertex is suppressed with a factor
of the Planck mass Mp. The Λ̂i have units of energy and a Lagrangian basis for the parity-even
interactions is given in appendix C.2. The total cubic vertex for this interaction is therefore:

V2,2,2(m, m, 0) ≡ g1G1 + g2G2 + g3G3 + g4G4 + g5G5 + g6G6 + g7G7 + g8G8 + g9G9 . (2.2)

Here the gi are arbitrary coefficients. Moreover, as discussed in [15, 16] and the references
therein, gauge invariance requires

2g1 = g2 . (2.3)

This relation can be derived by studying the Compton scattering of a massive and a massless
spin-2 particle, which involves both the massive-2, massive-2, massless-2 and the massless-2,
massless-2, massless-2 vertices (the latter coming from the usual graviton self-interaction
cubic vertex in the Einstein-Hilbert term).

2.1.3 Massive-2, massive-2, massive-1
Exploiting one more time the fact that we are interested in the case d = 4, in table 3 we
present the (independent) three-point vertices we will be considering, agreeing with [15]. We
relegate the full list of interactions for any dimension to appendix B.2, table 7.

M2,2,1 (m, m, m1)
(A12B12B23 + A21B12B13) ≡ K1

1
Λ̃2

2

(
A21A2

12B23 + A2
21A12B13

)
≡ K2

B12 (ε (p1, ϵ1, ϵ2, ϵ3)− ε (p2, ϵ1, ϵ2, ϵ3)) ≡ K3
1

Λ̃2
4

ε (p1, p2, ϵ1, ϵ2) (B23A12 + B13A21) ≡ K4

Table 3. Four-dimensional three-point amplitudes for two identical massive spin-2 particles and one
massive spin-1 particle.
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Here Λ̃i is the scale of suppression of the vertex Ki and a parity-even Lagrangian basis
is detailed in appendix C.3. The total cubic vertex for this case is therefore:

V2,2,1(m, m, m1) ≡ k1K1 + k2K2 + k3K3 + k4K4 . (2.4)

The ki are arbitrary coefficients.

2.1.4 Massive-2, massive-2, scalar

Finally, regarding the coupling with a scalar field ϕ, our computations match the ones of [16].

M2,2,0 (m, m, M)
msB2

12 = S1
1

Λ̄2
A12A21B12 = S2

1
Λ̄3

3
A2

12A2
21 = S3

1
Λ̄4

B12 ε (p1, p2, ϵ1, ϵ2) = S4

1
Λ̄3

5
A12A23 ε (p1, p2, ϵ1, ϵ2) = S5

Table 4. All possible on-shell three-point amplitudes for two massive spin 2-particles and one
scalar particle.

Here Λ̄i suppress the non-renormalizable operators, ms is some interaction scale, the
mass M of the scalar can be M ≥ 0 and a basis of Lagrangian terms for the parity-even
amplitudes is derived in appendix C.4. The total vertex for this interaction is:

V2,2,0(m, m, M) ≡ s1S1 + s2S2 + s3S3 + s4S4 + s5S5 . (2.5)

The si are arbitrary coefficients.

2.2 Exchange amplitude

As explained previously, the contribution of an exchanged particle k to the on-shell 2 → 2
scattering of a massive spin-2 particle can be computed as follows. Firstly, we take two
sets of vertices V2,2,k (m, m, mk) defined in equations (2.1), (2.2), (2.4) and (2.5). Secondly,
we “remove” the particle k of the vertices and connect them through the corresponding
propagator, given explicitly in appendix A.

Figure 4. To compute the exchange amplitude we sum over all three-point interactions connected
with the correspondent propagator.

We represented this process in figure 4. Before moving to the contact terms, let us pause
here for a moment to discuss some details.
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2.2.1 Renormalizable and non-renormalizable interactions

In tables 1–4, and in the vertices associated, we treated normalizable and non-renormalizable
interactions in the same fashion, implicitly assuming that both contributions can be of the
same order. This may look a bit unnatural from a Lagrangian perspective. When dealing
with EFTs and higher dimensional operators in d = 4 we have

LEFT =
∑

i

aiΛ4−dim(Li)
i Li

d≤4 +
∑

j

bj

Λdim(Lj)−4
j

Lj
d>4 , (2.6)

with ai and bj constants, Li
d≤4 are the renormalizable and Lj

d>4 the non-renormalizable terms.
Usually, it is natural to expect something like

{ai, bj} ∼ O (1) , Λ4−dim(Li)
i Li

d≤4 ≫
Lj

d>4

Λdim(Lj)−4
j

, (2.7)

which makes quite unlikely that diagrams coming from non-renormalizable parts in the
Lagrangian can cancel the ones coming from renormalizable operators, unless some fine
tunning occurs. As a warm-up, when we present our results in section 3 we will begin by
studying a scenario like this.

Nevertheless, since we want to be as general as possible, we will also investigate the case in
which some bj can be bj ≫ 1, potentially making the contribution of the non-renormalizable
pieces in the Lagrangian of the same order of the renormalizable interactions. This is
discussed extensively in section 3.2

2.2.2 Fierz-Pauli coupling

An important role for us is played by the vertex produced when we (minimally) couple the
Fierz-Pauli action to gravity. This vertex must be non-vanishing in any theory of a massive
spin-2 particle. The Fierz-Pauli Lagrangian, which describes the propagation of a massive
spin-2 particle, denoted hµν , in a flat background ηµν , is

L = −∂µhµν∂νh + ∂µhρσ∂ρhµ
σ − 1

2∂µhρσ∂µhρσ + 1
2∂µh∂µh − 1

2m2
(
hµνhµν − h2

)
. (2.8)

Here h = ηµνhµν . Let us now consider a general background with a metric g̃µν . La-
grangian (2.8) becomes

L = −∇µhµν∇νh +∇µhρσ∇ρhµ
σ − 1

2∇µhρσ∇µhρσ + 1
2∇µh∇µh − 1

2m2
(
hµνhµν − h2

)
,

(2.9)

where the indices are now raised and lowered with the metric g̃µν and the derivatives have
been replaced by covariant derivatives.4 To obtain the three-point interactions between two
massive and one massless spin-2 particles we expand the metric as

g̃µν = ηµν + gµν

Mp
, g̃µν = ηµν − gµν

Mp
, (2.10)

4One can also include a term L ⊃ R
4

(
hµνhµν − 1

2 h2) if the background has non-vanishing curvature R. It is
easy to check that this term does not contribute to the massive-2, massive-2, massless-2 three-point interactions.

– 9 –
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and look for the terms of the form hhg. There are three different on-shell contributions:

hµνhµν =
(

ηαµ − gαµ

Mp

)(
ηβν − gβν

Mp

)
hαβhµν |hhg = − 2

Mp
gαµηβνhανhµβ

= −2 1
Mp

B12B13B23 , (2.11)

also5

∇µhρσ∇µhρσ|hhg = g̃µν g̃ραg̃σβ∇µhρσ∇νhαβ |hhg = −G1 + 2m2

Mp
B13B23B12 − 2G2 , (2.12)

and in a similar way

∇µhρσ∇ρhµ
σ|hhg = g̃µαg̃ρν g̃σβ∇µhρσ∇νhαβ |hhg = 1

2G3 , (2.13)

with G3 and G2 introduced in section 2.1.2. This means that the Fierz-Pauli contribution
to the on-shell three-point vertices can be written as:

GF P |hhg ≡ 1
2 (G3 + G1 + 2G2) , (2.14)

which translates into

2g1 = g2 = 2g3 ̸= 0 . (2.15)

This non-vanishing combination of three-point couplings must be satisfied in any theory of
a massive spin-2 particle coupled to gravity. So in looking for possible consistent theories
with appropriate Regge behaviour we are allowed to set any couplings to zero, but must
demand that g1, g2 and g3 are non-vanishing and satisfy the constraints (2.15). Note that
this matches the constraint from gauge invariance (2.3).

2.2.3 Parity symmetry

In the previous sections we introduced parity-even and parity-odd three-point functions,
assuming that the theory can be parity violating. Given a particular choice of external
polarisations, contributions from even-even and odd-odd vertices will be parity-even, whereas
even-odd and odd-even connections will give rise to parity-odd terms.

One can (and we will) avoid this mixing by using the transversity basis for the polarisations,
see appendix A, in which the spin of the particles is projected in the transverse direction
to the scattering plane.6 In the transversity basis, the amplitudes A have definite parity
P and they transform under this symmetry as [31]

P : Aτ1τ2,τ3τ4 → (−1)τ1+τ2−τ3−τ4Aτ1τ2,τ3τ4 , (2.16)

where the indices τ1τ2,τ3τ4 refer to the helicities τi = {0 , ±1 , ±2} of the ingoing, 1 and 2,
and outgoing, 3 and 4, particles. Regarding the exchange diagrams, this means that when

5See appendix D for the details.
6Unlike the usual helicity basis, in which spin and momentum are projected onto the same plane.
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Figure 5. In the transversity basis contributions with different parity decouple.

the sum of the helicities of the scattered particles is an even number, only even-even and
odd-odd terms contribute; on the contrary, if this sum is an odd number, one must consider
even-odd and odd-even interactions. The same reasoning applies to the contact terms: in the
transversity basis they decouple according to the parity, as represented in figure 5. For our
proposes and to prove our result it will be enough just to study the parity-even amplitudes.

Let us also comment that we exploit other nice properties of the transversity basis, like
the simple form of the crossing symmetry relations. A review of transversity amplitudes
and their properties is given in [14, 31, 32].

2.3 Contact terms

Computing all the contact terms is the trickiest and most cumbersome part since, in principle,
there is an infinite number of them. To have a situation we can handle, we will only
include interactions with an arbitrary but finite number of derivatives, following the algorithm
developed in [14–16]. As discussed in the introduction, neglecting the possibility of an infinite
number of correlated higher derivative operators is part of the setting of an isolated massive
spin-2 particle that we are studying.

As explained above, we will only need to consider parity-even contact interactions. Parity-
even and parity-odd contributions decouple in the transversity basis: when the sum of the
helicities of the scattered particles is an even (odd) number only parity-even (parity-odd)
terms contribute. To reach our results it is enough to look at the parity-even amplitudes.7

We can start with the renormalizable (parity-even) operators. There are only two such
operators:

B13B14B23B24 + B12B14B23B34 + B12B13B24B34 , (2.17a)
B2

14B2
23 + B2

12B2
34 + B2

13B2
24 , (2.17b)

or, written in the Lagrangian basis,

h1µνh3α
ν h2β

α h4
βµ + h1µνh2α

ν h3β
α h4

βµ + h1µνh2α
ν h4β

α h3
βµ , (2.18a)

h1µνh4
µν h2αβh3

αβ + h1µνh2
µν h3αβh4

αβ + h1µνh3
µν h2αβh4

αβ . (2.18b)

Non-renormalizable contact terms, on the other hand, are many. Schematically, the list
of parity-even contact terms with up to N derivatives can be written by first computing

V2,2,2,2 (m, m, m, m) =
n+k+m+l=N∑

n,m,k,l

∑
contractions

anmkl

Λn+m+k+l
∂nh ∂mh ∂kh ∂lh , (2.19)

7The reader interested in the parity-odd 4-point interactions is referred to [14].
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with the first summation taking into account all the possible ways in which the indices of
the four hµν and the derivatives ∂µ can be contracted, and then symmetrizing under the
interchange of any two particles. We are using in (2.19) the description in terms of fields,
instead of {Aij , Bmn}, to make the analysis more understandable.

The above discussion serves to illustrate the complexity of the problem. In practice,
though, we will follow a slightly different approach, adapting the strategy developed in [14].
In short, one only needs to compute explicitly the tensor structures8 invariant under the
group of permutations that preserve the Mandelstam variables invariant, the so-called kinetic
permutations Πkin [33]

Πkin = {1, (12)(34), (13)(24), (14)(23)} , (2.20)

where (ij)(kl) means that we do the permutations i ↔ j and k ↔ l at the same time. There
are 201 such (parity-even) tensor structures, which we will denote by Ta and that we list
in appendix E.9 Then, each of these structures is multiplied by an arbitrary polynomial
fa (s, t) of s and t, yielding:

Ãcontact =
201∑
a

fa (s, t)Ta . (2.21)

We are calling this intermediate result Ãcontact to distinguish it from the actual Acontact,
invariant under the permutation of any two particles. Indeed, to obtain Acontact, one has
to impose the remaining permutation symmetries in Ãcontact. These other permutations,
under which (s, t, u) are not invariant, will lead to crossing relations that must be satisfied.
In section 3.2 we will explain extensively what are these crossing constraints and how to
obtain Acontact.

3 Constraining theories through Regge growth

We consider the most general effective theory of a massive spin-2 particle and impose the
constraint (1.1). The result we are after is whether such a theory, satisfying (1.1), exists.
At least, it must contain the couplings (2.14) as non-vanishing, and so satisfy (2.15). That
is the starting point. The rest of the couplings are allowed to take any values, including
vanishing. The analysis follows a simple procedure:

1. Compute all exchange and contact contributions for all polarisations. This results in
some function of s and t

A2→2 =
∑

i

Aexchange
i +

∑
j

Acontact
j ≡ A (s, t) . (3.1)

8By tensor structures in this context we mean the terms
∑

n,m,k,l

∂nh ∂mh ∂kh ∂lh with the indices of the

derivatives always contracted with an index of some h.
9Only 97 of them are independent in d = 4, since the vanishing of the Grassmannian of the vectors {pi, ϵiµ}

imposes extra constraints. However, it is harder to find a basis of the independent structures than to work
with the redundancies.
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2. Take the limit {s ≫ |t|, m2}. Expand A (s, t) in powers of s

lim
s≫t,m2

A (s, t) = · · ·+A2 (t) s2 +A3 (t) s3 + . . .An (t) sn . (3.2)

3. Impose

Am (t) = 0 , for m ≥ 3 , ∀ t < 0 , (3.3)

and for any external polarisation configuration. Equation (3.3) will yield several sub-
equations, one for each power of ti. These sub-equations will depend linearly on the
coefficients of the contact terms and quadratically on the three-point couplings.

4. Solve the previous equations. If (1.1) can be satisfied non-trivially, some relation
between the three-point and the four-point couplings will be obtained. Otherwise, no
possible theory satisfying (1.1) exists.

3.1 A maximally natural scenario

As a warm-up, we will start by considering a simplified scenario in which all dimensionless
couplings are taken to be of order one. So this means that the magnitude of operators
is controlled by their dimension and the cutoff scale Λ. So this is a type of maximally
natural scenario.

The starting point is the demand that the combination of terms in (2.14) is non-vanishing.
These operators have all mass dimension five. By direct computation, it is easy to check
that with only these three pieces, the four-point scattering of a massive spin-2 particle can
never satisfy (1.1).

We therefore need to see if the other operators can be chosen to cancel the too-fast Regge
growth. The “maximally natural” scenario we are considering means that such a possible
cancellation is very restricted. Regarding the contact terms, only the ones with mass dimension
less than or equal to six can be useful. Higher dimensional operators will be suppressed by
higher powers of Λ, which makes them parametrically smaller. We would have equations like

a
s3

Λ2m4 + b
s3

Λ4m2 + c
s3

Λ6 + · · · = 0 , (3.4)

which, unless the coupling constants satisfy c ≫ b ≫ a, as we are forbidding in this section,
must be solved order by order.10 For the same reasons, we can ignore three-point vertices
suppressed by Λn for n ≥ 2.

This leaves us with the following three-point vertices:

V2,2,2 (m, m, m) = a1M1 + a2M2 + a3M3 + a5M5 , (3.5a)
V2,2,2 (m, m, 0) = g1G1 + g2G2 + g3G3 + g6G6 + g7G7 , (3.5b)

V2,2,1 (m, m, m1) = k1K1 + k3K3 , (3.5c)
V2,2,0 (m, m, M) = s1S1 + s2S2 + s4S4 . (3.5d)

10{a, b, c} serve as an illustrative example, we are not referring to any couplings in particular.
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Four-point interactions with up to two derivatives have to be included. Focusing only on
the parity-even terms, there are 12 distinct choices:

• 2 contact terms with no derivatives, already discussed in (2.17). We multiply them by
{c1, c2}.

• 4 contact terms with two derivatives with the indices of the derivatives contracted
among themselves (terms of the form ∂µh∂µhhh + symmetrization). They come with
the couplings {c3, . . . , c6}.

• 6 contact terms with two derivatives with the indices of the derivatives contracted with
the massive spin-2 fields (terms of the form ∂µ∂νhµνhhh + symmetrization). We use
{c7, . . . , c12} to parameterize these interactions.

Overall, there are 12 + 14 degrees of freedom. We will show now that this system can never
satisfy (1.1), writing some intermediate steps. We will indicate by ij → ab the helicity of
the particles scattered, so taking values {0, ±1, ±2}.

• From 11 → 11 at order s4t:

a2
2

m8M2
p

= 0 −→ a2 = 0 . (3.6)

• From 00 → 00 at order s6t (using a2 = 0):

a2
3

m12M2
p

= 0 −→ a3 = 0 . (3.7)

• From (−1)(2) → (−1)(−2) at order s3√t (using a2 = 0 = a3):

a2
5 + 3

(
4(g2 − 2g3)2 + (g7 − 2g6)2)

m5Mp2 = 0 −→ a5 = 0 , g2 = 2g3 , g7 = 2g6 (3.8)

• From the equations involving just contact couplings

{c7, . . . , c12} = 0 . (3.9)

• Plugging these constraints in the other equations the only real solution is:

{a1, a5, g1, g3, g5, g6, s2, k1, k3} = 0 , (3.10)

with s1 being a free parameter.

This means that all cubic couplings, except for the renormalizable interaction with the scalar
field, must vanish. In particular, the required combination (2.14) also, and so the theory
is trivial. In other words, under the assumptions made, there cannot exist a theory of a
massive spin-2 particle consistent with (1.1).
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3.2 The general case

After discussing a simplified version of the problem, we will now tackle the general case, in
which all exchange and contact diagrams with any finite number of derivatives are included
with arbitrary coefficients. Our strategy follows closely, though not identically, the one
developed in [14–16].

In what follows, we will describe in detail the procedure without showing any explicit
computation. The reader interested can find an ancillary Mathematica file attached to the
paper with the code used. We only focus on the parity-even choices of polarisations, recall
equation (2.16), since this is enough to arrive at our results.

To start with, let us split the four-point scattering amplitude Aτ1τ2,τ3τ4 into the contact
and the exchange contributions:

Aτ1τ2,τ3τ4 = Aexchange
τ1τ2,τ3τ4 + Acontact

τ1τ2,τ3τ4 , (3.11)

where again the indices τ1τ2,τ3τ4 refer to the helicities τi = {0 , ±1 , ±2} of the ingoing, 1 and
2, and outgoing, 3 and 4, particles. Then, the steps to follow are:

1. Compute Aexchange
τ1τ2,τ3τ4 . As commented in section 2.1 one needs to take two sets of the

three-point vertices,

V2,2,2 (m, m, m) = a1M1 + a2M2 + a3M3 + a4M4 + a5M5 + a6M6 , (3.12a)
V2,2,2 (m, m, 0) = g1G1 + g2G2 + g3G3 + g4G4 + g5G5 + g6G6 + g7G7

+ g8G8 + g9G9 , (3.12b)
V2,2,1 (m, m, m1) = k1K1 + k2K2 + k3K3 + k4K4 , (3.12c)
V2,2,0 (m, m, M) = s1S1 + s2S2 + s3S3 + s4S4 + s5S5 , (3.12d)

“remove” the exchanged particle and connect them through the correspondent propagator.
We listed the functions and conventions we used in appendix A. The result of this step
is an amplitude that depends on the product of the twenty-four three-point coupling
constants.

2. Take an ansatz for Acontact
τ1τ2,τ3τ4 with the kinematical singularities [32, 34, 35] factored out

Acontact
τ1τ2,τ3τ4 (s, t) =

acontact
τ1τ2,τ3τ4 (s, t) + i

√
stu bcontact

τ1τ2,τ3τ4 (s, t)

(s − 4m2)
|
∑

i

τi|/2
, (3.13)

with acontact
τ1τ2,τ3τ4 = ∑

n,m
ατ1τ2,τ3τ4

m,n tm sn and bcontact
τ1τ2,τ3τ4 = ∑

i,j
βτ1τ2,τ3τ4

i,j ti sj arbitrary polyno-

mials at this point. The indices {n, m} and {i, k} run from 0 to n+m = p and i+j = k,
with p and k such that in the Regge limit, {s ≫ |t| }, the real and imaginary parts of
both Aexchange and Acontact have the same energy scaling. The particular form of the
ansatz follows from the fact that we are using the transversity basis for the polarisations,
a basis which we introduced in section 2.2.3.
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3. Constrain acontact
τ1τ2,τ3τ4 and bcontact

τ1τ2,τ3τ4 by requiring that, in the Regge limit, the total ampli-
tude Aτ1τ2,τ3τ4 does not grow faster than s2. In practice this means:

lim
s→∞ , ∀t<0

[
Aexchange

τ1τ2,τ3τ4

s3 +
Acontact

τ1τ2,τ3τ4

s3

]
= 0 , (3.14)

which gives a series of relations between the contact couplings {ατ1τ2,τ3τ4
m,n , βτ1τ2,τ3τ4

m,n }
and the product of cubic couplings {ai, gj , km, sn}. By rewriting these products as new
variables

aiaj ≡ aij , gigj ≡ gij , kikj ≡ kij , sisj ≡ sij , (3.15)

one can linearise the equations resulting from (3.14), making the problem computation-
ally more tractable. The condition (3.14) is different from the one imposed in [14–16],
who were interested in the case lim{s→∞ ,−t→∞}

Aτ1τ2,τ3τ4
s3 = 0 with s/t fixed.

4. At this stage we need to impose further restrictions on the contact interactions which
come from crossing symmetries.11 Imposing the crossing symmetries on the contact
terms requires [31, 36]

Acontact
τ1τ2,τ3τ4(s, t) = e

i(π−χt)
∑

j
τjAcontact

−τ1−τ3,−τ2−τ4(t, s), (3.16a)

Acontact
τ1τ2,τ3τ4(s, t) = e

i(π−χu)
∑

j
τjAcontact

−τ1−τ4,−τ3−τ2(u, t), (3.16b)

where

e−iχt ≡ −st − 2im
√

stu√
s(s − 4m2)t(t − 4m2)

, e−iχu ≡ −su + 2im
√

stu√
s(s − 4m2)u(u − 4m2)

. (3.17)

These equations relate some of the surviving {ατ1τ2,τ3τ4
m,n , βτ1τ2,τ3τ4

m,n } to the constants
{cij , gij , kij , sij}. As explained some steps before, this elegant form of the crossing
symmetries (3.16) is a feature of the transversity basis.

5. Make the ansatz for Acontact consistent with the expression (2.21). This should hold
for all polarisations, so that

Acontact
τ1τ2,τ3τ4 =

201∑
a

f τ1τ2,τ3τ4
a (s, t)Tτ1τ2,τ3τ4

a , (3.18)

for all
τ1 + τ2 − τ3 − τ4 = k , k ∈ 2Z . (3.19)

To do this, omitting for clearness the polarisation indices, one needs to expand the
polynomial fa (s, t) =∑

ij
fijtisj and match it at each order with the result obtained in the

previous step.12 Finally, one has to undo the change of variable in the product of cubic
couplings and make sure that everything is consistent: there cannot be contradictions,

11Crossing symmetries are the permutation symmetries that do change the Mandelstan variables. Recall
the discussion in section 2.3.

12Note that for τ1 + τ2 − τ3 − τ4 = n , n ∈ (2Z + 1) one should do the same computation but using the
parity-odd tensor structures, which we are not using here.
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e.g. cii = 0, cij ̸= 0, and all couplings must be real. After this step, we end up with the
most general 2 → 2 scattering of a massive spin-2 particle compatible with the Regge
growth requirement (1.1).

After implementing this 5-step procedure, we find that the Regge growth bound (1.1)
can only be satisfied if:

ai = 0 , ∀i ; gj = 0 , ∀j ≥ 2 ; kl = 0 , ∀l ; sn = 0 , ∀n ≥ 2 . (3.20)

Combining this result with the fact that interactions with gravity must include the Fierz-
Pauli action, see equation (2.15), we arrive at13

ai = 0 , ∀i gj = 0 , ∀j kl = 0 , ∀l sn = 0 , ∀n ≥ 2 . (3.21)

So all Lagrangian terms must vanish (with the sole exception of the scalar coupling hµνhµνϕ).
Hence, there is no such theory. We therefore arrive at the main result of this paper: theories
containing a single massive spin-2 particle are not compatible with (1.1). Recall that this
follows under the following assumptions:

• The massive spin-2 particle is allowed to couple to a massless spin-2, a massive spin-1
and a massive or massless scalar particle.

• All contact terms with any finite number of derivatives are taken into account, but
infinite series of contact terms which can re-sum to poles are not included.

4 Summary

As discussed in the introduction, it is simple to summarise our results: we find that there are
no possible theories with a massive spin-2 particle coupled to gravity, and a gap to the next
spin-2 (or higher) states, which satisfy the constraint (1.1). So a theory of an isolated massive
spin-2 particle, coupled to gravity, will necessarily exhibit Regge growth which is faster than
s2 in the gap between the massive spin-2 particle and any further spin-2 (or higher) states.

This result holds up to the assumption of neglecting infinite series of higher derivative
terms which can resum into a pole. As explained, this is justified because such a series would
only be relevant near the mass scale of the spin-2 (or higher) particle which was integrated
out to generate it, and we assume a gap to any such scales.

Our results strongly suggest that theories of isolated massive spin-2 particles, coupled
to gravity, are in the Swampland. To prove this one would need to prove that the fast
Regge scaling (1.1) is inconsistent. This is essentially what the Classical Regge Growth
Conjecture proposes [4]. As well as what is expected from general Regge growth bounds,
for example as studied in [5].

Of course, theories with massive spin-2 states do occur in ultraviolet complete consistent
theories, but they are always part of an infinite tower. To address this situation within the
framework developed in this paper, one should start by considering all possible three-point

13The same result follows by using equation (2.3) instead of (2.15), which holds in any theory in which the
graviton self-interactions include those from the usual Einstein-Hilbert term.
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vertices between three massive spin-2 particles, with only two of them being indistinguishable.
Notice that this set of interactions is in principle bigger than the one of table 1, since one
would only need to make it symmetric under the exchange of the two identical particles.
Denoting these three-point vertices by V2,2,2(m, m, m′

i) =
∑

j fjmiFjmi , where fjmi are the
new couplings, Fjmi the interactions and mi the mass of the spin-2 state, one then would
need to sum over any possible value for the mass ∑mi

V2,2,2(m, m, m′
i) =

∑
mi

∑
j fjmiFjmi

and calculate the associated exchange diagrams. In principle, this situation would make the
problem much more complex if further simplifications or assumptions are not made.14 In
restricted settings and imposing unitarity, for example when pure gravity is dimensionally
reduced, it is possible to bound the gap between massive spin-2 states [17]. We expect similar
bounds to be deduced for more general theories using the tools studied in this paper. We
leave a proof of this for future work.

Finally, let us note that theories where there is no massless spin-2 state, but only an
isolated massive spin-2 one, so theories of massive gravity, also exhibit the fast Regge growth we
have found. This follows from our results, which are that the only couplings (so non-quadratic)
interactions which are compatible with slow Regge growth are the coupling to a scalar field.
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A Kinematics and convention

In this appendix we will write explicitly the definitions of the kinematical variables used to
compute the 2 → 2 scattering of the massive spin-2 particle. We will use the conventions
of [14–16].

The incoming particles are labelled by 1 and 2, and outgoing particles by 3 and 4.
Momentum conservation requires

p1 + p2 = p3 + p4 , (A.1)

where we take

pµ
i = (E, p sin θj , 0, p cos θj) , (A.2)

14In this scenario, one could also derive more constraints from imposing the CRG conjecture on the 2 → 2
scattering of different massive spin-2 particles.
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with E2 = p2 + m2 and θ1 = 0, θ2 = π, θ3 = θ, θ4 = θ − π. The Mandelstam variables are

s =− (p1 + p2)2 , t = − (p1 − p3)2 , u = − (p1 − p4)2 , (A.3)

and we are taking the metric η = diag (−1, 1, 1, 1). They satisfy

s + t + u = 4m2 , (A.4)

with m the mass of the spin-2 particle, and are related to E and θ by

s = 4E2 , cosθ = 1− 2t

4m2 − s
. (A.5)

For the three polarisation vectors of the massive spin-1 particles we use the so-called transver-
sity basis [31, 32, 36] in which the spin of the particles are projected on the axis orthogonal
to the scattering plane

ϵµ
(±1) (pj) =

i√
2m

(p, E sin θj ± im cos θj , 0, E cos θj ∓ im sin θj) , (A.6a)

ϵµ
(0) (pj) = (0, 0, 1, 0) . (A.6b)

They are transverse and orthonormal. From them one can construct the five polarisation
tensors of massive spin-2 particles

ϵµν
(±2) = ϵµ

(±1)ϵ
ν
(±1) , (A.7a)

ϵµν
(±1) =

1√
2

(
ϵµ
(±1)ϵ

ν
(0) + ϵµ

(0)ϵ
ν
(±1)

)
, (A.7b)

ϵµν
(0) =

1√
6

(
ϵµ
(1)ϵ

ν
(−1) + ϵµ

(−1)ϵ
ν
(1) + 2ϵµ

(0)ϵ
ν
(0)

)
, (A.7c)

which are transverse, traceless and orthonormal.
Regarding the propagators, the propagator of a scalar particle with mass M is

−i

p2 + M2 − iϵ
. (A.8)

For a massive spin-1 particle, first we need to introduce the projector

Πµν (m̃) = ηµν + pµpν

m̃2 , (A.9)

from which one can write the propagator of a massive spin-1 particle with mass m1 as

Pµν = −iΠµν (m1)
p2 + m2

1 − iϵ
. (A.10)

Finally, the propagator of a massive spin-2 particle of mass m is

Pµ1µ2,ν1ν2 = −i

2
Πµ1ν1Πµ2ν2 +Πµ1ν2Πµ2ν1 − 2

3Πµ1µ2Πν1ν2

p2 + m2 − iϵ
, (A.11)

with Πν1ν2 = Πν1ν2 (m), whereas for a massless spin-2 (in de Donder gauge) it reads

P̃µ1µ2,ν1ν2 = −i

2
ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1 − ηµ1µ2ην1ν2

p2 − iϵ
. (A.12)
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B On-shell quantities

In the first part of this appendix we explain how to construct the on-shell three-point vertices
presented in section 2.1, following the procedure developed in [29]. In the second part of
the appendix B.2 we list all possible vertices.15

B.1 General discussion

Let us start by fixing the notation. We are interested in the on-shell three-point interactions
of 3 particles with masses mi, momenta pi, spin si and polarisation tensors ϵi, with i = 1, 2, 3
respectively. They satisfy ϵi · pi = 0, whereas the fact that they are on shell means p2

i = pi ·
pi = −m2

i . Our convention for momentum conservation reads ∑
i

pi = 0. As explained at
the beginning of section 2 we will formally write the polarisation matrices as the product of
vectors ϵiµν = ϵiµϵiν , as a trick to keep track of the contractions more easily.

B.1.1 Parity even

The parity-even on-shell three-point vertices are polynomial functions of the product of
{ϵiµ, pj}, homogeneous of order sa in each ϵiµ -from now on, and making abuse of notation, we
will call for simplicity ϵiµ ≡ ϵi-. Taking into account that ϵi · ϵi = 0 = ϵi · pi these interactions
can be constructed from nine contractions

ϵ1 · ϵ2 , ϵ1 · ϵ3 , ϵ2 · ϵ3 ,

ϵ1 · p2 , ϵ1 · p3 , ϵ2 · p1 , (B.1)
ϵ2 · p3 , ϵ3 · p1 , ϵ3 · p2 ,

which, using p1 + p2 + p3 = 0, can be reduced further to

ϵ1 · ϵ2 , ϵ1 · ϵ3 , ϵ2 · ϵ3 ,

ϵ1 · p2 , ϵ3 · p1 , ϵ2 · p1 , (B.2)

✘✘✘✘✿−ϵ1 · p2ϵ1 · p3 , ✘✘✘✘✿−ϵ3 · p1ϵ3 · p2 , ✘✘✘✘✿−ϵ2 · p1ϵ2 · p3 ,

and so the most general parity-even three-point interaction must take the form

Ms1,s2,s3 (p1, p2, p3) = C (ϵ1 · ϵ2)x12 (ϵ1 · ϵ3)x13 (ϵ2 · ϵ3)x23 (ϵ1 · p2)y12 (ϵ3 · p1)y31 (ϵ2 · p1)y21 ,

(B.3)

where C is an arbitrary constant16 and the exponents are non-negative integers that have
to satisfy

x12 + x13 + y12 = s1 , (B.4a)
x12 + x23 + y21 = s2 , (B.4b)
x13 + x23 + y31 = s3 , (B.4c)

si ≥ 0 . (B.4d)
15For the coupling massive-2-, massive-2, scalar, the table 4 already contained all terms, so we will not

discuss it here.
16Any product pi · pj can be rewritten as a function of the masses and reabsorbed in this constant.
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In the particular case d = 4, we can also use the fact that the Gram determinant of the vectors
{ϵ1, ϵ2, ϵ3, p1, p2} must vanish: five vectors cannot be all independent in four dimensions. We
already exploded this fact in the main text.

B.1.2 Parity odd

On the other hand, parity-odd three-point functions are constructed from contractions
with the Levi-Civita tensor ε, ε (pi, pj , ϵk, ϵl) ≡ εµναβ piµ pjν ϵkα ϵlβ or ε (pi, ϵj , ϵk, ϵl) ≡
εµναβ ϵiµ ϵjν ϵkα ϵlβ, plus some extra parity-even structures to include enough number of
ϵi. The most general parity-odd on-shell three-point amplitude can always be written as:

Ms1,s2,s3 (p1, p2, p3) =
Dε (pz1

1 , pz2
2 , ϵz3

1 , ϵz4
2 , ϵz5

3 , ) (ϵ1 · ϵ2)x̃12 (ϵ1 · ϵ3)x̃13 (ϵ2 · ϵ3)x̃23 (ϵ1 · p2)ỹ12 (ϵ3 · p1)ỹ31 (ϵ2 · p1)ỹ21 ,

(B.5)

where D is an arbitrary constant and the exponents, non-negative integers, have to satisfy

x̃12 + x̃13 + ỹ12 + z3 = s1 , (B.6a)
x̃12 + x̃23 + ỹ21 + z4 = s2 , (B.6b)
x̃13 + x̃23 + ỹ31 + z5 = s3 , (B.6c)

z1 + z2 + z3 + z4 + z5 = 4 , (B.6d)
si ≥ 0 , (B.6e)

1 ≥ zi ≥ 0 . (B.6f)

We can exploit the fact that we are working in d = 4 to reduce the number of independent
contributions. The contraction of the Levi-Civita tensor with five linearly dependent five-
vectors {P1, P2, E1, E3, E3} yields

ε (P1, P2, E1, E2, E3) = 0 , (B.7)

where we will take P1 =
(
C0

1 , pµ
1
)
, P2 =

(
C0

2 , pµ
2
)
, E1 =

(
C0

3 , ϵµ
1
)
, E2 =

(
C0

4 , ϵµ
2
)
, E3 =( 4∑

ν=0
ανC0

ν , ϵµ
3

)
; C0

µ are arbitrary scalars and the αν are defined such that ϵµ
3 = α0pµ

1 +

α2pµ
2 +α3ϵµ

1 +α4ϵµ
2 , following the ideas used in [14, 29]. From the choices {C0

1 , C0
2 , C0

3 , C0
4} =

{B1j , B2j , Aj1, Aj2} for j = 1, 2, 3 and {C0
1 , C0

2 , C0
3 , C0

4} = {A1j , A2j , pj ·p1, pj ·p2} for j = 1, 2
one can impose [14]

B13ε(p1, p2, ϵ1, ϵ2)− B12ε(p1, p2, ϵ1, ϵ3)− A12ε(p1, ϵ1, ϵ2, ϵ3) = 0, (B.8a)
B12ε(p1, p2, ϵ2, ϵ3) + B23ε(p1, p2, ϵ1, ϵ2)− A23ε(p2, ϵ1, ϵ2, ϵ3) = 0, (B.8b)
B13ε(p1, p2, ϵ2, ϵ3)− B23ε(p1, p2, ϵ1, ϵ3) + A31 (ε(p1, ϵ1, ϵ2, ϵ3) + ε(p2, ϵ1, ϵ2, ϵ3)) = 0, (B.8c)
A23ε(p1, p2, ϵ1, ϵ3) + A31ε(p1, p2, ϵ1, ϵ2) + p1 · p1ε(p2, ϵ1, ϵ2, ϵ3)− p1 · p2ε(p1, ϵ1, ϵ2, ϵ3) = 0,

(B.8d)
A12ε(p1, p2, ϵ2, ϵ3)− A31ε(p1, p2, ϵ1, ϵ2) + p1 · p2ε(p2, ϵ1, ϵ2, ϵ3)− p2 · p2ε(p1, ϵ1, ϵ2, ϵ3) = 0.

(B.8e)
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In the case of massless particles of spin ≥ 1, the functions (B.3) and (B.5) must also
be gauge invariant, which in this context means invariant under

ϵiµ → ϵiµ + αpiµ , (B.9)

being α an arbitrary constant.
Finding all possible solutions to equations (B.4) and (B.6), and considering only the

amplitudes invariant under (B.9) if there are massless particles with spin ≥ 1, is equivalent to
finding all possible on-shell three-point parity-even and parity-odd interactions, respectively.
This procedure can be used for any three particles of any mass and spin. As a last step, if
some particles are identical, we need to impose invariance under the interchange of these
two particles, which reduces the list of allowed interactions.

Along section 2.1 and tables 1–4 we listed these solutions, considering three identical
massive spin-2 particles and two identical massive spin-2 particles coupled to a massless
spin-2, massive spin-1 and massive or massless scalar particle. We only wrote the independent
contributions in d = 4 in the main text, showing below the full list of possibilities.

B.2 On-shell three-point interactions, complete list

B.2.1 Massive-2, massive-2, massive-2

We give in table 5 the list of allowed three-point interactions for this case.

M2,2,2 (m, m, m)
µB12B13B23 ≡ M1

1
Λ2

(
B2

13A2
21 + B2

23A2
12 + B2

12A2
31
)
≡ M2

1
Λ3

(B12B23A12A32 + B12B13A21A31 + B13B23A12A21) ≡ M3

1
Λ3

4
A31A12A21 (B23A12 + B12A31 − B13A21) ≡ M4

1
Λ5

5
A2

12A2
23A2

31 ≡ M5

1
Λ6

(B13 B23 ε (p1, p2, ϵ1, ϵ2)− B12 B23 ε (p1, p2, ϵ1, ϵ3) + B12 B13 ε (p1, p2, ϵ2, ϵ3)) ≡ M6

1
Λ7

((A31B12 − A12B23) ε (p1, ϵ1, ϵ2, ϵ3) + (A31B12 + A21B13) ε (p2, ϵ1, ϵ2, ϵ3)) ≡ M7

1
Λ3

8

(
A2

31B12ε (p1, p2, ϵ1, ϵ2)− A2
21B13ε (p1, p2, ϵ1, ϵ3) + A2

12B23ε (p1, p2, ϵ2, ϵ3)
)
≡ M8

1
Λ3

9
(A31 (−A21B13 + A12B23) ε (p1, p2, ϵ1, ϵ2) + A21 (A31B12 + A12B23) ε (p1, p2, ϵ1, ϵ3)

+A12 (A31B12 − A21B13) ε (p1, p2, ϵ2, ϵ3)) ≡ M9
1

Λ5
10
(A12A23A31 (A31 ε (p1, p2, ϵ1, ϵ2)− A23 ε (p1, p2, ϵ1, ϵ3) + A12 ε (p1, p2, ϵ2, ϵ3))) ≡ M10

Table 5. Three-point amplitudes for three identical massive spin 2-particles with mass m.

Since we are working in d = 4 any set of five or more vectors will always be linearly
dependent -see the discussion in the previous section of this appendix-. In the parity-even
sector this redundancy translates into the following relation, obtained by imposing the

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
9

vanishing of the Gram matrix of the vectors {pi, ϵiµ}:

−3M1
m4

µ
+ 2M2Λ2m2 − 2M3Λ3m2 + 4Λ3

4M4 = 0 . (B.10)

This equation allows us to write, for instance, M4 as a function of the other amplitudes. The
same can be done in the parity-odd sector, where from (B.8) it follows [14]:

M9 = 0 , (B.11a)
2Λ6M6 + Λ7M7 = 0 , (B.11b)

3m2Λ6M6 + 2Λ3
8M8 = 0 , (B.11c)

and so {M7,M8,M9} can be written as functions of {M6,M10}. A list with only the
independent amplitudes in four dimensions (and a slightly different notation)was shown
in table 1.

B.2.2 Massive-2, massive-2, massless-2

We start with six distinct parity-even and nine parity-odd three-point operators, see table 6.

G2,2,2 (m, m, 0)
1

Mp
A2

31B2
12 ≡ G1

1
Mp

A31B12 (A12B23 + A23B13) ≡ G2

1
Mp

(A23B13 + A12B23) 2 ≡ G3

1
MpΛ̂2

4
A12A23A31 (A12B23 + A23B13) ≡ G4

1
MpΛ̂2

5
A12A21A2

31B12 ≡ G5

1
MpΛ̂4

6
A2

12A2
23A2

31 ≡ G6

1
Mp

(B23A12 + B13A23) ε (p3, ϵ1, ϵ2, ϵ3) ≡ G7

1
Mp

B12A31 ε (p3, ϵ1, ϵ2, ϵ3) ≡ G8

1
MpΛ̂2

9
A12A23A31 ε (p3, ϵ1, ϵ2, ϵ3) ≡ G9

1
MpΛ̂2

10
A31B12 (A21ε (p1, p2, ϵ1 ϵ3) + A12ε (p1, p2, ϵ2 ϵ3)) ≡ G10

1
MpΛ̂2

11
A2

31B12ε (p1, p2, ϵ1 ϵ2) ≡ G11

1
MpΛ̂2

12
(A12B23 − A21B13) (A21ε (p1, p2, ϵ1 ϵ3) + A12ε (p1, p2, ϵ2 ϵ3)) ≡ G12

1
MpΛ̂2

13
A31 (A12B23 − A21B13) ε (p1, p2, ϵ1 ϵ2) ≡ G13

1
MpΛ̂4

14
A21A31A12 (A21ε (p1, p2, ϵ2 ϵ3) + A12ε (p1, p2, ϵ1 ϵ3)) ≡ G14

1
MpΛ̂4

15
A12A23A2

31 ε (p1, p2, ϵ1 ϵ2) ≡ G15

Table 6. All possible three-point amplitudes for two (identical) massive spin-2 particles, one massless
spin 2-particle.
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The fact that we are working in d = 4 implies, for the parity-even sector:

m2G3 + 2Λ̂2
4G4 + 2Λ̂2

5G5 = 0 , (B.12)

which we will use to rewrite G4 as a function of the other Gi. On the other hand, the
parity-odd sector can be reduced by using (B.8), which translates into

Λ̂4
14G14 + 2Λ̂2

15m2G9 + 2Λ̂4
15G15 = 0 , (B.13a)

Λ̂2
12G12 + 2Λ̂2

9G9 = 0 , (B.13b)
Λ̂2

12G12 − Λ̂2
13G13 + Λ̂2

9G9 + m2G7 = 0 , (B.13c)
Λ̂2

13G13 + Λ̂2
10G10 = 0 (B.13d)

Λ̂2
10G10 − 2Λ̂2

11G11 − 2m2G8 = , 0 (B.13e)

so we can also ignore the set {G10,G11,G12,G13,G14} as long as we work in four dimensions.
This is what we did in table 2.

B.2.3 Massive-2, massive-2, massive-1

The list of possible three-point functions, two parity-even and five parity-odd, is given
in table 7.

M2,2,1 (m, m, m1)
(A12B12B23 + A21B12B13) ≡ K1

1
Λ̃2

2

(
A21A2

12B23 + A2
21A12B13

)
≡ K2

B12 (ε (p1, ϵ1, ϵ2, ϵ3)− ε (p2, ϵ1, ϵ2, ϵ3)) ≡ K3
1

Λ̃2
4

ε (p1, p2, ϵ1, ϵ2) (B23A12 − B13A23) ≡ K4

1
Λ̃2

5
A12A21((p2, ϵ1, ϵ2, ϵ3)− (p1, ϵ1, ϵ2, ϵ3)) ≡ K5

1
Λ̃2

6
B12 (A21 (p1, p2, ϵ1, ϵ3)− A12 (p1, p2, ϵ2, ϵ3)) ≡ K6

1
Λ̃4

7
A12A21 (A21 (p1, p2, ϵ1, ϵ3)− A12 (p1, p2, ϵ2, ϵ3)) ≡ K7

Table 7. All possible three-point amplitudes for two identical massive spin-2 particles and one massive
spin-1 particle.

The parity-even sector cannot be reduced further by using dimensional dependent relations.
On the other hand, by imposing (B.8), in four dimensions the parity-odd terms satisfy

K5 +K4 −K6 = 0 , (B.14a)
2K6 − m2

1K3 = 0 , (B.14b)
2K7 + m2

1K5 = 0 , (B.14c)

which allows us to eliminate {K5,K6,K7} in favour of {K3,K4}. This is how we presented
the results in the main text, see table 3.
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C Lagrangian basis

As explained in the main text, one of the advantages of working directly with on-shell
amplitudes is that they are blind to field redefinitions and integration by parts in the
Lagrangian, making the correspondence between both pictures not one-to-one. In this
appendix we will give a Lagrangian basis for the parity-even amplitudes presented in section 2
and appendix B.2, focusing only on the three-point amplitudes. Notice that Lagrangians
are off-shell quantities, and only when going on-shell one reproduces the previous results.
This means that when we write one of the bases as a linear combination of the other one,
both sides must be read on-shell.

Conventions and definitions. The Riemann tensor is:

Rαβµν = 1
2 [∂µ∂βhνα + ∂ν∂αhβµ − ∂ν∂βhµα − ∂µ∂αhβν ] , (C.1)

and we define

Fαβµ = ∂αhβµ − ∂βhαµ , (C.2)

where hµν represents the massive spin-2 field. Instead of hµν and their derivatives we are using
a very particular linear combination of them defined as Fαβν and Rαβµν . These fields help us
capture a particular polarization of the massive spin-2 particle. For example, in Regge limit
hµν may have all possible polarizations but roughly speaking, at leading order Rαβµν captures
only the transverse polarization and filters out the vector and the longitudinal polarizations.
Similarly Fαβν captures vector polarization at leading order. To go from the derivative
basis ∂µ to the momentum basis pµ we do ∂µ → −ipµ. We denote by La,b,c (ma, mb, mc)
a three-point interaction of particles with spin a, b, c and masses ma, mb, mc, where the
particle c will be the one exchanged. Indices are contracted with the flat metric ηµν .

C.1 Massive-2, massive-2, massive-2

A Lagrangian basis for the on-shell parity-even three-point amplitudes listed in table 5 is

Lagrangian basis L2,2,2 (m, m, m)

− 1
Λ5

L5̂

(
R1µν

αβ R2γδ
µν R3αβ

γδ

)
≡ L5̂

1
Λ3

L4̂

(
R1µναβF 2δ

µνF 3
αβδ + F 1δ

µνR2µναβF 3
αβδ + F 1

αβδF 2δ
µνR3µναβ

)
≡ L4̂

− 1
ΛL3̂

(
F 1µα

β F 2
νµαh3βν + F 1µα

β h2βνF 3
νµα + h1βνF 2µα

β F 3
νµα

)
≡ L3̂

− 1
ΛL2̂

(
h1µαh2νβR3

µναβ + h1µαR2
µναβh3νβ + R1

µναβh2νβh3µα
)
≡ L2̂

µ
(
h1ν

µ h2α
ν h3µ

α

)
≡ L1̂

Table 8. Lagrangians term for the three-point vertices derived in table 5.
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where ΛLî and µ have units of energy. On-shell and Lagrangian basis are related by

M1 = L1̂ , (C.3a)
−2M2 = 2L2̂ − 2L3̂ + 3m2L1̂ , (C.3b)
−2M3 = L2̂ − 2L3̂ + 3m2L1̂ , (C.3c)
4M4 = L4̂ + 2m2(L2̂ − 2L3̂ + 3m2L1̂) + 3m4L1̂ , (C.3d)

−8M5 = L5̂ − m2L4̂ − m4 (L2̂ − 2L3̂
)
− 5m6L1̂ .

where we are doing an abuse of notation, to maintain the expressions simple, calling M1
µ ≡

M1, ΛLîMi ≡ Mi, L1̂
µ ≡ L1̂, ΛLîLî ≡ Lî. In other words, Mi and Lî in (C.3) do not

necessarily have mass dimension=4.

C.2 Massive-2, massive-2, massless-2

An off-shell basis for the six parity-even contributions presented in table 6 is

Lagrangian basis L2,2,2 (m, m, 0)

− 1
Λ̂4

L6

(
R1µν

αβ R2γδ
µν R3αβ

γδ

)
≡ L6

1
Λ̂2

L5

(
F 1γ

µν F 2
αβγR3µναβ

)
≡ L5

1
Λ̂2

L4

(
R1µναβF 2δ

µνF 3
αβδ + F 1δ

µνR2µναβF 3
αβδ

)
≡ L4

−
(
h1

µαh2
βνR3µναβ

)
≡ L3

−
(
F 1α

βµ h2βνF 3
νµα + h1βνF 2α

βµ F 3
νµα

)
≡ L2

−
(
F 1

βµαF 2µα
ν h3βν − ∂γh1µ

ν ∂γh2α
ν h3µ

α

)
≡ L1

Table 9. Lagrangian basis for the parity-even three-point amplitudes of two (identical) massive spin-2
particles, one massless spin 2-particle.

where, as usual, the Λ̂Li have mass dimension=1. Both bases are related (again making an
abuse of notation and calling Λ̂iGi ≡ Gi, Λ̂LiLi ≡ Li) by:

−8G6 = L6 − 2m2L5 , (C.4a)
4G5 = L5 , (C.4b)
4G4 = L4 − 4m2(L2 − L3) , (C.4c)
−G3 = L3 , (C.4d)
−G2 = L2 − L3 , (C.4e)
−G1 = L1 − L2 + L3 . (C.4f)

C.3 Massive-2, massive-2, massive-1

Regarding table 3, the parity-even entries can be described by the following Lagrangians
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Lagrangian basis L2,2,1 (m, m, m1)
1

Λ̃2
L

(
R1αβµνF 2

αβµA3
ν + F 1

αβµR2αβµνA3
ν

)
≡ L2̃

F 1
µαβh2αβA3µ + h1αβF 2

µαβA3µ ≡ L1̃

Table 10. Lagrangians describing parity-even three-point amplitudes for two identical massive spin-2
particles and one massive spin-1 particle.

where Λ̃2
L is some energy scale. Both languages are related (abusing of notation and calling

Λ̃2
2K2 ≡ K2, Λ̃2

LL2̃ ≡ L2̃)) by

iK1 = L1̃ , (C.5a)
2iK2 = L2̃ + 2∆m1L1̃ , (C.5b)

where ∆m1 = 2m2−m2
1

2 .

C.4 Massive-2, massive-2,scalar

Finally, the parity-even part of table 4 can be obtained from

Lagrangian basis L2,2,0 (m, m, M)
1

Λ3
L3̇

(
R1µναβR2

µναβϕ
)
≡ L3̇

1
ΛL2̇

(
F 1µναF 2

µναϕ
)
≡ L2̇

ms (hµνhµνϕ) ≡ L1̇

Table 11. Lagrangians for two massive spin 2-particles and one scalar particle.

with ΛLi̇
an energy scale supressing the non-renormalizable operators. On-shell and La-

grangian pictures (abusing of notation and calling S1
ms

≡ S1, ΛLi̇
Si ≡ Si,

L1̇
ms

≡ L1̇, ΛLi̇
Li̇ ≡ Li̇)

are related by

4S3 = L3̇ + 4∆2
M L1̇ − 4i∆M L2̇ , (C.6a)

−2S2 = iL2̇ − 2∆M L1̇ (C.6b)
S1 = L1̇ , (C.6c)

where ∆M = 2m2−M2

2 .

D Fierz-Pauli vertices

In this appendix we will derive the contribution ∇µhρσ∇µhρσ. The term ∇µhρσ∇ρhµσ can
be obtained in a similar way. For simplicity we will take Mp ≡ 1 in the computation.

g̃µν g̃ραg̃σβ∇µhρσ∇νhαβ |hhg =

(ηµν−gµν)(ηρα−gρα)
(
ησβ−gσβ

)(
∂µhρσ−Γγ

µρhγσ−Γγ
µσhργ

)(
∂νhαβ−Γγ

να
hγβ−Γγ

νβ
hαγ

)
|hhg

=−
(
gµνηραησβ+ηµνgραησβ+ηµνηραgσβ

)
∂µhρσ∂νhαβ

+ηµνηραησβ
(
∂µhρσ−Γγ

µρhγσ−Γγ
µσhργ

)(
∂νhαβ−Γγ

να
hγβ−Γγ

νβ
hαγ

)
|hhg . (D.1)
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Let us write explicitly the contribution
(
Γγ

µρhγσ

)
|hhg

Γγ
µρhγσ|hhg = 1

2ηγλ (∂µgρλ + ∂ρgµλ − ∂λgµρ)hγσ . (D.2)

Expanding and going on-shell

+ ηµνηραησβ
(
∂µhρσ − Γγ

µρhγσ − Γγ
µσhργ

) (
∂νhαβ − Γγ

να
hγβ − Γγ

νβ
hαγ

)
|hhg

= −1
2ηγληµνηραησβ (∂µgρλ + ∂ρgµλ − ∂λgµρ)hγσ∂νhαβ

− 1
2ηµνηραησβηγλ (∂µgσλ + ∂σgµλ − ∂λgµσ)hγρ∂νhαβ

− 1
2ηγληµνηραησβ (∂µgρλ + ∂ρgµλ − ∂λgµρ)hγσ∂νhαβ

− 1
2ηµνηραησβηγλ (∂µgσλ + ∂σgµλ − ∂λgµσ)hγρ∂νhαβ

= (A23A32B13B12 − A32A13B32B12) + (A13A31B23B12 − A23A31B13B23)
= −2A31B12 (A23B13 + A12B23) = −2M2 , (D.3)

whereas the other contribution is just

−
(
gµνηραησβ + ηµνgραησβ + ηµνηραgσβ

)
∂µhρσ∂νhαβ = −A2

31B2
12 + 2m2B12B23B13 . (D.4)

E Contact terms

To simplify the notation we will define A1 ≡ A12 = ϵ1·p2, A2 ≡ A21 = ϵ2·p1, A3 ≡ A31 = ϵ3·p1,
A4 ≡ A41 = ϵ4 ·p1, A5 ≡ A14 = ϵ1 ·p4, A6 ≡ A24 = ϵ2 ·p4, A7 ≡ A34 = ϵ3 ·p4, A8 ≡ A42 = ϵ4 ·p2.
We will show here the parity-even tensor structures invariant under the kinetic permutations
and with up to two derivatives. The rest of the terms can be constructed using the attached
Mathematica notebook.

E.1 With no derivatives

For this case a Lagrangian basis is

{A, B} formalism Lagrangian basis
B13B14B23B24 h1µνh3α

ν h2β
α h4

βµ

B12B14B23B34 h1µνh2α
ν h3β

α h4
βµ

B12B13B24B34 h1µνh2α
ν h4β

α h3
βµ

B2
14B2

23 h1µνh4
µν h2αβh3

αβ

B2
13B2

24 h1µνh3
µν h2αβh4

αβ

B2
12B2

34 h1µνh2
µν h3αβh4

αβ

Table 12. Explicit basis for the parity-even tensor structures invariant under kinetic permutations
and with 0 derivatives.
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E.2 With two derivatives

We will only write the first element of each term, hiding in . . . the elements needed to make
the term invariant under the kinetic permutations — see the definition in expression (2.20)—,
e.g. A1A2B2

34B12 + · · · ≡ A1A2B2
34B12 − A4A7B34B2

12 − A7A8B34B2
12. The basis, which has

30 terms, is

{A, B} formalism Lagrangian basis {A, B} formalism Lagrangian basis
A4A8B12B13B23 + . . . ∂γh1µν∂βh2α

µ h3
ναh4

γβ + . . . A5A1B23B24B34 + . . . ∂γh2µνh3α
µ ∂βh4

ναh1
γβ + . . .

A6A2B13B14B34 + . . . ∂γh1µνh3α
µ ∂βh4

ναh2
γβ + . . . A5A6B2

34B12 h1µνh2
µγh3αβ∂γ∂νh4

αβ + . . .

A1A2B2
34B12 + . . . ∂γh1µν∂νh2

µγh3αβh4
αβ + . . . A1A2B13B34B24 + . . . ∂αh1µνh3

µγh4γβ∂νh2
βα + . . .

A1A2B14B34B23 + . . . ∂αh1µνh4
µγh3γβ∂νh2

βα + . . . A5A6B13B34B24 + . . . h1µνh3
µγ∂ν∂αh4γβh2

βα + . . .

A5A6B14B34B23 + . . . h1µν∂ν∂αh4
µγh3γβh2

βα + . . . A1A6B2
34B12 + . . . ∂γh1µνh2

µγh3αβ∂νh4
αβ + . . .

A1A6B13B34B24 + . . . ∂αh1µνh3
µγ∂νh4γβh2

βα + . . . A1A6B14B34B23 + . . . ∂αh1µν∂νh4
µγh3γβh2

βα + . . .

A2A8B24B2
13 + . . . ∂γh2µνh4

µγ∂νh1αβh3
αβ + . . . A2A8B12B13B34 + . . . ∂βh1µν h3α

µ ∂γh2
νβh4

γα + . . .

A2A8B13B14B23 + . . . ∂γh1µν h3α
µ h4

νβ∂βh2
γα + . . . A1A7B2

24B13 + . . . h1µνh3
µγ∂νh2αβ∂γh4

αβ + . . .

A1A7B12B24B34 + . . . h1µν∂νh2
µγ∂αh4γβh3

βα + . . . A1A7B14B24B23 + . . . h1µν∂αh4
µγ∂νh2γβh3

βα + . . .

A5A7B2
24B13 + . . . h1µνh3

µγh2αβ∂γ∂νh4
αβ + . . . A3A5B12B24B34 + . . . ∂αh1µνh2

µγ∂νh4γβh3
βα + . . .

A3A5B14B24B23 + . . . ∂αh1µν∂νh4
µγh2γβh3

βα + . . . A2A7B23B2
14 + . . . h2µνh3

µγ∂νh1αβ∂γh4
αβ + . . .

A2A7B12B14B34 + . . . ∂γh1µν∂βh4α
µ h2

νγh3
αβ + . . . A2A7B13B14B24 + . . . ∂βh1µν∂γh4α

µ h3
νγh2

αβ + . . .

A1A8B2
23B14 + . . . h1µνh4

µγ∂ν∂γh2αβh3
αβ + . . . A1A8B12B23B34 + . . . h1µν∂α∂νh2

µγh3γβh4
βα + . . .

A1A8B13B23B24 + . . . h1µν∂α∂νh3
µγh2γβh4

βα + . . . A3A6B23B2
14 + . . . h2µνh3

µγ∂γh1αβ∂νh4
αβ + . . .

A3A6B12B14B34 + . . . ∂βh1µν∂γh4α
µ h2

νγh3
αβ + . . . A3A6B13B14B24 + . . . ∂γh1µν∂βh4α

µ h3
νγh2

αβ + . . .

Table 13. Explicit basis for the parity-even tensor structures invariant under kinetic permutations
and with two derivatives.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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