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Consider supersting theory on the deformed BTZ black holes background, formed in the near
k NS5 branes on S1 × T 4 with p (negative) fundamental strings wrapping S1, whose radius
we denote by R, and which carry momentum number n on this circle. There are two possible
signs of the deformation parameter, denoted by λ ≡ ±α′/R2 in [1–3]; here we consider the
λ < 0 case (which amounts to p negative strings, [1]):

λ ≡ − α′

R2 < 0 . (1)

The background thus obtained describes a rotating black string1 in a three-dimensional
spacetime, denoted by M−

3 in [1];2 its metric, B-field and dilaton appear in equations (3.10)
with (3.11)) of [3]:

ds2 = − N2

1 − ρ2

R2

dτ2 + dρ2

N2 + ρ2

1 − ρ2

R2

(dφ − Nφdτ)2 , (2)

Bτφ = ρ2

r5

√√√√(1 −
ρ2
−

R2

)(
1 −

ρ2
+

R2

)
1

1 − ρ2

R2

, (3)

e2Φ = kv

p

√√√√(1 −
ρ2
−

R2

)(
1 −

ρ2
+

R2

)
1

1 − ρ2

R2

, (4)

where

N2 =
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

r2
5ρ2 , Nφ = ρ+ρ−

r5ρ2 , (5)

r5 ≡
√

kα′ , v ≡ Volume(T 4)/
(
2π

√
α′
)4

, (6)

and
ρ− ≤ ρ+ ≤ R (7)

are the locations of the inner horizon and outer horizon of the black string and the singular
wall in M−

3 , respectively.3

The angular momentum, n, of the black string, (2)–(6),4 is, [3],

n = p

α′
ρ−ρ+√(

1 − ρ2
−

R2

)(
1 − ρ2

+
R2

) . (8)

1Which we may regard (upon KK reduction) as a two-dimensional black hole with winding and momentum
(negative) fundamental string charges, p and n, respectively, as in [4] with (qL, qR) =

(
n
R

+ pR
α′ , n

R
− pR

α′

)
(note

that a subset of the backgrounds in appendix C of [4] are identical to those below; we shall not present the
coordinate transformation between the two here).

2Empty M−
3 is a current-current deformation of massless BTZ in a negative direction, [5]; from the point

of view of the boundary at infinity, this background can be thought of as a vacuum of Little String Theory
which contains a large number of negative strings, [1].

3See [1, 3, 5] for more details (see also [6, 7] for considerations of deformed BTZ black holes).
4Which originates from the momentum n carried by the p negative strings that form it.
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Below, we inspect the properties of the one-parameter family of the backgrounds above for
certain R, k, p and n. It can be parameterized e.g. by the location of the event horizon, ρ+.
Along this one-parameter family, the entropy and temperature are, [3],

S = 2πkp

r5

ρ+√
1 − ρ2

−
R2

, (9)

and

T = ρ+
2πr5R

1 − ρ2
−

ρ2
+√

1 − ρ2
+

R2

, (10)

respectively, where ρ− is related to ρ+ via equation (8). The energy of the black hole is, [3],

E = p

λR

−1 +
[
1 −

(
λn

p

)2]√√√√(1 −
ρ2
−

R2

)(
1 −

ρ2
+

R2

) , (11)

where λ is given in (1).
A few comments are in order:

1. As usual, the interior of the black hole, ρ− < ρ < ρ+, is time dependent (with time
being ρ), while the exterior of the black hole, ρ > ρ+, is time independent, with τ (φ)
being a timelike direction when ρ < R (ρ > R), instead of ρ. We shall refer to the
regime between the event horizon and the UV wall, ρ+ < ρ < R, as the static patch.5

2. As one varies the location of the horizon ρ+ (while keeping R and n fixed, (8)), one
interpolates between empty M−

3 (when ρ± = 0) and the case of a maximal black hole
size, ρ+ = R (in which case ρ− = 0, (8)) in M−

3 .6

3. The energy is minimal, Emin = 0, for empty M−
3 (for any deformation parameter, (1),

of the massless BTZ black hole), and is maximal,

Emax = pR

α′ , (12)

when the black hole size is maximal.

4. The entropy is minimal, Smin = 0, for empty M−
3 , and is maximal,

Smax = βbhEmax , βbh ≡ 2πr5 , (13)

when ρ+ = R.7

5. The temperature diverges when the black hole size is maximal,

T → ∞ when ρ+ → R . (14)

The ρ+ → R limit is intriguing; we pause to inspect it next.
5The other static regime, ρ > R, a.k.a. the asymptotically linear dilaton regime beyond the UV wall, plays

an important role in single-trace T T̄ holography, [1, 3]; we shall return to this point below.
6We shall discuss the ρ+ → R limit in detail below.
7Note that βbh in (13) is not the inverse T in (10); instead, it is the inverse temperature of an SL(2)k/U(1)

black hole, that will show up in the ρ+ → R limit (see below).
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When ρ+ → R, ρ− → 0 for any finite n, (8), and for ρ ̸= 0, R, the metric, B-field and
dilaton, (2), (3) and (4), respectively, approach

ds2 → R2

r2
5

dτ2− r2
5

R2−ρ2 dρ2+ R2ρ2

R2−ρ2 dφ2 , B → 0 , Φ→−∞−log
√

R2−ρ2 , (15)

in the limit. Note that B = 0 for any ρ, in the limit, and e2Φ → 0 for any ρ ̸= R. Moreover,
any point in the static patch between R and ρ+ has shrunk to the singularity, a.k.a. ρ → R

for any ρ+ < ρ < R, and Nφ → 0 for any ρ ̸= 0, (5), in the limit.
In the time-dependent regime 0 < ρ < R of (15), a change of coordinate,8

ρ = R cos ϕ , (16)

gives

ds2 = R2

r2
5

dτ2 − r2
5dϕ2 + R2 cot2 ϕdφ2 , Φ = −∞− log(sin ϕ) , (17)

which is a 2d cosmology with time 0 < ϕ < π/2 and compact space φ, times a non-compact
specelike direction τ , and a vanishing string coupling for any ϕ > 0; it is singular at ϕ = 0
(a.k.a. ρ = R) and has a horizon at ϕ = π/2 (a.k.a. ρ = 0).

In the regime ρ > R of (15), a change of coordinate,

ρ = R cosh ϕ , (18)

gives

ds2 = R2

r2
5

dτ2 + r2
5dϕ2 − R2 coth2 ϕdφ2 , Φ = −∞± iπ

2 − log(sinh ϕ) , (19)

which is the geometry of the regime beyond the singularity of an SL(2)k/U(1) black hole,9

with radial direction ϕ > 0 and compact time φ, times a spacelike direction τ . The 2d

cosmological geometry above is thus the interior of an SL(2)k/U(1) black hole with compact
time φ ∼ φ + 2π.

The exterior of the SL(2)k/U(1) black hole amounts to a continuation of the deformed
BTZ geometry (2)–(6) beyond its singularity (at ρ = 0). Concretely, in the limit (15),
the continuation

ρ = iR sinh ϕ (20)

gives

ds2 = R2

r2
5

dτ2 + r2
5dϕ2 − R2 tanh2 ϕdφ2 , Φ = −∞− log(cosh ϕ) . (21)

The horizon of the SL(2)k/U(1) black hole with compact time in the (φ, ϕ) directions is
at ρ = 0, a.k.a. at ϕ = 0 in (21), and its inverse temperature βbh is the one presented

8We take α′ ≡ l2
s = 1 here and below, when it ain’t present.

9For a review, see e.g. [8]; the relation of the level k of SL(2)k and the r5 in (19) is that in (6).
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in (13); we shall refer to this temperature as the bulk temperature of the maximally deformed
BTZ theory.10

Finally, the energy, entropy and temperature of the deformed BTZ theory in (2)–(6),
E, S and T in (11), (9) and (10), respectively, approach their maximal value, (12), (13)
and (14), respectively, in the limit.

Now, consider de Sitter black holes.
The Reissner-Nordstrom de Sitter metric is given by (see e.g. section 2 of [9])11

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 , f(r) = 1 − r2

ℓ2 − 2GM

r
+ Q2

r2 . (22)

The three positive roots,

rc ≥ ro ≥ ri , (23)

are the locations of the cosmological, outer and inner horizons of the black hole (BH) in
de Sitter (dS4), respectively.

For simplicity,12 we will focus on Schwarzschild de Sitter black holes (whose geometry
is (22) with Q = 0), and lukewarm de Sitter black holes (whose geometry is (22) with
Q = GM), in turn.

Schwarzschild de Sitter black holes have

ri = 0 (Q = 0) . (24)

In this case (see e.g. [10]), the location rc,o of the cosmic and event horizons and the de Sitter
size ℓ satisfy the relation

ℓ2 − r2
c − r2

o = 1
3
(
ℓ2 − (rc − ro)2

)
, 0 ≤ rc − ro ≤ ℓ . (25)

The total entropy S of a black hole in de Sitter is the sum of the black hole and cosmic entropies,

S = π

G

(
r2

c + r2
o

)
, (26)

hence, (25),

S = SdS

[
1 − 1

3

(
1 −

(
rc − ro

ℓ

)2
)]

, (27)

where
SdS = πℓ2

G
(28)

is the entropy of empty de Sitter.
10In a Schwarzschild-like radial coordinate, r ≡ (R2 − ρ2)/R, the maximally deformed BTZ metric, (15),

reads ds2 = R2

r2
5

dτ2 − f(r)R2dφ2 + r2
5dr2

4r2f(r) with f(r) ≡ 1 − R
r

, and the string coupling vanishes in the limit,

eΦ(r) → 0, for any r ̸= 0. Note that while the bulk temperature of the maximally deformed BTZ geometry is
finite, βbh = 2πr5, the bulk mass, Mbh, and bulk entropy, Sbh, a.k.a. the mass and entropy of the 2d black
hole with compact time in (φ, r), are infinite, Sbh = βbhMbh = 2πe−2Φ(horizon) = ∞. Needless to say that
exposing the significance of these properties in negative single-trace T T̄ holography is desired.

11The metric is supported by an electric (or magnetic) field, A = Q
r

dt.
12And since the location of the inner horizon ri will not play a significant role below.
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Lukewarm de Sitter black holes have

ro = ℓ

2

1 −

√
1 − 4Q

ℓ

 , rc = ℓ

2

1 +

√
1 − 4Q

ℓ

 (Q = GM) , (29)

and hence entropy, (26),

S = SdS

(
1 − 2Q

ℓ

)
= SdS

[
1 − 1

2

(
1 −

(
rc − ro

ℓ

)2
)]

, (30)

instead.
A few of comments are in order:

1. The regime between the event horizon and cosmological horizon, ro < r < rc, is referred
to as the static patch.13 The regime beyond the cosmological horizon, r > rc, is time
dependent (with time being r instead of t in the static patch).14

2. As one varies the location of the black hole horizon ro (while keeping the de Sitter
radius ℓ fixed), one interpolates between empty de Sitter (when ro = 0) and Nariai
geometry, when the black hole horizon and the cosmic horizon coincide, ro = rc (a.k.a.
when the de Sitter black hole size is maximal).

3. The entropy is maximal,
Smax = SdS , (31)

for empty de Sitter (ro = 0, in which case rc = ℓ, (25), (29)), and is minimal when the
de Sitter black hole size is maximal (ro = rc).15

4. The inverse Hawking temperature of empty de Sitter is16

βdS = 2πℓ . (32)

The above suggests an analogy between the properties of de Sitter black holes and the
negatively deformed BTZ black holes, a.k.a. black holes in M−

3 ; it is summarized in table 1.17

Consequently, there is an analogy between negative single-trace T T̄ holography (see
e.g. [2, 3, 5] and references therein) and de Sitter holography (see e.g. [11, 13, 14] and
references therein), which we discuss below.

13The static patch plays an important role in de Sitter holography; we shall return to this below.
14The interior of the black hole, ri < r < ro, will not play a role below.
15The minimal value of the entropy is different in the different branches: Smin = 2

3 SdS in the Schwarzschild
branch, (27), while Smin = 1

2 SdS in the lukewarm branch, (30), instead.
16In de Sitter holography, it is assumed though that the formal temperature in the Boltzmann distribution

is infinite in empty de Sitter, TBoltzmann = ∞, while the finite Hawking temperature is a derived or emergent
quantity, [11]; we shall return to this point below.

17The regimes that do not appear in table 1, r < ro and ρ < ρ−, do not have a manifest analogy. This is due
to the coordinate φ of M−

3 , on top of (τ, ρ), playing an important role beyond the UV wall, at ρ > R, [1, 12],
on the one side, and dS4 ending at r → ∞, on the other side; correspondingly, the regime in the interior of
the Reissner-Nordstrom de Sitter black hole (a.k.a. ri ≤ r < ro) and the regime beyond the inner horizon of
the black hole in M−

3 (a.k.a. 0 ≤ ρ < ρ−), respectively, do not participate in the analogy table.

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
8

Black hole (BH) in M−
3 Black hole (BH) in de Sitter (dS4)

Singular UV wall of M−
3 at ρ = R Outer horizon of BH in dS4 at r = ro

Outer horizon of BH in M−
3 at ρ = ρ+ Cosmological horizon of dS4 at r = rc

Inner horizon of BH in M−
3 at ρ = ρ− The end of the de Sitter world at r → ∞

Static patch of BH in M−
3 at R > ρ > ρ+ Static patch of BH in dS4 at ro < r < rc

Time-dependent regime at ρ+ > ρ > ρ− Time-dependent regime at rc < r < ∞
Empty M−

3 (a.k.a. ρ+ = 0) Largest BH in dS4 (a.k.a. ro = rc)
Smin when ρ+ = 0 (a.k.a. empty M−

3 ) Smin when ro = rc (a.k.a. largest BH)
Largest BH in M−

3 (a.k.a. ρ+ = R) Empty de Sitter (a.k.a. ro = 0)
Smax when ρ+ = R (a.k.a. largest BH) Smax when ro = 0 (a.k.a. empty dS4)
T → ∞ when ρ+ → R TBoltzmann → ∞ when ro → 0
βbh = 2πr5 for largest BH in M−

3 βdS = 2πℓ in empty de Sitter

Table 1. The analogy table.

In both de Sitter and negatively deformed BTZ geometries, the holographic principle
may be applied to the static patch in a similar18 spirit. Next, we present the proposed
principles, in turn.

In de Sitter holography, the proposal is the following (see [13] and references therein for
details). Assume that the dimension of the Hilbert space that describes all possible states
of the static patch, including any matter and/or black holes it may contain and also those
associated with its cosmological horizon, is measured roughly by the area of the cosmological
horizon of empty de Sitter, a.k.a. e

πℓ2
G ≡ eSdS , (28). Now, place a particle with energy E at

the center of the static patch. For e.g. a black hole with mass M = E, (22), this reduces
the size of the cosmological horizon to rc = ℓ − GE + O(E2, Q2), and so

πr2
c

G
= SdS − βdSE , (33)

to leading order in E, Q, where βdS is given in (32). Since the total number of microstates
is eSdS , and the number of microstates corresponding to a particle with energy E is eAc/4G,
where Ac = 4πr2

c is the area of the cosmological horizon, then assuming that there is an
equal probability to observe any particle with the same E at the center of the static patch,
the probability to observe such a particle is

P (E) = e−βdSE . (34)

Consequently, the density matrix of the static patch of empty de Sitter space is proportional
to the identity, a.k.a. empty de Sitter space is described by the maximally mixed state of
the finite dimensional Hilbert space proposed above.

Equivalently, the formal temperature in the Boltzmann distribution is infinite, while the
finite Hawking temperature is a derived or emergent quantity. Concretely, it is argued that a

18Though opposite (e.g. the state of maximum finite entropy and infinite temperature amounts on the
one hand to empty de Sitter, whose static patch size is maximal, rc − ro → ℓ, and on the other hand to a
maximally filled M−

3 , whose static patch size is minimal, R − ρ+ → 0; see more details below).

– 6 –
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bulk can emerge at a finite effective temperature from a hologram at infinite temperature
(see [11, 14] and references therein for details).

To recapitulate, the proposal is that empty de Sitter space maximizes the entropy of
any state of the static patch, Smax = SdS, (31), and consequently its horizon temperature is
infinite, TBoltzman = ∞, while its bulk is in an effective low temperature, TdS = 1

2πℓ , (32).
In negative single-trace T T̄ holography, the proposal is the following (see e.g. [2, 3, 5]

and references therein).
First, recall (see [3] for details), that eqs. (8), (9), and (11), can be rewritten as

n = p

α′ ρ̃−ρ̃+ , (35)

S = 2πkp

r5
ρ̃+ , (36)

E = p

λR

−1 +

√√√√(1 −
ρ̃2
−

R2

)(
1 −

ρ̃2
+

R2

) , (37)

respectively, where λ < 0 is the one in (1), and

ρ̃− ≡ ρ−√
1 − ρ2

+
R2

, ρ̃+ ≡ ρ+√
1 − ρ2

−
R2

. (38)

Consequently, on the λ-deformed BTZ backgrounds (2)–(6) with fixed angular momentum n

and entropy S, a.k.a. with fixed ρ̃±, the p’th fraction of the energy E(λ) takes the form

1
p

E(λ) = 1
λR

−1 +

√
1 + 2λR

E(0)
p

+
(

λRP

p

)2
 , (39)

where
E(0) ≡ r5

R
Mbtz , P ≡ n

R
(40)

are the energy and momentum of the states in the CFT2 hologram of AdS3 that amount
to a BTZ black hole with mass Mbtz and angular momentum n. Finally, in terms of the
hologram quantities, the p’th fraction of the entropy reads

1
p

S = 2π

√
c

6

(√
EL(1 + λER) +

√
ER(1 + λEL)

)
, c ≡ 6k , (41)

where
EL,R ≡ R

2p
(E(λ) ± P ) (42)

are the p’th fractions of the left and right handed dimensionless energies, R
2 (E ± P ).

Equations (39)–(42) are the same as what one would obtain by studying a symmetric
product CFT2, Mp/Sp.19 The generic state with large energy and momentum in the
undeformed symmetric product CFT has (at large E, P, p) its energy and momentum equally
split among the different copies of M. Equation (39) gives the deformed energy of such states

19On a circle with radius R, and with the central charge of the block M being c = 6k, as in (41).
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under a T T̄ deformation of the seed CFT, M, with a dimensionless deformation parameter
λ, (1), and eq. (41) is the corresponding entropy in the block.

To recapitulate, in single-trace T T̄ holography, the proposal is thus that the physics
of deformed BTZ black holes is captured by the properties of a symmetric product theory
whose block is a T T̄ deformed CFT (with the energy and momentum distributed equally
in each of the blocks).20 Indeed, one can check that there is a detailed match between the
properties of the geometries (2)–(6) and the corresponding energies and entropies, (39)–(42),
in the proposed holographic dual. In particular, since the energy (12) is a maximal energy in
negatively deformed BTZ, for all n, it is natural to conjecture that an analogous statement
is true for standard T T̄ deformed CFT with negative λ (see [3] and references therein for
more details). Consequently, the negatively deformed single-trace T T̄ theory has a state of
maximum finite entropy, (13), and this state is maximally mixed, (14).

In (15)–(21), it was shown that the geometry which corresponds to the maximal energy
and entropy, (12) and (13), respectively, and infinite temperature, is universal (in the sense
that it does not depend on the particular value of n); the static patch of the deformed
BTZ geometries is degenerated in these cases, ρ+ → R, and the resulting background is
an SL(2)k/U(1) black hole with compact time (times a non-compact spatial direction). In
addition to T = ∞, (10), (14), there is thus a bulk temperature, a.k.a. that of the superstring
theory on SL(2)k/U(1), Tbh = 1

2πr5

(
= 1

2π
√

α′k

)
in (13) (with (6)). This appears in harmony

with the proposed properties of de Sitter holography, presented above; see the analogy
table 1. There are however intriguing differences. In the following, we shall discuss both
the similarities and differences.

In both negative single-trace T T̄ holography and de Sitter holography, the fact that there
is a state of maximum finite entropy can be understood from the geometry. In the former, it
corresponds to the largest black hole in negatively deformed BTZ. In the latter, it corresponds
to the largest cosmological horizon size in de Sitter space, a.k.a. to empty de Sitter.

In de Sitter holography, it was argued [11] that for the empty de Sitter state, the horizon
system, at r = rc = ℓ, is all that there is, a.k.a. the bulk, (22) with M = Q = 0, is not
a second system; it is a holographic construct made of the horizon degrees of freedom. In
negative single-trace T T̄ holography, for the maximal black hole state, the static patch
shrinks to the location of the event horizon, at ρ = ρ+ = R, and one may say analogously
that the horizon system is all that there is, a.k.a. the bulk (15) isn’t a 2nd system; it’s a
holographic construct made of the horizon d.o.f.21

In negative single-trace T T̄ holography, we have a concrete proposal for the description
of the microstates via holography22 — those of single-trace T T̄ deformed symmetric product
CFT2 with maximal energy. On the other hand, it seems fair to say that the description of
the microstates that constitute the entropy associated with cosmological de Sitter horizons
is more mysterious.

20The status of the proposed symmetric product hologram is summarized in [2] and references therein; we
shall not present it here.

21This is similar to what is argued [15] in the case of a geometric cutoff that removes the asymptotic region
of AdS3 and places the QFT on a Dirichlet wall at finite radial distance r = R in the bulk; in our maximally
deformed BTZ geometry, the UV wall is the ρ = ρ+ = R one.

22Apart for a measure zero amount of states (see [2] and references therein).
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In both negative single-trace T T̄ holography and de Sitter holography, it is proposed
that the state with maximum entropy is maximally mixed. Equivalently, the temperature
parameter in the Boltzmann distribution must be infinite, T = ∞. In the former, such
an infinite temperature is supported by explicit properties of both the geometry and the
proposed holographic theory. On the other hand, there is no concrete way to obtain this
property from the de Sitter geometry, and it seems fair to say that an explicit holographic
candidate of de Sitter gravity with these properties is still a mystery.

As to the bulk inverse temperatures, βdS = 2πℓ and βbh = 2πr5 in empty de Sitter, (32),
and maximally deformed BTZ, (13), respectively, while they can be obtained from the
surface gravity both in empty de Sitter and maximally deformed BTZ geometries, there is
an educational difference that we discuss next.

The deformed BTZ geometry, (2)–(5), has an asymptotically linear dilaton regime beyond
the naked singularity at ρ = R, which plays an important role in negative single-trace T T̄

holography (see [1, 12] for details). In particular, the signature of τ and φ beyond the UV
wall, ρ > R, is flipped relative to the static patch, ρ+ < ρ < R. While the time in the
holographic single-trace T T̄ deformed symmetric product is that in the static patch of (2, 5),
τ , the timelike direction in the asymptotically linear dilaton regime is φ, instead, and the
bulk Tbh above is w.r.t. to φ being time, (19), (21), instead of τ . This allowed us to obtain
both T → ∞ and Tbh = 1/2πr5 from the ρ+ → R limit of the geometry (2, 5).23

It is important to recall though that obtaining the bulk inverse temperature in maximally
deformed BTZ, from the surface gravity at the horizon of an SL(2)k/U(1) black hole, required
us to extend the deformed BTZ geometry beyond its black hole singularity, (20), (21). This
is not the case in de Sitter space, whose bulk temperature is obtained from the surface
gravity at its cosmological horizon.

On the other hand, the de Sitter geometry does not have the analog of the asymptotically
linear dilaton regime of (2). Consequently, the empty de Sitter geometry reveals only a
single temperature — the bulk TdS = 1/2πℓ above, while the proposed infinite Boltzmann
temperature in the hologram is hidden from the geometry.

To recapitulate, the analogy and difference between negative single-trace T T̄ holography
and de Sitter holography is hinting towards the temptation to seek an extension of the
de Sitter geometry, in a way that will give rise to an analog of the ρ > R regime in the
negatively deformed BTZ geometry (2).

Note added. Intriguingly, it was pointed out in [16] that the bulk geometry in negatively
deformed BTZ has a region of positive curvature.

23Recall [1, 3] that the temperature in eq. (10) is obtained from the geometry e.g. by Wick rotating the
canonically normalized t ≡ Rτ/r5, t → iτE , compactifying τE on a circle with circumference β = 1/T , and
demanding regularity of the metric (2, 5) at the event horizon, ρ = ρ+. In particular, the T → ∞ result
is obtained from the ρ+ → R limit of the geometry in this way. On the other hand, the bulk temperature,
Tbh = 1/2πr5, is obtained from the ρ+ → R limit of the geometry e.g. by Wick rotating the canonically
normalized bulk time y ≡ Rφ in eq. (21), y → iφE , compactifying φE on a circle with circumference
βbh = 1/Tbh, and demanding regularity of the metric in (21) at the horizon, ϕ = 0, of the SL(2)k/U(1)
black hole.
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A A comment on 2pf

According to [14], there is a contradiction between the semiclassical fixed-background approx-
imation and the holographic description in which the density matrix is maximally mixed,
since in the former, the two point functions (2pf) have a non-zero imaginary part, but in
de Sitter holography it must vanish. This paradox and its proposed resolution within the
principles of de Sitter holography are discussed in [14].

This is analogous to the fact that in M3 with an R1,1 boundary, while the 2pf in the zero
winding sector, w = 0, which amounts to the semiclassical fixed-background approximation
(up to corrections in 1/k, (6)), has a non-zero imaginary part, [17], in the sectors with non-zero
winding, w ̸= 0, a.k.a those that amount to stringy properties of the theory, it doesn’t, [18, 19].

It is possible that in a full fledged consistent string theory on the negatively deformed
BTZ black holes in (2)–(6), the states in the w = 0 sector, with a non-zero imaginary part,
are projected out, leaving behind only real two point functions. The investigation of this
issue is left for future work.24

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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