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1 Introduction

Boundaries, as hypersurfaces embedded in spacetimes at either finite distances or asymptotic
infinities, have been given a special status in present-day theoretical physics. They are no
longer treated merely as the loci where boundary conditions are assigned, but are now perceived
as the locations that give birth to abundant new and fascinating physics. Prime examples
include the influential idea of gauge/gravity duality in asymptotically anti-de Sitter (AdS)
spacetimes [1, 2]. This discovery is related to a deeper understanding of asymptotic structures
and symmetries of AdS spacetimes such as in [3–5]. Studies of asymptotically flat spacetime,
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which date back to the celebrated works of Bondi-van der Burg-Metzner-Sachs (BMS) [6, 7]
and Penrose [8], have also found new light in the infrared triangle of gauge theories and
gravity [9], giving birth to a novel program of celestial (codimension-2) holography (see the
lecture notes [10, 11] for reviews and references therein), conjecturing the correspondence
between quantum gravity in nearly flat spacetimes and a codimension-2 celestial conformal
field theory (CFT) living on the celestial sphere (i.e., a cut of null infinity). The analogue of
AdS/CFT (codimension-1) holography for asymptotically flat spacetimes, called Flat space
holography or Carrollian holography, has also gained attention in recent years [12–25]. The
connections between Carrollian and celestial holography are discussed in [26, 27].

At finite distances, the extensive studies of local subsystems of gauge theories and
gravity have unravelled emergent degrees of freedom (usually referred to as edge modes) that
encode new (corner) symmetries at the boundaries [28–35] and in turn providing a quasi-local
holography program for quantizing gravity [36]. This perspective allows for the study of
boundary dynamics as generalized conservation laws [37–39] for the corner symmetries charges.
In this endeavor to unveil the fundamental nature of gauge theories and gravity, different
types of boundaries, either null or timelike, have been studied individually depending on
the problems at hand, and the attempts to seek a unified treatment for them have been
scarce. See [40–42] for earlier attempts at unified treatments at infinity, and [43–45] for recent
developments relating infinity and soft modes to conformally finite boundaries and edge modes.

There exists nonetheless a framework that displays a deep connection between timelike
and null surfaces. It is the black hole membrane paradigm originated by Damour [46] and
subsequently explored by Throne, Price, and Macdonald [47, 48], modeling effectively the
physics of black holes seen from outside observers as membranes located at vanishingly close
distances to the black hole horizon. These fictitious timelike membranes, which are usually
called stretched horizons, can also be viewed as arising from quantum fluctuations of geometry
around the true horizon (null surface) of the black hole and are furnished with physical
quantities such as energy, pressure, heat flux, and viscosity.1 The intriguing hallmark of the
membrane paradigm is that the gravitational dynamics of the stretched horizon can be fully
written as the familiar equations of hydrodynamics, in turn allowing us to draw a dictionary
between gravitational degrees of freedom and fluid quantities. This profound correspondence,
while starting off as a tentative analogy, is a clear reflection of the true nature of gravity, and
offers a completely hydrodynamic route to gravitational dynamics, opening unprecedented
windows to explore some open questions in both fields. Let us also mention that many of its
interesting aspects and applications have still been explored in many different contexts; see,
for example [49–53]. The fluid/gravity correspondence has been put forth beyond black hole
physics in the context of AdS/CFT duality [54] (see [55–58] for comprehensive reviews on
this topic) and it has since been generalized and applied in numerous works [59–61]. It is
also worth mentioning other works that uncovered the link between gravitational physics and
fluids. Black holes, in many circumstances, actually exhibit droplet-like behaviors akin to
liquid. For instance, the Gregory-Laflamme instability of higher-dimensional black strings [62]

1The stretched horizon can also be assigned electromechanical properties such as conductance. In this
circumstance, one needs to supplement the hydrodynamic equations with some electromechanical equations,
such as Ohm’s law.
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displays similar behavior to the Rayleigh instability of liquid droplets [63]. The work [64]
also showed that the dynamics of a timelike surface (which they called a gravitational screen)
behave like a viscous bubble with surface tension and internal energy. Analog models of black
holes [65] illustrated the converse notion and argued that kinematic aspects of black holes can
be reproduced in hydrodynamical systems and that fluids can admit sonic horizons and even
the analog of Hawking temperature. Lastly, in the context of local holography, the corner
symmetry group of gravity was shown to contain the symmetry group of perfect fluids as its
subgroup [36]. Furthermore, the advantage of treating timelike surfaces and null surfaces in
the same regard stems from the observation that some information about null boundaries,
which are true physical boundaries, are seemingly obtained when considering small deviations
from those boundaries. In other words, that information can only be accessed by considering
timelike surfaces located near the boundaries. This lesson has been demonstrated explicitly
at asymptotic null infinity, at which the radial (1/r) expansion around null infinities encodes
higher-spin symmetries and conservation laws of the null infinities [66–68].

One issue of the stretched horizon description of a null boundary is that the horizon
energy-momentum tensor and its conservation laws, which require a notion of induced metric
and connection, on the stretched horizon are singular when evaluated on the null boundary
due to the infinite redshift. In the original membrane paradigm perspective, the singularities
of the horizon fluids are remedied by considering an ad-hoc renormalized (red-shifted) version
of those quantities [46–48]. This null limit from the stretched horizon to the null boundary
was recently argued by Donnay and Marteau [69] to coincide with the Carrollian limit à la
Lévy-Leblond [70] and that the corresponding membrane fluids are Carrollian [71–74], rather
than relativistic or non-relativistic fluids (see also [75] for an early argument).

This non-smooth null limit obstructs us from uncovering a precise connection between
the hydrodynamic and geometrical picture of the timelike stretched horizon and the null
boundary. Also, the link between various constructions in the null case and the timelike
case has never been fully made precise. This means that the conclusions we reached in the
null case cannot be made in the timelike case, and vice versa. This especially includes the
disparity in the construction of the energy-momentum tensor and its conservation laws. In
the timelike case, the energy momentum tensor and gravitational charges of the surfaces can
be constructed using the Brown-York prescription [76, 77]. Moreover, the conservation laws
are usually written in terms of the Levi-Civita connection on the hypersurface.

The null case is, on the other hand, more subtle. One important subtlety is that there is
no notion of a Levi-Civita connection on a null surface. Another one is that the usual definition
of a strong Carrollian connection used in [78–84], which works well for asymptotic null infinity,
is too restrictive to deal with finite distance null surfaces. As a result, a lot of efforts have been
put into the understanding of the phase space, the notion of energy-momentum tensor, and
conserved charges of the null surfaces [85–93]. In addition, there is ample evidence suggesting
a correspondence between geometry and physics at null boundaries and Carrollian theories,
both in finite regions [18, 93] and at infinities [14, 15, 18, 22, 26, 81, 94–99]. What is missing
is a unified geometrical treatment of the null and timelike stretched horizon. One difficulty
is that the connection used in the conservation laws of the hypersurface energy-momentum
tensor is radically different in the timelike and null cases. Resolving these issues by seeking a
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unified treatment of these two types of hypersurfaces (or boundaries) that admits a smooth
null limit is the main goal of this work.

The objectives, the outline, and some key results of this article are presented below.

i) Removal of the singularity of the membrane paradigm. As we have already mentioned,
the main issue hindering the link between various geometrical constructions and the
fluid picture presented at the stretched horizon and the true null horizon is the presence
of the singular limit in the standard Brown-York formalism for timelike surfaces. To
cure this, we extend the construction of Chandrasekaran et al. [93] and utilize the
rigging technique [100, 101] to construct a hypersurface connection on stretched horizons
that admits a non-singular limit to the null boundary. We show in section 2 that the
geometry of the stretched horizon descending from this technique admits a non-singular
limit to the null boundary, therefore providing a unified description for both timelike
and null hypersurfaces. We then construct the energy-momentum tensor Ta

b, from the
geometrical data of the surfaces and show that its conservation laws are the Einstein’s
equations projected onto the stretched horizon,

DbTa
b = Πa

bGb
cnc=̂0, (1.1)

where na, Πa
b, and Da are respectively the normal to the stretched horizon, the rigged

projector, and the rigged connection on the horizon. All of them are regular on the
null boundary, consequently providing a non-singular stretched horizon viewpoint to
the null boundary. Our construction hence generalizes the previous results for the null
case [88, 89, 91, 93, 102]. Furthermore, the tensor Ta

b decomposes in the same way
as the Carrollian fluid energy-momentum tensor. The above equation also describes
the Carrollian nature of Einstein’s dynamics imprint on the timelike horizons, thereby
generalizing the result presented in [69]. Precise definitions and details are provided in
section 3.

ii) Carroll structures and Carrollian hydrodynamics on timelike surfaces. While it has
been established that Carroll geometries are natural intrinsic geometries of null surfaces,
both in finite and infinite regions [82, 87, 93], it has never been known how to assign
the notion of Carrollian to the geometry of timelike surfaces. One of the key ideas we
would like to convey in this work is that the rigged structure endowed on the stretched
horizon naturally induces a geometrical Carroll structure on the stretched horizon.
It is important to appreciate that by a geometrical Carroll structure on a stretched
horizon, we follow the definition of Ciambelli et al. [18], meaning the existence of a line
bundle over a 2-sphere equipped with a metric. The vertical lines of the bundle define a
congruence of curves tangent to the Carrollian vector ℓ. The pull-back of the 2-sphere
metric defines a null metric q on the 3-dimensional manifold. This metric can differ
from the stretched horizon induced metric by at most a rank one tensor. The notion of
a geometrical Carroll structure is central to the description of fluids in the Carrollian
limit; see [71, 73, 74].
This notion of a geometrical Carroll structure is weaker than the usual notion of
a strong Carroll structure or what we refer to as a Carroll G-structure. A Carroll
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G-structure consists of a geometrical Carroll structure together with a connection
compatible with the bundle structure and the base metric. The defining condition for
this connection is that its structure group is the Carroll group. Such a connection is
called a strong Carrollian connection. This is the notion used in [78–84]. The notion of
Carroll G-structure is too strong for the description of stretched horizons. However,
stretched horizons can be equipped with a geometrical Carroll structure and a torsionless
connection, which only preserves the base metric even if they are not null.

Interestingly, the difference between a non-null stretched horizon and its null limit can
be seen in the structure of its energy-momentum tensor, Ta

b. The Carrollian fluid
energy current is given by −ℓaTa

b = Eℓb + Jb, where E is the fluid energy density and
Jb is the heat flow current tangent to the surface. It turns out that when the stretched
horizon is null, the heat flow has to vanish, while for a general stretched horizon, the
heat current is simply proportional to the fluid momenta. As we will see, these relations
are simply the expression of the boost symmetry, which differs on null and timelike
surfaces [83]. We will also show in section 3 that the Einstein equations on the stretched
horizon can be written exactly as the evolution equations of the energy density and
momentum density of Carrollian hydrodynamics.

iii) Gravitational phase space is Carrollian. Lastly, in section 4, we will evaluate the
pre-symplectic potential, capturing the information of the gravitational covariant phase
space on the stretched horizon, and show that it can be expressed in terms of the
conjugate variables of Carrollian fluids [74],

Θcan
H [g, δg] = δSfluid −

∫
H

θδρ. (1.2)

Here Sfluid is the Carrollian fluid action whose variation under the stretched horizon
geometrical structure defines the energy-momentum tensor. The stretched horizon
contains an extra term in addition to the null horizons [103–105]: ρ is a scalar that
measures the non-nullness of the stretched horizon, and θ is its transverse expansion.

Notations and conventions. In this work, we adopt the gravitational unit where 8πG = 1.
The notations we will use are listed below.

• Small letters a, b, c, . . . are spacetime indices. They are raised and lowered by the
spacetime metric gab and its inverse gab.

• The capital letters A, B, C, . . . are horizontal (or sphere) indices. They are raised and
lowered by the 2-sphere metric qAB and its inverse qAB.

• Spacetime differential forms are denoted with boldface letters such as k, n, ω, ϵ, . . .

• The wedge product between differential forms is denoted by ∧ as usual, while ⊙ is used
to denote a symmetric tensor product, that is, A ⊙ B = 1

2(A ⊗ B + B ⊗ A).
• The directional derivative of a function f along a vector field V is written as V [f ] =

V a∂af .
• We sometimes adopt index-free notations. For example, the inner product between a

vector X and a vector Y computed with the metric g is written as g(X, Y ) = gabX
aY b.
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2 Geometries of stretched horizons and null boundaries

We dedicate this section to laying down relevant geometrical constructions of null and timelike
hypersurfaces, focusing particularly on the case of finite-distance surfaces. The physical
examples of them are the event horizons of black holes (null boundaries) and fictitious stretched
horizons (timelike surfaces) located at small distances outside the black hole horizons.

The geometrical construction of hypersurfaces usually depends on the type of hypersur-
faces and problems under consideration. For instance, the Arnowitt-Deser-Misner (ADM)
formalism, centered around the (3+1)-decomposition of spacetime, has become a go-to tool to
deal with spacelike Cauchy surfaces and timelike boundaries. This (3+1)-splitting approach
relies on the existence of the apparent notion of time (through the spacelike foliations of
spacetime) and is thus useful when one wants to tackle initial-value problems of general
relativity or study Hamiltonian formulations of general relativity (see, for instance, [106]
and references therein). The analogy of this formalism for null hypersurfaces has been
considered in [107]. This “time-first” formalism instinctively imprints Galilean nature on
the considerations rather than Carrollian nature, which is a “space-first” construction. In
this regard, we thus refrain from adopting the ADM formalism in our study. In the case
of a null hypersurface, the spacetime geometry in close vicinity to the surface has been
extensively studied using the Gaussian null formalism, which utilizes null geodesics to ex-
tend the intrinsic coordinates on the null surface to the surrounding spacetime, and it has
been used to describe the near-horizon geometry of black holes [69, 85, 86] and also the
geometry of general null surfaces located at finite distances [88, 91, 92, 105]. Another type
of framework suitable for studying the geometry of null hypersurfaces is the double null
foliation technique [108], which is a spacial (gauge fixed) case of a more general formalism, the
(2+2)-splitting formalism. The (2+2)-splitting of spacetime has been proven to be the most
apt formalism for describing the geometry around codimension-2 corner spheres, regardless
of the nature of codimension-1 boundaries, and has been tremendously utilized in the arena
of the local holography program [28, 36, 105]. In the context of asymptotic null infinity, the
Bondi-Metzner-Sachs (BMS) formalism, the Bondi gauge and its extensions [6, 7, 66, 67, 109]
as well as the Newman-Unti gauge [110] (see also [42] for the enlarged gauge choice) have
been widely adopted. Intrinsically, the geometry of null surfaces can also be understood from
the perspective of Carroll geometries [14, 15, 18, 111]. Here, we seek the kind of general geo-
metrical construction that works for all types of hypersurfaces. To this end, we will adopt the
rigging technique [100, 101, 112] and show that it delivers a unified geometrical construction
that treats timelike and null surfaces on an equal footing, which admits a smooth null limit.

To set a stage, we consider a region of a 4-dimensional spacetime M , endowed with a
Lorentzian metric gab and a Levi-Civita connection ∇a, that is bounded by a null boundary
N located at a finite distance. It is then foliated into a family of 3-dimensional timelike
hypersurfaces, stretched horizons H, situated at constant values of a foliation function
r(x) = constant > 0. Situated at r(x) = 0 is the null boundary N . In this setup, the null
limit from the stretched horizon H to the null boundary N corresponds to the limit r → 0.

In practice, another foliation function is introduced to further provide a time-slicing
structure to the spacetime M , and together with the radial function r(x), it establishes
the (2 + 2)-decomposition of spacetime [28, 36, 88, 105], in turn rendering a notion of time
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apparent. Doing so would inevitably bring to the surfaces H and N the Galilean picture.
However, we will not adopt this technique. Instead, we seek the Carrollian viewpoint by
considering the surface H (and also the boundary N as a limit) as a fiber bundle, p : H → S,
where the space S is chosen to be a 2-sphere with local coordinates {σA} and a sphere metric
qABdσA ⊙ dσB. The surface H then admits a Carroll structure [18, 74, 111].

Carroll structures. A (weak) Carroll structure is given by a triplet (H, ℓ, q) where a
vector field ℓ, called the Carrollian vector field, points along a fiber, meaning that ℓ ∈ ker(dp),
and a null Carrollian metric q is a pullback of the sphere metric, q = p∗(qABdσA ⊙ dσB)
satisfying the condition q(ℓ, ·) = 0.

While the stretched horizon H does not have the temporal-spatial split, its tangent space
TH does admit, as inherited from the fiber bundle structure, the vertical-horizontal split,
which is determined by an Ehresmann connection 1-form k dual to the Carrollian vector ℓ, i.e.,
ιℓk = 1. The Ehresmann connection allows us to select a horizontal distribution whose basis
vectors are denoted eA and satisfy ιeAk = 0. We will elaborate more about Carroll structures
later. Let us mention here that the structure constants of the Carroll structure are given by
the acceleration φA and the vorticity wAB which enter the vector fields commutation relations

[ℓ, eA] = φAℓ, [eA, eB] = wABℓ. (2.1)

The key concept we would like to demonstrate in this section is that a Carroll structure
is a natural intrinsic structure of the stretched horizon H, and is inherited from a rigged
structure, a type of extrinsic structure to H which we will discuss shortly, and together, they
fully describe the complete geometry of H. Let us highlight again here that our construction
holds for both timelike and null hypersurfaces, and the null limit is non-singular, which
therefore provides a unified treatment of these hypersurfaces. Let us finally describe in detail
our geometric construction of the stretched horizon.

2.1 Rigged structures

We begin with the introduction of a rigged structure [100, 101, 112], which provides an
extrinsic structure of the stretched horizon H . Recalling that H is embedded in the spacetime
at the location r = constant, it is then equipped with a normal form n = nadxa. This means
any vector field X tangent to the surface H is such that ιXn = 0. We consider the normal
form that defines a foliation of the ambient spacetime M , meaning that dn = a ∧ n for a
1-form a on M . In this setup, the normal form is given by

n = eαdr, (2.2)

for a function α on M , and correspondingly, we have that a = dα as desired.
To describe the geometry of the stretched horizon, we adopt the rigging technique of a

general hypersurface [100, 101] and endow on H a rigged structure given by a pair (n, k),
where n is the aforementioned normal form and a rigging vector k = ka∂a is transverse to
H and is dual to the normal form,

ιkn = 1. (2.3)

– 7 –
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With this, we next define the rigged projection tensor, Π : TM → TH, whose components
are given in terms of the rigged structure by

Πa
b := δb

a − nakb, such that kaΠa
b = 0 = Πa

bnb. (2.4)

This rigged projector is designed in a way that, for a given vector field X on M , the vector
X

b := XaΠa
b ∈ TH is tangent to H with X

a
na = 0. Similarly, for a given 1-form ω ∈ T ∗M ,

the 1-form ωa := Πa
bωb ∈ T ∗H is such that kaωa = 0.

2.2 Null rigged structures and induced Carroll structures

Equipping the spacetime M with a Lorentzian metric g = gabdxa ⊙ dxb and its inverse
g−1 = gab∂a ⊙ ∂b let us define the 1-form k = g(k, ·) and the vector n = g−1(n, ·). We
can also define the transverse 1-form ka = Πa

bkb such that kaka = 0. There are different
types of rigged structures depending on the nature of the rigging vector k. For timelike
surfaces, one usually adopts the choice where ka = 0. This choice corresponds to a normal
rigged structure such that ka = na/|n|2 where the norm |n|2 := nana N= 0 vanishes on the
null boundary. This rigged structure is obviously singular when the surface is null and is
the source of all singularities encountered when considering the null limit of the induced
connection and the induced energy-momentum tensor in the membrane paradigm framework.
Another choice, which we will adopt in this work and which is regular for both timelike
and null cases, is a null rigged structure. It is the case where ka = ka which also infers
that the rigging vector k is null. Denoting by 2ρ the norm-square of the normal 1-form,
we overall have the following conditions,

g(k, k) = 0, g−1(n, n) = nana := 2ρ. (2.5)

It is always possible to adjust the factor α defined in (2.2) to ensure that the norm ρ stays
constant on the stretched horizons H, i.e., Πa

b∂bρ = 0. As we will see later, this is going to
be important for the construction of the surface energy-momentum tensor.

We define a tangential vector field ℓ = ℓa∂a ∈ TH whose components are given by the
projection of the vector na onto the surface H, i.e., ℓa := nbΠb

a. Using the definition of the
projector (2.4), one can check that this tangential vector is related to the vectors n and k by

na = 2ρka + ℓa. (2.6)

Furthermore, one can easily verify that the vector ℓ and the 1-form k obey the following
properties,

ιℓn = 0, and ιℓk = 1. (2.7)

While the first property stems from the definition that ℓ is tangent to the surface H,
the second property ιℓk = 1 readily suggests that we can treat the tangential vector ℓ as an
element of a Carroll structure on H , and the 1-form k plays a role of an Ehresmann connection
that defines the vertical-horizontal decomposition of the tangent space TH (see the detailed
explanation in [18, 74]). Other objects that belong to the Carroll geometry, including the
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horizontal basis eA and the co-frame field eA, follow naturally from this construction. To see
this, one uses the fact that the projector can be further decomposed as

Πa
b = qa

b + kaℓb, with qa
bkb = 0 = ℓaqa

b. (2.8)

The tensor qa
b = eA

aeA
b is the horizontal projector from the tangent space TH to its

horizontal subspace. The last element of the Carroll structure, the null Carrollian metric
on H, is given by qab = qa

cqb
dgcd. We will also make an additional assumption that the

projection map, p : H → S, stays the same for all H, inferring that the co-frame eA on H

is closed, deA = 0, throughout the spacetime M .
It is important to appreciate the result we have just developed: a Carroll structure on

the space H is fully determined from the rigged structure and the spacetime metric. Let us
summarize again all the important bits in the box below (see appendix A for relevant details).

Induced Carroll structure. Given a null rigged structure (k, n) on a hypersurface H , with
the rigged vector field k being null and the spacetime metric g, the Carroll structure (H, ℓ, q)
is naturally induced on the hypersurface. The vertical vector field ℓ and the Ehresmann
connection k are related to the rigged structure by

ℓa = ncg
cbΠb

a, and ka = gabk
b. (2.9)

The null Carrollian metric is qab = qa
cqb

dgcd, where qa
b = Πa

b − kaℓb is a horizontal projector.

The vectors (ℓ, k, eA) and their dual 1-forms (k, n, eA) thus span the tangent space TM

and the cotangent space T ∗M , respectively (see figure 1). The ambient spacetime metric
decomposes in this basis as

gab = qab + kaℓb + nakb

= qab + 2n(akb) − 2ρkakb.
(2.10)

Let us also observe that, in general, the Carrollian vector field ℓ is not null and its norm is

ℓaℓa = −2ρ. (2.11)

This expresses the fact that the Carroll structure is null strictly on the null boundary N .
Note that the metric expression is regular when ρ = 0, and we have on the null boundary
that na

N= ℓa.
Armed with the induced Carroll structure on H , almost all analyses done in the previous

literature can be applied. One, however, has to keep in mind that, rather than considering the
space H on its own, viewing H as a surface embedded in the higher-dimensional spacetime
equips us with richer geometry. In our consideration, this additional geometry arises from
the transverse direction, captured by the rigged structure (k, n).

To simplify our computations, let us make another assumption that the null transverse
vector k generates null geodesics on the spacetime M , meaning that ∇kk = κk.2 This

2We do not impose that the geodesic is affinely parameterized because we want to keep the rescaling
symmetry (ℓ, k) → (Ωℓ, Ω−1k) alive. Under this symmetry, we have that

κ → Ω−1(κ − k[Ω]).

Using the rescaling symmetry, we can always achieve that κ = 0 which restricts the rescaling symmetry to be
such that k[Ω] = 0.
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Figure 1. Stretched horizons H are chosen to be hypersurfaces at r = constant, and the null
boundary N is the limit r → 0 of the sequence of stretched horizons. The surface H is endowed with
the rigging vector k and its dual form n. The Carroll structure with the vertical vector ℓ and the
horizontal vector eA is induced from the rigged structure, and together with k, they form a complete
basis for the tangent space TM .

particularly infers that the curvature of the Ehresmann connection admits the following
decomposition,3

dk := κn ∧ k − φA(k ∧ eA)− 1
2wAB(eA ∧ eB), (2.12)

where the components φA and wAB are Carrollian acceleration and the Carrollian vorticity,
respectively. Let us also recall that we have chosen earlier the null normal n = eαdr to define
a foliation of the spacetime M . The curvature of the normal form is

dn = ℓ[α]k ∧ n − eA[α]n ∧ eA. (2.13)

The components ℓ[α] and eA[α], as we will see momentarily, are related to the surface gravity
and the Hájíček 1-form field of the surface. Let us also mention again that the curvature
deA = 0 by construction.

The curvatures of the basis 1-forms determine the commutators of their dual vector
fields.4 In this case, it follows from (2.12) and (2.13) that the non-trivial commutators of
the basis vector fields are

[ℓ, eA] = φAℓ, [eA, eB] = wABℓ, [k, ℓ] = ℓ[α]k − κℓ, [k, eA] = eA[α]k. (2.14)

The first two terms again are the Carrollian commutation relations (2.1).

2.3 Local boost and rescaling symmetries

Let us emphasize that the rigged structure Πa
b is invariant under a rescaling symmetry,

ℓ → eϵℓ, k → e−ϵk, qab → qab. (2.15)
3This is also equivalent to the condition ιkdk = Lkk = κk, and one can check, following from the null-ness

property of k, that ka(dk)ab = ∇kka.
4The relation is ιXιY dω = ι[X,Y ]ω + LY (ιXω) − LX(ιY ω) for a 1-form ω and vector X and Y .
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Under this symmetry, we have

α → α + ϵ, ρ → e2ϵρ, φA → φA − eA[ϵ], and κ → e−ϵ(κ − k[ϵ]). (2.16)

On one hand, the transverse dependence of this symmetry can be fixed by imposing that the
geodesics are affinely parameterized. On the other hand, the tangential dependence of this
symmetry can be fixed by demanding that ρ is constant on a given surface H . As we will see
later, the second condition will play a crucial role when imposed on all stretched horizons.
For the moment, we leave this symmetry unfixed, as this provides a nice and consistent check
on the conservation equations satisfied by the rigged geometry.

Besides the rescaling symmetry, the decomposition of the bulk geometry gab in terms
of the geometry of stretched horizon (qab, ℓa, ka, nb) possesses another local symmetry, the
boost symmetry, that preserves the spacetime metric gab. While the rescaling symmetry
preserves the rigged structure, the boost symmetry does not. The rescaling symmetry labelled
by a parameter ϵ is simply given by

δϵna = ϵna, δϵka = −ϵka, δϵℓ
a = ϵℓa, δϵqab = 0. (2.17)

It preserves the rigged structure. The boost symmetry is labelled by a vector λa that is
horizontal, meaning that λana = λaka = 0. The infinitesimal boost transformation acts as

δλna = 0, δλka = λa, δλℓa = −2ρλb, δλqab = −(λaℓb + ℓaλb). (2.18)

This transforms the rigged projector as δλΠa
b = −naλb while preserving gab. When ρ = 0

on the null boundary N , the boost symmetry leaves the Carrollian vector ℓ invariant (see,
for instance, [83]).

2.4 Coordinates

We now supplement our geometrical construction of the intrinsic structure of stretched
horizons with the introduction of coordinates. As we have set up that the stretched horizons
H are defined to be hypersurfaces labelled by a parameter r ≥ 0, we can choose r to serve
as a radial coordinate. Furthermore, let us use (u, yA) as general coordinates on H and
they are chosen so that a cut at constant u is identified with a sphere S. The coordinates
(u, yA) are then extended throughout the spacetime M by keeping their values fixed along
null geodesics generated by the transverse vector k. Overall, we adapt xa = (u, r, yA) as
the coordinates on the spacetime M .

In this coordinate system, the basis vector fields are expressed as follows (we follow the
parameterization for the tangential basis from our precursory work [74])

ℓ = e−αDu, k = e−α∂r eA = (J−1)A
B∂B + βADu (2.19)

where we defined Du = ∂u + V A∂A. The corresponding dual basis 1-forms are given by

k = eα(du − βAeA), n = eαdr, eA = (dyB − V Bdu)JB
A. (2.20)

The components (βA, V A, JA
B) that are parts of the Carroll geometry are functions of

the coordinates (u, yA) on the stretched horizon H. We note again that eA is given as the
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pullback of dσA by the bundle map p : H → S, where σA are local coordinates on the base
space S. Their independence of the radial coordinate r stems from our construction that the
Carroll projection p : H → S is independent of the foliation defined by the function r(x),
and that k is tangent to null geodesics. One can indeed be more general by relaxing the
r-independent conditions. Doing so would inevitably introduce more variables, i.e., radial
derivatives of these components, to the consideration, which thereby renders the computations
more complicated. We refrain from doing so and keep our analysis simple in this article.
Let us also remark that, even though the frame eA is set to be independent of the radial
direction, the null Carrollian metric qab can still depend on r due to the possible r-dependence
of the sphere metric qAB. The remaining metric components, which are the norm ρ and
the scales α and α, are in general functions of (u, r, yA). We will however impose in the
following section that ρ only depends on r, that is Daρ = 0 for the reason we will justify
momentarily. The metric in coordinates is given by

ds2 = 2k ⊙ (eαdr − ρk) + q̃AB(dyA − V Adu)⊙ (dyB − V Bdu), (2.21)

where q̃AB = JA
CJB

DqCD. It assumes the Bondi form [6, 7] if we impose that βA = 0
which means that k = eαdu. It assumes the Carrollian form [18] if we choose co-moving
coordinates yA = σA for which V A = 0. Let us note that the induced metric on the stretched
horizon takes the Zermelo form when βA = 0 and it takes the Randers-Papapetrou form
when V A = 0 [71, 113].

2.5 Rigged metric, rigged derivative and rigged connection

Provided the rigged structure on the stretched horizon H, we can define the rigged metric,
Hab := Πa

cΠb
dgcd, and its dual, Hab := gcdΠc

aΠd
b. Given any two tangential vectors

X, Y ∈ TH that, by definition, satisfy the condition Xana = Y ana = 0, we can clearly
see that

HabX
aY b = gabX

aY b, and Hbaka = 0. (2.22)

This shows that the rigged metric Hab acts on tangential vector fields the same way as the
induced metric hab = gab − 1

2ρnanb. The difference, however, lies in the fact that the induced
metric is orthogonal habn

b = 0 while the rigged metric satisfy the transversality condition,
Habk

b = 0. Combining this definition with (2.10) we see that the rigged metric on the space
H and its dual can be written in terms of the Carroll structure as

Hab = qab − 2ρkakb, and Hab = qab. (2.23)

Observe that the advantage of the rigged metric is that it provides an expression that is
regular when taking the null limit, ρ → 0, while, on the other hand, the expression for the
induced metric blows up when ρ → 0. In this article, we will only use the rigged metric
in our computations.

We next introduce a notion of connections on the space H , a rigged connection, descended
from the rigged structure. Recall that by definition, a rigged tensor field Ta

b on H is a tensor
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on M such that kaTa
b = 0 = Ta

bnb. We defined a rigged connection of a tensor field Ta
b

as a covariant derivative projected onto TH,

DaTb
c = Πa

dΠb
e(∇dTe

f )Πf
c. (2.24)

First, one can check that this connection is torsionless

[Da, Db]F = Πa
cΠb

d(∇cΠd
e −∇dΠc

e)∇eF

= −Πa
cΠb

d(∇cnd −∇dnc)k[F ]
= 0

(2.25)

where we used in the last equality the fact that na defines a foliation ∇[anb] = a[anb]. It is
also straightforward to check that the rigged connection preserves the rigged projector,

DaΠb
c = Πa

dΠb
e(∇dΠe

f )Πf
c = −Πa

dΠb
e∇d(nekf )Πf

c = 0. (2.26)

It does not, however, preserve the rigged metric and its conjugate. Instead, we can show that

DaHbc = Πa
d∇d(gijΠi

eΠj
f )Πe

bΠf
c

= Πa
dgij [Πj

c(∇dΠi
e)Πe

b +Πi
b(∇dΠj

f )Πf
c]

= −Πa
dgij [niΠj

c(∇dke)Πe
b + njΠi

b(∇dkf )Πf
c]

= −(Ka
bℓc + Ka

cℓb).

(2.27)

where Ka
b := Πa

c(∇ck
d)Πd

b is the extrinsic curvature of the surface H computed with
the rigged metric. This tensor can be related to the rigged derivative of the tangent form
ka as follows

Ka
cqca = (Da + ωa)kb, (2.28)

where ωa := Πa
c(kb∇cnb) is the rigged connection.

Given the rigged structure on the stretched horizon H and a volume form ϵM on the
spacetime M we can define the induced volume form on H by the contraction, ϵH := ιkϵM .
The conservation equation of this volume form involves the rigged connection as follows5

d(ιξϵH) = [(Da − ωa)ξa] ϵH , (2.29)

where ξ is a vector tangent to H . Interestingly, this conservation equation can also be written
in terms of the Carrollian structure as (see the derivation in appendix A.2)

d(ιξϵH) =
[
(ℓ + θ)[τ ] + (DA + φA)XA

]
ϵH , (2.30)

for a vector ξ = τℓ + XAeA.
We would like to conclude this intrinsic geometrical setup with some remarks on the

notion of Carroll structures. The inherited Carroll structure from the rigged structure of the
stretched horizon H yields a geometrical (or weak) notion of Carroll structure (see [18, 111]),
comprising the triplet (p : H → S, qab, ℓa) such that qabℓ

b = 0. It is worth emphasizing
5This also means that (Da + ωa)ϵH = 0.
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again that qab differs from the stretched horizon rigged metric, Hab, by at most a rank
one tensor (2.23). The strong Carroll structure (or a Carroll G-structure) (see [78–84]),
(p : H → S, qab, ℓa, Ď), consists of a weak Carroll structure additionally endowed with a
strong Carrollian connection Ď preserving both the metric and the Carrollian vector field,

Ďaqbc = 0, and Ďaℓb = 0. (2.31)

It is important to note that this connection is not uniquely determined by ℓa and qab due
to the non-degenerate nature of the metric qab. Equivalently, the defining condition for this
connection is that its structure group is the Carroll group, the symmetry group obtained
from the c → 0 limit of relativity.

This strong notion is however too restrictive for our description of stretched horizons
and we work instead with a torsionless connection Da which possesses non zero values for
the components of Daqbc and Daℓb. These components encode, as we will discuss in the next
section, canonical momenta of gravitational phase space, and also have a dual interpretation
as Carrollian fluid variables. Setting, for example D = Ď, and recovering the Carroll group,
while tempting, means setting some canonical momenta to zero, hence restricting the gravity
phase space. On the other hand, working with the geometrical notion of Carroll structures
and a torsionless D allows for a bigger, more general, symmetry group of the surface H

that contains the Carroll group as a subgroup. We will show that this symmetry group
yields, due to the Noether theorem, the Einstein equations on H, which also correspond
to Carrollian hydrodynamics conservation laws.

The final remark concerns the timelike nature of H. Being timelike adds one extra
variable to the geometric structure: the norm ρ = −1

2ℓaℓa of the Carrollian vector field. This
function ρ is also contained in the gravity phase space of H (see section 4), introducing a new
(conjugate) degree of freedom not present for null boundaries. It is more appropriate to refer
to the data (p : H → S, qab, ℓa, ka, ρ) as a stretched Carroll structure to distinguish it from the
traditional null case. More concrete details about these features are provided in section 3.3.

3 Conservation laws on stretched horizons

We are now at the stage where we can discuss the Carrollian fluid energy-momentum tensor
on the stretched horizon H and derive its conservation laws. The plan is to first outright
define the Carrollian fluid energy-momentum tensor and show how the Einstein equations
imply conservation laws (or vice versa). The correspondence between fluid quantities and the
extrinsic geometry of H, the so-called gravitational dictionary, will be discussed afterwards.

Following the construction presented in [93], the rigged energy-momentum tensor on
the null boundary N is related to the null Weingarten tensor Πa

c∇cℓ
dΠd

b. Since the vector
na goes to ℓa on N , it suggests that the fluid energy-momentum tensor on the timelike
surface is defined as,

Ta
b = Wa

b −WΠa
b, (3.1)
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where the rigged Weingarten tensor (sometimes called the shape operator) on H is de-
fined to be6

Wa
b := Πa

c(∇cn
d)Πd

b, (3.2)

and we denote its trace by W = Wa
a. Obviously, this rigged Weingarten tensor becomes the

null Weingarten tensor [88, 90, 93] on the null boundary N . It captures essential elements of
extrinsic geometry of the surface H whose components have been established to serve as the
conjugate momenta to the intrinsic geometry of the surface in the gravitational phase space
(see [88, 105] for the case of null boundaries). In our construction, the intrinsic geometry of
H is encoded in the Carroll structure, and, as we will explain later, the extrinsic geometry
is the Carrollian fluid momenta. This energy-momentum tensor agrees on the null surface
with the one defined in [93] on the null boundary, except for the overall sign. We will show
next that the Einstein equations Gab = 0 and the condition Daρ = 0, imply hydrodynamic
conservation laws DbTa

b = 0.

3.1 Conservation laws

Our goal here is to show that conservation of the energy-momentum tensor follows from
the Einstein equations. In the following derivation, we will keep track of the tangential
derivative of the norm of the normal form, Daρ, by allowing its value to be non-zero. We
will show that the condition Daρ = 0 is necessary to have a proper definition of the energy-
momentum tensor that obeys conservation laws outside the null boundary N , hence justifying
our prior assumption.

To start with, the covariant derivative of the vector n decomposes as

∇anb = Wa
b + (Daρ)kb + na∇knb, and thus ∇ana = W+ k[ρ], (3.3)

where we used that na∇bn
a = 1

2∇b(nana) = ∇bρ. The rigged covariant derivative of the
rigged Weingarten tensor can then be written as

DbWa
b = Πa

c(∇bWc
d)Πd

b = Πa
c∇bWc

b +Wa
c∇knc. (3.4)

We can then show that

Πa
c∇b∇cn

b = Πa
c∇b(Wc

b + kbDcρ + nc∇knb)
= Πa

c∇bWc
b + (Daρ)(∇bk

b) + Πa
c∇k(Dcρ) + Πa

c(∇bnc)(∇knb)
= DbWa

b + (Daρ)(∇bk
b) + Πa

c∇k(Dcρ) + (Πa
c∇bnc −Wab)∇knb

= DbWa
b + (Daρ)Kb

b +Πa
c∇k(Dcρ)− aak[ρ],

(3.5)

where to arrive at the last equality, we defined Ka
b := Πa

c∇ck
b and we used the property

that ∇bk
b = Kb

b − kb∇knb, and we also use that

(Πa
c∇bnc −Wab) = Πa

c(∇bnc −∇cndΠd
b) = Πa

c(∇bnc −∇cnd(δd
b − ndkb))

= Πa
c(abnc − acnb) + Daρkb

= −aanb + Daρkb.

(3.6)

6For the case Daρ = 0 that we consider, the Weingarten tensor can be written simply as Wa
b = Πa

c∇cnb.

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
5

Next, using the property that the Einstein tensor along the vector na projected onto H

coincides with the Ricci tensor, Πa
cnbGbc = Πa

cRnc, and invoking the definition of the Ricci
tensor in term of the commutator, we derive

Πa
cGnc = Πa

c[∇b,∇c]nb = Πa
c∇b∇cn

b − Da(∇bn
b)

= Db(Wa
b −WΠa

b) + Kb
bDaρ − aak[ρ] + Πa

c[∇k, Dc]ρ.
(3.7)

We then show that the last term can be manipulated as follows:

Πa
c[∇k, Dc]ρ = Πa

ckb(∇bΠc
d)∇dρ −Πa

d(∇dkb)∇bρ

= −Πa
ckb(∇bnc)k[ρ]−Πa

dnb(∇dkb)k[ρ]−Πa
d∇dkbDbρ

= Πa
ckb (∇cnb −∇bnc) k[ρ]− Ka

bDbρ

= aak[ρ]− Ka
bDbρ,

(3.8)

where we used that ∇[anb] = a[anb] to arrive at the last equality. Finally, putting everything
together, the Einstein tensor can therefore be expressed as

Πa
cGnc = Db

(
Wa

b −WΠa
b
)
− (Ka

b − KΠa
b)Dbρ. (3.9)

It is therefore clear that under the condition Daρ = 0, the energy-momentum tensor (3.1)
is conserved once imposing the Einstein equations Πa

cGnc = 0,

Πa
bGnb = DbTa

b = 0. (3.10)

Remarks are in order here:

i) To prove the conservation laws, we have only used the fact that the transverse vector k

is null. We didn’t need to assume that k is geodesic and affinely parameterized.

ii) Conservation laws are automatically satisfied on the null boundary N without posing
an extra condition on ρ as its value already vanishes on N . This again agrees with [93].

iii) We can check that the conservation equations (3.9) transform covariantly under the
rescaling symmetry δϵ(ℓ, k) = (ϵℓ,−ϵk): This follows from the transformations of the
Weingarten and extrinsic curvature

δϵWa
b = ϵWa

b + ℓbDaϵ, δϵKa
b = −ϵKa

b, δϵρ = 2ϵρ. (3.11)

And the use of the identity

Db[ℓbDaϵ − ℓ[ϵ]Πa
b] = −(Daℓb − Dcℓ

cΠa
b)Dbϵ. (3.12)

iv) One can always reach the condition Daρ = 0 by exploiting the fact that the rigging
condition naka = 1 only defines the normal form n and the transverse vector k up to
the rescaling n → Ωn, ℓ → Ωℓ and k → Ω−1k for a function Ω on M . We will come
back to this point again shortly.
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3.2 Gravitational dictionary

We have already defined the energy-momentum tensor of the stretched horizon H and shown
that it obeys conservation laws as desired. We now proceed to discuss the dictionary between
gravitational degrees of freedom and Carrollian fluid quantities. First, as a tensor tangent to
the stretched horizon H , the energy-momentum tensor decomposes in terms of the Carrollian
fluid momenta [71, 72, 74] as

Ta
b := Wa

b −WΠa
b = −ka

(
Eℓb + Jb

)
+ πaℓb +

(
Ta

b + Pqa
b
)

, (3.13)

where its components are the fluid energy density E, the pressure P, the fluid momentum
density πa, the heat current Ja, and the viscous stress tensor7 Ta

b = qa
c(∇cn

d)qd
b. The

tensors πa, Ja and Ta
b are horizontal, meaning that we can express them as

πa = πAeA
a, Ja = JAeA

a, and Ta
b = TA

BeA
aeB

b. (3.14)

Let us also note that the viscous tensor is symmetric, TAB := qABTB
C = TBA, and traceless,

TA
A = 0. It then follows from the definition of the energy-momentum tensor (3.13) that

the Weingarten tensor (3.2), which is a tensor field on H, can be parameterized in terms
of Carrollian fluid momenta as

Wa
b = Ta

b + 1
2Eqa

b + πaℓb − kaJ
b −

(
P+ 1

2E
)

kaℓb, (3.15)

and the trace is W = 1
2E − P.

We now spell out more precisely the expression of the horizon Carrollian fluid in terms
of the gravitational extrinsic geometry of the stretched horizon H. We find that since the
vector na is the linear combination of the tangential vector ℓa and the transverse vector ka,
the Weingarten tensor then decomposes as follows

Wa
b = Daℓb + 2ρKa

b, (3.16)

where we used that ℓa is tangent to H, so the first term is the rigged derivative of ℓ while
the second term is proportional to Ka

b := Πa
c(∇ck

d)Πd
b. In order to give a dictionary

between the Carrollian fluid expressions and the gravitational entities, we need to introduce
the definition of the extrinsic curvature tensors θab, θab, the Hájíček form πa, the surface
and vector accelerations (κ, Aa). They are defined as coefficient in the decomposition of
Daℓb and Ka

b. We find that

Daℓb = θa
b + kaAb + πaℓb + κkaℓb (3.17)

Ka
b = θa

b − ka(πb + φb). (3.18)

Here all the vectors and tensors are tangential to the sphere distribution.8 Note that the
absence of the ℓb terms in Ka

b is due to the fact that the vector k is null. The surface
7Ta

b can also be understood to be the finite distance analog of the news tensor.
8This means that ℓaπa = kaπa = 0 and similarly for (θa

b, θa
b, Aa).
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acceleration and the momenta appear in the decomposition of the rigged connection9(see
section 2.5)

ωa = κka + πa. (3.19)

The last term in the expression for Ka
b simply follows from the evaluation

ℓaKabeA
b = ιeADℓk = −ιDℓeAk = −ι[ℓ,eA]k − ιDAℓk = −φA − πA. (3.20)

In the next section, we explore in more detail the gravitational dictionary between Carrollian
fluids and gravity.

3.2.1 Viscous stress tensor and energy density

Let us first consider the spin-2 components of the rigged Weingarten tensor, which are the
extrinsic curvature tensor, qa

cqbdWc
d = qa

cqb
d∇cnd. Observe that this object is symmetric

in its two indices, which follows from the fact that the normal form n defines foliation,
∇[anb] = a[anb]. Its trace corresponds to the Carrollian fluid energy density E,

E := qa
b∇bn

a or equivalently, E := qABg(eB,∇eAn), (3.21)

and the traceless part corresponds to the viscous stress tensor, Tab = TABeA
aeB

b, of Car-
rollian fluids,

Tab := q⟨a
cqb⟩

d∇cnd, or, TAB := g(eB,∇eAn)− 1
2qCDg(eD,∇eC n)qAB. (3.22)

We can also define the expansion tensor10 associated with the tangential vector ℓ to
be θab := qa

cqb
d∇cℓd. The components of this expansion tensor can be expressed in the

horizontal basis as

θAB = g(eB,∇eAℓ) = 1
2ℓ[qAB] + ρwAB. (3.23)

Interestingly, its anti-symmetric components are proportional to the Carrollian vorticity. The
trace and the symmetric traceless components of the tensor θAB are the expansion and the
shear tensor associated with the tangential vector ℓ,

θ := qABθAB = ℓ [ln√q] , and σAB := θ(AB) −
1
2θqAB. (3.24)

In a similar manner, we define the extrinsic curvature tensor associated with the transverse
direction k as θab := qa

cqb
d∇ckd, and its components can be expressed as

θAB = g(eB,∇eAk) = 1
2k[qAB]−

1
2wAB. (3.25)

9We can therefore express (3.17) similarly to (2.28) as

(Da − ωa)ℓb = θa
b + kaAb.

10Note that the tensor Daℓb does not truly describe the extrinsic geometry of the space H as ℓ is tangent to
H. Its values are completely determined by the intrinsic geometry, i.e., the Carrollian structure of the surface.
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Observe that θAB is not symmetric even on the null surface. Its trace and its symmetric
traceless components are, respectively, the expansion and the shear associated to k and
they are given by

θ := qABθAB = k [ln√q] , and σAB := θ(AB) −
1
2θqAB. (3.26)

Let us also note that the combination

g(eB,∇eAn) = θAB + 2ρθAB = 1
2n[qAB] (3.27)

is symmetric, as we have already stated. The fluid energy density and the viscous stress
tensor are given in terms of expansions and shear tensors by

E = θ + 2ρθ, and TAB = σAB + 2ρσAB. (3.28)

It is important to appreciate that geometrically, the internal energy E computes the expansion
of the area element of the sphere S along the vector n. On the null surface N , it therefore
computes the expansion of the area element along the null vector ℓ, while the traceless part
Tab corresponds to the shear tensor [88, 93, 105].

3.2.2 Momentum density

There are two spin-1 components of the energy-momentum tensor Ta
b. The first one corre-

sponds to the Carrollian fluid momentum density, πa = πAeA
a, which is defined as

πa := qa
ckb∇cn

b, or in the horizontal basis, πA := g(k,∇eAn). (3.29)

It then follows from the null rigged condition, kaka = 0, that πa = qa
ckb∇cℓ

b is the Hájíček
field computed with the basis vector (ℓ, k, eA). The expression of the fluid momentum in terms
of the Carrollian acceleration can be derived starting from the commutators (2.14) as follows,

eA[α] = g(ℓ, [k, eA]) = g(ℓ,∇keA)− g(ℓ,∇eAk)
= g(k,∇ℓeA) + g(k,∇eAℓ)
= g(k, [ℓ, eA]) + 2g(k,∇eAℓ)
= φA + 2πA,

(3.30)

where to get from the first line to the second line, we repeatedly applied the Leibniz rule
and used that g([k, ℓ], eA) = 0. We therefore arrive at the expression for the fluid momentum
in terms of the metric components

πA = 1
2 (eA[α]− φA) . (3.31)

3.2.3 Carrollian heat current

Another spin-1 quantity is the Carrollian heat current, Ja = JAeA
a, defined as

Ja := −qb
a∇ℓn

b, or in the horizontal basis, JA := −qABg(eB,∇ℓn) (3.32)
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This object is related to the tangential acceleration Aa = qb
a∇ℓℓ

b of the vector ℓ and the
Carrollian momentum density. First, we can evaluate the tangential acceleration as follows

AA = g(eA,∇ℓℓ) = −g(ℓ, [ℓ, eA])− g(ℓ,∇eAℓ) = (eA + 2φA)[ρ]. (3.33)

Observe that the acceleration vanishes on the null boundary N . Then, one can check
using (2.6) and repeatedly applying the Leibniz rule, the commutators (2.14), and the
evaluation (3.30), that

JA = −g(eA,∇ℓℓ)− 2ρg(eA,∇ℓk)
= −AA + 2ρg(eA, [k, ℓ]) + 2ρg(ℓ, [k, eA])− 2ρg(k,∇eAℓ)
= −AA + 2ρ (eA[α]− πA)
= (−eA + 2πA)[ρ].

(3.34)

This Carrollian current also vanishes on the null boundary N .
For the choice of null vector that keeps ρ constant on the stretched horizon H, we

simply have that

JA = 2ρπA, and AA = 2ρφA. (3.35)

3.2.4 Surface gravity and pressure

The last spin-0 component of the energy-momentum tensor is the fluid pressure, P, defined
as the following combination,

P = −
[
κ + 1

2(θ + 2ρθ)
]

. (3.36)

P is the generalization of what is called the gravitational pressure in [88] defined for the case
of a null boundary. The surface gravity κ is defined as11

κ = ka∇ℓℓ
a = g(k,∇ℓℓ). (3.37)

It measures the vertical acceleration of the vector ℓ. Its value is non-zero even on the null
boundary N . Let us also comment that we write the directional derivative of the Carrollian
vector field ℓ along itself as

∇ℓℓ = κℓ + AAeA − (ℓ − 2κ)[ρ]k N= κℓ. (3.38)

Recalling that AA N= 0, this means ∇ℓℓ = κℓ which clearly dictates that on the null boundary
N , the Carrollian vector ℓ generates non-affine null geodesics, and the in-affinity is measured
by the surface gravity κ. We can show that the surface gravity is given by

κ = g(k,∇ℓℓ) = −g(ℓ, [ℓ, k])− g(ℓ,∇kℓ) = ℓ[α] + (k + 2κ)[ρ]. (3.39)

Let us additionally note that the inaffinity κ of the null geodesics generated by the rigging
vector k can be computed directly from the commutator [k, ℓ] provided in (2.14) and it
is given in coordinates by

κ = k[α]. (3.40)
11We have that κ = g(k,∇ℓn).

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
5

Let us summarize below the dictionary between Carrollian fluid quantities and the
gravitational entities given by the components of the Weingarten tensors: In the frame where
Daρ = 0, we have the following dictionary

Energy density: E = θ + 2ρθ (3.41a)

Pressure: P = −
(
ℓ[α] + (k + 2κ)[ρ]

)
− 1

2
(
θ + 2ρθ

)
(3.41b)

Momentum density: πA = 1
2 (eA[α]− φA) , (3.41c)

Carrollian heat current: JA = 2ρπA, (3.41d)
Viscous stress tensor: TAB = σAB + 2ρσAB. (3.41e)

Note also that the Weingarten tensor can be written in a compact manner in terms
of the gravitational data as

Wa
b = (θa

b + 2ρθa
b) + πaℓb + 2ρkaπb + κkaℓb. (3.42)

Lastly, and for completeness, let us provide the form of the covariant derivative of the
normal vector n = ℓ + 2ρk along k. This expression, which enters the development of the
normal derivative (3.3), becomes handy in further computations,12

∇knb = k[ρ]kb − (πb + φb)− κℓb. (3.43)

3.3 Rigged derivative summary

It is now a good place for us to summarize our findings and write the expansion of the
rigged derivative in terms of tangential entities. We have found that the rigged structure
defines on the stretched horizon H a rigged connection Da (which can be equivalently called a
Carrollian connection) and a volume form ϵH . The compatibility of this rigged derivative and
the volume form gives (Da + ωa)ϵH = 0, where we recall that ωa = κka + πa. We also have

(Da − ωa)ℓb = θa
b + kaAb, (3.44)

(Da + ωa)kb = θab − ka(πb + φb). (3.45)

An important remark is that when the rigged connection preserves the vertical direction,
(Da − ωa)ℓb = 0, which means both the expansion θab and the acceleration Aa have to vanish,
it defines a Carroll G-structure (or a strong Carroll structure) [78–84]. The derivative of the
tangential projector is expressed simply in terms of these tensors as

Daqc
b = −[(Da + ωa)kc]ℓb − kc[(Da − ωa)ℓb]. (3.46)

We can also evaluate the derivative of the frame and its inverse as

DaeA
b = (2)Γb

aA − [θaA − ka(πA + φA)]ℓb + kaθA
b, (3.47)

DaeA
b = −(2)ΓA

ab − (θa
A + kaAA)kb − kaθb

A, (3.48)
12We use that

g(eA,∇kn) = g(eA,∇kℓ) = −g(∇keA, ℓ) = −g(∇ℓeA, k) = −g([ℓ, eA], k) − g(∇eA ℓ, k) = −(φA + πA).
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where we use the obvious notation θa
B = θa

beB
b and (2)Γb

aA = eA
a

(2)ΓC
BAeC

b where DeAeB =
(2)ΓC

ABeC are the components of the horizontal connection. This shows that the rigged
derivative depends on the components of the rigged connection (κ, πa) and on the kinematical
Carrollian elements such as the Carrollian acceleration and vorticity (φa, wab). It also contains
elements that are intrinsic, such as the expansion tensor θ(ab) = 1

2Lℓqab. Finally, it also
contains extrinsic elements such as the extrinsic curvature θ(ab) that we refer to as the shear,13

the acceleration Aa and the anti-symmetric components of the expansion tensor. When
the rigged connection is derived from an embedding, we have that the acceleration can be
expressed as Aa = Daρ+2ρφa, where 2ρ is the norm of the normal vector. It also means that
the anti-symmetric components of the expansion tensor θ[ab] = ρ

2wab are proportional to the
Carrollian vorticity. In other words, the rigged connection derived from a rigged structure
depends on the metric q but also on (ρ, ωa) and the shear θab. The shear tensor can be
understood as encoding the gravitational radiation of the stretched horizon H.

3.4 Comment on the energy-momentum tensor

As we have explained, the condition Daρ = 0 is necessary to have conservation of the
energy-momentum tensor (3.13) and that this condition can always be chosen by properly
rescaling the normal form n. Let us now demonstrate how this is done. Suppose that we
start from a normal n̂ with norm 2ρ̂ that is not constant on the surface, Daρ̂ ̸= 0, and
consequently the energy-momentum tensor T̂ a

b naively defined as in (3.13), with n̂ replacing
n, is no longer conserved.

T̂ a
b := Ŵa

b − ŴΠa
b = −

(
Êℓb + Ĵb

)
ka + π̂aℓb +

(
Ta

b + P̂qa
b
)

, (3.49)

where Ŵa
b is the Weingarten tensor now defined with the rescaled vector n̂a.

In close vicinity of the null boundary N , we can always express the norm as ρ̂ = rη,
where η is a strictly positive function on M . We can now define the new normal form as

n := 1
√

η
n̂, with its norm being nana = 2r, (3.50)

which is now constant on the surface H. Notice that this corresponds to the change in
the scale factor α̂ → α = α̂ − 1

2 ln η. The conserved energy-momentum tensor DbTa
b = 0

is the one defined in terms of n. One can check that this new conserved tensor is related
to the naive, non-conserved one by

Ta
b = 1

√
η

(
T̂ a

b − qa
c∂c (ln

√
η) ℓb + ℓ [ln√η] qa

b
)

. (3.51)

Note that when working with the closed normal form n̂ = dr, such that α̂ = 0, the function η

coincides, on the null boundary, with the surface gravity κ̂ of ℓ̂. In such case, this particular
form of the conserved energy-momentum tensor T̂ a

b, with the presence of the derivatives
Da ln

√
κ terms, has been proposed in [69]. In our previous construction, we have already

bypassed this construction by assuming a priori the condition Daρ = 0.
13As we have seen, the anti-symmetric components of the extrinsic tensor are given by the Carrollian

vorticity θ[ab] = 1
2 w[ab].
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3.5 Einstein equations on the stretched horizons

We have already proved that the Einstein equations correspond to the conservation laws of
the energy-momentum tensor (3.13). With the extrinsic geometry of the stretched horizon
H defined, we now finally explicitly write the Einstein equations on H in terms of the
Carrollian fluid momenta.

Following from the conservation equation (3.10), the component Gnℓ of the Einstein
tensor can be written by recalling the definition of the energy-momentum tensor (3.13) and
the rigged covariant derivative (3.17) as

Gnℓ = ℓaDbTa
b

= Da(ℓbTb
a)− Ta

bDbℓ
a

= −Da (Eℓa + Ja)− Tb
a
(
θa

b + πaℓb + Abka + κkaℓb
)

= −(ℓ + θ)[E]− Pθ − (DA + φA)JA − AAπA − TA
BθB

A

= −(ℓ + θ)[E]− Pθ − (DA + 2φA)JA − TA
BσB

A,

(3.52)

where we used that DaJ
a = DAJ

A + (πA + φA)JA and Daℓa = θ + κ (derivations are given in
appendix B), and to obtain the last equality, we also used that AAπA = φAJ

A that follows
from (3.35). The remaining components of the Einstein tensor are GnA, which, in a similar
manner, we can use the energy-momentum tensor (3.13) and the rigged derivative of the
horizon basis, DbeA

a, provided in (B.12) to show that

GnA = eA
aDbTa

b

= Da(eA
bTb

a)− Ta
bDbeA

a

= Da (TA
a + PeA

a + πAℓa)− (2)ΓC
BATC

B − πBθAB − JBθBA + E(πA + φA)
= (ℓ + θ + κ)[πA] + (DB + πB + φB)(TA

B + PδB
A )− πBθAB − JBθBA + E(πA + φA)

= (ℓ + θ)[πA] + EφA − wABJ
B + (DB + φB)(TA

B + PδB
A ),

(3.53)
where we used again that Daea

A = (2)ΓB
BA + (πA + φA) and Daℓa = θ + κ (see appendix B for

explanations), and to obtain the last equality, we utilized the gravitational dictionary (3.41),
more specifically the following relations: θAB + 2ρθAB = TAB + 1

2EqAB, wAB = θBA − θAB,
2ρπA = JA, and P = −κ − 1

2E. This shows that the vacuum Einstein’s equation projected on
stretched horizons are Carrollian fluid conservation equations [69, 71, 74]. The conservation
equations are (3.52) and (3.53) are Carrollian fluid conservation equations. These can be
conveniently written as

ℓ[E] + (P+ E)θ = −(DA + 2φA)JA − TA
BσB

A, (3.54)
(ℓ + θ)[πA] + (E+ P)φA +DAP = wABJ

B − (DB + φB)TA
B, (3.55)

where the r.h.s. represents fluid dissipation effects. The null Carrollian fluid equations are
recovered when JA = 0.
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3.6 Einstein equations on the null boundary

In the previous section, we have shown that the Einstein equations Gna projected on the
stretched horizon H are equivalent to conservation equations. These equations are independent
of the shear of the Carrollian connection. Ultimately, it is essential to look at the rest of the
Einstein equation projected on H. Here, we achieve this but only for the Einstein equations
projected onto the null surface N . We denote with a ring the projected tensors: q̊AB, θ̊AB, · · ·
denote the evaluation of qAB, θAB, · · · onto N .

We find that the components of the Einstein tensor on the null boundary are

−G̊ℓℓ = (ℓ + θ̊)[̊E] + P̊θ̊ + σ̊A
Bσ̊B

A (3.56a)
G̊ℓA = (ℓ + θ̊)[πA] + (̊E+ P̊)φA + (D̊B + φB )̊σA

B + D̊AP̊ (3.56b)

G̊ℓk = (ℓ + 1
2 θ̊ − P̊)[̊θ] + (D̊A + πA + φA)(πA + φA)− 1

2
(2)R (3.56c)

−G̊⟨AB⟩ =
[
2(ℓ − θ̊ − P̊)[̊σAB] + θ̊σ̊AB + 2(D̊A + πA + φA)(πB + φB)

]
STF

(3.56d)

The subscript STF means that we take the symmetric trace-free components.14 The first
two equations are simply the null Carrollian conservation equation we have just derived, and
they are known as the null Raychaudhuri equation and the Damour equations, respectively.
The next two equations determine the evolution of the shear θAB in terms of P and the
intrinsic geometry data (qAB, φA, πA, θAB). It is important to check that these equations
are invariant under the rescaling symmetry

(ℓ, θ̊, E̊,TA
B) → (eϵℓ, eϵθ̊, eϵE̊, eϵTA

B) (3.57)
P̊ → eϵ(P̊− ℓ[ϵ]), φA → φA − eA[ϵ], πA → πA + eA[ϵ]. (3.58)

In addition, the other Einstein equations involve the trace part of the components G̊AB. In
the gauge where κ = 0, i.e., where k is affinely parameterized, it is given by,15

1
2 q̊ABG̊AB = −Rℓk = (ℓ − P̊)[θ] + k[κ] + (D̊A + 2(πA + φA))(πA + φA) + σ̊ : σ. (3.59)

A more detailed study of these equations and their interpretation in terms of symmetries
will be performed in [114].

14In particular, we have that

[ℓ[σAB ]]STF = ℓ[σAB ] − 2σC(Aσ̊B)
C = ℓ[σAB ] − qAB(σC

Dσ̊D
C)

.
15Equating (3.56c) with (3.59) means that

k[κ] + (π + φ)·(π + φ) = 1
2θθ − σ : σ − 1

2
(2)R
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4 Symmetries and Einstein equations

The last part of this work aims at exploring the gravitational phase space, symmetries, and
the associated Noether charges of the stretched horizon. We would like to demonstrate
the following points:

i) The pre-symplectic potential of the gravitational phase space of the stretched horizon
H is essentially expressed in terms of the Carrollian conjugate pairs, as in [74].

ii) The tangential components of the Einstein equations, namely Πa
bGnb = 0, which are

interpreted as Carrollian hydrodynamics conservation equations, are derived from the
diffeomorphism symmetries of the stretched horizon. We will also compute the Noether
charges associated with these diffeomorphism symmetries.

4.1 Pre-symplectic potential of stretch horizons

The gravitational phase space of the stretched horizon H can be constructed using the
covariant phase space formalism. Following the covariant phase space formalism, we look at
the pre-symplectic potential that encodes the phase space information of the theory. In this
study, we consider the 4-dimensional Einstein-Hilbert Lagrangian without the cosmological
constant term and without matter degrees of freedom, meaning that L = 1

2RϵM where R

is the spacetime Ricci scalar and ϵM denotes the spacetime volume form. The standard
pre-symplectic potential of the Einstein-Hilbert gravity pulling back to the stretched horizon
H is given by

ΘH = −ΘanaϵH , where Θa = 1
2
(
gac∇bδgbc −∇aδg

)
, (4.1)

where we recalled the volume form on the surface ϵH := −ιkϵM and we also denoted the
trace of the metric variation with δg := gabδgab.

To evaluate the pre-symplectic potential ΘH , one starts with the variation of the spacetime
metric, whose components can be expressed in terms of the co-frame fields as,

δgab = δqab + 2k(aδnb) + 2ℓ(aδkb) − 2(δρ)kakb. (4.2)

Computations of the variation δgab thus boils down to the computation of variations of the
co-frames n and k and the null metric qab. These variations are given by16

δn = δαn, δk = δαk − eαδβAeA, δq = −2eαqABδV Bk ⊙ eA + δqABeA ⊙ eB, (4.4)

where we define the variation δ as follows

δα := δα + βAδV A, (4.5)

δβA := (J−1)A
Cδ

(
JC

BβB

)
− (β · δV )βA, (4.6)

δqAB := (J−1)A
C(J−1)B

Dδ
(
JC

EJD
F qEF

)
− 2qC(AβB)δV C , (4.7)

δV A :=
(
δV B

)
JB

A. (4.8)
16We also have the field variation of the Carrollian vector,

δℓ = −δαℓ + e−αδV AeA. (4.3)
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These field variations can also be written in terms of the variations of the fundamental
forms and vectors as

δα = kaδna, δα = ℓaδka, eαδβA = −eA
aδka, e−αδV A = eA

aδℓa (4.9)

One can then compute the trace of the metric variations, and it is given by

δg = 2 (δα + δα + δ ln√q) = 2 (δα + δα + δ ln√q) . (4.10)

After tedious but straightforward computations (see the derivation in section C), we
finally obtain the expression for the pre-symplectic potential on the stretched horizon. This
potential is the sum of three terms: a bulk canonical term, a total variation term, and a
boundary term as ΘH = Θcan

H + δLH + ΘS , where each term is

Θcan
H =

∫
H

(
−Eδα + eαJAδβA − πAe−αδV A + 1

2
(
TAB + PqAB

)
δqAB − θδρ

)
ϵH (4.11a)

LH =
∫

H
(κ + E) ϵH (4.11b)

ΘS = 1
2

∫
S

δ (α − α) ϵS (4.11c)

Note that we can use the identity
∫

H θϵH =
∫

S ϵS to rewrite part of the second term as a
corner term. We first observe that the bulk canonical piece of the pre-symplectic potential
contains the same conjugate pairs as in the action for Carrollian hydrodynamics [74] with
the addition of the term θδρ that vanishes on the null boundary N . We also notice that
the scale α of the normal form only appears in the corner term, in agreement with the
one presented in [88, 105] for the case of null boundaries. This suggests that we can safely
set α = 0 without losing any phase space data. Let us mention [104] for an earlier unified
description of null and timelike pre-symplectic structure.

An important check that this expression (4.11) is the right one comes from checking the
fact that it is invariant under the rescaling transformation (2.15). The infinitesimal rescalings
δϵℓ = −ϵℓ and δϵk = ϵk imply the following transformations

δϵ(EϵH) = 0, δϵ(κϵH) = −ℓ[ϵ]ϵH , δϵρ = −2ϵρ, δϵα = −δϵα = ϵ, δϵπA = −eA[ϵ].
(4.12)

We can then check that

δϵΘcan
H =

∫
H

(
−Eδϵ + e−αδV AeA[ϵ] +

1
2ℓ[ϵ]qABδqAB + 2ρθδϵ

)
ϵH (4.13)

=
∫

H

((
(−E+ 2ρθ)δϵ + (δℓ)[ϵ]

)
ϵH + ℓ[ϵ](δϵH)

)
(4.14)

= −
∫

H
(ℓ + θ)[δϵ]ϵH + δ

(∫
H

ℓ[ϵ]ϵH

)
(4.15)

= −
∫

S
(δϵ)ϵS + δ

(∫
H

ℓ[ϵ]ϵH

)
, (4.16)

where in the second equality we used (4.3) and the variation δϵH = (δα + 1
2qABδqAB)ϵH .

From this we see that δϵΘH = 0, inferring the invariance of the pre-symplectic potential
under the rescaling. This implies that

IϵΩH = δϵΘH − δ(IϵΘH) = −δ(IϵΘH). (4.17)
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The corresponding canonical charge is therefore

IϵΘH =
∫

H
(−Eϵ + 2ρθϵ)ϵH −

∫
H

ℓ[ϵ]ϵH +
∫

S
ϵϵS = 0. (4.18)

Since it vanishes, this means that the rescaling is indeed a gauge symmetry.
Using the same strategy, we can prove that the boost symmetry (2.18) is a gauge

symmetry, provided we impose the condition

JA = 2ρπA. (4.19)

4.2 Noether charges for tangential symmetries

We now show that the pre-symplectic potential we have just described is symmetric under
diffeomorphism tangent to the stretch horizon H,

ξ = τℓ + X, where X := XAeA. (4.20)

The transformation rules for the metric coefficients are easily determined by demanding
that the transformation rules of the fundamental forms and vectors (ℓ, k, n, g) are non-
anomalous,17 This means, in particular, that one first has to write down the transformation
rules for relevant basis vectors and 1-forms. These are given by

Lξk = (k + κ)[τ ]n +
(
ℓ[τ ] + XAφA

)
k +

(
(eA − φA)[τ ] + wABXB

)
eA, (4.21)

Lξn = ξ[α]n, (4.22)
Lξℓ = −(ℓ[τ ] + XAφA)ℓ − ℓ[XA]eA. (4.23)

One remark is that demanding that the diffeomorphism ξ preserves the condition that the
Ehresmann connection k is tangent to the horizon H requires that (k +κ)[τ ] = 0. We assume
that this condition is satisfied. Following from (4.4) and (4.3) the transformation rules

δξα = ξ[α],
δξα = ℓ[τ ] + XAφA,

−eαδξβA = (eA − φA)[τ ] + wABXB,

−e−αδξV A = ℓ[XA],

δξqAB = 2
(
τθAB +D(AXB)

)
,

δξρ = ξ[ρ]. (4.24)

We then evaluate that

IξΘcan
H = −

∫
H

(
τGnℓ + Y AGnA

)
ϵH + Q(τ,Y ). (4.25)

We now see that the stretched horizon H Raychaudhuri equation Gnℓ = 0 and the Damour
equations GnA are associated with the tangential diffeomorphism on H. This extends to

17This means that ∆ξ(ℓ, k, n, g) = 0 with the (field independent) anomaly operator defined as the difference
between the field variation and the Lie derivative, ∆ξ = δξ − Lξ. More details and applications related to this
technology can be found in [39, 88, 90, 93, 109, 115].
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the stretched horizon what has already been established in the literature for null surfaces
(see [88]). The Noether charges are given (for non-zero βA) by

Q(τ,Y ) =
∫

S

(
−τE+ Y A

(
πA + (TA

B + PδB
A )eαβB

))
ϵS . (4.26)

They are precisely the charges for Carrollian hydrodynamics [72, 74].

4.3 Covariant derivation of the Einstein equations

For completeness, we provide here a detailed derivation of (4.25) using the covariant form of
the pre-symplectic potential. First, we use that we can write the bulk canonical pre-symplectic
potential Θcan

H (4.11a) in a covariant manner as18

Θcan
H =

∫
H

[
Ta

b
(

ℓa(Πb
cδkc)− qc

akbδℓc + 1
2qacqb

dδqcd

)
− θδρ

]
ϵH . (4.27)

This expression insures that the symplectic potential is covariant, i.e., it satisfies δξΘcan
H = 0.

Let us now consider the contraction of tangential diffeomorphism ξ = fℓ + XAeA on the
canonical pre-symplectic potential. We first consider the following terms,

ℓa(Πb
cδξkc)− (qa

cδξℓc)kb +
1
2qacqb

dδξqcd

= ℓaΠb
c(ξd∇dkc + kd∇cξ

d)− qa
c(ξd∇dℓc − ℓd∇dξc)kb +

1
2qacqb

d(∇cξd +∇dξc)

= ∇cξ
d
(
Πb

ckdℓa + kbℓ
cqd

a + 1
2qbdqac + 1

2qb
cqd

a
)
+ (Πb

cℓa∇dkc − qc
akb∇dℓc) ξd,

(4.28)

where we used that qacqb
dδqcd = qacqb

dδgcd. Let us now consider the first term that contains
∇cξ

d. We can show, with the help of the relation Πa
b = qa

b + kaℓb, the following result,

Πb
ckdℓa+kbℓ

cqd
a+ 1

2qbdqac+ 1
2qb

cqd
a =Πb

c(Πd
a−qd

a)+(Πb
c−qb

c)qd
a+ 1

2qbdqac+ 1
2qb

cqd
a

=Πb
cΠd

a+ 1
2 (qbdqac−qb

cqd
a) .

(4.29)
Note that the last term vanishes when contracting with Ta

b by symmetry. This means
that we have

Ta
b∇cξ

d
(
Πb

ckdℓa + kbℓ
cqd

a + 1
2qbdqac + 1

2qb
cqd

a
)
= Ta

bDbξ
a. (4.30)

Next, the remaining term in (4.28) that is proportional to ξd can be written as

Πb
cℓa∇dkc − qc

akb∇dℓc = Πb
cℓa∇dkc −Πc

akb∇dℓc + kcℓ
akb∇dℓc

= −Πc
akb∇dℓc + (Πb

c − kbℓ
c)ℓa∇dkc

= −Πc
akb∇dnc + (2ρΠc

akb + qbcℓ
a)∇dkc

= −Πc
akb∇dnc + (2ρqc

akb + qbcℓ
a)∇dkc.

(4.31)

18Note that the variational term contracting Ta
b can be written

Πb
cℓaδkc + qac

(
−kbδℓdqcd + 1

2qb
dδqcd

)
= Πb

cℓaδkc + qac
(

kbℓdδqcd + 1
2qb

dδqcd

)
.
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For the first term, we recall the definition of the energy momentum tensor to write

−Ta
bkb(ξd∇dnc)Πc

a = −(Wa
bkb −Wka)ξdWd

a

= −(ωaξdWd
a −Wξdωd) = −ξdTd

aωa.
(4.32)

For the second term, we have that

Ta
b(2ρqc

akb + qbcℓ
a)ξd∇dkc = (2ρqc

aTa
bkb + qbcℓ

aTa
b)ξdKd

c

= (2ρπc − Jc)ξdKd
c

= ξcKc
a(qa

bDbρ)
= ξaKa

bDbρ,

(4.33)

where we used that Ja = 2ρπa − qa
bDbρ and the fact that Ka

bkb = 0. Since δξρ = ξaDaρ,
we overall obtain

IξΘcan
H =

∫
H

(
Ta

b(Db − ωb)ξa + ξa(Ka
b − KΠa

b)Dbρ
)

ϵH

= −
∫

H
ξa

(
DbTa

b − (Ka
b − KΠa

b)Dbρ
)

ϵH + d(ξbTb
aιaϵH)

= −
∫

H
GnξϵH +

∫
∂H

ξbTb
aιaϵH .,

(4.34)

where we used the Stokes theorem (A.9) to obtain the second equality. It is interesting to
note that in this derivation we have not assumed that Daρ = 0 and we have used the presence
of the additional θδρ term to prove the covariance condition (4.34).

5 Conclusions

In recent years, Carrollian physics has garnered increasing attention as it has emerged in
a variety of situations involving null boundaries both at finite distances [69, 75, 92] and
at asymptotic infinities [14, 26]. The transpiration of this novel type of physics at null
boundaries stems naturally from the fact that Carroll structures are universal structures of
null surfaces, and the Carroll symmetry is (a part of) the symmetry group of the surfaces. In
this work, we pushed this fascinating connection beyond null surfaces and argued that Carroll
geometries and Carrollian physics also manifest on timelike surfaces. We demonstrated this
feature in the case of the (timelike) stretched horizons located near a finite-distance null
boundaries, focusing particularly on the correspondence between gravitational dynamics and
hydrodynamics in the same spirit as the black hole membrane paradigm.

Our geometrical setups relied on the rigging technique for general hypersurfaces. Let us
highlight two apparent benefits of this technique. First, by endowing a hypersurface with a
null rigged structure where a transverse vector field to the surface is null, a geometrical Carroll
structure can be constructed from the elements of the rigged structure, hence providing the
Carrollian picture to the intrinsic geometry of the surface, regardless of whether the surface
is null or timelike. Secondly, our construction gives a unified treatment for timelike and null
hypersurfaces in the way that both the stretched horizon energy-momentum tensor (3.1) and
its conservation laws (3.10) admit non-singular limits from the timelike stretched horizon to
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the null boundaries. Moreover, the energy-momentum tensor (3.13), which is interpreted as
the Carrollian fluid energy-momentum tensor, allows us to establish the dictionary between
gravitational degrees of freedom on the stretched horizon and Carrollian fluid quantities (3.41).
Furthermore, the Einstein equations Πa

bncGac = 0 are the conservation laws of the Carrollian
fluid. Our result is thus a generalization of [88, 91, 93] for the null boundaries. We have
also shown that the correspondence between gravity and Carrollian fluids goes beyond the
level of equations of motion and also manifests at the level of phase space. More precisely,
the canonical part of the gravitational pre-symplectic potential (4.11) decomposes the same
way as the Carrollian fluid action [72, 74]. These Carrollian hydrodynamic equations are
associated with the tangential diffeomorphism of the stretched horizon and the corresponding
Noether charges take the form of the conserved charges of Carrollian fluids.

There are, of course, many routes to be explored, and we list here some interesting
prospective research topics we think are worth investigating:

i) Thermodynamics of Carrollian fluids. Having now established the connection between
gravity and Carrollian hydrodynamics, it is then interesting to study the thermodynamics
of Carrollian fluids, in turn providing a fluid route to elucidate the thermodynamical
properties of the horizons. One intriguing challenge is to have a complete definition
of the thermodynamical horizons, the type of hypersurfaces that obey all laws of
(possibly non-equilibrium) thermodynamics, using the fluid analogy. Another interesting
investigation is to explore the difference between Carrollian hydrodynamics and the
corresponding thermodynamics of the null boundary and the stretched horizon. In the
context of Carrollian fluids, the key difference between the stretched horizon and the
null boundary is that the former possesses a non-zero Carrollian heat current JA (see
the dictionary (3.41)) while it vanishes strictly in the latter case. It would be interesting
to study how the non-zero heat current affects the thermodynamic properties of the
horizon, for instance, the expression for the horizon entropy current and the entropy
production.

ii) Carrollian fluids at infinities. In this work, we solely dedicated our attention to
the case where the stretched horizons and the null boundary are situated at finite
distances, with the example being the near-horizon geometry of black holes. It would
certainly be tempting to investigate whether the similar Carrollian fluid interpretation
occurs at asymptotic null infinities and, should this be the case, what the gravitational
dictionary at infinity is. It is worth mentioning that there have already been a number
of works that explored this null-Carroll correspondence in the context of geometry and
symmetry [14, 15, 18], celestial and flat holography [22, 26, 95–97], and Carrollian field
theory [94, 98, 99]. However, the complete Carrollian fluid picture, both at the level of
dynamics and the phase space, has yet to be explored.

iii) Stretched horizon as a radial expansion. At null infinities, different layers of information
about the null infinity phase space, symmetries, and dynamics are encoded in different
orders of the radial (1/r) expansion around null infinities [66–68]. This suggests that
some information about a finite-distance null boundary can be accessed by treating a
stretched horizon as a radial expansion around the finite-distance null boundary (r = 0)
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(also called the near-horizon expansion). One important objective is to fully derive the
Einstein equations on the null boundary from the symmetry principle. To achieve that
goal, we need the covariant phase space analysis of the geometry near the null boundary,
and the result (4.11) of this current work will serve as the core basis for the near-horizon
considerations. We plan to report the detailed derivations in our upcoming article [114].

A Essential elements of Carroll geometries

One important result we have developed in the main text is a geometrical Carroll structure,
descended from a null rigged structure, serving as a basic building block of the intrinsic
geometry of the stretched horizon H. Here, we briefly summarize the geometrical objects of
Carroll geometry that will be relevant to this present work. We will follow the notation and
convention from our precursory work [74] (interested readers may want to see also [18, 71, 73]
for similar Carrollian technologies).

A.1 Carrollian covariant derivative and curvature tensors

We have introduced the rigged covariant derivative Da as the connection on the stretched
horizon H . There exists another layer of covariant derivative on the surface H that stems from
the (induced) Carroll structure of H . Recalling that the space H has a fiber bundle structure,
p : H → S, and its tangent space TH admits, by means of the Ehresmann connection
k, the splitting into a 1-dimensional vertical subspace span by the Carrollian vector field
ℓ ∈ ker(dp) and the non-integrable19 horizontal subspace span by the basis vectors eA. We
then define a horizontal covariant derivative DA (also called the Levi-Civita-Carroll covariant
derivative [71]) that is compatible with the sphere metric, i.e., DCqAB = 0. It acts on a
horizontal tensor T = T A

BeA ⊗ eB as

DAT B
C = eA[T B

C ] + (2)ΓB
DAT D

C − (2)ΓD
CAT B

D, (A.1)

and one can straightforwardly generalize it to a tensor of any degree. The torsion-free
Christoffel-Carroll symbols [71] (2)ΓA

BC = (2)ΓA
CB is defined in the same manner as the standard

Christoffel symbols, but instead with the sphere metric and the horizontal basis vectors,

(2)ΓA
BC := 1

2qAD (eB[qDC ] + eC [qBD]− eD[qBC ]) = qADg(eD,∇eB eC), (A.2)

where the final equality follows from qAB = g(eA, eB) and the commutator [eA, eB] = wABℓ.
Let us also note that the horizontal divergence of any horizontal vector field X = XAeA

is given by the familiar formula,

DAXA = 1
√

q
eA

[√
qXA

]
. (A.3)

The horizontal covariant derivative DA was defined for the timelike surface H and it has
a regular limit to the null boundary N .

19The non-integrability of the horizontal subspace is reflected in the commutator [eA, eB ] = wABℓ and the
Frobenius theorem. It becomes however integrable when the vorticity vanishes, wAB = 0, and in that case
there exists a Bondi frame.
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Having the horizontal covariant derivative DA, one defines the Riemann-Carroll tensor,
(2)RA

BCD, whose components are determined from the commutator,

[DC ,DD]XA = (2)RA
BCDXB + wCDℓ[XA], (A.4)

where the last term compensates for the non-integrability of the horizontal subspace. The
corresponding Ricci-Carroll tensor,(2)RAB := (2)RCADBqCD, is in general not symmetric.
Lastly, the Ricci-Carroll scalar is defined as (2)R := (2)RABqAB.

A.2 Volume forms and integrations

First, we define a volume form on the spacetime M to be ϵM = k ∧ n ∧ ϵS where ϵS is the
pull-back of the canonical volume form on the sphere S onto the stretched horizon H,

ϵS = 1
2
√

qεABeA ∧ eB = p∗
(1
2
√

qεABdσA ∧ dσB
)

. (A.5)

A volume form on the H is then given by

ϵH = −ιkϵM = k ∧ ϵS , and we also have that ϵS = ιℓϵH . (A.6)

For a function f on H and for a horizontal vector X = XAeA, they satisfy the following
relations on the stretched horizon H,

d(fϵS) = (ℓ[f ] + θf) ϵH , and d (ιXϵH) =
(
DAXA + φAXA

)
ϵH . (A.7)

These two equations also hold on the null boundary N .
In this work, we choose a boundary ∂H of the stretched horizon H to be located at a

constant value of the coordinate u. This boundary is identified with the sphere S, meaning
that ∂H = Su. The Stokes theorem is therefore written as∫

H
(ℓ[f ] + θf) ϵH =

∫
Su

fϵS , (A.8a)∫
H

(
DAXA + φAXA

)
ϵH =

∫
Su

eαXAβAϵS . (A.8b)

The above two formulae can be written covariantly in term of the rigged derivative as∫
H
(Da − ωa)V aϵH =

∫
∂H

V aιaϵH , (A.9)

where we defined V a = fℓa +XAeA
a, used that DaV a = (ℓ+ θ + κ)[f ] + (DA + πA +φA)XA

which will be derived in appendix B and recalled ωa = κka + πa.

B More on covariant derivatives

Here, we elaborate more on the relations involving the spacetime covariant derivative ∇a,
the rigged covariant derivative Da, and the horizontal covariant derivative DA. First, let
us provide the general form of the spacetime covariant derivative of the tangential vector
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ℓ, the transverse vector k, and their combination n = ℓ + 2ρk that will become handy in
the computations,

∇aℓb = θa
b + (πa + κka)ℓb − ka(Jb − 2(πb + φb)ρ) + (Ja − ka(ℓ − 2κ)[ρ]) kb

− na

(
(k[ρ] + 2ρκ)kb + (πb + φb) + κℓb

)
, (B.1)

∇akb = θa
b − (πa + κka)kb − ka(πb + φb) + κnakb. (B.2)

∇anb = (θa
b + 2ρθa

b) + (πa + κka)ℓb − kaJ
b + Daρkb

− na

(
−k[ρ]kb + (πb + φb) + κℓb

)
. (B.3)

We emphasize here again that the Carrollian current is given in general by (3.34), Ja =
−(Da − 2πa)[ρ]. The divergences of these vectors are

∇aℓa = θ + κ − (k[ρ] + 2ρκ), and ∇aka = θ + κ. (B.4)

The projections of (B.1) and (B.2) are thus given by

Daℓb := Πa
cΠd

b∇cℓ
d = θa

b + πaℓb + kaAb + κkaℓb, (B.5)
Ka

b := Πa
cΠd

b∇ck
d = θa

b − ka(πb + φb), (B.6)

where we recalled the acceleration Aa = (Da + 2φa)ρ. Their traces are

Daℓa = θ + κ, and Daka = θ. (B.7)

As we have seen, there are three layers of covariant derivatives: ∇a, Da and Da. To
connect them, we first look at the spacetime covariant derivative of the horizontal basis eA

along another horizontal basis. One can verify that it is given by

∇eAeB = (2)ΓC
ABeC − θABℓ − (θAB + 2ρθAB)k. (B.8)

Using the decomposition of the spacetime metric (2.10) and the Leibniz rule, we express
the spacetime divergence of the horizontal basis as

∇aeA
a =

(
nakb + kaℓb + qBCeBaeC

b
)
∇beA

a = (2)ΓB
BA + 2(φA + πA). (B.9)

Observe that if we set the scale factor α = 0, we simply have that 2(φA+πA) = φA. Following
from these results, the covariant derivative of a generic horizontal vector field Xa := XAeA

a

projected onto the horizontal subspace is

eB
a∇eAXa = eA[XB] + XCeB

b∇eAeC
b = DAXB. (B.10)

Furthermore, the spacetime divergence of the horizontal vector is

∇a

(
XAeA

a
)
= eA[XA] + XA∇aeA

a = (DA + 2(πA + φA))XA. (B.11)

In addition, let us also look at the rigged covariant derivative of the horizontal basis. We
can show by recalling that Πa

b = qa
b + kaℓb and qa

b = eA
aeA

b the following relation
DbeA

a = Πb
dΠc

a∇deA
c

= (qb
d + kbℓ

d)∇deA
c(qc

a + kcℓ
a)

= qCDg(eD,∇eB eA)eB
beC

a + g(k,∇eB eA)eB
bℓ

a + qBCg(eC ,∇ℓeA)kbeB
a

+ g(k,∇ℓeA)kbℓ
a

= (2)ΓC
BAeC

aeB
b + (−θBAeB

b + (πA + φA)kb)ℓa + θA
BeB

akb.

(B.12)
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The rigged divergence of the horizontal basis is simply the trace,

DaeA
a = (2)ΓB

BA + (πA + φA). (B.13)

With this, the rigged divergence of a horizontal vector field Xa = XAeA
a is then

DaXa = Da(XAeA
a) = DAXA + (πA + φA)XA. (B.14)

For completeness, let us also compute the rigged covariant derivative of the co-frame eA.
Using that Da(ℓbeA

b) = ℓbDaeA
b+eA

bDaℓb = 0 and Da(eB
beA

b) = eB
bDaeA

b+eA
bDaeB

b = 0
we hence write

DaeA
b = −(eA

cDaℓc)kb − (eA
bDaeB

b)eB
b

= −(θa
A + kaAA)kb − (2)ΓA

ab − θb
Aka.

(B.15)

Following from qc
b = eA

ceA
b, we can then show that the rigged covariant derivative of the

null Carrollian metric is

Daqc
b = eA

cDaeA
b + eA

bDaeA
c

=
(

(2)Γb
ac + (−θac + (πa + φc)ka)ℓb + kaθc

b
)
−

(
(θa

b + kaAb)kc + (2)Γb
ac + θc

bka

)
= (−θac + (πa + φc)ka)ℓb − (θa

b + kaAb)kc.

(B.16)
This result can also be obtained by simply using that qc

b = Πc
b − kcℓ

b and that DaΠc
b = 0.

C Derivation of the pre-symplectic potential

In this section, we present in detail how to write the gravitational pre-symplectic potential
in terms of Carrollian fluid variables. For the Einstein-Hilbert gravity, the pre-symplectic
potential evaluated on the stretched horizon H is given by

ΘH = −ΘanaϵH , where Θa = 1
2
(
gac∇bδgbc −∇a(gbcδgbc)

)
, (C.1)

and we recalled that ϵH := −ιkϵM . To evaluate the pre-symplectic potential, one starts
with the variation of the spacetime metric, which, by using the decomposition (2.10), can
be expressed as follows,

δgab = δqab + 2δn(akb) + 2n(aδkb) − 4ρk(aδkb) − 2δρkakb

= δqab + 2k(aδnb) + 2ℓ(aδkb) − 2δρkakb,
(C.2)

where we recalled that ℓa = na − 2ρka. The trace of the metric variation is then

gbcδgbc = 2 (δα + δα + δ ln√q) = 2 (δα + δα + δ ln√q) . (C.3)
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The task now is to consider the first term, which is na∇bδgab, in the gravitational
pre-symplectic potential. Let us evaluate each term in (C.2) separately as follows:

□ First, using that δna = δαna and the Leibniz rule, we can show that

na∇b
(
2k(aδnb)

)
= na∇b (δα(kanb + nakb))

= ∇a ((na + 2ρka)δα)− (na∇kna + ka∇nna)δα

= (n + 2ρk +∇ana + 2ρ∇aka + 2k[ρ]) [δα]− (k[ρ] + κ − 2ρκ) δα

=
(
ℓ + 4ρk + θ + 4ρ(θ + κ) + 2k[ρ]

)
[δα],

(C.4)

where we used the formulae for the divergences ∇ana = θ+2ρθ+κ+k[ρ] and ∇aka = θ+κ.

□ Using the variation of the Ehresmann connection δka = δαka − eαδβAeA
a, we show the

folllowing

na∇b
(
2ℓ(aδkb)

)
= ∇a

(
(nbδkb)ℓa

)
− ℓaδkb(∇anb +∇bna)

= (ℓ +∇aℓa) [δα]− (ka∇ℓn
a + ℓa∇kna)δα

+ eα
(
eA

a∇ℓn
a + qABℓa∇eB na

)
δβA

= (ℓ + θ + κ − k[ρ]− 2ρκ) [δα]− (κ + k[ρ] + 2ρκ) δα

− eα
(
JA − (DA − 2πA)[ρ]

)
δβA

= (ℓ + θ − 2(k[ρ] + 2ρκ)) [δα]− 2eαJAδβA

= (ℓ + θ − 2(κ − ℓ[α])) [δα]− 2eαJAδβA,

(C.5)

where we used the relation JA = −(DA − 2πA)[ρ].

□ Using the Leibniz rule, we have that

−2na∇b (δρkakb) = −2∇a (δρka) + 2 (ka∇kna) δρ

= −2 (k +∇aka) [δρ] + 2 (ka∇kna) δρ

= −2
(
k + θ + 2κ

)
[δρ]

(C.6)

□ Lastly, the term involving variation of the null metric can be evaluated as follows,

na∇bδqab =∇a
(
nbδqab

)
−(∇anb)δqab

=−∇a

(
e−αδV AeA

a
)
+e−α (eAa∇kna+ka∇eAna)δV A−

(
qBCeA

a∇eC na
)
δqAB

=−(DA+2πA+2φA)
(
e−αδV A

)
−e−αφAδV A−

(
TAB+1

2EqAB
)

δqAB

=−(DA+φA)
(
e−αδV A

)
+2e−α (πA−eA[α])δV A−

(
TAB+1

2EqAB
)

δqAB,

(C.7)
where to obtain the last equality, we used the dictionary (3.41) that eA[α] = 2πA + φA.
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The second term in the pre-symplectic potential (C.1) is simply the derivative of the trace of
the metric variation along the direction of the vector na that can be expressed as

na∇a

(
gbcδgbc

)
= 2n [δα + δα + δ ln√q]

= 2ℓ [δα + δα + δ ln√q] + 4ρk [δα + δα + δ ln√q]

= 2ℓ [δα + δα + δ ln√q] + 4ρk[δα + δα] + 4ρ
(
δθ + θδα

)
,

(C.8)

where we used the Leibniz rule to write k[δ ln√q] = δ
(
k[ln√q]

)
− δk[ln√q] and that

δk = −δαk and θ = k[ln√q].
After collecting all the results, we arrive at the following expression for the pre-symplectic

potential (C.1)

2Θana =2(θ−κ)δα−2eαJAδβA+2e−απAδV A−
(
TAB+1

2(E−2θ)qAB
)

δqAB−2θδρ−4ρδθ

−2
(
ℓ[δα]−ℓ[α]δα+e−αδV AeA[α]+k[δρ]−k[ρ]δα+2κδρ+2ρ(k[δα]−κδα)

)
−(DA+φA)

(
e−αδV A

)
+(ℓ+θ) [δα−δα−2δ ln√q] .

(C.9)

The term on the second line is actually the variation of the surface gravity κ, which one can
check straightforwardly by recalling the expression κ = ℓ[α] + k[ρ] + 2ρκ and κ = k[α], that

δκ = ℓ[δα] + δℓ[α] + k[δρ] + δk[ρ] + 2κδρ + 2ρδκ (C.10)
= ℓ[δα]− ℓ[α]δα + e−αδV AeA[α] + k[δρ]− k[ρ]δα + 2κδρ + 2ρδκ (C.11)

δκ = k[δα]− κδα. (C.12)

Then, using the Leibniz rule and that δϵH =
(
δα + δ ln√q

)
ϵH , we can finally show that

ΘH =
(
−Eδα + 2eαJAδβA − 2e−απAδV A + 1

2
(
TAB + PqAB

)
δqAB − θδρ

)
ϵH

+ δ
(
(κ + 2ρθ)ϵH

)
+

(1
2(δα − δα) + δ ln√q

)
ϵS .

(C.13)

where we used that E = θ + 2ρθ and P = −κ − 1
2E. Finally, using that (δ ln√q)ϵS =

δϵS = δ(θϵH), we obtain

ΘH =
(
−Eδα + 2eαJAδβA − 2e−απAδV A + 1

2
(
TAB + PqAB

)
δqAB − θδρ

)
ϵH

+ δ ((κ + E)ϵH) + 1
2(δα − δα)ϵS .

(C.14)
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