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1 Introduction

The method of effective action has been a powerful technique since the early stages of
field theories. A particular branch of its applications concerns quantum electrodynamics
(QED). One of the seminal examples is the Euler-Heisenberg Lagrangian [1], which initially
calculated effective action as a functional of a prescribed constant electromagnetic field by
solving the electron degrees of freedom within the framework of (3+1)-dimensional QED. It
predicts implications such as dynamics of photon-photon interaction and non-perturbative
pair production in vacuum under a strong electric field [2]. This calculation was later
generalized to scalar QED, finite density [3, 4], finite temperature [5, 6], smaller spacetime
dimensions [7, 8], and more realistic electromagnetic profiles [9, 10].

The conventional framework of this type of effective action consists of dynamical matter
fields and an electromagnetic field. The latter is considered classical. The path integral only
sums over the quantum fluctuations from the matter by inverting the operator equation
of motion. As its essence relies upon the solution to operator-valued differential equations,
exact results are only feasible for a few profiles of electromagnetic fields, the most renowned
ones being configurations of constant electric and magnetic fields. By construction, this
framework does not incorporate the quantum mechanical effect of the electromagnetic field.
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It is naturally tempting to look for an improved machinery to accomplish this goal. As a
plausible step, we can consider a dynamical electromagnetic field Fµν with a mean value ⟨Fµν⟩
and ask what the analogous effective potential is, as a functional of ⟨Fµν⟩, after integrating
out δFµν = Fµν − ⟨Fµν⟩. This is reminiscent of the one-particle irreducible (1PI) effective
potentials of the scalar bosons [11, 12], and the background field method used for QCD beta
function evaluation if we proceed with perturbation methodology [13, 14].

This work shall address this task non-perturbatively in (2+1) dimensions for some spinor
QEDs via fermionic particle-vortex dualities [15–19]. Within our scope, duality refers to two
Lagrangians, L and L̃ , leading to the same partition function. In (2+1) dimensions, such
pairs of Lagrangians can be derived by relativistic flux attachment [20], or by assuming a
master duality and performing SL(2,Z) transformations on the U(1) gauges fields in the
master Lagrangians [18, 19, 21]. In particular, we shall concentrate on ones of the form:

L [{ψI}, Aµ] ↔ L̃ [{χI}, {aI,µ}, Aµ] = L̃1[{χI}, {aI,µ}] + L̃2[{aI,µ}, Aµ], (1.1)

where ψI and χI are 2-component Dirac fields, Aµ is the background electromagnetic field,
and aI,µ is the emergent gauge field attached to χI , with I ranging from 1 to N . Physically,
χI represents the vortex of ψI . By studying the responses to δAµ and the equations of motion
of aI,µ, we may determine the mean-field values of ⟨aI,µ⟩ by controlling the background
Aµ. Reading off from the decomposition in eq. (1.1), L̃1 merely consists of matter fields
{χI} and dynamical gauge fields {aI,µ}. Its path integral can be evaluated by separating
the contribution of L̃2[{aI,µ}, Aµ] from L [{ψI}, Aµ], where the latter shall be computed
with more conventional methods.

We will explicitly execute this recipe in the bulk of this work for concrete dualities
with N = 1, 2 (referencing eqs. (2.1), and (2.12)) in the limit of the infrared (IR) for two
specific configurations of Aµ, a constant chemical potential and a constant magnetic field,
at zero temperature. The separation of L̃2 is carried out by a Legendre transform over
the effective action from L [{ψI}, Aµ]. As a result, we will be able to compute the effective
actions attributed to L̃1 in the dual mean-value backgrounds, a constant magnetic field and
a constant chemical potential respectively. For N = 1, the results imply the amplification
of Casimir energy at finite density and the magnetic Euler-Heisenberg Lagrangian. These
amplifications are both of order 1. Equivalently, these results indicate the amplification of
charge susceptibility given the same value of chemical potential. Moreover, we endow the
Legendre transform with the physical interpretation of offsetting the local energy density
by the amount of chemical potential going from the particle description to the vortex one
and vice versa. This picture inspires an alternative derivation for the quantum effective
action based on a scaling argument. The dual effective action is the original one offset by
the chemical potential and measured in the characteristic scale of the dual description. The
characteristic length scale is the inter-particle distance at finite density and the magnetic
length in a magnetic field. For N = 2, we employ this approach to the study of spontaneous
breakdown of chiral symmetry in a QED3 with two U(1) gauge fields, coupling to the sum
and the difference of fermion charges respectively. We find that fermion mass condensate
produced by a constant magnetic field in the free theory is erased by quantum fluctuations
from two U(1) gauge fields. An investigation upon the properties in the lowest Landau level
is conducted to understand how symmetry might be enforced.
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In addition to the quantitative predictions, this machinery is intriguing in its own right.
Although the concept of the Legendre transform is by no means revolutionary and, in fact,
was introduced in the early stages of the background field method, our duality approach
is novel in that the functional determinant can be evaluated exactly in the dual theory
thanks to the limit of IR, yielding physically interpretable results. Our machinery serves as
an attempt to improve the effective action approach which is orthogonal to others such as
derivative expansions and higher fermion loops, and aims at capturing the quantum effects
of gauge fields. It also opens up another quantitative applications of (2+1) dimensional
dualities besides response functions, such as electric and thermal transport properties under
various deformations [22–26].

The rest of the paper shall be organized as follows. In section 2, we provide an essential
review for the specific dualities and an overview of the questions of our interest. On top of
these, we lay out the derivation of the effective actions and some key formulae. Section 3
is devoted to employing the machinery for explicit computations as well as the physical
interpretations of the results. Some recap and open directions are presented in section 4. To be
self-contained, the appendix elaborates the computational details we referenced in this work.

2 Effective action from particle vortex duality

2.1 N = 1 duality

Let us first consider 2-component Dirac spinors in (2+1) dimensions. The fermionic particle-
vortex duality states that a free Dirac field ψ is dual to a QED3 of another Dirac field χ

via a mixed Chern-Simons term:

iψ̄ /DAψ ↔ iχ̄ /Daχ+ 1
4πϵ

µνλaµ∂νAλ, (2.1)

where (DA)µ = ∂µ − iAµ refers to the covariant derivative associated with the gauge field
Aµ. Both Aµ and aµ are U(1) gauge fields. Aµ is a classical background field, whereas aµ is
emergent and dynamical. The arrow “↔” indicates that the partition functions from both
sides of (2.1) are equivalent as functionals of Aµ:

eiW [A] =
∫

Dψ̄Dψei
∫
d3x (iψ̄ /DAψ) =

∫
DaD χ̄Dχ ei

∫
d3x(iχ̄ /Daχ+ 1

4π ϵ
µνλaµ∂νAλ). (2.2)

The statement (2.1) is a fermionic analogue of the 3D-XY model and Abelian Higgs duality [27,
28] and was proposed in the studies of the metallic state in the fractional quantum Hall effect
and the surface states of topological insulators [15–17]. Note that it is well-known in (2+1)
dimensions a single massless Dirac cone cannot properly define the partition function without
breaking either gauge invariance or parity [29, 30]. This inconsistency can be remedied by
including a half-level Chern-Simons term 1

8π ϵ
µνλAµ∂νAλ to the Lagrangian in (2.1). In the

following of the work, this contact term will be included implicitly into the convention of
the path integral because it will not concern the main arguments and the results, which
shall all be parity-even quantities.

A set of operator correspondences can be derived by varying eq. (2.1) with respect to the
gauge fields Aµ and aµ. On one hand, varying the probe Aµ on the both sides of the duality
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identifies the particle current of ψ with the dual field strength tensor of aµ:

ψ̄γµψ = 1
4πϵ

µνλ∂νaλ. (2.3a)

On the other hand, varying the dual Lagrangian with respect to aµ leads to the equation of
motion that imposes a constraint on particle current of χ and the dual field strength of Aµ:

χ̄γµχ = − 1
4πϵ

µνλ∂µAλ. (2.3b)

The zeroth components of eqs. (2.3a) and (2.3b) imply the following relations:1

nψ = − b

4π , b = ∂xa
2 − ∂ya

1 (2.4a)

nχ = B

4π , B = ∂xA
2 − ∂yA

1. (2.4b)

These are the typical signatures of particle-vortex dualities, where the charge density on one
side of a duality becomes a magnetic field on the other. Relatedly, the spatial components
of eqs. (2.3a) and (2.3b) entail that the current density maps to rotated electric field under
duality. In a gedankenexperiment, when we turn on an external magnetic field B, a charge
density profile of χ would form accordingly, implying a finite chemical potential a0. Similarly,
when we turn on a chemical potential A0 to develop a charge density profile of ψ, it in turn
creates a mean magnetic field b in the dual description.

Eq. (2.1) and the correspondences between chemical potential and magnetic field con-
stitute the main motivation of this work, as the free Dirac cone is exactly solvable under
certain background field profiles. Particularly, given the background field configuration with
constant B and A0, the effective action W [A0, B] is formally

W [A0, B] = −i ln
∫

Dψ̄Dψ exp
(
i

∫
d3x iψ̄ /DAψ

)
= −i ln

∫
DaD χ̄Dχ exp

(
i

∫
d3x iχ̄ /Daχ− iV3

4π ā0B− iV3
4π b̄A0

)
= −i lim

g→∞
ln
∫

DaD χ̄Dχ exp
(
i

∫
d3x iχ̄ /Daχ− iV3

4π ā0B− iV3
4π b̄A0 −

i

4g2

∫
(∂µaν − ∂νaµ)2

)
,

(2.5)
where the barred quantities are spacetime average over the spacetime volume V3: ā0 =
V3

−1 ∫ d3x a0 and b̄ = V3
−1 ∫ d3x b. In the last line of eq. (2.5), we reintroduce the Maxwell

dynamics for the emergent gauge field aµ and interpret the dual description as the infrared limit
g → ∞ of the QED3. As explained, applied constant B and A0 would induce corresponding
average values of a0 and b in the dual theory. Let us now consolidate the χ̄ /Daχ and the
Maxwell term (∂µaν − ∂νaµ)2 into LQED3 . Eq. (2.5) formally represents QED3 coupled to
two external sources J1 = B and J2 = A0. Varying W with respect to J1 and J2 leads to

1We adopt the convention B = (∇× A) and Aµ = (A0,−A).
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the associated field expectation values of a0 and b:

V −1
3

∂W

∂B
= − 1

4πe
−iW

∫
DaD χ̄Dχ ā0 exp

(
i

∫
d3xLQED3 [χ, aµ]−

iV3
4π ā0B − iV3

4π b̄A0

)
= − 1

4π ⟨ā0⟩ := − 1
4πac (2.6a)

V −1
3

∂W

∂A0
= − 1

4π ⟨b̄⟩ := − 1
4πbc. (2.6b)

Following the standard argument for quantum effective potential [31], after integrating χ and
aµ, the 1PI effective action V3Γ of LQED3 , as a function of ac and bc, should be obtained via
a Legendre transform of W with respect to B and A0, and is expected to assume the form:

V −1
3 W [A0, B] = Γ[ac, bc]−

1
4πacB − 1

4πbcA0. (2.7)

By matching the path integral (2.5), it can be inferred that Γ[ac, bc] physically corresponds
the IR effective Lagrangian density of the QED3

lim
g→∞

[
iχ̄ /Daχ− 1

4g2 (∂µaν − ∂νaµ)2
]
,

evaluated in the presence of a classical configuration of ac and bc, incorporating fluctuations
from both χ and aµ. It is worth noting that the background-field terms in eq. (2.7) neutralizes
the charge of aµ when ⟨ā0⟩ = ac is finite, because its full current is Jµa = χ̄γµχ+ 1

4π ϵ
µνλ∂νAλ

for finite g2. Consequently, in the limit g → ∞, the Coulomb term ∼ g2Jµ
1
∂2J

µ is rendered
by the saddle point solution (2.3b). The Legendre transform is performed on the entirety
of the right-hand side of eq. (2.7).

Should we continue with the conventional route toward the quantum effective action, we
would expand fields in LQED3 about ac and bc to quadratic order, integrate the fermion and the
gauge field in the Gaussian approximation, and solve the Legendre transform perturbatively.
In our case, particle-vortex duality (2.1) offers an alternative and more precise path, as W can
be evaluated using iψ̄ /DAψ by integrating ψ exactly. In other words, the effect of gauge field
path integral can be computed by Legendre transforming the effective action W , or equivalently
the effective energy density E [A0, B] = −V −1

3 W [A0, B]. To utilize this formulation, we may
first compute E or W using approaches such as Schwinger proper time [2–4, 8], and then
perform the Legendre transform by solving B, A0 in ac, bc using the relations:

∂E

∂B
= ac

4π , (2.8a)

∂E

∂A0
= bc

4π . (2.8b)

Plugging the solutions back into (2.7) yields the target effective action for QED3:

Γ[ac, bc] = −E [A0(ac, bc), B(bc, ac)] +
ac
4πB(bc, ac) +

bc
4πA0(bc, ac). (2.9)

We shall exploit this correspondence to evaluate the effect of gauge field fluctuation on the
resulting quantum effective action.
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2.2 N = 2 duality

Similar arguments can be generalized to N species of fermion fields to derive gauge field
fluctuation-included effective action. An N = 2 example can be motivated by a 4-component
Dirac Lagrangian in (2+1) dimensions

LN=2 = iΨ̄Γµ(∂µ − iAµ)Ψ,Γµ =
(
γµ 0
0 γ̄µ

)
, (2.10)

where γµ and γ̄µ are two inequivalent irreducible representations of 2 by 2 gamma matrices.
By writing Ψ = (ψ1, ψ2)T , the 4-component Lagrangian can be expressed as:

LN=2 = ψ̄1γ
µiDµψ1 + ψ̄2γ̄

µiDµψ2. (2.11)

Note that the “bar” for ψ1 and ψ2 fields are defined by different gamma matrices ψ̄1 = ψ†
1γ

0

and ψ̄2 = ψ†γ̄0. The dual theory is derived by dualizing ψ1 and ψ2 separately:

LN=2 ↔ χ̄1γ
µiDµ[a1]χ1 + χ̄2γ̄

µiDµ[a2]χ2 +
1
4πϵ

µνλ(a1 + a2)µ∂νAλ. (2.12)

It is crucial that there are two emergent gauge fields a1 and a2. The SU(2) structure from
the Ψ perspective is not apparent in terms of the dual Dirac fields χ1, χ2, for which only
U(1)×U(1) manifests. To establish the operator mapping, let us use the following variables
a = (a1 + a2)/2, α = (a1 − a2)/2, and X = (χ1, χ2)T to rephrase the dual theory:

L̃N=2 = iX̄ΓµDµ[a]X + αµ(χ̄1γ
µχ1 − χ̄2γ̄

µχ2) +
1
2πϵ

µνλaµ∂νAλ. (2.13)

By the same token, the operator correspondences can be derived by varying both eqs. (2.11)
and (2.13) with respect to Aµ and imposing the equation of motion of aµ on eq. (2.13):

Ψ̄ΓµΨ = 1
2πϵ

µνλ∂νaλ (2.14a)

X̄ΓµX = − 1
2πϵ

µνλ∂νAλ. (2.14b)

The second U(1) field αµ demands the other constraint:

χ̄1γ
µχ1 = χ̄2γ̄

µχ2. (2.14c)

Similar to eqs. (2.3a) and (2.3b), the zeroth components of eqs. (2.14a) and (2.14b) entail
that a finite mean magnetic field on one side of duality corresponds to a finite total particle
density on the other side, which in turn induces a mean chemical potential. As a consequence,
for this particular U(1)×U(1) QED3model we can write down its effective Lagrangian as
a function of classical values of chemical potential ac and magnetic field bc in terms of the
Legendre transformation of the effective potential of a 4-component Dirac field in a classical
electromagnetic background:

Γ[ac, bc] = −E [A0, B] + ac
2πB + bc

2πA0 (2.15)

– 6 –
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along with the following identities

E = i

V3
ln
∫

DΨ̄DΨexp
(
i

∫
d3xLN=2[Ψ, A]

)
(2.16a)

∂E

∂B
= 1

2πac, (2.16b)

∂E

∂A0
= 1

2πbc. (2.16c)

The N = 2 theory is peculiar compared to its N = 1 counterpart in few ways. We highlight a
couple of our main interest as follows. Firstly, within the 4-component spinor framework,
it is possible to construct a chirality operator γ5 that anti-commutes with all other Γµ.
This γ5 introduces the concepts of left-handed and right-handed fermions as its eigenstates.
Secondly, we could construct a parity-even mass Ψ̄Ψ as opposed to a single 2-component
Dirac field. Nevertheless, this mass term breaks chiral symmetry. To illustrate, one explicit
representation [32] of Γµ, γ5 and the parity transformation P using the standard Pauli matrices
(σ1, σ2, σ3) and 2 dimensional identity matrix I2 goes as

Γµ =
((

σ3 0
0 −σ3

)
,

(
iσ1 0
0 −iσ1

)
,

(
iσ2 0
0 −iσ2

))
, (2.17a)

γ5 = i

(
0 I2

−I2 0

)
, (2.17b)

P : Ψ(x0, x1, x2) →
(

0 −iσ1
iσ1 0

)
Ψ(x0,−x1, x2). (2.17c)

This representation can be regarded as the (2+1) dimensional analogue of the Dirac rep-
resentation, where the mass matrix Γ0 is diagonal and γ5 is off-diagonal. In terms of the
spinors ψI , the chiral current mixes different species Jµ5 = Ψ̄Γµγ5Ψ = i(ψ̄1γ

µψ2 − ψ̄2γ̄
µψ1).

The same property applies to the X field. It can be confirmed by direct calculation that
Ψ̄Ψ = Ψ†Γ0Ψ is even under P, whilst under Ψ → eiβγ5Ψ

δ(Ψ̄Ψ) = 2iβΨ̄γ5Ψ = 2iβ(ψ̄1ψ2 − ψ̄2ψ1).

These two properties compose a series of questions concerning the spontaneous breakdown
of chiral symmetry [33]. That is, given a vanishing fermion mass, under what circumstance
would a finite expectation value ⟨Ψ̄Ψ⟩ persist? One well-known example is the magnetic
catalysis [32, 34, 35] for a 4-component Dirac fermion in (2+1) dimensions in a constant
magnetic field B. Fermion mass bilinear |⟨Ψ̄Ψ⟩| converges to a finite value |B|/(2π) in
the massless limit.

The N = 2 duality provides a device to explore the phenomena of spontaneous symmetry
breakdown such as the magnetic catalysis in interacting theories. To investigate the fermion
condensate in this framework, we first remind ourselves that the vacuum expectation value
of the mass bilinear can be obtained by taking the derivative with respect to mass over the
effective action of the target massive Dirac field:

eiW =
∫

DΨ̄DΨ exp
(
i

∫
d3x Ψ̄(i /D −M)Ψ

)
⇒ ∂W

∂M
= −

∫
d3x⟨Ψ̄Ψ⟩. (2.18)

– 7 –
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Hence the goal is to derive the quantum effective action consisting of the mass parameter.
For eq. (2.10), computing the massive fermion determinant is fairly straightforward. In
order to take the mass derivative on the dual effective action, we require the mass operator
correspondence in the dual theory. In the process of Legendre transform, the ordinary mass
parameter has to be solved in terms of the dual mass. To that end, let us elucidate the
derivation of the mass operator correspondence by deforming the N = 1 duality (2.1). The
N = 2 theory is simply two copies of it.

Suppose we deform the left-hand side of eq. (2.1) with a mass term mψψ̄ψ. At low
energies, the leading quadratic effective action is sgn(mψ)

8π ϵµνλAµ∂νAλ. In order to obtain the
same effective Lagrangian from the dual description, we would need to deform the right-hand
side of eq. (2.1) with another mass term mχχ̄χ, where sgn(mχ) = −sgn(mψ). By the same
token we can conclude the mass operator on one side of the duality maps also to the mass
operator on the other side, yet with a different sign

MΨΨ̄Ψ ↔MXX̄X, sgn(MΨ) = −sgn(MX). (2.19)

Putting them all together, we are able to evaluate the fermion condensate in the U(1)×U(1)
QED3 up to a proportionality constant through the formula

⟨X̄X⟩ = − lim
MX→0

∂Γ[ac, bc]
∂MX

∼ lim
MΨ→0

∂

∂MΨ

[
−E + 1

2πacB + 1
2πbcA0

]
. (2.20)

We shall apply it again to the examples of constant chemical potential and constant mag-
netic field.

3 Explicit examples and results

In what follows we will zoom into specific examples and compute physical quantities using the
tools developed in the preceding section. During the course of the derivation, we presented
chemical potential and magnetic field simultaneously. Nevertheless, in the rest of the work
we shall render the results more physically interpretable by turning on one of them at a time.

3.1 N = 1 duality

3.1.1 A0 ̸= 0, B = 0

This background field produces a finite density nψ for ψ and a finite background magnetic field
⟨∂1a

2 − ∂2a
1⟩ = b for χ. ψ theory is free and forms a Fermi disk. Meanwhile, the mean-field

ground state of χ is the charge-neutral lowest Landau level, coupling to the fluctuating aµ.
One way to compute the effective energy for ψ is by identifying the ground state particle

density with the derivative of energy density with respect to the chemical potential,

∂E

∂A0
= −nψ. (3.1)

– 8 –
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The particle density for a massless free Dirac fermion is

nψ = sgn(A0)
p2
F

4π = sgn(A0)
A2

0
4π , (3.2)

implying:

E = −
∫ A0

0
dν nψ(ν) = − 1

12π sgn(A0)A3
0 = −|A0|3

12π .

Negative A0 corresponds to the density of antiparticles. E can also be evaluated by computing
a functional determinant:

E = i

V3

(
Tr ln[i/∂ +A0γ

0]− Tr ln i/∂
)
= i

V3

∫ A0

0
dν Tr[G(0; ν)γ0],

where we applied the trick Tr ∂
∂A0

ln[i/∂ + A0γ
0] = Tr[(i/∂ + A0γ

0)−1γ0] = Tr[G(0;A0)γ0]
with the Green’s function (i/∂ + A0γ

0)G(x, y) = δ(x − y). We include the details in the
appendix for the purpose of comprehensiveness. That approach will also be utilized when
we address N = 2 models.

With either technique we find:

E = −1
12π |A0|3. (3.3)

This quantity is negative regardless of the sign of the chemical potential. The physical reason
is that by subtracting the vacuum value A0 = 0, our computation results in the Casimir
energy of the system — it sums up (|p| −A0) for each particle inside the Fermi disk |p| < pF .
Equivalently, it implies the fermion pressure is positive definite because the energy density
at zero temperature equals the negative of pressure.

Next we solve A0 in terms of bc.

∂E

∂A0
= −sgn(A0)

A2
0

4π = bc
4π ⇒ A0 = −sgn(bc)

√
|bc|. (3.4)

This results in:

Γ = −E + 1
4πbcA0 = − 1

6π |bc|
3/2. (3.5)

This effective action is negative definite regardless of the sign of bc. This entails that the
magnetic energy in the interacting theory is positive definite, and there is no vacuum decay led
by fluctuation. Besides, eqs. (3.2) and (3.4) are consistent with the operator mapping (2.4a).

3.1.2 A0 = 0, B ̸= 0

This background situates ψ at the charge-neutral point on the lowest Landau level. For χ,
it establishes a mean-field Fermi disk interacting with aµ.

The effective action W [B] is described by the renowned Euler-Heisenberg effective
Lagrangian [1, 2, 7, 8]. In the massless limit, the proper-time integral can be evaluated
exactly, resulting in

−E = − ζ(3/2)
4
√
2π2 |B|3/2 = −k|B|3/2. (3.6)
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It is noteworthy that there is a negative sign in the Minkowski signature to ensure E > 0,
and thus the ground state is stable in a constant B [7]. For completeness, we also provide
a detailed calculation in full Minkowski signature in the appendix.

Solving B in terms of ac,

∂E

∂B
= sgn(B)32k|B|1/2 = 1

4πac, (3.7)

and plugging it back to the full effective action lead to

Γ = −E + 1
4πacB = 4

27k2

( |ac|
4π

)3
. (3.8)

This quantity is positive definite. In other word, the Casimir energy of χ at finite density
with respect to vacuum is again negative. Following the same recipe, we could show that
the sign of the Casimir energy depends upon the sign of the magnetic energy. Comparing
eqs. (3.3), (3.5), (3.6), and (3.8), the positive definiteness of the magnetic energy in a constant
magnetic background is the dual statement of the negative definiteness of the fermion Casimir
energy at finite density relative to the ground state. As another sanity check, the operator
mapping (2.4b) is fulfilled.

nχ = ∂Γ
∂ac

= sgn(ac)
4
9k2

(
ac
4π

)2 1
4π = B

4π . (3.9)

3.1.3 Discussion

In the preceding part of this section, we have computed the negative Casimir energy of
a finite-density Dirac fermion (3.10a) and the negative magnetic energy of a zero-density
Dirac fermion in a mean magnetic field (3.10b). Both incorporate the effect of a fluctuating
U(1) gauge field:

Γ(ac) =
2π

27ζ2(3/2) |ac|
3 (3.10a)

Γ(bc) = − 1
6π |bc|

3/2. (3.10b)

The signs of these quantities were given special care to justify the correct signs of their free
theory counterparts (3.3) and (3.6). In fact, we could relate them with a simple picture by
recalling what these energy densities really refer to. In the example A0 ̸= 0, B = 0, E [A0]
represents an accumulation of quasiparticle energy relative to the chemical potential up to
the Fermi level. The negativeness is due to the displacement from the chemical potential and
quasiparticle energy itself is positive-definite. It manifests using the decomposition:

E [A0] =
∫ A0

0
(ϵ−A0)

∂nψ
∂ϵ

dϵ =
∫ A0

0
ϵ
∂nψ
∂ϵ

dϵ−A0nψ.

Together with the eqs. (2.9) and (2.4a), its dual (3.10b) reads

Γ[bc] = −E [A0] +
1
4πA0bc = −

∫ A0

0
ϵ
∂nψ
∂ϵ

dϵ+A0

(
nψ + 1

4πbc
)
= −

∫ A0

0
ϵ
∂nψ
∂ϵ

dϵ.
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It indicates the magnetic energy corresponds to precisely the sum of total quasiparticle
excitation energy. Therefore, the magnetic energy −Γ[bc] is positive definite. This perspective
motivates another interpretation of the result. For a massless free 2-component Dirac fermion,
its energy density in terms of the particle density is:∫

ϵ
∂nψ
∂ϵ

dϵ =
p3
ψ,F

6π = (4π)3/2

6π n
3/2
ψ . (3.11)

The crucial length scale rψ, the inter-particle distance, is given by rψ = n
−1/2
ψ . Thus eq. (3.11)

states that there is an amount of energy (4π)3/2

6π r−1
ψ within the area r2

ψ. In the dual description
the natural length scale is the magnetic length ℓb =

√
4π × rψ =

√
bc. The statement is

rewritten as there is an amount of energy 1
6π ℓ

−1
b within the area ℓ2b , or

1
ℓ2b

1
6πℓb

= 1
6π |bc|

3/2. (3.12)

As for the example A0 = 0, B ̸= 0, we can also interpret Γ[ac] using a similar decomposition

Γ[ac] = −
∫ ac

0
(ϵ− ac)

∂nχ
∂ϵ

dϵ = −
∫ ac

0
ϵ
∂nχ
∂ϵ

dϵ+ acnχ = −E (B) + ac
4πB. (3.13)

From it, we can infer the quasiparticle density of state ∂nχ/∂ϵ corrected by the gauge field
fluctuation, and it will be derived momentarily. Here the characteristic length scales are the
magnetic length ℓB = B−1/2 and the inter-particle distance rχ = n

−1/2
χ . Again using the

above integral and the picture of measuring energy density with different length scales, the
fermion Casimir energy at finite density nχ in the dual description amounts to the subtraction
of the chemical potential ac per r2

χ from the magnetic energy per ℓ2B:

1
ℓ2B
kℓ−1
B − ac

r2
χ

= 1
ℓ2B

(
kℓ−1
B − ac

4π

)
= 4

9k2

(
ac
4π

)3 [2
3 − 1

]
.

The Interpretation of characteristic length can also help estimate the effective Fermi velocity
in the interacting theory. Using Luttinger theorem,2 nχ = 1

4πp
2
χ,F but the dispersion is

expected to be corrected ac = vpχ,F . The linear relation arises from the fact that there is
only one length scale, rχ, in the dual description. Identifying the density, we see r−1

χ = ac√
4πv

and the magnetic energy is

kℓ−3
B = (4π)3/2kr−3

χ = k

v3a
3
c , (3.14)

which should equal 4
9k2

( ac
4π
)3 [2

3

]
, leading to

v = 4π × 3
2k = 0.8820. (3.15)

Switching the focus back to the results (3.10a) and (3.10b), the functional dependences are
not particularly surprising, as they are constrained by dimensional analysis, given there is
only one dimensionful quantity in each scenario. However, they quantify the effects of gauge

2Technically, in the interacting theory it is only a marginal Fermi liquid.
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field fluctuations on the magnitude of the energy densities. For instance, with the same
level of background magnetic field, there is an enhancement of the ground state magnetic
energy due to the quantum correction from aµ:

−Γ/|bc|3/2

E /|B|3/2 = 1/(6π)
ζ(3/2)/

(
4
√
2π2

) = 2
√
2π

3ζ(3/2) = 1.1338. (3.16)

Schematically, this also implies the amplification of the pair-production or vacuum decay
probability via Schwinger mechanism if a constant electric field is turned on because the
Euler-Heisenberg Lagrangian is merely modified with |B| →

√
B2 − E2.

In addition, we can compute the correction to the charge susceptibility, or the density of
state, χ = ∂n

∂A0
, of the Dirac fermions given the same level of chemical potential:

a−1
c χχ

A−1
0 χψ

=
a−1
c

∂nχ
∂ac

A−1
0

∂nψ
∂A0

= 8π2

9ζ2(3/2) = 1.2855. (3.17)

The amplification of charge susceptibility also implies the reduction of magnetic permeability
µ in systems are that particle-vortex duals [36]. This can be justified by formally identifying
1

4πac and −1
4πA0 as the source of B and bc. In other words, the relationship between chemical

potential and the dual magnetic field is analogous to that between H and B in the classical
electromagnetism. By writing Hψ = ac

4π and hχ = −A0
4π , we can find

χχ = ∂nχ
∂ac

= 1
(4π)2

∂B

∂Hψ
= 1

(4π)2µψ = 1
(4π)2 ×

( 2
3k

)2
Hψ

χψ = 1
(4π)2µχ = 1

(4π)2 × (4π)2hχ.

and as the result of them,
1
a0
χχ

1
A0
χψ

=
1
Hψ
µψ

1
hχ
µχ

. (3.19)

To further expand the correction to the charge susceptibility, suppose we describe the dual
Fermi surface using the phenomenological Fermi liquid theory. This amplification entails
that the effective Landau parameter in the scalar channel F0 is negative under gauge field,
owing to the relation χ = χfree

1+F0
. With

F0 = 9ζ2(3/2)
8π2 − 1 = −0.2221. (3.20)

The sign of F0 is nontrivial in that the gauge interaction between charges is repulsive, despite
the total Coulomb energy being neutralized.

3.2 N = 2 duality

Let us now shift gears to the N = 2 dualities. Without encountering extra technical difficulties,
we can redo the analysis in the previous section to compute the gauge fluctuation-corrected
Casimir and magnetic energies. Similar results would follow. In the following, we will mainly
focus on the properties specific to eqs. (2.12) and (2.13), particularly vacuum expectation
value of the fermion condensate in the massless limit highlighted by eq. (2.20).
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3.2.1 A0 > 0, B = 0

With this background, Ψ would form a Fermi disk and acquire a finite density. The density
Ψ†Ψ in turn implies a mean magnetic field b = ∂1a

2 − ∂2a
1. The other field αµ detaches from

the external probe and does not assume a finite background value.
Using the Green’s function technique, we compute the effective energy (eq. (A.9))

−E (A0) = 2
∫ A0

0
dν sgn(ν)

∫
d2p

(2π)2 θ(ν
2 − (p2 +M2

Ψ))

= θ(A2
0 −M2

Ψ)
6π [A3

0 − 3M2
ΨA0 + 2M3

Ψ]. (3.21)

The step function can be dropped because MΨ would be taken to 0 at the end of oper-
ations. Since the MΨ dependence starts from quadratic order, it is trivially concluded
that limMΨ→0

∂E
∂MΨ

= 0. The chiral symmetry is not broken for a free 4-component Dirac
fermion at finite density.

To investigate Γ, we employ eq. (2.16c)

∂E

∂A0
= bc

2π = − 1
2π [A

2
0 −M2

Ψ] < 0 ⇒ A0 =
√
−[bc −M2

Ψ]. (3.22)

We have shown MX ∼ −MΨ. It suffice to express Γ as function of bc and MΨ in order to
evaluate ∂Γ/∂MX . Performing the Legendre transform:

Γ[bc,MΨ] = −E + bc
2πA0 = −1

3π

√
−(bc −M2

Ψ)
3
+ M3

Ψ
3π . (3.23)

When taking the partial derivative, we have to remind ourselves that bc is not entirely MΨ
independent. Physically, A0 is the external knob agnostic of MΨ. Owing to the relation
eq. (3.22), bc has to depend on MΨ, and its dependence shall be determined by the condition:

0 = ∂

∂MΨ
A0 = ∂

∂MΨ

√
−(bc −M2

Ψ). (3.24)

Being mindful of this fact,

− ∂Γ
∂MX

∼ ∂Γ
∂MΨ

= 1
π
[−(bc −M2

Ψ)]
∂

∂MΨ

√
−(bc −M2

Ψ) +
1
π
M2

Ψ. (3.25)

The first term disappears because of (3.24), while the second term vanishes when taking the
limit of MΨ → 0. We conclude X̄X does not acquire a finite vacuum expectation value in
the background bc and in the presence of quantum corrections from aµ and αµ.

lim
MX→0

⟨X̄X⟩ = 0. (3.26)

As an alternative perspective, we could express the E [A0] part of the Γ fully in terms of
A0. By the earlier derivation this term does not produce any finite value after MΨ → 0.
What is left to compute is

A0 lim
MΨ→0

∂

∂MΨ

bc
2π = 0 (3.27)

by eq. (3.22).
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3.2.2 B > 0, A0 = 0

The Ψ fermions in the magnetic field still form Landau levels and the ground state sits at
the charge neutral point. X fermions acquire an average charge density associated with B,
forming a Fermi disk at the mean-field level, and again subject to fluctuating aµ and αµ.

E is the Euler-Heisenberg Lagrangian with mass. It is typically carried out by dimensional
regularization and expressed in terms of Gamma functions. We elaborate on details in the
appendix. Utilizing the result eq. (B.40), it can be formally expanded as:

E = k0B
3/2 + k1MΨB + k2M

2
ΨB

1/2. (3.28)

This expansion, in terms of the power of MΨ/B
1/2, is renormalized such that MΨ = 0 limit

corresponds to our previous calculation eq. (3.6). Note that, contrary to the case of pure
finite density, there is a term in the effective energy linear in MΨ, and therefore [32, 35]:

lim
MΨ→0

Ψ̄Ψ = ∂E

∂MΨ
= k1B ̸= 0. (3.29)

To solve B with ac,
∂E

∂B
= 1

2πac =
3
2k0B

1/2 + k1MΨ + 1
2k2M

2
ΨB

−1/2. (3.30)

The solution in the limit of small MΨ reads:

B1/2 =
ac
2π − k1MΨ +

√( ac
2π − k1MΨ

)2 − 3k0k2M2
Ψ

3k0
≈ 2

3k0

(
ac
2π − k1MΨ

)
. (3.31)

Similar to eq. (3.24), we have to remind ourselves that ac depends on both MΨ and B since
B is agnostic of MΨ, and the dependence here is inferred by:

0 = ∂B1/2

∂MΨ
= ∂

∂MΨ

2
3k0

(
ac
2π − k1MΨ

)
. (3.32)

Plugging back the solutions to the Legendre transform, we obtain

Γ = 4
27k2

0

(
ac
2π − k1MΨ

)3
− 2k2M

2
Ψ

3k0

(
ac
2π − k1MΨ

)
. (3.33)

We observe that there is also a term explicitly linear in MΨ in the leading cubic term. A
naive generalization of the earlier argument would suggest the magnetic catalysis in the free
theory induces chiral symmetry breaking by a condensate ∼ − 4k1

9k2
0

( ac
2π
)2 in the U(1)×U(1)

QED3 at finite density. Nevertheless, owing to the dependence required by (3.32), we see

lim
MX→0

⟨X̄X⟩ ∼ ∂

∂MΨ
Γ[ac] = 0. (3.34)

Let us again examine this from the alternative perspective by writing E in terms of B and
MΨ. Since B is MΨ independent, the contribution of this term to the condensate follows our
linear term argument and is −k1. The second contribution comes from ∂ac/(2π)

∂MΨ
. By eq. (3.30)

lim
MX→0

⟨X̄X⟩ ∼ lim
MΨ→0

∂Γ
∂MΨ

= lim
MΨ→0

(
−k1 +B

∂

∂MΨ

ac
2π

)
= −k1 + k1 = 0.

The contribution from E is compensated by the coupling of ac to the magnetic field. The
exact value of k1 is irrelevant as long as the effective action assumes the form of the m/B1/2

expansion (3.28).
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3.2.3 Discussion
In this section we considered two background field configurations where a free 4-component
Dirac field has known solutions, and their particle-vortex duals. The gauge field corrections
computed for N = 1 are directly generalized. Even in the case of finite mass, the interpretation
of dual energy still holds. For example, eqs. (3.23) equals the ground state energy of the
Fermi disk up to the Fermi level:

2
∫

d2p

(2π)θ(A
2
0 − (p2 +M2

Ψ))
√

p2 +M2
Ψ = 1

3π [A
3
0 −M3

Ψ].

Thus, we did not duplicate the derivations. Instead, we focused on the puzzle of spontaneous
breakdown of chiral symmetry for N = 2. In the free theory, on one hand, at finite density
without a magnetic field, the chiral symmetry persists. On the other hand, in a constant
magnetic field at zero density, the chiral symmetry is broken by the zero modes on the lowest
Landau level. The dual theory of the 4-component Dirac field is a U(1)×U(1) QED3. We
derived the effective actions for them and investigated the equations for mass condensation.
The conclusion was that neither a constant charge density nor a constant magnetic field
is able to create a finite condensate in the massless limit. This might be intuitive for the
case of charge density. Remarkably, the magnetic catalysis in the free theory limit is erased
by gauge field fluctuation, which, as we reveal, can be attributed to its dual description as
a free Fermi disk. We argue that it is a fair comparison even if the free theory does not
seem to contain a second U(1) gauge field — it can be understood as a choice of pure gauge
Aµ = 0 for a coupling Aµ(ψ̄1γ

µψ1 − ψ̄2γ̄
µψ2) in eq. (2.10). It naturally implies A0 = 0 and

(∂µAν − ∂νAµ) = 0, corresponding to αµ in the dual theory.
The reduction of magnetic catalysis in the presence of two U(1) fields might be explained

with the following picture. For a free 4-component Dirac field Ψ = (ψ1, ψ2)T of mass M > 0,
in a uniform magnetic field it acquires two Landau levels whose energy values ±M are
independent of the strength of magnetic field. Suppose the ground state is defined by filling
up all negative-energy states. The band with energy −M would be filled, whereas the Landau
level with energy M is empty. As we lower the mass M → 0+, two Landau levels become
degenerate. The choice of filling up which Landau orbitals leads to spontaneous breakdown
of the symmetry and is the origin of magnetic catalysis. Using explicit solutions to the Dirac
equation such as eqs. (C.3a) and (C.3b), for these two Landau levels:

Ψ̄Ψ = ψ†
1σ3ψ1 − ψ†

2σ3ψ2 ∝ −ψ†
1ψ1 + ψ†

2ψ2 (3.35)

because the solution eigenspinors, in the 2-component subspace, have the same σ3 eigenvalue.
A finite value of Ψ̄Ψ over the zero modes algebraically implies the polarization of charge
densities. Switching back to our dual U(1)×U(1) QED3, an analogous polarization shall be
induced if there is magnetic catalysis in the massless limit. Nevertheless, the constraint equa-
tion (2.14c) forbids any charge density polarization between species, consequently restoring
the broken symmetry.

4 Concluding remark

Exploiting fermionic particle-vortex duality, we developed a machinery to include gauge field
fluctuations into the effective action for a class of QED3 that are dual to free Dirac cones.
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Using this technique, we showed that the fermionic Casimir energy at finite density and
ground energy in a constant magnetic field are both amplified by quantum fluctuations. We
also assign physical meanings to each term in the Legendre transform and provide alternative
derivations of the results. Moreover, the machinery was also utilized to demonstrate that in
the U(1)×U(1) QED3 with two species of Dirac fermions, there is no spontaneous breakdown
of the chiral symmetry caused by the average constant magnetic field seen by both fermion
fields, as it is essentially dual to a free Fermi disk of a 4-component Dirac spinor.

We expect this work prototypes a helpful methodology for quantitatively studying (2+1)
dimensional QEDs in the infrared with the method of effective action. We focused on a limited
number of dualities and background field configurations with either a finite chemical potential
or a finite magnetic field in order to simplify the technical processes and highlight some
physically interpretable implications for this new technique. Nonetheless, the applicability
shall be legitimate for any model that admits a dual free theory of Dirac fermions.

For instance, we can dualize all solvable electromagnetic field configurations, such as
turning on an electric field. An intriguing case directly following this work is when A0 ̸= 0 and
B ̸= 0 simultaneously. The effective action for a free Dirac cone is a sum of (−1)× (3.3), (3.6),
and the convolution of magnetic field and chemical potential. The latter is oscillatory with
frequencies proportional to the filling fraction 2πn/B [4, 8] and could possibly be applied
to the de Haas-van Alphen effect in the dual theory.

On top of more intricate field configurations, it is fairly straightforward to generalize our
examples to a general number of fermion species N . Perhaps even more interestingly, we
can instead employ fermion-boson dualities to study (2+1) dimensional scalar QEDs which
are dual to free Dirac fermions [19]. Such QEDs contains integral level Chern-Simons terms
for the dynamical fields in order to mutate statistics of the matter fields, suggesting more
involved operator correspondences, but the argument leading to the Legendre transform shall
still hold given the same structure of the actions.

Despite the fact that not all dual interacting theories have direct correspondences to the
most actively studied models or theories, the perspective and the results presented in this work
can likely shed some lights on the common features of interacting gauge theories and potential
developments of quantitative techniques with (2+1) dimensional field theory dualities.

A Effective action at finite density and no magnetic field

In this section we compute the functional determinant of a Dirac field at finite density. The
method largely follows [3] except we work in (2+1) dimensions. We consider a 2-component
Dirac Lagrangian:

L = ψ̄(i/∂ +A0γ
0)ψ. (A.1)

The effective action derived from this Lagrangian is the functional determinant. Raising the
determinant to the exponent and subtract the vacuum value, the target to compute amounts to∫

d3xLeff = −i
(
Tr ln[i/∂ +A0γ

0]− Tr ln i/∂
)
, (A.2)
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where Tr includes spacetime trace
∫
d3x ⟨x| · · · |x⟩ and the gamma matrix trace tr. Using

the fact that

Tr ∂

∂A0
ln[i/∂ +A0γ

0] =
∫
d3x tr⟨x|

[
γ0

i/∂ +A0γ0

]
|x⟩ (A.3)

The effective Lagrangian equals the diagonal element of the inverse operator of i/∂ +A0γ
0,

or more conventionally the Green’s function:

(i/∂ +A0γ
0)G(x, y) = δ(3)(x− y). (A.4)

At finite density, the solution is given by the following epsilon prescription

G(x− y;A0) =
∫

d3p

(2π)3
/̃pe−ip(x−y)

(p̃0 + iϵsgnp0)2 − p2 , p̃ = (p0 +A0,p). (A.5)

Plugging the explicit Green’s function into eq. (A.2), it becomes

Leff = −i
∫ A0

0
dν tr[G(0; ν)γ0] = −2i

∫ A0

0
dν

d3p

(2π)3
(p0 + ν)

(p0 + ν + iϵsgn(p0))2 − p2 . (A.6)

The temporal integral can be computed as follows:

I =
∫ ∞

−∞
dω

ω + ν

(ω + ν + iϵsgnω)2 − p2 =
∫ ∞

−∞
dω

ω

(ω + iϵsgn(ω − ν))2 − p2

= −
∫ ∞

−∞
dω

ω

(ω + iϵsgn(ω + ν))2 − p2

= 1
2

∫ ∞

−∞
dωω

[ω + iϵsgn(ω + ν)]2 − [ω + iϵsgn(ω − ν)]2

[(ω + iϵsgn(ω − ν))2 − p2][(ω + iϵsgn(ω + ν))2 − p2]

= 1
2

∫ ∞

−∞
dωω2 2iϵ[sgn(ω + ν)− sgn(ω − ν)]

[(ω + iϵsgn(ω − ν))2 − p2][(ω + iϵsgn(ω + ν))2 − p2]

=
∫ ∞

−∞
dωω2 2iϵsgn(ν)θ(|ν| − ω)θ(|ν|+ ω)

[(ω + iϵ)2 − p2][(ω − iϵ)2 − p2] =
∫ |ν|

−|ν|
dω

2iϵω2sgn(ν)
[(ω + iϵ)2 − p2][(ω − iϵ)2 − p2]

=
∫ |ν|

0
dω

4iϵω2sgn(ν)
[(ω + iϵ)2 − p2][(ω − iϵ)2 − p2]

=
∫ |ν|

0
dωω sgn(ν)

[ 1
(ω − iϵ)2 − p2 − 1

(ω + iϵ)2 − p2

]

= 1
2sgn(ν)

∫ |ν|2

0
dω2

[ 1
ω2 − p2 − iϵ

− 1
ω2 − p2 + iϵ

]
= iπsgn(ν)θ(ν2 − p2). (A.7)

Therefore,

Leff(ν) =
∫ A0

0
dν sgn(ν)

∫
d2p

(2π)2 θ(ν
2 −p2) =

∫ A0

0
dν sgn(ν) 1

4πν
2 = 1

12π sgn(A0)A3
0 = 1

12π |A0|3.

(A.8)
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To generalize the effective Lagrangian to a 4-component massive Dirac field, we simply have
to replace p2 → p2 +m2 in the above and incorporate the multiplicity of 2.

Leff(A0) = 2
∫ A0

0
dν sgn(ν)

∫
d2p

(2π)2 θ(ν
2 − (p2 +m2))

= 2
∫ A0

0
dν sgn(ν)θ(ν2 −m2)

∫ √
ν2−m2

0

d2p

(2π)2 = 2
∫ A0

0
dν sgn(ν)ν

2 −m2

4π θ(ν2 −m2)

= θ(A2
0 −m2)
2π

∫ |A0|

m
dν(ν2 −m2) = θ(A2

0 −m2)
2π

(
ν3

3 −m2ν

) ∣∣∣∣|A0|

m

= θ(A2
0 −m2)
6π [|A0|3 − 3m2|A0|+2m3] = θ(A2

0 −m2)|A0|3

6π

(
1− 3 m2

|A0|2
+ 2m3

|A0|3

)
.

(A.9)

B Effective action in a constant magnetic field at zero density

B.1 Setting up proper time representation

In this section we employ the Schwinger proper time method to compute the Euler-Heisenberg
Lagrangian in (2+1) dimensions. To start, we rewrite the logarithm of the Dirac operator
in the proper time representation. Using the trick,

Leff = −iTr ln[i/∂ + /A+ η] ⇒ ∂Γeff
∂η

= −iTr
[ 1
i/∂ + /A+ η

]
= −1

2 i
∂

∂η
Tr
[
ln[− /D

2 − η]
]
(B.1)

and the identity ln(A + iϵ) = −
∫∞
s0

ds
s e

i(A+iϵ),

Leff = − i

2
(
Tr ln[− /D

2]− Tr ln[−/∂2]
)
= i

2

[∫ ∞

0

ds

s
Tr[e−i /D

2
]−

∫ ∞

0

ds

s
Tr[e−i/∂

2
]
]

(B.2)

up to an additive constant. Expanding the exponent, we can identify the Hamiltonian

/D
2 = 1

2g
µν{∂µ − iAµ, ∂ν − iAν} −

i

4[γ
µ, γν ]Fµν = −πµπµ −

1
2σµνF

µν . (B.3)

This decomposition allows us to pull the constant electromagnetic field out of the space-
time trace:

i

2

∫ ∞

0

ds

s
Tr[e−i /D

2
s] = i

2

∫
d3x

∫ ∞

0

ds

s
e−im

2str
[
e
i
2σµνF

µνs
]
⟨x|e−i(−πµπµ)s|x⟩, (B.4)

where we insert a small mass m2 to indicate the contour orientation. The main task in the
integrand is the diagonal matrix element3

lim
y→y′

⟨y|e−i(−πµπµ)s|y′⟩. (B.5)

3We use y to denote the eigenvalue of position operator and preserve x for the operators.
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B.2 Solving equation of motion

Let us write

⟨y|e−i(−πµπµ)s|y′⟩ = ⟨y; 0|e−i(−πµπµ)s|y′; 0⟩ := ⟨y; 0|y′; s⟩. (B.6)

It obeys the differential equation

i∂s⟨y; 0|y′; s⟩ = ⟨y; 0|e−i(−πµπµ)s(−πµπµ)|y′; 0⟩ . (B.7)

As long as we can solve πµ in terms of the position operator xµ, using

xµ(0)|y′; 0⟩ = y′
µ|y′; 0⟩

⟨y; 0|e−i(−πνπν)sxµ(s) = ⟨y; 0|xµ(0)e−i(−πνπν)s = yµ⟨y; 0|e−i(−πνπν)s , (B.8)

the amplitude on the right-hand side can be evaluated. Exploiting the canonical commutation
relations [xµ, πν ] = −igµν and [πµ, πν ] = iFµν . The equations of motion are given by

dxµ

ds
= 2πµ (B.9)

dπµ

ds
= −2Fµνπν . (B.10)

Thus,

πµ(s) = [e−2Fs]µνπν(0). (B.11)

It is worth emphasizing that, in the rest of the section, whenever we omit the indices for
symbolic simplicity, we mean π → πµ, x → xµ, F → Fµν . By Fµν = −Fνµ,

dxµ

ds
= 2πµ = 2(e−2Fs)µνπν(0) ⇒ x(s)− x(0) = 2F−1e−Fs sinhFsπ(0). (B.12)

The momenta operators can thus be expressed using the position operators

π(0) = FeFs

2 sinhFs(x(s)− x(0)) (B.13)

π(s) = e−2Fsπ(0) = Fe−Fs

2 sinhFs(x(s)− x(0)), (B.14)

and the Hamiltonian is similarly rephrased as

−πµ(s)πµ(s) = −(x(s)− x(0))µ
(

F 2

4 sinh2 Fs

)
µν

(x(s)− x(0))ν

:= −[xµ(s)Kµνx
ν(s)− 2xµ(s)Kµνx

ν(0) + xµ(0)Kµνx
ν(0)−Kµν [xµ(0), xν(s)]].

(B.15)

The quantum mechanical property is encoded in the commutator

−Kµν [xµ(0), xν(s)] = i

(
F 2

4 sinh2 Fs

2e−Fs sinhFs
F

)
µ

µ = i

(
Fe−Fs

2 sinhFs

)
µ

µ = i

(
F

2 cothFs
)
µ

µ

(B.16)
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using e−Fs/sinhFs = cothFs − 1. As the result,

−πµπµ = −
[
xµ(s)Kµνx

ν(s)− 2xµ(s)Kµνx
ν(0) + xµ(0)Kµνx

ν + i

2trF (F cothFs)
]
,

(B.17)

and hence

−
[
(y − y′)µKµν(y − y′)ν + i

2trFF cothFs
]
⟨y; 0|y′; s⟩ = i∂s⟨y; 0|y′; s⟩ (B.18)

⇒ ⟨y; 0|y′; s⟩ = C(y, y′) exp
(
−i(y − y′)F cothFs

4 (y − y′)− 1
2trF ln sinhFs

F

)
= C(y, y′)

s3/2 exp
(
−i(y − y′)F cothFs

4 (y − y′)− 1
2trF ln sinhFs

Fs

)
. (B.19)

The notation trF refers to summing over µ, ν indices for the electromagnetic field tensor,
and it is one of the main sources of spacetime dimensions dependence in this calculation as
we can see from the coefficient of ln s. We would also like to point out a subtlety that when
integrating cothFs the F−1 in the final logarithm is an integral constant. This is separated
from the rest of the constant parts in order to facilitate F → 0 limit more easily. To determine
the coefficient C(y, y′), we impose boundary conditions to match physical quantities. Recall
that from the basic quantum mechanics, ⟨xµ|pµ|ψ⟩ = i∂µ⟨xµ|ψ⟩. Thus[

−i ∂

∂y′µ
+Aµ(y′)

]
⟨y; 0|y′; s⟩ = ⟨y; 0|e−i(−πνπν)sπµ(0)|y′; 0⟩ (B.20)[

i
∂

∂yµ
+Aµ(y)

]
⟨y; 0|y′; s⟩ = ⟨y; 0|πµ(0)e−i(−π

νπν)s|y′; 0⟩ = ⟨y; 0|e−i(−πνπν)sπµ(s)|y′; 0⟩ .

(B.21)

Plugging the semi-solution into the above boundary conditions,

−i ∂
∂y′µ

C(y, y′) =
[
−Aµ(y′) + 1

2F
µ
ν(y − y′)ν

]
C(y, y′) (B.22)

i
∂

∂yµ
C(y, y′) =

[
−Aµ(y)− 1

2F
µ
ν(y − y′)ν

]
C(y, y′). (B.23)

These two equations have the general solution

lnC(y, y′) = i

∫ y

y′
dzλ

[
Aλ(z) + 1

2F
λ
ν(z − y′)ν

]
. (B.24)

By choosing y → y′ to be a straight line,

⟨y; 0|y′; s⟩ = C

s3/2 e
i
∫ y
y′ dzA exp

(
−i(y − y′)µ

(
F cothFs

4

)µ
ν(y − y′)ν − 1

2trF ln sinhFs
Fs

)
.

(B.25)

To determine C, we demand that in the limit of F → 0 this amplitude should reduce to the
free particle propagator. First we turn off the electromagnetic field

⟨y; 0|y′; s⟩ → C

s3/2 exp
(
−i(y − y′)µ

1
4s(y − y′)µ

)
= C

s3/2 exp
[
−i(t− t′)2

4s + i
(y − y′)2

4s

]
.

(B.26)
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Imposing the normalization condition implies

1 =
∫
d3∆y C

s3/2 exp
[
−i(t− t′)2

4s + i
(y − y′)2

4s

]
⇒ C = e−iπ/4

(4π)3/2 . (B.27)

Here we have yet another subtlety depending on the metric signature. If this calculation is
performed in the Euclidean signature, the exponents would all have the same sign and the
final C would differ by a phase eiπ = −1. The final form of the transition amplitude reads

⟨y; 0|y′; s⟩ = e−iπ/4

(4πs)3/2 e
i
∫ y
y′ dz

µAµ exp
[
−i(y− y′)µ

(
F cothFs

4

)µ
ν(y− y′)ν − 1

2trF ln sinhFs
Fs

]
.

(B.28)
Letting y → y′,

⟨y|e−i(−πµπµ)s|y⟩ = e−iπ/4

(4πs)3/2 exp
(
−1
2trF ln sinhFs

Fs

)
(B.29)

and consequently the effective action

Leff = ie−iπ/4

16π3/2

∫ ∞

0

ds

s5/2 tre
i
2σµνF

µνse−im
2s exp

(
−1
2trF ln sinhFs

Fs

)
. (B.30)

We can eventually evaluate this for the configuration F12 = −B and σ12 = σz. The gamma
matrix and spacetime index traces can be easily evaluated by diagonalize a 2 by 2 and a 3 by
3 matrix respectively. After subtracting the vacuum value in the limit of B = 0,

Leff = eiπ/4

8π3/2

∫ ∞

0

ds

s5/2 e
−im2s(Bs cotBs− 1). (B.31)

B.3 Computing proper time integral in the massless limit

Following the result in the above, given the sign of m2, we have to close the contour in the
lower-right quadrant and come back from the negative imaginary axis. Since the integral
vanishes in the infinity, a zero sum round trip implies

eiπ/4

8π3/2

∫ ∞

0

ds

s5/2 e
−im2s(|B|s cot |B|s− 1) = eiπ/4

8π3/2

∫ −i∞

0

ds

s5/2 e
−im2s(|B|s cot |B|s− 1).

(B.32)

Let s = −iy. It becomes

−1
8π3/2

∫ ∞

0

dy

y5/2 e
−m2y(|B|y coth |B|y − 1). (B.33)

Most literature goes straight to the substitution of variable and therefore might be unclear.
Using the series expansion

coth z =
∞∑

k=−∞

z

π2k2 + z2 , (B.34)

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
4

and take the limit m → 0+, the above becomes

−|B|3/2

4π3/2

∫ ∞

0

ds

s5/2

∞∑
n=1

s2

s2 + n2π2 . (B.35)

Each summand can be integrated easily∫ ∞

0

ds

s1/2
1

s2 + n2π2 =
∫ ∞

0
2dx 1

x4 + n2π2 =
∫ ∞

−∞
dx

1
x4 + n2π2 = 1√

2πn3/2 . (B.36)

As a result,

Leff = −|B|3/2

4π3/2
1√
2π

∑
n=1

1
n3/2 = −|B|3/2ζ(3/2)

4
√
2π2 . (B.37)

B.4 Effective action in constant magnetic field with finite mass for N = 2
theory at zero density

We assume B,m > 0 without loss of generality. The effective action for N = 2 is given
by 2 × (B.31):

Leff = − 1
4π3/2

∫ ∞

0

ds

s5/2 (sB cothBs− 1)e−m2s, s = B−1t,

= − B3/2

4π3/2

∫ ∞

0
dt e−

m2
B
t
( 1
t3/2 coth t− 1

t5/2

)

= − B3/2

4π3/2

∫ ∞

0
dt
e−

m2
B
t

t
t−1/2 coth t−

∫ ∞

0
dt
e−

m2
B
t

t
t−3/2


= − B3/2

4π3/2

23/2ζ(−1/2,m2/(2B))−

√
m2

B

Γ(−1/2)− (m2/B)3/2Γ(−3/2)


= − 1

4π3/2

[
23/2ζ

(
−1/2, m

2

2B

)
B3/2 −Bm

]
Γ(−1/2) + m3

4π3/2Γ(−3/2). (B.38)

The integral identities [37]∫ ∞

0
dxxµ−1e−βx = 1

βµ
Γ(µ) (B.39a)∫ ∞

0
dxxµ−1e−βx coth x = Γ(µ)

[
21−µζ(µ, β/2)− β−µ

]
(B.39b)

were quoted to evaluate the integrals. We note that the Gamma and zeta functions serve
regularization purpose. We should technically insert a cutoff near s = 0. Formally in the
limit m2 ≪ B, we can approximate

Leff ≈ − 1
4π3/2

(
23/2ζ(−1/2, 0)B3/2 +21/2ζ ′(−1/2, 0)m2B1/2 −Bm

)
Γ(−1/2)+ m3

4π3/2Γ(−3/2).
(B.40)

The condensation in the massless limit can be evaluated

⟨Ψ̄Ψ⟩ = − lim
m→0

∂Leff
∂m

= − B

4π3/2Γ(−1/2) = B

2π . (B.41)
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C Landau level solution

In this section we present an explicit representation of the lowest Landau level wave functions
for a free 4-component Dirac field Ψ in order to support our discussion in the main text. We
adopt the following reducible representation for the gamma matrices:

Γ0 =
(
σ3 0
0 −σ3

)
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (C.1a)

Γ1 =
(
iσ1 0
0 −iσ1

)
=


0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 (C.1b)

Γ2 =
(
iσ2 0
0 −iσ2

)
=


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 . (C.1c)

The gauge field configuration is given by the Landau gauge Aµ = δµ1By = δµ1Bx
2. The

massive Dirac equation reads

[iΓµ[∂µ − iAµ]−M ]Ψ = [iΓ0∂0 + iΓ1∂1 + Γ1By + iΓ2∂2 −M ]Ψ = 0. (C.2)

The solutions for general Landau levels can be solved by taking the square of the Dirac
operator [32]. For our purpose, it suffices to verify our ansatzs satisfy the desired eigenvalue
equations. Introducing the magnetic length ℓ = B−1/2 and the wavenumber k = 2πn/Lx
along the x-direction, the following two wave functions

uM = e−iMteikxe−
1
2 (y/ℓ−kℓ)2


0
0
0
1

 (C.3a)

u−M = eiMteikxe−
1
2 (y/ℓ−kℓ)2


0
1
0
0

 (C.3b)

that satisfy [iΓµ[∂µ− iAµ]−M ]u±M = 0. We can see explicitly in each 2-component subspace
only the upper or lower entry has value, and hence ψ̄ψ and ψ†ψ are proportional using
these wave functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 23 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
5
(
2
0
2
4
)
1
3
4

References

[1] W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714
[physics/0605038] [INSPIRE].

[2] J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664
[INSPIRE].

[3] A. Chodos, K. Everding and D.A. Owen, QED With a Chemical Potential. Part 1. The Case of
a Constant Magnetic Field, Phys. Rev. D 42 (1990) 2881 [INSPIRE].

[4] D. Persson and V. Zeitlin, A Note on QED with magnetic field and chemical potential, Phys.
Rev. D 51 (1995) 2026 [hep-ph/9404216] [INSPIRE].

[5] W. Dittrich, EFFECTIVE LAGRANGIANS AT FINITE TEMPERATURE, Phys. Rev. D 19
(1979) 2385 [INSPIRE].

[6] M.B. Hott and G. Metikas, Effective action for QED in (2+1)-dimensions at finite temperature,
Phys. Rev. D 60 (1999) 067703 [hep-ph/9812386] [INSPIRE].

[7] D. Cangemi, E. D’Hoker and G.V. Dunne, Derivative expansion of the effective action and
vacuum instability for QED in (2+1)-dimensions, Phys. Rev. D 51 (1995) R2513
[hep-th/9409113] [INSPIRE].

[8] D.K. Kim and K.-S. Soh, The Effective action of (2+1)-dimensional QED: The Effect of finite
fermion density, Phys. Rev. D 55 (1997) 6218 [hep-th/9606197] [INSPIRE].

[9] E. Brezin and C. Itzykson, Pair production in vacuum by an alternating field, Phys. Rev. D 2
(1970) 1191 [INSPIRE].

[10] G.V. Dunne and T. Hall, On the QED effective action in time dependent electric backgrounds,
Phys. Rev. D 58 (1998) 105022 [hep-th/9807031] [INSPIRE].

[11] J. Goldstone, A. Salam and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965
[INSPIRE].

[12] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry
Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[13] S. Weinberg, The quantum theory of fields. Volume 2: Modern applications, Cambridge
University Press (2013) [DOI:10.1017/CBO9781139644174] [INSPIRE].

[14] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Westview, Boulder,
CO, U.S.A. (1995).

[15] D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5 (2015) 031027
[arXiv:1502.03446] [INSPIRE].

[16] C. Wang and T. Senthil, Dual Dirac Liquid on the Surface of the Electron Topological Insulator,
Phys. Rev. X 5 (2015) 041031 [arXiv:1505.05141] [INSPIRE].

[17] M.A. Metlitski and A. Vishwanath, Particle-vortex duality of two-dimensional Dirac fermion
from electric-magnetic duality of three-dimensional topological insulators, Phys. Rev. B 93 (2016)
245151 [arXiv:1505.05142] [INSPIRE].

[18] A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016)
031043 [arXiv:1606.01893] [INSPIRE].

[19] N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2+1 Dimensions and
Condensed Matter Physics, Ann. Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].

– 24 –

https://doi.org/10.1007/BF01343663
https://arxiv.org/abs/physics/0605038
https://inspirehep.net/literature/9113
https://doi.org/10.1103/PhysRev.82.664
https://inspirehep.net/literature/113
https://doi.org/10.1103/PhysRevD.42.2881
https://inspirehep.net/literature/296099
https://doi.org/10.1103/PhysRevD.51.2026
https://doi.org/10.1103/PhysRevD.51.2026
https://arxiv.org/abs/hep-ph/9404216
https://inspirehep.net/literature/372539
https://doi.org/10.1103/PhysRevD.19.2385
https://doi.org/10.1103/PhysRevD.19.2385
https://inspirehep.net/literature/140214
https://doi.org/10.1103/PhysRevD.60.067703
https://arxiv.org/abs/hep-ph/9812386
https://inspirehep.net/literature/481011
https://doi.org/10.1103/PhysRevD.51.R2513
https://arxiv.org/abs/hep-th/9409113
https://inspirehep.net/literature/377043
https://doi.org/10.1103/PhysRevD.55.6218
https://arxiv.org/abs/hep-th/9606197
https://inspirehep.net/literature/420229
https://doi.org/10.1103/PhysRevD.2.1191
https://doi.org/10.1103/PhysRevD.2.1191
https://inspirehep.net/literature/61353
https://doi.org/10.1103/PhysRevD.58.105022
https://arxiv.org/abs/hep-th/9807031
https://inspirehep.net/literature/472735
https://doi.org/10.1103/PhysRev.127.965
https://inspirehep.net/literature/12290
https://doi.org/10.1103/PhysRevD.7.1888
https://inspirehep.net/literature/81406
https://doi.org/10.1017/CBO9781139644174
https://inspirehep.net/literature/430948
https://doi.org/10.1103/PhysRevX.5.031027
https://arxiv.org/abs/1502.03446
https://inspirehep.net/literature/1344327
https://doi.org/10.1103/PhysRevX.5.041031
https://arxiv.org/abs/1505.05141
https://inspirehep.net/literature/1405863
https://doi.org/10.1103/PhysRevB.93.245151
https://doi.org/10.1103/PhysRevB.93.245151
https://arxiv.org/abs/1505.05142
https://inspirehep.net/literature/1371868
https://doi.org/10.1103/PhysRevX.6.031043
https://doi.org/10.1103/PhysRevX.6.031043
https://arxiv.org/abs/1606.01893
https://inspirehep.net/literature/1468019
https://doi.org/10.1016/j.aop.2016.08.007
https://arxiv.org/abs/1606.01989
https://inspirehep.net/literature/1468029


J
H
E
P
0
5
(
2
0
2
4
)
1
3
4

[20] H. Goldman, Duality and strongly correlated systems in two dimensions, Ph.D. Thesis,
University of Illinois Urbana-Champaign, Champaign, IL, U.S.A. (2020) [INSPIRE].

[21] E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry,
in the proceedings of the From Fields to Strings: Circumnavigating Theoretical Physics: A
Conference in Tribute to Ian Kogan, Oxford, U.K., 8–10 January 2004, hep-th/0307041
[INSPIRE].

[22] W.-H. Hsiao and D.T. Son, Duality and universal transport in mixed-dimension electrodynamics,
Phys. Rev. B 96 (2017) 075127 [arXiv:1705.01102] [INSPIRE].

[23] H. Goldman, M. Mulligan, S. Raghu, G. Torroba and M. Zimet, Two-dimensional conductors
with interactions and disorder from particle-vortex duality, Phys. Rev. B 96 (2017) 245140
[arXiv:1709.07005] [INSPIRE].

[24] W.-H. Hsiao and D.T. Son, Self-dual ν = 1 bosonic quantum Hall state in mixed-dimensional
QED, Phys. Rev. B 100 (2019) 235150 [arXiv:1809.06886] [INSPIRE].

[25] W.-H. Hsiao, Thermoelectric properties and Wiedemann-Franz-like relations in
mixed-dimensional QEDs from particle-vortex dualities, Phys. Rev. D 104 (2021) 125006
[arXiv:2107.13762] [INSPIRE].

[26] C.-J. Lee and M. Mulligan, Universal conductivity at a two-dimensional superconductor-insulator
transition: The effects of quenched disorder and Coulomb interaction, Phys. Rev. B 108 (2023)
235142 [arXiv:2308.05155] [INSPIRE].

[27] M.E. Peskin, Mandelstam ’t Hooft Duality in Abelian Lattice Models, Ann. Phys. 113 (1978) 122
[INSPIRE].

[28] C. Dasgupta and B.I. Halperin, Phase Transition in a Lattice Model of Superconductivity, Phys.
Rev. Lett. 47 (1981) 1556 [INSPIRE].

[29] A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in
Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].

[30] E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001
[arXiv:1508.04715] [INSPIRE].

[31] M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press
(1995).

[32] V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dynamical flavor symmetry breaking by a
magnetic field in (2+1)-dimensions, Phys. Rev. D 52 (1995) 4718 [hep-th/9407168] [INSPIRE].

[33] T.W. Appelquist, M.J. Bowick, D. Karabali and L.C.R. Wijewardhana, Spontaneous Chiral
Symmetry Breaking in Three-Dimensional QED, Phys. Rev. D 33 (1986) 3704 [INSPIRE].

[34] V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry
breaking by a magnetic field in (2+1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid.
76 (1996) 1005] [hep-ph/9405262] [INSPIRE].

[35] W. Dittrich and H. Gies, Flavor condensate and vacuum (in)stability in QED(2+1)-dimensions,
Phys. Lett. B 392 (1997) 182 [hep-th/9609197] [INSPIRE].

[36] D.T. Son, Magnetic permeability of near critical 3-D Abelian Higgs model and duality, JHEP 02
(2002) 023 [hep-ph/0201135] [INSPIRE].

[37] I.S. Gradshteyn, I.M. Ryzhik, D. Zwillinger and V. Moll, Table of integrals, series, and products,
eighth edition, Academic Press, Amsterdam, The Netherlands (2014)
[DOI:10.1016/c2010-0-64839-5].

– 25 –

https://inspirehep.net/literature/1830971
https://arxiv.org/abs/hep-th/0307041
https://inspirehep.net/literature/622635
https://doi.org/10.1103/PhysRevB.96.075127
https://arxiv.org/abs/1705.01102
https://inspirehep.net/literature/1598090
https://doi.org/10.1103/PhysRevB.96.245140
https://arxiv.org/abs/1709.07005
https://inspirehep.net/literature/1624715
https://doi.org/10.1103/PhysRevB.100.235150
https://arxiv.org/abs/1809.06886
https://inspirehep.net/literature/1694688
https://doi.org/10.1103/PhysRevD.104.125006
https://arxiv.org/abs/2107.13762
https://inspirehep.net/literature/1895195
https://doi.org/10.1103/PhysRevB.108.235142
https://doi.org/10.1103/PhysRevB.108.235142
https://arxiv.org/abs/2308.05155
https://inspirehep.net/literature/2686866
https://doi.org/10.1016/0003-4916(78)90252-X
https://inspirehep.net/literature/122484
https://doi.org/10.1103/PhysRevLett.47.1556
https://doi.org/10.1103/PhysRevLett.47.1556
https://inspirehep.net/literature/176230
https://doi.org/10.1103/PhysRevD.29.2366
https://inspirehep.net/literature/195322
https://doi.org/10.1103/RevModPhys.88.035001
https://arxiv.org/abs/1508.04715
https://inspirehep.net/literature/1388530
https://doi.org/10.1103/PhysRevD.52.4718
https://arxiv.org/abs/hep-th/9407168
https://inspirehep.net/literature/38682
https://doi.org/10.1103/PhysRevD.33.3704
https://inspirehep.net/literature/226980
https://doi.org/10.1103/PhysRevLett.73.3499
https://arxiv.org/abs/hep-ph/9405262
https://inspirehep.net/literature/37966
https://doi.org/10.1016/S0370-2693(96)01507-9
https://arxiv.org/abs/hep-th/9609197
https://inspirehep.net/literature/423767
https://doi.org/10.1088/1126-6708/2002/02/023
https://doi.org/10.1088/1126-6708/2002/02/023
https://arxiv.org/abs/hep-ph/0201135
https://inspirehep.net/literature/591965
https://doi.org/10.1016/c2010-0-64839-5

	Introduction
	Effective action from particle vortex duality
	N=1 duality
	N=2 duality

	Explicit examples and results
	N=1 duality
	N=2 duality

	Concluding remark
	Effective action at finite density and no magnetic field
	Effective action in a constant magnetic field at zero density
	Setting up proper time representation
	Solving equation of motion
	Computing proper time integral in the massless limit
	Effective action in constant magnetic field with finite mass for N=2 theory at zero density

	Landau level solution

