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1 Introduction

The theory of error-correcting codes has played unexpectedly fruitful roles in mathematics and
theoretical physics despite its initial development as a method of information communication.
One of the most significant outcomes is the construction of two-dimensional chiral conformal
field theories (CFTs) from classical error-correcting codes through Euclidean lattices [1–5].
Such a class of chiral CFTs has played an important role in understanding the monstrous
moonshine [6] and the classification and construction of chiral CFTs with fixed central
charges [7]. Besides error-correcting codes, a key ingredient in such developments is the
gauging procedure [3, 8, 9]. The orbifold and fermionization implement the gauging of a
discrete symmetry in an original bosonic theory and constitute new consistent bosonic and
fermionic theories. By using the orbifolding technique, the Monster CFT [1] has been obtained
from the chiral CFT based on the Leech lattice closely related to the extended Golay code [10].
Also, fermionization has demonstrated its utility in the construction of fermionic analogs
of the Monster CFT [9] and found applications in searching for supersymmetric CFTs with
large discrete symmetries [11, 12]. Additionally, many entries in the Schellekens list [13],1

1See also [14–17] for recent developments.
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which dictates the potential chiral CFTs with central charge 24, have been constructed from
classical error-correcting codes with and without orbifolding [3, 8].

Inspired by the construction of chiral CFTs from classical codes, it has recently turned
out that binary quantum error-correcting codes naturally lead to a certain type of non-chiral
bosonic CFTs [18, 19], called Narain CFTs [20, 21]. Narain CFTs are characterized by
Lorentzian lattices while the chiral CFTs are by Euclidean lattices. The construction of
Narain CFTs exploits the relationship between quantum codes, classical codes, Lorentzian
lattices, and CFTs. This procedure yields a discrete subset of Narain CFTs named Narain
code CFTs, and they found various applications such as the realization of CFTs with large
spectral gaps [22, 23], the validation of holography [24], and the search for solutions of the
modular bootstrap [19, 25, 26]. (See also [5, 27–32] for other related progress.) A similar
construction also works in non-binary quantum codes based on finite fields Fp of prime order
p [33], and on more general finite fields and finite rings [34].

In this paper, we investigate the gauging of a Z2 symmetry in Narain code CFTs. In
a modern perspective, orbifold and fermionization are different gauging procedures of the
same Z2 symmetry in a bosonic CFT, which yields another bosonic CFT and fermionic CFT,
respectively [35–38]. The basic strategy of the present paper is to use the modern description
of the orbifold and fermionization to describe Z2 gaugings of Narain CFTs as modifications of
the momentum lattices. Fermionization of Narain code CFTs has been explored in the recent
paper [39] with an aim to search for fermionic CFTs with supersymmetry systematically by
using quantum stabilizer codes. On the other hand, this paper aims to provide a unified
perspective on the orbifold and fermionization in Narain code CFTs.

From the modern viewpoint, we establish the relationship between the Z2 gaugings
and modifications of the momentum lattice in Narain CFTs. For a bosonic CFT with a Z2
symmetry, one can extend the Hilbert space (untwisted sector) by adding another Hilbert
space (twisted sector). This leads to the decomposition of the Hilbert spaces into four
subsectors graded by their charges under the Z2 symmetry and whether they are twisted
or not. Then, the orbifold and fermionization can be regarded as the interchange of the
subsectors in the Hilbert spaces as shown in table 1. For Narain CFTs, one can take a certain
type of Z2 symmetry associated with a vector of the momentum lattice. This choice boils
down the construction of the twisted sector to a half shift of the momentum lattice by the
corresponding vector. With this shifted lattice, the Z2 gaugings of Narain CFTs can be
realized as the modifications of the momentum lattice as summarized in table 2. With this
general relationship between the Z2 gaugings and the lattice modifications, we explore the
orbifold and fermionization in Narain code CFTs based on finite fields of prime order. By
choosing a Z2 symmetry that exists for any Narain code CFT, we compute the partition
functions of the orbifolded and fermionized theories. These partition functions are expressed
in terms of the measure of spectrum in classical codes called the complete weight enumerator.
We illustrate the procedure with several examples including a quantum code that realizes
an N = 4 superconformal model [40] by fermionization [39].

We give three-dimensional interpretations of Narain code CFTs and their Z2 gauging in
terms of abelian Chern-Simons theories. We use the characterization of abelian Chern-Simons
theories by lattices [41] to relate them to Narain code CFTs. Some of the three-dimensional
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bulk theories are invariant under the Z2 gauging on 2d CFTs, and the gauging only affects
the topological boundary conditions, which suggests that the Chern-Simons theories play
the role of symmetry topological field theories [42–44] of Narain code CFTs. In addition,
with a special focus on an ensemble of quantum codes of the Calderbank-Shor-Steane (CSS)
type [45, 46], we compute the averaged partition functions in the orbifold and fermionization
of Narain code CFTs and discuss their spectrum in the large central charge limit.

This paper is organized as follows. In section 2, we start with a review of the Z2
gauging of bosonic CFTs with emphasis on the unification of the orbifold and fermionization.
We introduce the relationship between the Z2 gaugings and the lattice modifications using
a compact free boson theory as the simplest example. Then, we proceed to the general
formulation of the lattice modifications valid for any Narain CFT. In section 3, we are focused
on the Z2-gauging of Narain code CFTs and give a systematic way of computing the partition
functions of their orbifold and fermionization. Section 4 illustrates our general results with
several examples containing a quantum code known to realize an N = 4 supersymmetry. In
section 5, we give three-dimensional interpretations to the original, orbifolded, and fermionized
Narain code CFTs. We see that the stabilizer codes specify topological boundary conditions
of the corresponding Chern-Simons theories. In section 6, we compute the averaged partition
functions of the orbifolded and fermionized Narain code CFTs. We conclude the paper
with discussions in section 7.

2 Gauging Z2 symmetry of bosonic CFTs

This section starts with a review of the gauging procedure with a global Z2 symmetry in
two-dimensional bosonic CFTs from a modern viewpoint. In section 2.2, we consider Z2
gauging of a compact free boson. This is the simplest example that allows us to describe the
gauging of a Z2 symmetry as a modification of the momentum lattice. Section 2.3 is devoted
to the general formulation of lattice modification, which leads to orbifold and fermionization
of Narain CFTs by a certain Z2 symmetry.

2.1 Orbifold and fermionization

For a 2d bosonic CFT with a global symmetry, we can construct a new bosonic CFT by
gauging the symmetry of the original theory. This procedure is called orbifold [47–49] and has
been studied with particular importance as it provides a consistent theory from the original
one. On the other hand, fermionization has taken much attention as a specific technique in 2d
theories [50, 51] and was recently given by a modern description in analogy with the orbifold.
In this section, focusing on a global Z2 symmetry, we review orbifold and fermionization
in a parallel manner by following [37, 38, 52].

Consider a bosonic CFT B with central charge c and a non-anomalous global Z2 symmetry
σ. The Hilbert space H can be decomposed to the even and odd subsectors under the Z2
symmetry:

H = H+ ⊕H− , (2.1)

where H± = {|ϕ⟩ ∈ H | σ |ϕ⟩ = ± |ϕ⟩}. This Hilbert space H is called the untwisted sector.
To define the twisted sector, let us place the theory on a cylinder S1 × R where S1 is the
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spacial circle and R is the time direction, respectively. In the σ-twisted Hilbert space Hσ,
any operator ϕ obeys the twisted boundary condition,

Hσ : ϕ(x+ 2π) = σ · ϕ(x) , (2.2)

along the circle direction parametrized by x ∈ S1 with x ∼ x+ 2π. The twisted sector also
decomposes to the Z2 even and odd subsectors:

Hσ = H+
σ ⊕H−

σ . (2.3)

We have assumed that a global Z2 symmetry σ is non-anomalous. Otherwise, the resulting
gauged theories would be inconsistent and, for example, such a theory is not invariant under
the modular transformation. Let us consider the spin s of an operator in the twisted Hilbert
space Hσ. Then, the spin selection rule in the twisted sector is given by (see [53])

s ∈


Z
2 , (non-anomalous) ,
1
4 + Z

2 , (anomalous) .
(2.4)

In the non-anomalous (anomalous) case, the spin of an operator in Hσ is s ∈ Z
2 (s ∈ 1

4 + Z
2 ).

Conversely, we can diagnose the anomaly of a global Z2 symmetry by the spin selection
rule: if the twisted sector Hσ consists of operators with the spin s ∈ α

4 + Z
2 (α ∈ Z2), the

Z2 symmetry σ is non-anomalous α = 0 (anomalous α = 1).
Let us place the bosonic theory B on a torus with the modulus τ = τ1 + i τ2. The torus

has two independent cycles and we specify them by

timelike : w ∼ w + 2πτ , spacial : w ∼ w + 2π , (2.5)

where w is the cylindrical coordinate. For each cycle of the torus, we can choose the
periodicity condition (a, b) ∈ Z2 × Z2:

ϕ(w + 2πτ) = σa · ϕ(w) , ϕ(w + 2π) = σb · ϕ(w) . (2.6)

While the spacial periodicity b = 0 (b = 1) specifies the untwisted (twisted) Hilbert space, the
timelike periodicity a ∈ Z2 imposes a times insertion of the Z2 symmetry operator σ along
the spacial direction. Then, we have four partition functions depending on the periodicity

Z = TrH
[
qL0− c

24 q̄L̄0− c
24
]
, Zσ = TrH

[
σ qL0− c

24 q̄L̄0− c
24
]
,

Zσ = TrHσ

[
qL0− c

24 q̄L̄0− c
24
]
, Zσ

σ = TrHσ

[
σ qL0− c

24 q̄L̄0− c
24
]
.

(2.7)

In relation to the Z2 gauging, it is convenient to introduce another set of partition functions
associated to the four sectors shown in the top left panel of table 1:

S = TrH+

[
qL0− c

24 q̄L̄0− c
24
]
= TrH

[1 + σ

2 qL0− c
24 q̄L̄0− c

24

]
,

T = TrH−

[
qL0− c

24 q̄L̄0− c
24
]
= TrH

[1− σ
2 qL0− c

24 q̄L̄0− c
24

]
,

U = TrH+
σ

[
qL0− c

24 q̄L̄0− c
24
]
= TrHσ

[1 + σ

2 qL0− c
24 q̄L̄0− c

24

]
,

V = TrH−
σ

[
qL0− c

24 q̄L̄0− c
24
]
= TrHσ

[1− σ
2 qL0− c

24 q̄L̄0− c
24

]
.

(2.8)
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B untwisted twisted
even S U

odd T V

(a) Bosonic CFT

O untwisted twisted
even S T

odd U V

(b) Orbifold CFT

F NS sector R sector
even S T

odd V U

(c) Fermionic CFT

F̃ NS sector R sector
even S U

odd V T

(d) The other fermionic CFT

Table 1. The Z2 gradings of the untwisted and twisted Hilbert space for the original bosonic theory B,
the orbifold theory O, and the fermionized theory F , F̃ . The gradings are given by the Z2 symmetry
σ for B, its dual symmetry σ̂ for O, and the fermion parity (−1)F for F , F̃ . The four sectors are
swapped with each other under orbifolding and fermionization.

Here, we denote the four partition functions by S, T, U, V . In the top left panel of table 1,
however, we slightly abuse the notation and use these symbols to refer to the corresponding
sector in the Hilbert space. In what follows, we use this notation rather than H±,H±

σ for
simplicity. Note that the two sets of the partition functions are related by

S = Z + Zσ

2 , T = Z − Zσ

2 , U = Zσ + Zσ
σ

2 , V = Zσ − Zσ
σ

2 . (2.9)

Z2 orbifold. The Z2 orbifold can be applied to the bosonic theory B by choosing a non-
anomalous global Z2 symmetry σ. The standard procedure of the orbifold is the extension of
the untwisted Hilbert space H to the twisted Hilbert space Hσ followed by the projection
onto the Z2 even sectors. Table 1 shows the Z2 even sectors in the original theory B are
S ⊕ U . This gives the orbifold partition function

ZO = S + U = 1
2 [Z + Zσ + Zσ + Zσ

σ ] , (2.10)

where we use the relationship (2.9). The rightmost expression implies that the Z2 orbifold
sums over all possible Z2 gauge field configurations on the torus where the original theory B
is defined. Therefore, the Z2 orbifold can be seen as the gauging of the Z2 symmetry σ:

Orbifold theory O = Bosonic theory B
Zσ

2
. (2.11)

After gauging the Z2 symmetry σ, the orbifold theory O no longer has the global symmetry
σ. However, the dual Z2 symmetry σ̂ (more precisely, the Pontrjagin dual of σ) emerges in
the orbifold theory O [54].2 Then, as in the original theory B, we can give the Z2 grading
in the orbifold Hilbert space by σ̂ and also construct the twisted sector by σ̂.

2Taking the sum over all possible Z2 configuration of the dual symmetry σ̂, we can apply the orbifold by σ̂
to the orbifold theory O and it returns the original theory B. For more general discussion, readers can refer
to [55].
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To introduce a more general partition function of the orbifold theory O, suppose that t is a
Z2 gauge field configuration of σ̂ on a spacetime where the theory lives. The orbifold partition
functions with the Z2 configuration t on the genus-g Riemann surface Σg can be written by

ZO[t] =
1
2g

∑
s∈H1(Σg ,Z2)

ZB[s] exp
[
iπ
∫
s ∪ t

]
, (2.12)

where s and t take values in H1(Σg,Z2), and ∪ is the cup product. On a torus, the Z2
configurations s, t ∈ Z2 × Z2 are specified by the periodicity (a, b) along the temporal a ∈ Z2
and spacial direction b ∈ Z2. Then, there are four types of partition functions ZO[ab] for
the orbifold theory:

ZO[00] =
1
2 [Z + Zσ + Zσ + Zσ

σ ] = S + U ,

ZO[10] =
1
2 [Z + Zσ − Zσ − Zσ

σ ] = S − U ,

ZO[01] =
1
2 [Z − Zσ + Zσ − Zσ

σ ] = T + V ,

ZO[11] =
1
2 [Z − Zσ − Zσ + Zσ

σ ] = T − V ,

(2.13)

where we used the identification:

ZB[00] = Z , ZB[10] = Zσ , ZB[01] = Zσ , ZB[11] = Zσ
σ . (2.14)

The relations (2.13) show that the sector S (U) is the even (odd) untwisted Hilbert space
of the orbifold theory O. On the other hand, the sector T (V ) is the even (odd) sector
of the Hilbert space twisted by the dual symmetry σ̂. Therefore, we can recapitulate the
Hilbert space of the orbifold theory O with respect to the dual Z2 symmetry σ̂ in the top
right panel of table 1. Compared with the original theory B, taking the orbifold can be
understood as the swapping of the two sectors U ↔ V .

Fermionization. Starting with a bosonic theory B with a non-anomalous Z2 symmetry,
we can turn it into a fermionic theory using the procedure called fermionization [35, 36].
Fermionization exploits a non-trivial two-dimensional invertible spin topological theory known
as the Kitaev Majorana chain [56], which has a global Z2 symmetry. By coupling B to the
Kitaev Majorana chain and taking the diagonal Z2 orbifold, the bosonic theory B turn
into a fermionic theory F :

Fermionized theory F = Bosonic theory B ×Kitaev
Z2

. (2.15)

After the fermionization, the fermionic theory does not have the diagonal Z2 symmetry.
Instead, the fermion parity (−1)F emerges and we can give define the untwisted and twisted
sectors by the Z2 grading with respect to the fermion parity. The resulting untwisted
sector and the twisted sector are called the Neveu-Schwarz (NS) sector and the Ramond
(R) sector, respectively.

– 6 –
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On a genus-g Riemann surface Σg, the fermionized partition function with spin structure
ρ is given by

ZF [t+ ρ] = 1
2g

∑
s∈H1(Σg ,Z2)

ZB[s] exp
[
iπ
(

Arf [s+ ρ] + Arf [ρ] +
∫
s ∪ t

)]
, (2.16)

where t ∈ H1(Σg,Z2) is the Z2 configuration of the fermion parity. Here, Arf is called the
Arf invariant and depends on the choice of spin structures on Σg. The resulting fermionic
theory has partition functions that depend on the choice of spin structures.

On a torus, there are four spin structures by depending on whether fermions are anti-
periodic (A) or periodic (P) along each cycle. The Arf invariant takes the values:

Arf [ρ] =

0 ρ = 00 (AA), 01 (AP), 10 (PA)
1 ρ = 11 (PP)

(2.17)

where the first and second letters stand for the periodicity along the temporal and spacial
direction, respectively. There are four types of fermionic partition functions:

ZF [00] =
1
2 [Z + Zσ + Zσ − Zσ

σ ] = S + V ,

ZF [10] =
1
2 [Z + Zσ − Zσ + Zσ

σ ] = S − V ,

ZF [01] =
1
2 [Z − Zσ + Zσ + Zσ

σ ] = T + U ,

ZF [11] =
1
2 [Z − Zσ − Zσ − Zσ

σ ] = T − U .

(2.18)

Note that the second letter specifies the NS sector for the anti-periodic boundary and the R
sector for the periodic boundary. From (2.18), the sector U (V ) has even (odd) fermion parity
in the NS sector. Similarly, the sector T (U) is even (odd) with respect to the fermion parity
in the R sector. Hence, the Hilbert space of the fermionized theory F can be summarized
as the bottom left panel in table 1. Comparing the bosonic theory B and the fermionized
counterpart F in table 1, fermionization can be regarded as the cyclic permutation of the
three sectors T → U → V → T .

From a bosonic theory B, we can construct the other fermionic CFT denoted by F̃ .
These fermionic theories F and F̃ are related by the stacking of the Kitaev Majorana chain:

Fermionized theory F̃ = Fermionized theory F ×Kitaev , (2.19)

which results in the difference of the Z2 grading in the R sector. Therefore, the Hilbert space
of F̃ can be given by the bottom right panel in table 1.

2.2 Z2 gauging from lattice modification

In this section, we consider a 2d bosonic CFT B with a particular type of a non-anomalous
Z2 symmetry and their gauging by the Z2 symmetry. In particular, we treat a bosonic theory
characterized by a momentum lattice and its Z2 symmetry related to a shift of momentum
lattice. This exemplifies the relationship between the Z2 gauging and lattice modification.
For the Z2 orbifold, the following relation with lattice modification is demonstrated in [18].
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More specifically, we consider a single compact boson whose momenta are characterized
by a two-dimensional Lorentzian lattice Λ ⊂ R1,1. Let X(z, z̄) = XL(z)+XR(z̄) be a compact
free boson with radius R. The compact boson is normalized as X(z, z̄)X(0, 0) ∼ − log |z|2,
which corresponds to α′ = 2 in the notation of [57]. In this setup, the vertex operators are

VpL, pR(z, z̄) =: ei pLXL(z)+i pRXR(z̄) : , (2.20)

where the left- and right-moving momenta (pL, pR) are given by

pL = m

R
+ wR

2 , pR = m

R
− wR

2 , m,w ∈ Z . (2.21)

Here, m and w are called the momentum and winding numbers, respectively. For any vertex
operator VpL, pR(z, z̄), the spin is an integer:

s = h− h̄ = p2
L

2 −
p2

R

2 = mw ∈ Z . (2.22)

The spin-statistics theorem shows that the theory B has only bosonic excitations.
Generally, a bosonic theory should be invariant under the modular transformation. In an

n-dimensional compact boson, the modular invariance requires a set of left- and right-moving
momenta (pL, pR) to form an even self-dual lattice Λ with respect to the diagonal Lorentzian
metric η̃ = diag(1n,−1n) (the corresponding inner product is denoted by ◦ in the following):

• (Even) (pL, pR) ◦ (pL, pR) ∈ 2Z for (pL, pR) ∈ Λ.

• (Self-dual) Λ∗ := { (p′L, p′R) ∈ Rn,n | (pL, pR) ◦ (p′L, p′R) ∈ Z , (pL, pR) ∈ Λ} = Λ.

In a general dimension n, an even self-dual lattice specifies a compactification of bosons and
defines a bosonic CFT of Narain type [20, 21].

For a single compact boson (n = 1) of radius R, the corresponding momentum lattice is

Λ(R) =
{(

m

R
+ wR

2 ,
m

R
− wR

2

)
∈ R2

∣∣∣∣ m,w ∈ Z
}
. (2.23)

One can easily check that Λ(R) is even self-dual with respect to η̃ = diag(1,−1). The
compact boson theory consists of the operators

∂X(z) , T (z) = ∂X(z) ∂X(z) , VpL, pR(z, z̄) . (2.24)

Using the state-operator isomorphism, the Hilbert space of the compact boson is

H = {α−k1 · · ·α−kr α̃−l1 · · · α̃−ls |pL, pR⟩ | (pL, pR) ∈ Λ(R)} , (2.25)

where αk and α̃k are the bosonic oscillators and k1, · · · , kr ∈ Z>0 and l1, · · · , ls ∈ Z>0.
The compact free boson at generic radius R has a global U(1)m×U(1)w symmetry where

the momentum U(1)m and winding U(1)w act on the compact boson as (see e.g., [52])

U(1)m : XL(z)→ XL(z) +
R

2 θm , XR(z)→ XR(z) +
R

2 θm ,

U(1)w : XL(z)→ XL(z) +
1
R
θw , XR(z)→ XR(z)−

1
R
θw ,

(2.26)
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where θm,w ∼ θm,w + 2π. Then, the symmetries act on the vertex operators as

U(1)m : VpL, pR(z, z̄)→ ei m θm VpL, pR(z, z̄) ,
U(1)w : VpL, pR(z, z̄)→ ei w θw VpL, pR(z, z̄) ,

(2.27)

By setting θm = π and θw = π, these U(1) symmetries reduce to the momentum Z2 and
winding Z2 symmetries.

Let us focus on the momentum Z2 symmetry and identify the untwisted and twisted
Hilbert spaces. The momentum Z2 symmetry acts on the vertex operators as

VpL, pR(z, z̄)→ (−1)m VpL, pR(z, z̄) . (2.28)

This action gives rise to the Z2 grading of the momentum lattice Λ(R) = Λ0 ∪ Λ1:

Λ0 =
{(

m

R
+ wR

2 ,
m

R
− wR

2

)
∈ R2

∣∣∣∣ m ∈ 2Z , w ∈ Z
}
,

Λ1 =
{(

m

R
+ wR

2 ,
m

R
− wR

2

)
∈ R2

∣∣∣∣ m ∈ 2Z+ 1 , w ∈ Z
}
.

(2.29)

Correspondingly, the untwisted Hilbert space H can be decomposed into the Z2 even sector
S and odd sector T :

S =
{
αi1
−k1
· · ·αir

−kr
α̃j1
−l1
· · · α̃js

−ls
|pL, pR⟩

∣∣∣ (pL, pR) ∈ Λ0
}
,

T =
{
αi1
−k1
· · ·αir

−kr
α̃j1
−l1
· · · α̃js

−ls
|pL, pR⟩

∣∣∣ (pL, pR) ∈ Λ1
}
.

(2.30)

By gauging the momentum Z2 symmetry of the compact free boson, we obtain the
following operators in the twisted sector (refer to appendix A in [53]):

Vp̃L, p̃R(z, z̄) =: ei p̃LXL(z)+i p̃RXR(z̄) : , (2.31)

which are labeled by

p̃L = k

R
+ lR

2 , p̃R = k

R
− lR

2 , k ∈ Z , l ∈ Z+ 1
2 . (2.32)

Note that the spin of the vertex operator Vp̃L, p̃R(z, z̄) is s = k l. Then, the spin of any
operator in the twisted sector is at least a half-integer. Hence, the spin selection rule (2.4)
guarantees that the momentum Z2 symmetry is non-anomalous, with which we can perform
the orbifold and fermionization.

On the twisted Hilbert space, the momentum Z2 symmetry acts as

Vp̃L, p̃R(z, z̄)→ (−1)k Vp̃L, p̃R(z, z̄) . (2.33)

Then, we can decompose the momenta (p̃L, p̃R) into two sectors by the Z2 grading:

Λ2 =
{(

k

R
+ l R

2 ,
k

R
− l R

2

)
∈ R2

∣∣∣∣ k ∈ 2Z+ 1 , l ∈ Z+ 1
2

}
,

Λ3 =
{(

k

R
+ l R

2 ,
k

R
− l R

2

)
∈ R2

∣∣∣∣ k ∈ 2Z , l ∈ Z+ 1
2

}
.

(2.34)
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B untwisted twisted
even Λ0 Λ3
odd Λ1 Λ2

(a) Bosonic CFT

O untwisted twisted
even Λ0 Λ1
odd Λ3 Λ2

(b) Orbifold CFT

F NS sector R sector
even Λ0 Λ1
odd Λ2 Λ3

(c) Fermionic CFT

F̃ NS sector R sector
even Λ0 Λ3
odd Λ2 Λ1

(d) The other fermionic CFT

Table 2. The Z2 grading of the untwisted and twisted Hilbert space in terms of the underlying sets
of momenta. Each Hilbert space can be constructed from the vertex operators associated with Λi

(i = 0, 1, 2, 3) and the bosonic excitations. The orbifold and fermionization reduce to the swapping of
the four sets Λi of momenta.

This induces the decomposition of the twisted Hilbert sector into the Z2 even sector U
and odd sector V :

U =
{
αi1
−k1
· · ·αir

−kr
α̃j1
−l1
· · · α̃js

−ls
|pL, pR⟩

∣∣∣ (pL, pR) ∈ Λ3
}
,

V =
{
αi1
−k1
· · ·αir

−kr
α̃j1
−l1
· · · α̃js

−ls
|pL, pR⟩

∣∣∣ (pL, pR) ∈ Λ2
}
.

(2.35)

The only difference between the four sectors S, T, U, V in (2.30) and (2.35) is the under-
lying set of left- and right-moving momenta. Hence, the Z2 grading in the untwisted and
twisted Hilbert space can be understood in terms of Λi (i = 0, 1, 2, 3):

S ↔ Λ0 , T ↔ Λ1 , U ↔ Λ3 , V ↔ Λ2 . (2.36)

To compare with table 1, we summarize the orbifold and fermionization by the momentum
Z2 symmetry in terms of the underlying sets of momenta in table 2. While the momentum
lattice of the orbifold theory is

ΛO = Λ0 ∪ Λ3 , (2.37)

that of the NS sector in the fermionized theory is

ΛNS = Λ0 ∪ Λ2 . (2.38)

One can check that ΛO is even self-dual and ΛNS is odd self-dual with respect to the inner
product ◦. This meets the general requirement that a bosonic theory has an even self-dual
momentum lattice and a fermionic theory has an odd self-dual lattice.

Let us reproduce the Z2 grading of the Hilbert spaces more systematically. Suppose an
element χ = (R/2,−R/2) ∈ Λ(R). Then, each Λi (i = 0, 1) in (2.29) can be characterized by

Λi = { (pL, pR) ∈ Λ(R) | (pL, pR) ◦ χ = i mod 2} . (2.39)
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Furthermore, Λ2 and Λ3 in (2.34) can be endowed with

Λ2 = Λ1 +
χ

2 , Λ3 = Λ0 +
χ

2 . (2.40)

Therefore, Λ2 and Λ3, which specify the Z2 grading of the twisted sector, are a shift of
Λ1 and Λ2 by χ/2, respectively. Once a vector χ is given, then it uniquely determines Λi

(i = 0, 1, 2, 3) as well as the Z2 grading of the untwisted and twisted Hilbert space.
In general, we can choose a non-anomalous Z2 symmetry in U(1)m ×U(1)w and take the

orbifold and fermionization by the symmetry. In terms of the momentum lattice, the choice
of a non-anomalous Z2 symmetry corresponds to the choice of χ ∈ Λ(R). For example, the
momentum and winding Z2 symmetries are specified by χ = (R/2,−R/2) and χ = (R/2, R/2),
respectively. In the next section, we generalize this discussion into higher-dimensional lattices
and formulate the lattice modification, which leads to the Z2 gauging of Narain CFTs.

2.3 General formulation of lattice modification

In the previous section, we introduced the modifications of the momentum lattice as orbifold
and fermionization in a compact boson. We call this operation lattice modification, which
is often used by mathematicians to make new self-dual lattices out of existing ones [10]. In
relation to string theory, lattice modification also has been studied in [58, 59]. The main aim
of this section is to provide a modern description of lattice modification related to orbifold
and fermionization of Narain CFTs.

Before discussing lattice modification, we clarify several notions and properties of lattices.
Let Λ ⊂ RN be a lattice with a non-degenerate symmetric bilinear form g. We denote the
inner product with respect to the metric g as ⊘. We do not specify its signature so that
Euclidean and Lorentzian metrics can be considered.

Associated with the inner product ⊘, the dual lattice is

Λ∗ =
{
λ′ ∈ RN | λ⊘ λ′ ∈ Z , λ ∈ Λ

}
. (2.41)

If Λ ⊂ Λ∗, Λ is called integral. If Λ = Λ∗, Λ is called self-dual. An integral lattice Λ can
be further classified into an even and odd lattice.

• If any λ ∈ Λ satisfies λ⊘ λ ∈ 2Z, Λ is called even.

• If there exists λ ∈ Λ such that λ⊘ λ ∈ 2Z+ 1, Λ is called odd.

By regarding Λ as a momentum lattice, an even self-dual lattice Λ defines a bosonic theory
and an odd self-dual lattice Λ defines a fermionic theory [58].

Since we are interested in Narain CFTs, we suppose that Λ is even self-dual with respect
to the metric g. Let us pick up a lattice vector χ ∈ Λ whose half is not an element of Λ:
δ = χ

2 /∈ Λ. We assume δ ⊘ δ ∈ Z so that the CFT associated with the lattice Λ has a
non-anomalous Z2 symmetry. Otherwise, the twisted sector would consist of operators with
the spin s ∈ 1

4 + Z
2 and it implies the Z2 symmetry is anomalous from the spin selection

rule (2.4). Note that, in the non-anomalous case, χ ⊘ χ ∈ 4Z holds.
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Generalizing the case of a single compact boson in the previous subsection, we divide
Λ into two parts as

Λ = Λ0 ∪ Λ1 , (2.42)

where

Λ0 = {λ ∈ Λ |χ⊘ λ = 0 mod 2} ,
Λ1 = {λ ∈ Λ |χ⊘ λ = 1 mod 2} .

(2.43)

From the assumption χ ⊘ χ ∈ 4Z, the vector χ ∈ Λ is contained in Λ0: χ ∈ Λ0. Note
that Λ0 is closed under addition, so it forms a lattice by itself. Using the shift vector δ,
we introduce the following two sets:

Λ2 =
{
Λ1 + δ (δ ⊘ δ ∈ 2Z) ,
Λ0 + δ (δ ⊘ δ ∈ 2Z+ 1) ,

Λ3 =
{
Λ0 + δ (δ ⊘ δ ∈ 2Z) ,
Λ1 + δ (δ ⊘ δ ∈ 2Z+ 1) .

(2.44)

As in the previous subsection, we define

ΛO = Λ0 ∪ Λ3 , ΛNS = Λ0 ∪ Λ2 . (2.45)

In what follows, we verify that ΛO is even self-dual and ΛNS is odd self-dual for a general
metric g. The following proposition is fundamental.

Proposition 2.1
The dual lattice Λ∗

0 of Λ0 with respect to the metric g is given by

Λ∗
0 = Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3 , (2.46)

where Λi (i = 0, 1, 2, 3) are defined by (2.43) and (2.44).

Proof. First, we prove Λ∗
0 ⊃ Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3. Since Λ = Λ0 ∪ Λ1 is self-dual,

Λ∗
0 ⊃ (Λ0 ∪ Λ1)∗ = Λ0 ∪ Λ1 . (2.47)

By taking the inner product with λ0 ∈ Λ0, we check that any element in Λ0 + δ and Λ1 + δ is
in Λ∗

0. Suppose λ′0 + δ ∈ Λ0 + δ. The inner product between them is

(λ′0 + δ)⊘ λ0 = λ′0 ⊘ λ0 + δ ⊘ λ0 ∈ Z , (2.48)

where the first term is even and the second term is integer by definition of Λ0. Suppose
λ1 + δ ∈ Λ1 + δ. Then

(λ1 + δ)⊘ λ0 = λ1 ⊘ λ0 + δ ⊘ λ0 ∈ Z , (2.49)

where the first term is integer due to the integral lattice Λ and the second term is also integer
by definition of Λ0. Then, any lattice vector in Λ0 ∪Λ1 ∪Λ2 ∪Λ3 has an integer inner product
with all vectors in Λ0. This means Λ∗

0 ⊃ Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3.
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From now on, we consider Λ∗
0 ⊂ Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3. Suppose λ ∈ Λ∗

0. We will consider
the following two cases: (i) λ⊘ λ1 ∈ Z for all λ1 ∈ Λ1 and (ii) there exist λ1 ∈ Λ1 such that
λ⊘ λ1 /∈ Z.

In the first case (i), the vector λ ∈ Λ∗
0 has an integer inner product with a lattice vector

in Λ0 and Λ1. Then, we obtain

λ ∈ (Λ0 ∪ Λ1)∗ = Λ0 ∪ Λ1 . (2.50)

In the second case (ii), let us consider a lattice vector λ1 ∈ Λ1 that satisfies λ⊘ λ1 /∈ Z.
Since 2λ1 ∈ Λ0, we have λ⊘ 2λ1 ∈ Z. This implies

λ⊘ λ1 ∈ Z+ 1
2 . (2.51)

Let λ′ be a vector λ′ = λ− δ and ν ∈ Λ0 ∪ Λ1. Then, the inner product between them is

λ′ ⊘ ν = λ⊘ ν − δ ⊘ ν . (2.52)

The first term is

λ⊘ ν ∈


Z (ν ∈ Λ0) ,

Z+ 1
2 (ν ∈ Λ1) ,

(2.53)

where, in the second case (ν ∈ Λ1), we use the fact that any lattice vector ν ∈ Λ1 can be
shifted to the vector λ1 ∈ Λ1 defined above by an appropriate vector ρ ∈ Λ0: ν = λ1 + ρ.
Since Λ0 is integral and (2.51) holds, we obtain the result λ⊘ ν ∈ Z+ 1

2 . On the other hand,
the second term in (2.52) is

δ ⊘ ν ∈


Z (ν ∈ Λ0) ,

Z+ 1
2 (ν ∈ Λ1) .

(2.54)

Therefore, we have λ′⊘ ν ∈ Z for all vectors ν ∈ Λ0 ∪Λ1, implying λ′ = λ− δ ∈ (Λ0 ∪Λ1)∗ =
Λ0 ∪ Λ1 or equivalently λ ∈ Λ2 ∪ Λ3. Since the above two cases fill in all cases, if the vector
λ ∈ Λ∗

0, then λ ∈ Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3. This results in Λ∗
0 ⊂ Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3.

Proposition 2.2
Let ΛO and ΛNS be the shifted lattices defined by (2.45). Then, ΛO and ΛNS are self-dual
with respect to the metric g.

Proof. We divide the original lattice Λ into two parts Λ = Λ0 ∪ Λ1. The dual lattice of Λ0 is
given by Proposition 2.1:

Λ∗
0 = Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3 . (2.55)

First, we consider the shifted lattice ΛNS = Λ0 ∪ Λ2. It is straightforward to verify that the
shifted lattice is integral, so we have

Λ0 ∪ Λ2 = ΛNS ⊂ Λ∗
NS . (2.56)
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The dual lattice Λ∗
NS of the shifted lattice ΛNS satisfies

Λ∗
NS = (Λ0 ∪ Λ2)∗ ⊂ Λ∗

0 = Λ0 ∪ Λ1 ∪ Λ2 ∪ Λ3 . (2.57)

To specify the dual lattice Λ∗
NS, we consider the inner products between the shifted lattice ΛNS

and Λi (i = 0, 1, 2, 3). Since Λ0 has integer inner products with Λi for all i by Proposition 2.1,
we only need to examine the inner products between Λ2 and Λi.

Suppose λ ∈ Λ2 and λi ∈ Λi. For i = 0, 2, we find the inner product λ⊘ λi ∈ Z (i = 0, 2)
because ΛNS = Λ0 ∪Λ2 is an integral lattice. For i = 1, we consider two cases: δ⊘ δ ∈ 2Z and
δ ⊘ δ ∈ 2Z+ 1. In the case with δ ⊘ δ ∈ 2Z, a lattice vector is given by λ2 = λ′1 + δ ∈ Λ1 + δ.
In this case, we obtain the following:

(λ′1 + δ)⊘ λ1 = λ′1 ⊘ λ1 + δ ⊘ λ1 ∈ Z+ 1
2 , (2.58)

which follows from the definition of Λ1. For the other case (δ ⊘ δ ∈ 2Z + 1), we have
λ2 = λ′0 + δ ∈ Λ0 + δ. Then, we obtain

(λ′0 + δ)⊘ λ1 = λ′0 ⊘ λ1 + δ ⊘ λ1 ∈ Z+ 1
2 , (2.59)

where the first term is integer due to the integrality of the lattice Λ = Λ0 ∪Λ1 and the second
term is half-odd by definition of Λ1. For i = 3, there are also two cases: δ ⊘ δ ∈ 2Z and
δ ⊘ δ ∈ 2Z+ 1. For δ ⊘ δ ∈ 2Z, we can write λ2 = λ1 + δ ∈ Λ1 + δ and λ3 = λ0 + δ ∈ Λ0 + δ.
Then, the inner product between them is

λ2 ⊘ λ3 = λ1 ⊘ λ0 + λ1 ⊘ δ + δ ⊘ λ0 + δ ⊘ δ ∈ Z+ 1
2 , (2.60)

where the second term is half-odd by definition of Λ1. For the other case (δ⊘ δ ∈ 2Z+1), we
have λ2 = λ0 + δ ∈ Λ0 + δ and λ3 = λ1 + δ ∈ Λ1 + δ. Then we get the same result as (2.60):
λ2 ⊘ λ3 ∈ Z+ 1

2 .
Then, the inner product between an element in Λ2 and an element in Λ1 ∪ Λ3 is always

half-odd. Therefore, any lattice vector in Λ1 ∪ Λ3 is not an element of the dual lattice Λ∗
NS,

so we can strengthen the constraint (2.57):

Λ∗
NS ⊂ Λ0 ∪ Λ2 . (2.61)

In summary, we have the following relation:

Λ0 ∪ Λ2 ⊂ Λ∗
NS ⊂ Λ0 ∪ Λ2 , (2.62)

which implies that the integral lattice ΛNS is self-dual: Λ∗
NS = Λ0 ∪ Λ2 = ΛNS. A similar

discussion can be applied for the other shifted lattice ΛO.

From Proposition 2.2, the following corollary is obvious.

Corollary 2.1
The shifted lattices ΛO and ΛNS are integral with respect to the metric g.
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Both the shifted lattices ΛO and ΛNS share the self-duality with respect to g. The
following proposition clarifies the important difference between them.
Proposition 2.3
The shifted lattice ΛO is even and ΛNS is odd with respect to the metric g.
Proof. From Corollary 2.1, both ΛO and ΛNS are integral, so we can classify them into even
and odd lattices. The norm of a lattice vector in Λ0 is even due to the evenness of the original
lattice Λ. In what follows, we consider the norm of an element in Λ2 and Λ3.

First, we focus on the lattice ΛO = Λ0 ∪ Λ3 = Λ0 ∪ (Λ0 + δ) when δ ⊘ δ ∈ 2Z. Suppose
λ0 + δ ∈ Λ0 + δ. Its norm is given by

(λ0 + δ)⊘ (λ0 + δ) = λ0 ⊘ λ0 + δ ⊘ δ + χ⊘ λ0 ∈ 2Z , (2.63)

where the first term is even due to the evenness of Λ, the second term is even by assumption,
and the third term is also even due to the definition of Λ0. If δ ⊘ δ ∈ 2Z+ 1, then the shifted
lattice ΛO is ΛO = Λ0 ∪ (Λ1 + δ). Suppose λ1 + δ ∈ Λ1 + δ. The norm of this vector is

(λ1 + δ)⊘ (λ1 + δ) = λ1 ⊘ λ1 + δ ⊘ δ + χ⊘ λ1 ∈ 2Z , (2.64)

where the first term is even due to the evenness of Λ and the second term is odd by assumption,
the third term is also odd by definition of Λ1. Since the norm of any lattice vector in ΛO is
always even, the shifted lattice ΛO is an even lattice.

Next, we treat the other shifted lattice ΛNS. For δ ⊘ δ ∈ 2Z, the shifted lattice is given
by ΛNS = Λ0 ∪ (Λ1 + δ). Suppose λ1 + δ ∈ Λ1 + δ. The norm of this vector is

(λ1 + δ)⊘ (λ1 + δ) = λ1 ⊘ λ1 + δ ⊘ δ + χ⊘ λ1 ∈ 2Z+ 1 , (2.65)

where the first term is even by the evenness of Λ and the second term is even by assumption,
the third term is odd due to the definition of Λ1. For δ ⊘ δ ∈ 2Z+ 1, ΛNS = Λ0 ∪ (Λ0 + δ).
Suppose a lattice vector λ0 + δ ∈ Λ0 + δ. Its norm is

(λ0 + δ)⊘ (λ0 + δ) = λ0 ⊘ λ0 + δ ⊘ δ + χ⊘ λ0 ∈ 2Z+ 1 , (2.66)

where λ0 ⊘ λ0 ∈ 2Z by the evenness of Λ and the second term is odd by assumption, the
third term is even by definition of Λ0. The norm of any element in Λ2 is odd, so the shifted
lattice ΛNS is an odd lattice with respect to the metric g.

Combining Proposition 2.2 and 2.3, we arrive at the following theorem.
Theorem 2.1
Let ΛO and ΛNS be the shifted lattices defined by (2.45). Then ΛO is even self-dual and ΛNS
is odd self-dual with respect to the metric g.

Theorem 2.1 guarantees that lattice modifications of an even self-dual lattice Λ yield
new even self-dual lattice ΛO and odd self-dual lattice ΛNS. In terms of CFTs, ΛO and ΛNS
correspond to the momentum lattices of the new bosonic and fermionic CFTs, which are
obtained by orbifold and fermionization of the original bosonic CFT. Theorem 2.1 suggests
that this procedure of the orbifold and fermionization holds for any even self-dual lattice
Λ given a non-anomalous Z2 symmetry. In section 3, we apply the lattice formulation of
orbifold and fermionization to Narain CFTs constructed from quantum stabilizer codes and
systematically compute the partition functions of orbifold and fermionized theory.
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3 Gauging Z2 symmetry of Narain code CFTs

This section is devoted to the orbifold and fermionization of Narain code CFTs. Narain code
CFTs are a class of Narain CFTs constructed from quantum codes. In section 3.1, we review
the stabilizer formalism of quantum codes based on finite fields Fp and the construction of
Narain code CFTs for the cases with an odd prime number p and p = 2. Section 3.2 and 3.3
consider the Z2 gauging for the case with an odd prime p and p = 2, respectively. We also give
a systematic way to compute the partition functions of the orbifold and fermionized theory.

3.1 Narain code CFTs

In this section, we review the construction of bosonic CFTs from quantum stabilizer codes [18,
33]. Let Fp = Z/pZ be a finite field for a prime number p and { |x⟩

∣∣x ∈ Fp } be an orthonormal
basis for a Hilbert space Cp. The Pauli group acting on Cp is generated by the operators X and
Z which satisfy the relations [60]: X |x⟩ = |x+ 1⟩ , Z |x⟩ = ωx |x⟩, where ω = exp(2πi/p)
and x is defined modulo p. X and Z are generalizations of the Pauli matrices acting on a
qubit system (p = 2) to a qudit system (p ≥ 2). Let a = (a1, · · · , an),b = (b1, · · · , bn) be
vectors in Fn

p and define an operator g(a,b) acting on n-qudit system by

g(a,b) ≡ Xa1Zb1 ⊗ · · · ⊗XanZbn . (3.1)

Here we omit a phase factor for g(a,b) for simplicity. A pair of two error operators do
not commute in general but satisfy

g(a,b) g(a′,b′) = ω−a·b′+a′·b g(a′,b′) g(a,b) , (3.2)

where a · b = ∑n
i=1 ai bi. Thus g(a,b) and g(a′,b′) commute if a · b′ − a′ · b = 0. An

[[n, k]] quantum stabilizer code VS is a subspace of (Cp)⊗n fixed by the stabilizer group
S = ⟨ g1, · · · , gn−k ⟩ generated by a commuting set of operators gi = g(a(i),b(i)) (i =
1, · · · , n − k) [61–65]:

VS =
{
|ψ⟩ ∈ (Cp)⊗n

∣∣ g |ψ⟩ = |ψ⟩ , ∀g ∈ S
}
. (3.3)

Since VS is the simultaneous eigenspace of the n − k independent operators gi, it is a pk-
dimensional subspace in (Cp)⊗n. The stabilizer group S can be encoded into a (n− k)× 2n
matrix of rank n − k over Fp:

H =


a(1) b(1)

a(2) b(2)

...
...

a(n−k) b(n−k)

 . (3.4)

The vertical line indicates that the left and right vectors in each row correspond to the X
and Z operators for the stabilizer generator g(a,b), respectively. The commutativity of
the generators gi yields the condition:

H W HT = 0 mod p , W =
[

0 In

−In 0

]
, (3.5)

where In is the n × n identity matrix and 0 is a zero matrix.
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The matrix representation of the stabilizer generators manifests an intriguing relation
between quantum stabilizer codes and classical codes. An [n, k] linear code C over Fp is
defined as a pk-dimensional linear subspace of Fn

p generated by k row vectors of a k × n
matrix G of rank k over Fp:

C =
{
c ∈ Fn

p

∣∣ c = xG, x ∈ Fk
p

}
. (3.6)

Here, G is called the generator matrix of the code C. Now consider a classical code C whose
generator matrix is given by the matrix GH = H associated with a stabilizer code:

C =
{
c ∈ F2n

p

∣∣ c = xGH, x ∈ Fn−k
p

}
. (3.7)

Having the construction of Narain CFTs in mind, we introduce the Lorentzian inner product
⊙ for a pair of codewords c, c′ ∈ C by

u⊙ v = u η vT , η =
[
0 In

In 0

]
. (3.8)

The dual code C⊥ with respect to the Lorentzian inner product ⊙ is defined by

C⊥ =
{
c′ ∈ F2n

p

∣∣ c′ ⊙ c = 0 mod p , c ∈ C
}
. (3.9)

The Lorentzian linear code C is called self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. For
the binary case p = 2, we can further classify self-orthogonal codes. In particular, we call
C doubly-even if any codeword c ∈ C satisfies c · c ∈ 4Z.

We can further extend the code C to a 2n-dimensional Lorentzian lattice Λ(C) through
the so-called Construction A [10]:

Λ(C) =
{
c+ pm
√
p
∈ Rn,n

∣∣∣∣∣ c ∈ C, m ∈ Z2n

}
, (3.10)

which is equipped with the Lorentzian inner product ⊙. In the construction of Narain CFTs
from Lorentzian even self-dual lattices, the following theorems are essential.

Theorem 3.1 ([31])
Let p be an odd prime and C a self-dual code over Fp with respect to η. Then, the Construction
A lattice Λ(C) is even self-dual with respect to η.

Theorem 3.2 ([18, 33])
Let C be a doubly-even self-dual code over F2 with respect to η. Then, the Construction A
lattice Λ(C) is even self-dual with respect to η.

A Lorentzian even self-dual lattice Λ(C) is related to the momentum lattice Λ̃(C) of a
Narain CFT by the orthogonal transformation

pL = λ1 + λ2√
2

, pR = λ1 − λ2√
2

, (3.11)

where (λ1, λ2) ∈ Λ(C). The set of vertex operators of the Narain code CFT is given by
VpL, pR(z, z̄) = eipL·X(z)+ipR·X̄(z̄) where (pL, pR) ∈ Λ̃(C). The corresponding momentum state
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is given by |pL, pR⟩ through the state-operator isomorphism. These are eigenstates of the
Virasoro generators L0 and L̄0 with eigenvalues h = p2

L/2 and h̄ = p2
R/2. Combining with

the bosonic excitations, we obtain the whole Hilbert space of the Narain code CFT:

H(C) =
{
αi1
−k1
· · ·αir

−kr
α̃j1
−l1
· · · α̃js

−ls
|pL, pR⟩

∣∣∣ (pL, pR) ∈ Λ̃(C)
}
, (3.12)

with k1, · · · , kr ∈ Z>0 and l1, · · · , ls ∈ Z>0.
The partition function of the Narain code CFT can be written in terms of the complete

weight enumerator polynomial of a Lorentzian linear code C and the lattice theta function of
the Construction A lattice Λ̃(C). We define the complete weight enumerator polynomial of C

WC ({xab}) =
∑
c∈C

∏
(a,b)∈Fp×Fp

x
wtab(c)
ab , (3.13)

where wtab(c) is the number of components ci = (αi, βi) ∈ Fp×Fp that equal to (a, b) ∈ Fp×Fp

for a codeword c ∈ C:

wtab(c) = | {i | ci = (a, b)} | . (3.14)

Also, we define the lattice theta function of a momentum lattice Λ̃(C) by

ΘΛ̃(C)(τ, τ̄) =
∑

(pL,pR)∈ Λ̃(C)

q
p2

L
2 q̄

p2
R
2 , (3.15)

where q = e2πiτ and τ is the torus modulus. Then, these quantities are related to the
partition function in the following way.

Proposition 3.1 ([23, 31, 33])
Let C ⊂ Fn

p × Fn
p be a classical code with the complete enumerator polynomial WC . Then,

the partition function of the Narain CFT constructed from the code C is

ZC(τ, τ̄) =
ΘΛ̃(C)(τ, τ̄)
|η(τ)|2n

= 1
|η(τ)|2n

WC({ψ+
ab}) , (3.16)

where the variables xab in the complete enumerator polynomial are replaced by

ψ+
ab(τ, τ̄) =

∑
k1,k2∈Z

q
p
4

(
a+b

p
+k1+k2

)2

q̄
p
4

(
a−b

p
+k1−k2

)2

. (3.17)

Note that the functions ψ+
ab are independent of C. We sometimes use different represen-

tations of ψ+
ab. One useful representation is the form

ψ+
ab(τ, τ̄) = Θa+b, p(τ) Θ̄a−b, p(τ̄) + Θa+b−p, p(τ) Θ̄a−b−p, p(τ̄) , (3.18)

where (a, b) ∈ Fp × Fp and Θm, k(τ) is the theta function

Θm, k(τ) =
∑
n∈Z

qk (n+ m
2k )

2
. (3.19)
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There is an important class of quantum stabilizer codes called Calderbank-Shor-Steane
(CSS) codes [45, 66]. This type of quantum code can be constructed from a pair of classical
Euclidean codes. Let C be an [n, k]p linear code over Fp equipped with the standard Euclidean
inner product ·. A linear code generated by a k × n matrix GC can be characterized by a
(k − n)× n matrix HC satisfying GC HC = 0 mod p, which is called a parity check matrix.
A parity check matrix generates the dual code C⊥3

C⊥ =
{
c′ ∈ Rn

∣∣ c · c′ = 0 mod p , c ∈ C
}
. (3.20)

For a linear code C with a generator matrix GC and a parity check matrix HC , the dual
code C⊥ has a generator matrix HC and a parity check matrix GC .

Suppose that CX and CZ are [n, kX ]p and [n, kZ ]p linear codes with the generator
matrices GX , GZ and the parity check matrices HX , HZ , respectively. Moreover, we assume
C⊥

X ⊆ CZ . Then, the check matrix

H(CX , CZ) =
[
HX 0
0 HZ

]
, (3.21)

satisfies the commutativity condition (3.5). Therefore, the corresponding operators g(a(i),b(i))
commute with each other and generate an abelian group, which can be regarded as a stabilizer
group of quantum codes.

To construct a Narain code CFT, we exploit CSS construction in the case with CX = C

and CZ = C⊥. Then, we have the n × 2n check matrix

H(C,C⊥) =
[
HC 0
0 GC

]
. (3.22)

As shown in the following theorem, we can show that the check matrix of this form provides
a Lorentzian even self-dual lattice via Construction A. This gives a systematic construction
of Narain code CFTs using classical linear codes.

Theorem 3.3 ([33])
Suppose that a CSS code has a check matrix (3.22) with a classical linear code C and the
dual code C⊥. Let C be the classical code with the generator matrix H(C,C⊥). Then, the
Construction A lattice Λ(C) is even self-dual with respect to the metric η.

Of course, we can take a classical linear code C to be self-dual C = C⊥. Then, we get
the reduced version of the CSS construction.

Corollary 3.1 ([33])
Suppose a CSS code with a linear self-dual code C. Let C be the classical code with the
generator matrix H(C,C). Then, the Construction A lattice Λ(C) is even self-dual with respect
to the off-diagonal Lorentzian metric η.

3Here, we slightly abuse the use of the symbol ⊥. While we use it for the dual code C⊥ with respect to the
Lorentzian inner product, we also use it for C⊥ with respect to the Euclidean one.
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For the CSS construction, the partition function can be written in terms of classical
linear codes. Let H(C,C) be a check matrix of a CSS code constructed from a single self-dual
code C over Fp. Suppose that C is a classical code generated by the matrix GH = H(C,C).
Then, the complete enumerator polynomial of C reduces to

W
(CSS)
C,C ({xab}) =

∑
(c, c′)∈C2

∏
(a,b)∈Fp×Fp

x
wtab(c,c′)
ab , (3.23)

where, for codewords c = (c1, · · · , cn) ∈ C and c′ = (c′1, · · · , c′n) ∈ C, we define

wtab(c, c′) =
∣∣∣ {j ∈ {1, · · · , n} ∣∣∣ cj = a , c′j = b}

∣∣∣ . (3.24)

This representation is useful when we take the ensemble average of Narain code CFTs.

3.2 Z2 gauging of Narain code CFTs for p ̸= 2

We consider a lattice vector of length 2n

χ = √p (1, 1, · · · , 1) ∈ Λ(C) , (3.25)

whose half is not in the Construction A lattice: δ := χ
2 /∈ Λ(C). In terms of CFTs, this choice

corresponds to the Z2 action on the vertex operators defined by

VpL, pR(z, z̄)→ (−1)χ⊙λ VpL, pR(z, z̄) , (3.26)

where λ = (λ1, λ2) is related to the left- and right-moving momenta (pL, pR) by (3.11). To
use Theorem 2.1, the Construction A lattice Λ(C) is divided into the following two parts:

Λ(C) = Λ0 ∪ Λ1 , (3.27)

where

Λ0 = {λ ∈ Λ(C) |χ⊙ λ = 0 mod 2} ,
Λ1 = {λ ∈ Λ(C) |χ⊙ λ = 1 mod 2} .

(3.28)

This provides the Z2-grading of the untwisted Hilbert space for Narain CFTs. The Z2
symmetry is associated with the parity of χ⊙λ. Now, we aim to gauge this Z2 symmetry and
construct the twisted Hilbert space. Below, we assume n ∈ 2Z to ensure that Z2 symmetry
given by χ is non-anomalous. We define the following sets for n ∈ 2Z:

Λ2 =
{
Λ1 + δ (n ∈ 4Z) ,
Λ0 + δ (n ∈ 4Z+ 2) ,

Λ3 =
{
Λ0 + δ (n ∈ 4Z) ,
Λ1 + δ (n ∈ 4Z+ 2) ,

(3.29)

where we used (2.44). In the momentum basis (3.11), we denote them by Λ̃i (i = 0, 1, 2, 3).
We define the theta functions of each set Λ̃i for i = 0, 1, 2, 3 as

ΘΛ̃i
(τ, τ̄) =

∑
(pL, pR)∈ Λ̃i

q
p2

L
2 q̄

p2
R
2 , q = e2πiτ . (3.30)
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From Theorem 2.1, we obtain a momentum lattice ΛO for the orbifold theory and a
momentum lattice ΛNS for the NS sector in the fermionized theory

ΛO = Λ0 ∪ Λ3 , ΛNS = Λ0 ∪ Λ2 . (3.31)

Additionally, we define the set of momenta of the R sector in the fermionized theory by

ΛR = Λ1 ∪ Λ3 . (3.32)

Note that while we use the notation of ΛR, it is not a lattice by itself. These are denoted
by Λ̃O, Λ̃NS, and Λ̃R as a set of left- and right-moving momenta (3.11). For these sets, we
define the theta function of Λ̃∗ (∗ = O,NS,R) by

ΘΛ̃∗
=

∑
(pL, pR)∈ Λ̃∗

q
p2

L
2 q̄

p2
R
2 . (3.33)

In what follows, we give a way of computing the theta functions of Λ̃O, Λ̃NS, and Λ̃R.
As these are a disjoint union of Λ̃i, then we have

ΘΛ̃O
(τ, τ̄) = ΘΛ̃0

(τ, τ̄) + ΘΛ̃3
(τ, τ̄) ,

ΘΛ̃NS
(τ, τ̄) = ΘΛ̃0

(τ, τ̄) + ΘΛ̃2
(τ, τ̄) ,

ΘΛ̃R
(τ, τ̄) = ΘΛ̃1

(τ, τ̄) + ΘΛ̃3
(τ, τ̄) .

(3.34)

The following proposition gives the theta function of Λ̃0 and Λ̃1 in terms of the complete
weight enumerator.

Proposition 3.2
The theta functions of Λ̃i (i = 0, 1) are given by

ΘΛ̃0
(τ, τ̄) = 1

2
[
WC({ψ+

ab}) +WC({ψ−
ab})

]
,

ΘΛ̃1
(τ, τ̄) = 1

2
[
WC({ψ+

ab})−WC({ψ−
ab})

]
,

(3.35)

where

ψ+
ab(τ, τ̄) = Θa+b,p(τ) Θ̄a−b,p(τ̄) + Θa+b−p,p(τ) Θ̄a−b−p,p(τ̄) ,

ψ−
ab(τ, τ̄) = (−1)a+b

(
Θa+b,p(τ) Θ̄a−b,p(τ̄)−Θa+b−p,p(τ) Θ̄a−b−p,p(τ̄)

)
.

(3.36)

Proof. We already know lattice theta functions of the Construction A lattice, which are
expressed by the complete enumerator polynomial in Proposition 3.1. Our aim is to divide it
into two sets Λ̃0 and Λ̃1. From the definition of these sets, it is natural to introduce the Z2
grading into the Construction A lattice according to the mod 2 value of χ⊙ λ for λ ∈ Λ(C).
Suppose λ = (λ1, λ2) ∈ Λ(C), where

λ1 = α+ p k1√
p

, λ2 = β + p k2√
p

, k1, k2 ∈ Zn , (3.37)
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for a codeword (α, β) ∈ C. Then, the Z2 grading is determined by

χ⊙ λ = 1n · (α+ β) + p1n · (k1 + k2) . (3.38)

Let us introduce the lattice theta function weighted by (−1)χ⊙λ

Θ′
Λ̃(C)

(τ, τ̄) =
∑

(α,β)∈C

∑
k1,k2 ∈Zn

(−1)χ⊙λ q
p
4

(
α+β

p
+k1+k2

)2

q̄
p
4

(
α−β

p
+k1−k2

)2

=
∑

(α,β)∈C

n∏
i=1

ψ−
αiβi

(τ, τ̄)

=
∑
c∈C

∏
(a,b)∈Fp×Fp

(
ψ−

ab(τ, τ̄)
)wtab(c)

=WC({ψ−
ab}) ,

(3.39)

where for (a, b) ∈ Fp × Fp we define

ψ−
ab(τ, τ̄) = (−1)a+b

∑
k1,k2∈Z

(−1)p (k1+k2) q
p
4

(
a+b

p
+k1+k2

)2

q̄
p
4

(
a−b

p
+k1−k2

)2

= (−1)a+b
(
Θa+b,p(τ) Θ̄a−b,p(τ̄)−Θa+b−p,p(τ) Θ̄a−b−p,p(τ̄)

)
.

(3.40)

Since Θ′
Λ̃(C)

(τ, τ̄) is weighted by (−1)χ⊙λ, the theta functios of each set Λ̃0 and Λ̃1 are given by

ΘΛ̃0
= 1

2

[
ΘΛ̃(C)(τ, τ̄) + Θ′

Λ̃(C)
(τ, τ̄)

]
,

ΘΛ̃1
= 1

2
[
ΘΛ(C)(τ, τ̄)−Θ′

Λ(C)(τ, τ̄)
]
.

(3.41)

From Proposition 3.1 and (3.39), we prove the proposition.

Proposition 3.3
The theta functions of Λ̃2 and Λ̃3 are given by

ΘΛ̃2
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
,

ΘΛ̃3
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
,

(3.42)

where

ψ̃+
ab(τ, τ̄) = Θa+b,p(τ) Θ̄a−b−p,p(τ̄) + Θa+b−p,p(τ) Θ̄a−b,p(τ̄) ,

ψ̃−
ab(τ, τ̄) = e

πi
(

2ab
p

+a+b− p
2

) (
Θa+b,p(τ) Θ̄a−b−p,p(τ̄)−Θa+b−p,p(τ) Θ̄a−b,p(τ̄)

)
.

(3.43)

Proof. The theta function associated with the set Λ2 ∪ Λ3 can be computed easily because it
is simply the shift of the original lattice Λ(C) by δ = χ

2 . We start with the theta function of
Λ2 ∪ Λ3 and then apply an appropriate modular transformation to obtain the theta function
of each set Λ2 and Λ3.
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Let (λ1, λ2) ∈ Λ(C) be an element of the Construction A lattice Λ(C) = Λ0 ∪ Λ1:

λ1 = α+ p k1√
p

, λ2 = β + p k2√
p

. (3.44)

Shifting the Construction A lattice by δ = χ
2 =

√
p

2 (1, 1, · · · , 1), we obtain

N(Λ(C)) := (Λ0 + δ) ∪ (Λ1 + δ) = Λ2 ∪ Λ3 . (3.45)

An element (λ1, λ2) ∈ N(Λ(C)) is given by

λ1 = α
√
p
+√p

(
k1 +

1n

2

)
, λ2 = β

√
p
+√p

(
k2 +

1n

2

)
. (3.46)

We denote N(Λ(C)) by Ñ(Λ(C)) in the momentum basis and (pL, pR) ∈ Ñ(Λ(C)) is

pL = 1√
2

(
α+ β
√
p

+√p (k1 + k2 + 1n)
)
, pR = 1√

2

(
α− β
√
p

+√p (k1 − k2)
)
. (3.47)

The theta function associated with the set Ñ(Λ(C)) is

Θ
Ñ(Λ(C))(τ, τ̄) =

∑
(pL,pR)∈ Ñ(Λ(C))

q
p2

L
2 q̄

p2
R
2

=
∑

(α,β)∈C

n∏
i=1

ψ̃+
αiβi

(τ, τ̄)

=
∑
c∈C

∏
(a,b)∈Fp×Fp

(
ψ̃+

ab(τ, τ̄)
)wtab(c)

=WC({ψ̃+
ab}) ,

(3.48)

where we define, for (a, b) ∈ Fp × Fp,

ψ̃+
ab(τ, τ̄) =

∑
k1,k2 ∈Z

q
p
4

(
a+b

p
+k1+k2+1

)2

q̄
p
4

(
a−b

p
+k1−k2

)2

,

= Θa+b,p(τ) Θ̄a−b−p,p(τ̄) + Θa+b−p,p(τ) Θ̄a−b,p(τ̄) .
(3.49)

Therefore, the theta function of Ñ(Λ(C)) can be computed by the change of variables:
ψ+

ab 7→ ψ̃+
ab. Now we aim to divide the theta function of the set Ñ(Λ(C)) = Λ̃2 ∪ Λ̃3 into two

theta functions associated with Λ̃2 and Λ̃3, respectively. We can exploit the property that
the set Λ̃2 has only odd norm elements and the other Λ̃3 has only even norm ones, which
appears in Proposition 2.3.

By the modular T transformation τ → τ +1, equivalently q → e2πiq, we obtain the theta
function:

Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1) =

∑
(pL,pR)∈ Ñ(Λ(C))

(−1)p2
L−p2

R q
p2

L
2 q̄

p2
R
2 , (3.50)
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the theta function is weighted by the Z2 grading according to the mod 2 value of p2
L − p2

R.
Since p2

L − p2
R are odd for Λ̃2 and even for Λ̃3, we obtain the theta functions of each set

ΘΛ̃2
(τ, τ̄) = 1

2
[
Θ

Ñ(Λ(C))(τ, τ̄)−Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1)

]
,

ΘΛ̃3
(τ, τ̄) = 1

2
[
Θ

Ñ(Λ(C))(τ, τ̄) + Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1)

]
.

(3.51)

The theta function associated with Ñ(Λ(C)) depends on the moduli parameter τ only through
ψ̃+

ab(τ, τ̄). Under the modular T transformation, it behaves as

ψ̃−
ab(τ, τ̄) := ψ̃+

ab(τ + 1, τ̄ + 1)

= e
πi
(

2ab
p

+a+b− p
2

) (
Θa+b,p(τ) Θ̄a−b−p,p(τ̄)−Θa+b−p,p(τ) Θ̄a−b,p(τ̄)

)
.

(3.52)

Then, substituting the above term into the complete enumerator polynomial instead of the
modular T transformation, we obtain the proposition.

3.3 Z2 gauging of Narain code CFTs for p = 2

We implement the Z2 gauging by a lattice shift of Narain code CFTs. We begin to define
the notion of F4-evenness for classical codes C, which will be necessary to deform lattices
with the Z2 symmetry.

Qubit stabilizer codes (p = 2) can be represented by classical codes over F4 [67]. Suppose
that a stabilizer code has the following check matrix:

H =


α1 β1
...

...
αn βn

 , (3.53)

where αi, βi ∈ Zn
2 . We regard it as a generator matrix of a classical code C ⊂ F2n

2 . We
map a codeword c = (α, β) ∈ Fn

2 × Fn
2 of C to a codeword c ∈ Fn

4 of the associated classical
code over F4 by the Gray map

0↔ (0, 0) , 1↔ (1, 1) ,
ω ↔ (1, 0) , ω̄ ↔ (0, 1) .

(3.54)

This map is an isomorphism under addition between F4 and F2 × F2. Through the Gray
map, the i-th component of c ∈ Fn

4 gives the i-th component of α and β for (α, β) ∈ Fn
2 × Fn

2 .
For example,

F2
4 ∋ (1, ω) ←→ (1, 1 | 1, 0) ∈ F2

2 × F2
2 ,

F2
4 ∋ (0, 1) ←→ (0, 1 | 0, 1) ∈ F2

2 × F2
2 .

(3.55)

The Hamming distance of a codeword c ∈ F4 is the number of non-zero elements
1, ω, ω̄ ∈ F4 of c ∈ Fn

4 . We can formulate it in the language of (α, β) ∈ Fn
2 × Fn

2 . Let c ∈ Fn
4

be a codeword, which is mapped to (α, β) ∈ Fn
2 × Fn

2 through the Gray map. Then, the
Hamming distance of a codeword c ∈ F4 can be counted by

wt(c) = α · α+ β · β − α · β . (3.56)
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Let us check it using the examples (3.55). The first example (1, ω) ∈ F2
4 is mapped to α = (1, 1)

and β = (1, 0), and (3.56) returns wt(c) = α ·α+β ·β−α ·β = 2+1− 1 = 2, which is correct
since (1, ω) has no non-zero elements. On the other hand, the Hamming distance of (0, 1) ∈ F2

4
is 1. This can be reproduced by (3.56) because wt(c) = α · α+ β · β − α · β = 1 + 1− 1 = 1.

In analogy with classical binary codes, we call a code over F4 even if it has only codewords
with even Hamming distance. We extend this notion for Fn

4 to Fn
2 × Fn

2 using the Gray map.
We call C ⊂ Fn

2×Fn
2 F4-even if wt(c) = α ·α+β ·β−α ·β ∈ 2Z for all codewords c = (α, β) ∈ C.

Proposition 3.4
Let C ⊂ Fn

2 × Fn
2 be a doubly-even self-dual code with respect to the off-diagonal Lorentzian

metric η. If C is F4-even, then 12n ∈ C. Otherwise, 12n /∈ C.

Proof. Let C be F4-even. Then, a codeword c = (α, β) ∈ C satisfies

α · α+ β · β − α · β ∈ 2Z . (3.57)

Since C is doubly-even with respect to η, we have

c⊙ c = α · β + β · α = 2α · β ∈ 4Z , (3.58)

which gives α · β ∈ 2Z. Combining it with (3.57), we obtain α · α + β · β ∈ 2Z. Using the
relation α · α = 1n · α mod 2, we can write α · α+ β · β ∈ 2Z as

12n ⊙ c = 0 mod 2 , (3.59)

where c = (α, β) and 12n is the 2n-dimensional row vector (1, 1, · · · , 1). The classical code C
is self-dual, so the above relation shows 12n ∈ C⊥ = C. If a classical code C is not F4-even,
there exists a codeword c = (α, β) that does not satisfy (3.57). Then there exists a codeword
c ∈ C that does not satisfy 12n ⊙ c = 0 mod 2, which concludes 12n /∈ C⊥ = C.

3.3.1 F4-even code

Let C be F4-even, equivalently 12n ∈ C. We take an element of the Construction A lattice Λ(C)

χ = 1√
2
(1, 1, · · · , 1) ∈ Λ(C). (3.60)

Since a F4-even code C contains the all-one vector 12n, the Construction A lattice includes
χ ∈ Λ(C). Note that for a non-F4-even code C, the vector 12n is not contained in a code C
by Proposition 3.4. Then, the following construction does not hold. We separately discuss
non-F4-even codes in the next section.

Since the Construction A lattice Λ(C) is integral, we can divide it into

Λ(C) = Λ0 ∪ Λ1 , (3.61)

where

Λ0 = {λ ∈ Λ(C) |χ⊙ λ = 0 mod 2} ,
Λ1 = {λ ∈ Λ(C) |χ⊙ λ = 1 mod 2} .

(3.62)
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We define a shift vector of length 2n by

δ = χ

2 = 1
2
√
2
(1, 1, · · · , 1) . (3.63)

The non-anomalous condition for the Z2 symmetry reduces to n ∈ 4Z. We define the
following sets according to (2.44):

Λ2 =
{
Λ1 + δ (n ∈ 8Z) ,
Λ0 + δ (n ∈ 8Z+ 4) ,

Λ3 =
{
Λ0 + δ (n ∈ 8Z) ,
Λ1 + δ (n ∈ 8Z+ 4) .

(3.64)

As in the case of an odd prime p ̸= 2, we denote them by Λ̃i in the momentum basis.
By combining each set, we obtain the momentum lattice in the orbifold theory, the set of
momenta of the NS and R sector in the fermionized theory

Λ̃O = Λ̃0 ∪ Λ̃3 , Λ̃NS = Λ̃0 ∪ Λ̃2 , Λ̃R = Λ̃1 ∪ Λ̃3 . (3.65)

Proposition 3.5
The theta functions of Λ̃0 and Λ̃1 are

ΘΛ̃0
(τ, τ̄) = 1

2
(
WC({ψ+

ab}) +WC({ψ−
ab})

)
,

ΘΛ̃1
(τ, τ̄) = 1

2
(
WC({ψ+

ab})−WC({ψ−
ab})

)
,

(3.66)

where

ψ+
ab(τ, τ̄) = Θa+b,2(τ)Θa−b,2(τ) + Θa+b−2,2(τ)Θa−b−2,2(τ) ,

ψ−
ab(τ, τ̄) = (−1)

a+b
2
(
Θa+b,2(τ)Θa−b,2(τ)−Θa+b−2,2(τ)Θa−b−2,2(τ)

)
.

(3.67)

Proof. From Proposition 3.1, the lattice theta function of the Construction A lattice Λ(C)
can be computed from the complete enumerator polynomial. To divide Λ(C) into two subsets
Λ̃0 and Λ̃1, it is natural to introduce the Z2 grading of Λ(C). Let λ = (λ1, λ2) be an element
of Λ(C), which can be written as

λ1 = α+ 2k1√
2

, λ2 = β + 2k2√
2

, k1 , k2 ∈ Zn , (3.68)

for a codeword (α, β) ∈ C. The Z2 grading given by χ⊙ λ reduces to the one by

χ⊙ λ = 1n

2 · (α+ β) + 1n · (k1 + k2) , (3.69)
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where we have 1n · (α + β) ∈ 2Z from (3.59). This ensures χ ⊙ λ ∈ Z. The lattice theta
function weighted by χ⊙ λ is

Θ′
Λ̃(C)

(τ, τ̄) =
∑

(α,β)∈C

∑
k1,k2 ∈Zn

(−1)χ⊙λ q
1
2(α+β

2 +k1+k2)2
q̄

1
2(α−β

2 +k1−k2)2

=
∑

(α,β)∈C

n∏
i=1

ψ−
αiβi

(τ, τ̄)

=
∑
c∈C

∏
(a,b)∈F2×F2

(
ψ−

ab(τ, τ̄)
)wtab(c)

=WC({ψ−
ab}) ,

(3.70)

where, for (a, b) ∈ F2 × F2, we define

ψ−
ab(τ, τ̄) = (−1)

a+b
2

∑
k1,k2∈Z

(−1)k1+k2 q
1
2(a+b

2 +k1+k2)2
q̄

1
2(a−b

2 +k1−k2)2

= (−1)
a+b

2
(
Θa+b,2(τ)Θa−b,2(τ)−Θa+b−2,2(τ)Θa−b−2,2(τ)

)
.

(3.71)

Since the weighted theta function Θ′
Λ̃(C)

(τ, τ̄) has positive coefficients for Λ0 and negative
ones for Λ1, the theta functions of each set are given by

ΘΛ̃0
(τ, τ̄) = 1

2

[
ΘΛ̃(C)(τ, τ̄) + Θ′

Λ̃(C)
(τ, τ̄)

]
= 1

2
[
WC({ψ+

ab}) +WC({ψ−
ab})

]
,

ΘΛ̃1
(τ, τ̄) = 1

2

[
ΘΛ̃(C)(τ, τ̄)−Θ′

Λ̃(C)
(τ, τ̄)

]
= 1

2
[
WC({ψ+

ab})−WC({ψ−
ab})

]
.

(3.72)

Proposition 3.6
The theta functions of Λ̃2 and Λ̃3 are

ΘΛ̃2
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
,

ΘΛ̃3
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
,

(3.73)

where
ψ̃+

ab(τ, τ̄) = Θa+b+1,2(τ)Θa−b,2(τ) + Θa+b−1,2(τ)Θa−b−2,2(τ) ,

ψ̃−
ab(τ, τ̄) = eπi (a+ 1

2)(b+ 1
2)
(
Θa+b+1,2(τ)Θa−b,2(τ)−Θa+b−1,2(τ)Θa−b−2,2(τ)

)
.

(3.74)

Proof. Let (λ1, λ2) be an element of Λ(C) given by (3.68). The shift of the Construction A
lattice by χ = χ

2 endows N(Λ(C)) := Λ2 ∪ Λ3. Therefore, an element (λ1, λ2) of Λ2 ∪ Λ3 can
be written as

λ1 = α√
2
+
√
2
(
k1 +

1n

4

)
, λ2 = β√

2
+
√
2
(
k2 +

1n

4

)
, (3.75)

where (α, β) ∈ C and k1, k2 ∈ Zn.
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To compute the corresponding theta function, we move onto the momentum basis.
We denote N(Λ(C)) by Ñ(Λ(C)) in the momentum basis. Then, an element (pL, pR) =
(λ1+λ2√

2 , λ1−λ2√
2 ) ∈ Ñ(Λ(C)) is

pL = α+ β + 2(k1 + k2)
2 + 1n

2 , pR = α− β + 2(k1 − k2)
2 , (3.76)

where (λ1, λ2) ∈ N(Λ(C)) given in (3.75). Then, the theta function associated with Ñ(Λ(C)) is

Θ
Ñ(Λ(C))(τ, τ̄) =

∑
(α,β)∈C

∑
k1,k2 ∈Zn

q
1
2(α+β

2 +k1+k2+ 1n
2 )2

q̄
1
2(α−β

2 +k1−k2)2

=
∑

(α,β)∈C

n∏
i=1

ψ̃+
αiβi

(τ, τ̄)

=
∑
c∈C

∏
(a,b)∈F2×F2

(
ψ̃+

ab(τ, τ̄)
)wtab(c)

=WC({ψ̃+
ab}) ,

(3.77)

where, for (a, b) ∈ F2 × F2, we define

ψ̃+
ab(τ, τ̄) =

∑
k1,k2 ∈Z

q
1
2(a+b

2 +k1+k2+ 1
2)

2
q̄

1
2(a−b

2 +k1−k2)2

= Θa+b+1,2(τ)Θa−b,2(τ) + Θa+b−1,2(τ)Θa−b−2,2(τ) .
(3.78)

Therefore, the shift of the Construction A lattice Λ(C) by δ = χ
2 changes the theta function

by the replacement of variables: ψ+
ab 7→ ψ̃+

ab.
Let us divide Ñ(Λ(C)) into two subsets Λ̃2 and Λ̃3. Note that the set Λ̃2 has only odd

norm, while Λ̃3 has only even norm, which can be read off from Proposition 2.3. Since the
modular T transformation τ → τ + 1 acts as

Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1) =

∑
(pL,pR)∈ Ñ(Λ(C))

(−1)p2
L−p2

R q
p2

L
2 q̄

p2
R
2 , (3.79)

we obtain the theta functions of each set Λ̃2 and Λ̃3

ΘΛ̃2
(τ, τ̄) = 1

2
[
Θ

Ñ(Λ(C))(τ, τ̄)−Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1)

]
,

ΘΛ̃3
(τ, τ̄) = 1

2
[
Θ

Ñ(Λ(C))(τ, τ̄) + Θ
Ñ(Λ(C))(τ + 1, τ̄ + 1)

]
.

(3.80)

The theta function of Ñ(Λ(C)) depends on the torus modulus τ only through ψ̃+
ab(τ, τ̄). Under

the modular T transformation τ → τ + 1, it behaves as

ψ̃+
ab(τ + 1, τ̄ + 1) = eπi (a+ 1

2)(b+ 1
2)
(
Θa+b+1,2(τ) Θ̄a−b,2(τ̄)−Θa+b−1,2(τ) Θ̄a−b−2,2(τ̄)

)
.

(3.81)

Then, we substitute the above term into the complete enumerator polynomial instead of the
modular T transformation.

– 28 –



J
H
E
P
0
5
(
2
0
2
4
)
1
3
3

Note that, in the binary case (p = 2), the theta functions are

Θ0,2 = ϑ3 + ϑ4
2 , Θ1,2 = ϑ2

2 , Θ2,2 = ϑ3 − ϑ4
2 , Θ3,2 = ϑ2

2 , (3.82)

where ϑi(τ) (i = 2, 3, 4) are the Jacobi theta functions.4 Then, we have the following:

ψ+
00 = ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2 , ψ+
01 = ψ+

10 = ϑ2 ϑ̄2
2 , ψ+

11 = ϑ3 ϑ̄3 − ϑ4 ϑ̄4
2 ,

ψ−
00 = ϑ3 ϑ̄4 + ϑ3 ϑ̄4

2 , ψ−
01 = ψ−

10 = 0 , ψ−
11 = ϑ4 ϑ̄3 − ϑ3 ϑ̄4

2 ,

ψ̃+
00 = ϑ2 ϑ̄3

2 , ψ̃+
01 = ψ̃+

10 = ϑ3 ϑ̄2
2 , ψ̃+

11 = ϑ2 ϑ̄3
2 ,

ψ̃−
00 = e

πi
4
ϑ2 ϑ̄4
2 , ψ̃−

01 = ψ̃−
10 = e−

πi
4
ϑ4 ϑ̄2
2 , ψ̃−

11 = e
πi
4
ϑ2 ϑ̄4
2 .

(3.83)

Substituting the above theta functions into the lattice theta function of ΛO, it reproduces
the result in eq. (3.45) in [18] for the case with n ∈ 8Z+ 4 which they focus on.

3.3.2 Non-F4-even code

Let a classical code C be non-F4-even. Then, the classical code does not contain the all-one
vector: 12n /∈ C. In this case, we choose the following lattice vector of length 2n:

χ =
√
2 (1, 1, · · · , 1) ∈ Λ(C) , (3.84)

where its half δ = χ
2 is not an element of the lattice Λ(C) due to the absence of 12n in the

code C. The vector χ satisfies the non-anomalous condition: δ⊙ δ = n ∈ Z. The Construction
A lattice Λ(C) is divided into two parts according to (2.43) as

Λ = Λ0 ∪ Λ1 , (3.85)

where

Λ0 = {λ ∈ Λ(C) |χ⊙ λ = 0 mod 2} ,
Λ1 = {λ ∈ Λ(C) |χ⊙ λ = 1 mod 2} .

(3.86)

We define the sets shifted by the vector δ

Λ2 =
{
Λ1 + δ (n ∈ 2Z) ,
Λ0 + δ (n ∈ 2Z+ 1) ,

Λ3 =
{
Λ0 + δ (n ∈ 2Z) ,
Λ1 + δ (n ∈ 2Z+ 1) .

(3.87)

In the momentum basis, we denote them by Λ̃i.
4We use the convention of [57].
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Proposition 3.7
The theta functions of Λ̃0 and Λ̃1 are given by

ΘΛ̃0
(τ, τ̄) = 1

2
[
WC({ψ+

ab}) +WC({ψ−
ab})

]
,

ΘΛ̃1
(τ, τ̄) = 1

2
[
WC({ψ+

ab})−WC({ψ−
ab})

]
,

(3.88)

where
ψ+

ab(τ, τ̄) = Θa+b,2(τ) Θ̄a−b,2(τ̄) + Θa+b−2,2(τ) Θ̄a−b−2,2(τ̄) ,
ψ−

ab(τ, τ̄) = (−1)a+b ψ+
ab(τ, τ̄) .

(3.89)

Proof. We aim to divide the theta function of the Construction A lattice into two sets: Λ̃0
and Λ̃1. From the definition of these sets, we introduce Z2 grading into the Construction A
lattice by whether χ⊙ λ is even or odd for λ ∈ Λ(C). Suppose that λ = (λ1, λ2) ∈ Λ(C) is
given by

λ1 = α+ 2 k1√
2

, λ2 = β + 2 k2√
2

, k1, k2 ∈ Zn , (3.90)

for a codeword (α, β) ∈ C. Then the Z2 classification is given in terms of the following:

χ⊙ λ = 1n · (α+ β) + 21n · (k1 + k2) . (3.91)

Then the inner product χ⊙ λ is even if 1n · (α+ β) ∈ 2Z and odd if 1n · (α+ β) ∈ 2Z+ 1.
We define the weighted theta function according to whether χ⊙ λ is even or odd:

Θ′
Λ̃(C)

(τ, τ̄) =
∑

(α,β)∈C

∑
k1,k2 ∈Zn

(−1)χ⊙λ q
1
2(α+β

2 +k1+k2)2
q̄

1
2(α−β

2 +k1−k2)2

=
∑

(α,β)∈C

n∏
i=1

ψ−
αiβi

(τ, τ̄)

=
∑
c∈C

∏
(a,b)∈Fp×Fp

(
ψ−

ab(τ, τ̄)
)wtab(c)

=WC({ψ−
ab}) ,

(3.92)

where for (a, b) ∈ Fp × Fp we define

ψ−
ab(τ, τ̄) = (−1)a+b

∑
k1,k2∈Z

q
1
2(a+b

2 +k1+k2)2
q̄

1
2(a−b

2 +k1−k2)2
,

= (−1)a+b
(
Θa+b,2(τ) Θ̄a−b,2(τ̄) + Θa+b−2,2(τ) Θ̄a−b−2,2(τ̄)

)
.

(3.93)

Since we weighted the theta function Θ′
Λ̃(C)

according to whether a vector λ is in the set Λ0

or Λ1, we obtain the following:

ΘΛ̃0
= 1

2

[
ΘΛ̃(C)(τ, τ̄) + Θ′

Λ̃(C)
(τ, τ̄)

]
,

ΘΛ̃1
= 1

2

[
ΘΛ̃(C)(τ, τ̄)−Θ′

Λ̃(C)
(τ, τ̄)

]
,

(3.94)

where the theta function of the Construction A lattice Λ(C) is given in terms of the complete
enumerator polynomial in Proposition 3.1.
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Proposition 3.8
The theta functions of Λ̃2 and Λ̃3 are

ΘΛ̃2
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
,

ΘΛ̃3
(τ, τ̄) = 1

2
[
WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
,

(3.95)

where

ψ̃+
ab(τ, τ̄) = Θa+b,2(τ) Θ̄a−b−2,2(τ̄) + Θa+b−2,2(τ) Θ̄a−b,2(τ̄) ,

ψ̃−
ab(τ, τ̄) = ψ̃+

ab(τ + 1, τ̄ + 1) .
(3.96)

Proof. The proof is identical to the case with an odd prime p ̸= 2.

For non-F4-even codes, we have

ψ+
00 = ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2 , ψ+
01 = ψ+

10 = ϑ2 ϑ̄2
2 , ψ+

11 = ϑ3 ϑ̄3 − ϑ4 ϑ̄4
2 ,

ψ−
00 = ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2 , ψ−
01 = ψ−

10 = −ϑ2 ϑ̄2
2 , ψ−

11 = ϑ3 ϑ̄3 − ϑ4 ϑ̄4
2 ,

ψ̃+
00 = ϑ3 ϑ̄3 − ϑ4 ϑ̄4

2 , ψ̃+
01 = ψ̃+

10 = ϑ2 ϑ̄2
2 , ψ̃+

11 = ϑ3 ϑ̄3 + ϑ4 ϑ̄4
2 ,

ψ̃−
00 = −ϑ3 ϑ̄3 − ϑ4 ϑ̄4

2 , ψ̃−
01 = ψ̃−

10 = ϑ2 ϑ̄2
2 , ψ̃−

11 = ϑ3 ϑ̄3 + ϑ4 ϑ̄4
2 .

(3.97)

By using the theta functions of Λ̃i, we can compute the partition functions of each
sector in the orbifold and fermionized theories. In the next section, we utilize the results
to investigate the Z2 gaugings of Narain code CFTs.

4 Examples

In this section, we use the construction of the orbifold and fermionized theory in section 3
to analyze some examples of Narain code CFTs and their Z2 gauging.

4.1 Quantum codes of length n = 1

Let us consider a classical Euclidean code C ⊂ Fp whose generator matrix is GC = [1] and
whose parity check matrix is HC = [0]. Then, the classical code and its dual are

C = Fp , C⊥ = {0} . (4.1)

Using the CSS construction (3.22), the check matrix of the corresponding stabilizer code is

H(C,C⊥) =
[
0 1
]
. (4.2)

Therefore, the classical code generated by GH = H is

C = {(0, 0), (0, 1), · · · , (0, p− 1)} ⊂ F2
p . (4.3)
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(a) Original theory (b) Orbifold theory

Figure 1. The Lorentzian lattice Λ(C) for the original Narain code CFT (the left panel) and the one
ΛO for its orbifold (the right panel). On the left panel, the black and red points represent Λ0 and Λ1,
respectively. On the right panel, the black and green points express Λ0 and Λ3, respectively.

Via Construction A, we obtain the Lorentzian even self-dual lattice

Λ(C) =
{(
√
p k1 ,

k2√
p

)
∈ R2

∣∣∣∣∣ k1, k2 ∈ Z
}
, (4.4)

where the lattice has the off-diagonal Lorentzian metric η. We depict the momentum lattice
in figure 1. Note that Λ(C) exactly agrees with the momentum lattice of a compact boson
at radius R =

√
2/p. In terms of a compact boson, k1 ∈ Z corresponds to the momentum

number m, and k2 ∈ Z corresponds to the winding number w.
For an odd prime p ̸= 2, we choose an element χ = √p (1, 1) ∈ Λ(C) according to (3.25).

This choice, however, does not satisfy the non-anomalous condition that requires n ∈ 2Z,
and we cannot perform orbifolding and fermionization by gauging the corresponding Z2
symmetry. Indeed, this choice corresponds to the diagonal Z2 subgroup of the U(1)m×U(1)w

symmetry, which acts on the vertex operators as

VpL, pR(z, z̄)→ (−1)k1+k2 VpL, pR(z, z̄) , (4.5)

and cannot be gauged due to the mixed anomaly between U(1)m and U(1)w symmetries [52].
For the binary case (p = 2), we take an element χ =

√
2 (1, 1) ∈ Λ(C) by (3.84) because

the classical code C does not contain the all-ones vector: (1, 1) /∈ C, then C is a non-F4-even
code. In this case, the non-anomalous condition is n ∈ Z, so we can take the orbifold
and fermionization by χ =

√
2 (1, 1). Indeed, this choice corresponds to the winding Z2

symmetry,5 which acts on the vertex operators as

VpL, pR(z, z̄)→ (−1)k2 VpL, pR(z, z̄) . (4.6)

5If we exchange the roles of C and C⊥, the resulting code CFT has the non-anomalous momentum Z2

symmetry specified by the same vector χ =
√
2 (1, 1). More generally, exchanging the roles of C and C⊥ in

the CSS construction acts as a T-duality on Narain code CFTs.
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(a) NS sector (b) R sector

Figure 2. The Lorentzian lattice ΛNS for the NS sector (the left panel) and ΛR for the R sector (the
right panel) in the fermionized theory. On the left panel, the black and pink points represent Λ0 and
Λ2, respectively. On the right panel, the red and green points express Λ1 and Λ3, respectively.

We can divide the Construction A lattice into two parts

Λ0 =
{(√

2 k1 ,
√
2 k2

)
∈ R2

∣∣∣ k1 ∈ Z , k2 ∈ Z
}
,

Λ1 =
{(√

2 k1 ,
k2√
2

)
∈ R2

∣∣∣∣ k1 ∈ Z , k2 ∈ 2Z+ 1
}
,

(4.7)

which implies that Λ(C) is graded only by the value of k2. Then, the Z2 symmetry corre-
sponding to the choice of χ ∈ Λ(C) is purely the winding Z2 symmetry without anomaly.
The other shifted sets are

Λ2 =
{(

l1√
2
,
l2√
2

)
∈ R2

∣∣∣∣ l1 ∈ 2Z+ 1 , l2 ∈ 2Z+ 1
}
,

Λ3 =
{(

l1√
2
,
√
2 l2

)
∈ R2

∣∣∣∣ l1 ∈ 2Z+ 1 , l2 ∈ Z
}
.

(4.8)

The orbifold gives the momentum lattice ΛO = Λ0 ∪ Λ3, which can be written as

ΛO =
{(

k1√
2
,
√
2 k2

)
∈ R2

∣∣∣∣ k1 ∈ Z , k2 ∈ Z
}
. (4.9)

This matches the momentum lattice of a compact boson of radius R = 2. Since the original
Construction A lattice corresponds to the radius R = 1 for p = 2, the Z2 orbifold by
χ =
√
2 (1, 1) makes the target circle only twice as large. In our notation, the T-duality acts

on the radius R as R → 2/R. Then, the orbifolded theory, which is a compact boson of
radius R = 2, is equivalent to the original theory (R = 1).

In the fermionized theory, the NS sector can be built out of the vertex operators Vλ(z)
where λ is in the momentum lattice ΛNS = Λ0 ∪ Λ2 (see figure 2)

ΛNS =
{(

l1√
2
,
l2√
2

)
∈ R2

∣∣∣∣ l1 = l2 mod 2 , l1 ∈ Z , l2 ∈ Z
}
. (4.10)
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The Ramond sector can be obtained by the momentum set ΛR = Λ1 ∪ Λ3 where

ΛR =
{(

l1√
2
,
l2√
2

)
∈ R2

∣∣∣∣ l1 ̸= l2 mod 2 , l1 ∈ Z , l2 ∈ Z
}
. (4.11)

The partition functions for these theories can be easily computed using the technique
given in the previous section. For p = 2, the complete weight enumerator of C is

WC({xab}) = x00 + x10 . (4.12)

From (3.82), the partition function of the original bosonic theory is

ZC(τ, τ̄) =
1

|η(τ)|2
ϑ2 ϑ̄2 + ϑ3 ϑ̄3 + ϑ4 ϑ̄4

2 . (4.13)

The orbifolded partition function is

ZO
C (τ, τ̄) = 1

2|η(τ)|2
[
WC({ψ+

ab}) +WC({ψ−
ab}) +WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
= 1
|η(τ)|2

ϑ2 ϑ̄2 + ϑ3 ϑ̄3 + ϑ4 ϑ̄4
2 ,

(4.14)

where we used (3.97). This is the same as the one for the original theory, which is consistent
with the fact that they are related by T-duality. On the other hand, the fermionized theory
has four partition functions depending on the choice of spin structures ρ. On the torus,
the spin structure is ρ = (a, b) ∈ Z2 × Z2. Following (2.18), we denote the corresponding
partition functions by ZF

C [ρ]. Then, we have

ZF
C [00] = 1

2|η(τ)|2
[
WC({ψ+

ab}) +WC({ψ−
ab}) +WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
=
∣∣∣∣ϑ3
η

∣∣∣∣2 ,
ZF
C [10] = 1

2|η(τ)|2
[
WC({ψ+

ab}) +WC({ψ−
ab})−WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
=
∣∣∣∣ϑ4
η

∣∣∣∣2 ,
ZF
C [01] = 1

2|η(τ)|2
[
WC({ψ+

ab})−WC({ψ−
ab}) +WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
=
∣∣∣∣ϑ2
η

∣∣∣∣2 ,
ZF
C [11] = 1

2|η(τ)|2
[
WC({ψ+

ab})−WC({ψ−
ab})−WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
= 0 .

(4.15)

These are the partition functions of a free Dirac fermion. Therefore, we conclude that the
fermionized theory of a compact boson of radius R = 1 is a free Dirac fermion. This can
be expected because a Dirac fermion has been known to be equivalent to a compact boson
with R = 1 via bosonization [68].

4.2 CSS construction with self-dual codes

In this subsection, we consider a CSS code defined by a single self-dual code C = C⊥ ⊂ Fn
p .

Then, the resulting classical code is C = C × C ⊂ F2n
p via CSS construction (3.22). In this

case, the Construction A lattice Λ(C) is given by

Λ(C) = ΛE(C)× ΛE(C) , (4.16)
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where we denote by ΛE(C) the Euclidean Construction A lattice [69]:

ΛE(C) =
{
c+ pm
√
p

∣∣∣∣ c ∈ C, m ∈ Zn

}
. (4.17)

The Euclidean Construction A lattice is odd self-dual when C is a self-dual code for an odd
prime p. Since the Euclidean Construction A lattice is odd self-dual, one can introduce a
characteristic vector x ∈ ΛE(C) [10, 70, 71] such that for any λ ∈ ΛE(C)

x · λ = λ · λ mod 2 . (4.18)

For the Construction A lattice from a p-ary code, we can choose x = √p1n ∈ ΛE(C) [4, 5].
By using the characteristic vector, we divide ΛE(C) into two parts

ΛE(C) = Λ(0)
E ∪ Λ(2)

E (4.19)

where

Λ(0)
E = {λ ∈ ΛE(C) | x · λ = 0 mod 2} ,

Λ(2)
E = {λ ∈ ΛE(C) | x · λ = 1 mod 2} .

(4.20)

We can also introduce the shadow of ΛE(C) [72] by

S(ΛE(C)) = ΛE(C) +
x
2 = Λ(1)

E ∪ Λ(3)
E , (4.21)

where we divide the shadow into two parts

Λ(1)
E =

{
λ+ x

2 ∈ S(Λ(C))
∣∣∣∣ x ·

(
λ+ x

2

)
= 0 mod 2

}
,

Λ(3)
E =

{
λ+ x

2 ∈ S(Λ(C))
∣∣∣∣ x ·

(
λ+ x

2

)
= 1 mod 2

}
.

(4.22)

Let us consider the orbifold and fermionization of Narain CFTs based on the Construction
A lattice Λ(C). The choice of an element χ = √p12n ∈ Λ(C) is always non-anomalous. Then,
one can denote it by χ = (x,x) ∈ ΛE(C) × ΛE(C). The Z2 grading of the Construction
A lattice Λ(C) gives Λ(C) = Λ0 ∪ Λ1 where

Λ0 = {(λ1, λ2) ∈ Λ(C)× Λ(C) | χ⊙ (λ1, λ2) = 0 mod 2}

=
(
Λ(0)

E × Λ(0)
E

)
∪
(
Λ(2)

E × Λ(2)
E

)
,

(4.23)

and

Λ1 =
(
Λ(0)

E × Λ(2)
E

)
∪
(
Λ(2)

E × Λ(0)
E

)
. (4.24)

On the other hand, by shifting Λ0 and Λ1 by δ = χ/2 = (x,x)/2, we obtain

Λ2 =
(
Λ(1)

E × Λ(1)
E

)
∪
(
Λ(3)

E × Λ(3)
E

)
,

Λ3 =
(
Λ(1)

E × Λ(3)
E

)
∪
(
Λ(3)

E × Λ(1)
E

)
.

(4.25)
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Therefore, the momentum lattice in the orbifold theory is

ΛO =
(
Λ(0)

E × Λ(0)
E

)
∪
(
Λ(2)

E × Λ(2)
E

)
∪
(
Λ(1)

E × Λ(3)
E

)
∪
(
Λ(3)

E × Λ(1)
E

)
. (4.26)

The momenta in the NS sector and the R sector in the fermionized theory are given by

ΛNS =
(
Λ(0)

E × Λ(0)
E

)
∪
(
Λ(2)

E × Λ(2)
E

)
∪
(
Λ(1)

E × Λ(1)
E

)
∪
(
Λ(3)

E × Λ(3)
E

)
,

ΛR =
(
Λ(0)

E × Λ(2)
E

)
∪
(
Λ(2)

E × Λ(0)
E

)
∪
(
Λ(1)

E × Λ(3)
E

)
∪
(
Λ(3)

E × Λ(1)
E

)
.

(4.27)

4.2.1 n = 2, p = 5 case (C5,2)

Here, we consider the CSS code defined by a single self-dual code whose generator matrix
is GC5,2 = [1 2]. Then, the codewords consist of

C5,2 = { (0, 0), (1, 2), (2, 4), (3, 1), (4, 3) } . (4.28)

The Euclidean Construction A lattice from C5,2 is

ΛE(C5,2) =
{
c+ 5m√

5
∈ R2

∣∣∣∣ c ∈ C5,2 , m ∈ Z2
}
. (4.29)

We can take a basis of Λ(C5,2) by v1 = 1√
5(1, 2) and v2 = 1√

5(2,−1), which is orthonormal:
vi · vj = δij (i, j = 1, 2). Then the elements λ ∈ Λ(C5,2) of the Euclidean Construction A
lattice are written as λ = m1 v1+m2 v2 where m1, m2 ∈ Z. Thus, the Euclidean Construction
A lattice is a two-dimensional square lattice.

Choosing a characteristic vector by x =
√
5 (1, 1), we can divide the Euclidean Con-

struction A lattice into Λ(i)
E (i = 0, 2) where

Λ(0)
E = {m1 v1 +m2 v2 | m1 +m2 ∈ 2Z , m1,m2 ∈ Z} ,

Λ(2)
E = {m1 v1 +m2 v2 | m1 +m2 ∈ 2Z+ 1 , m1,m2 ∈ Z} .

(4.30)

On the other hand, the shadow of Λ(C5,2) is

S(ΛE(C5,2)) = ΛE(C5,2) +
x
2 =

{
c+ 5m√

5
∈ R2

∣∣∣∣∣ c ∈ C2 , m ∈
(
Z+ 1

2

)2
}
. (4.31)

In the basis by v1, v2, the characteristic vector x =
√
5 (1, 1) is represented by x = 3v1 +v2, so

the shadow S(ΛE(C5,2)) = ΛE(C5,2) + x
2 consists of λ̃ = m′

1 v1 +m′
2 v2 where m′

1, m′
2 ∈ Z+ 1

2 .
Hence, the shadow of ΛE(C5,2) consists of points lying at the center of each square in the
two-dimensional square lattice ΛE(C5,2). The Z2 grading of the shadow is

Λ(1)
E =

{
m′

1 v1 +m′
2 v2

∣∣∣∣ m′
1 +m′

2 ∈ 2Z+ 1 , m′
1,m

′
2 ∈ Z+ 1

2

}
,

Λ(3)
E =

{
m′

1 v1 +m′
2 v2

∣∣∣∣ m′
1 +m′

2 ∈ 2Z , m′
1,m

′
2 ∈ Z+ 1

2

}
.

(4.32)

The above discussion in the Euclidean signature can be used to provide the set of momenta
in the Lorentzian signature. By combining Λ(i)

E , we obtain Λi whose elements take the form
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(m1 v1 +m2 v2 , m
′
1 v1 +m′

2 v2) where the parameters m1,m2,m
′
1,m

′
2 run over the regions

Λ0 : m1 , m2 , m
′
1 , m

′
2 ∈ Z m1 +m2 = m′

1 +m′
2 mod 2 ,

Λ1 : m1 , m2 , m
′
1 , m

′
2 ∈ Z m1 +m2 = m′

1 +m′
2 + 1 mod 2 ,

Λ2 : m1 , m2 , m
′
1 , m

′
2 ∈ Z+ 1/2 m1 +m2 = m′

1 +m′
2 mod 2 ,

Λ3 : m1 , m2 , m
′
1 , m

′
2 ∈ Z+ 1/2 m1 +m2 = m′

1 +m′
2 + 1 mod 2 .

(4.33)

Then, the lattice of the orbifold theory O is ΛO = Λ0 ∪ Λ3. Similarly, the lattice of the
NS sector in the fermionized theory is ΛNS = Λ0 ∪ Λ2 and the set for the Ramond sector
is ΛR = Λ1 ∪ Λ3.

Rotating the sets Λi ∋ (λ1, λ2) into the momentum basis by pL = (λ1 + λ2)/
√
2 and

pR = (λ1 − λ2)/
√
2, we obtain the sets Λ̃i of left- and right-moving moementa. Then, the

theta functions of Λ̃i are

ΘΛ̃i
(τ, τ̄) =

∑
m1,m′

1,m2,m′
2

q
1
4{(m1+m′

1)2+(m2+m′
2)2} q̄

1
4{(m1−m′

1)2+(m2−m′
2)2} , (4.34)

where the sum is taken under the conditions of (4.33) depending on i = 0, 1, 2, 3. The
orbifold partition function is given by

ZO
C (τ, τ̄) = 1

|η(τ)|4
[
ΘΛ̃0

(τ, τ̄) + ΘΛ̃3
(τ, τ̄)

]
. (4.35)

In the fermionized theory, depending on the choice of the spin structures, the partition
functions become

ZF
C [00] = 1

|η(τ)|4
[
ΘΛ̃0

(τ, τ̄) + ΘΛ̃2
(τ, τ̄)

]
, ZF

C [10] = 1
|η(τ)|4

[
ΘΛ̃0

(τ, τ̄)−ΘΛ̃2
(τ, τ̄)

]
,

ZF
C [01] = 1

|η(τ)|4
[
ΘΛ̃1

(τ, τ̄) + ΘΛ̃3
(τ, τ̄)

]
, ZF

C [11] = 1
|η(τ)|4

[
ΘΛ̃1

(τ, τ̄)−ΘΛ̃3
(τ, τ̄)

]
.

4.2.2 n = 6, p = 5 case (C3
5,2)

Let us consider the Euclidean classical code C3
5,2 generated by

GC3
5,2

=

1 2 0 0 0 0
0 0 1 2 0 0
0 0 0 0 1 2

 . (4.36)

The classical code is given by C3
5,2 = C5,2×C5,2×C5,2 where C5,2 is the classical code in (4.28).

Then, the Euclidean Construction A lattice is also written as ΛE(C3
5,2) = ΛE(C5,2)×ΛE(C5,2)×

ΛE(C5,2). Hence, we can choose an orthonormal basis of ΛE(C3
5,2) as follows:

v1 = 1√
5
(1, 2, 0, 0, 0, 0) , v2 = 1√

5
(2,−1, 0, 0, 0, 0) ,

v3 = 1√
5
(0, 0, 1, 2, 0, 0) , v4 = 1√

5
(0, 0, 2,−1, 0, 0) ,

v5 = 1√
5
(0, 0, 0, 0, 1, 2) , v6 = 1√

5
(0, 0, 0, 0, 2,−1) ,

(4.37)
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where vi · vj = δij (i = 1, 2, 3, 4, 5, 6). Then any element of ΛE(C3
5,2) can be written

in the form λ = ∑6
i=1mi vi where mi ∈ Z. For example, the characteristic vector is

x =
√
5 (1, 1, 1, 1, 1, 1) = 3v1 + v2 + 3v3 + v4 + 3v5 + v6.

Therefore, we can decompose the Construction A lattice ΛE(C3
5,2) into Λ(0)

E and Λ(2)
E where

Λ(0)
E =

{ 6∑
i=1

mi vi

∣∣∣∣∣
6∑

i=1
mi ∈ 2Z , mi ∈ Z

}
,

Λ(2)
E =

{ 6∑
i=1

mi vi

∣∣∣∣∣
6∑

i=1
mi ∈ 2Z+ 1 , mi ∈ Z

}
.

(4.38)

On the other hand, the shadow S
(
ΛE(C3

5,2)
)
, which is the translation of ΛE(C3

5,2) by
x
2 , is given by

S
(
ΛE(C3

5,2)
)
=
{ 6∑

i=1
m′

i vi ∈ R6
∣∣∣∣∣ m′

i ∈ Z+ 1
2

}
. (4.39)

Therefore, the shadow of ΛE(C3
5,2) is S(ΛE(C3

5,2)) = S(ΛE(C5,2))×S(ΛE(C5,2))×S(ΛE(C5,2)).
This can be divided as

Λ(1)
E =

{ 6∑
i=1

m′
i vi

∣∣∣∣∣
6∑

i=1
m′

i ∈ 2Z+ 1 , m′
i ∈ Z+ 1/2

}
,

Λ(3)
E =

{ 6∑
i=1

m′
i vi

∣∣∣∣∣
6∑

i=1
m′

i ∈ 2Z , m′
i ∈ Z+ 1/2

}
.

(4.40)

Using the above sets, we obtain the sets of momenta in the Lorentzian signature. An
element of each Λi=0,1,2,3 takes the form

(λ1, λ2) =
(∑

i

mi vi ,
∑

i

m′
i vi

)
, (4.41)

where mi and m′
i run over the region

Λ0 : mi , m
′
i ∈ Z

∑
i

mi =
∑

i

m′
i mod 2 ,

Λ1 : mi , m
′
i ∈ Z

∑
i

mi =
∑

i

m′
i + 1 mod 2 ,

Λ2 : mi , m
′
i ∈ Z+ 1

2
∑

i

mi =
∑

i

m′
i mod 2 ,

Λ3 : mi , m
′
i ∈ Z+ 1

2
∑

i

mi =
∑

i

m′
i + 1 mod 2 .

(4.42)

The orbifold theory is based on the momentum lattice ΛO = Λ0 ∪ Λ3. In the fermionized
theory, the NS sector and the R sector are given by ΛNS = Λ0 ∪ Λ2 and ΛR = Λ1 ∪ Λ3,
respectively. Recently, it has been shown in [39] that the fermionized theory is an N = 4
superconformal field theory called the GTVW model [40].
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5 Chern-Simons theories for Narain code CFTs and their Z2 gauging

In this section, we argue that abelian Chern-Simons (CS) theories naturally capture some
properties of a Narain code CFT, its orbifold, and its fermionization. Our consideration
has some similarity to [28] in spirit but is distinct in many crucial ways. See footnote 8.
The CS theories can be viewed as the symmetry topological field theories (TFTs) [42–44]
for the Narain code CFTs.

As a preparation for the subsequent subsections, here we review the basics of general
abelian Chern-Simons theories. An abelian CS theory is defined by the action

S = i
4π

∫
KIJA

I ∧ dAJ , (5.1)

where AI (I = 1, . . . , 2n) are U(1) gauge fields and K = (KIJ ) is a non-degenerate symmetric
integer matrix. It is convenient to represent the level matrix K in terms of an integral
lattice Γ with an inner product ⊘ and a basis {eI}:

KIJ = eI ⊘ eJ . (5.2)

We denote the CS theory by CS(Γ). The CS theory CS(Γ) is spin (fermionic), i.e., it
depends on the spin structure of the spacetime manifold, when at least one of the diagonal
components KII is odd, i.e., when Γ is an odd lattice [41, 73]. If KII are even, or equivalently
if Γ is even, the CS theory is non-spin (bosonic).

Suppose that the Chern-Simons theory is non-spin. The data for the modular tensor
category corresponding to the non-spin abelian CS theory can be expressed in terms of K,
or equivalently by the pair (Γ,⊘). See [74] for a review. A Wilson line

Wn := exp
[
inI

∮
AI
]

(5.3)

(the worldline of an anyon) is labeled by a set of integers nI with identification nI ∼ nI+KIJ ℓ
J

for ℓJ ∈ Z, implying that the anyon label (nI), or equivalently n := nI e
I with {eI} a dual

basis, takes values in the quotient Γ∗/Γ, where Γ∗ is the dual of Γ with respect to ⊘. The
spin of the line is h(n) = 1

2K
IJnI nJ = 1

2n⊘ n, where (KIJ) is the inverse of K. The spin
h(n) mod Z is called the topological spin. The braiding matrix between Wm and Wn is

Bmn = exp (2πim⊘ n) , (5.4)

and the modular S- and T -matrices are given as

Smn = |Γ∗/Γ|−
1
2 Bmn , Tmn = e−

πi
6 e2πi h(m) δmn . (5.5)

5.1 Chern-Simons theories for Narain code CFTs

Recall that the torus partition function of a Narain code CFT can be expressed as a finite sum
(specified by the complete weight enumerator) involving simple building blocks (ψ+

ab , ψ
−
ab , . . .),

as shown for p = 2 in [18, 19], for p ̸= 2 in [31], and for the orbifolded and fermionized
versions in section 3. See (3.16). This structure is similar to that of a rational CFT, whose
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partition function on a torus is a finite sum involving the products of the characters (more
generally conformal blocks for the partition function on a general Riemann surface) of a chiral
algebra and their complex conjugate. In the following, we will interpret the building blocks
as the basis states of a canonically quantized abelian Chern-Simons theory on the torus, in
the same way as the characters and conformal blocks of a WZW model are interpreted as the
basis states of the associated non-abelian Chern-Simons theory [75]. The crucial difference
between the two structures is that the building blocks for a Narain code CFT depend on
both τ and τ̄ , where τ is the modulus of the torus.

Technically, this structure of the partition function arises from the Construction A
lattice Λ(C) in (3.10), which we write as

Λ(C) =
⋃

c∈C

(
Γ0 +

c
√
p

)
⊂ Γ∗

0 . (5.6)

Here
Γ0 = √pZ2n (5.7)

is an even lattice with respect to the inner product ⊙ determined by the Lorentzian metric η
defined in (3.8). The partition function is given by a double summation. The first summation
is finite and is over the classical code C. The second summation is infinite and is over γ ∈ Γ0.
The infinite sum over γ for fixed c is an analog of a character for the algebra generated by
(appropriately normal-ordered versions of)

exp
[ i√

2
(
(γ1 + γ2) ·X(z) + (γ1 − γ2) · X̄(z̄)

)]
(5.8)

for γ = (γ1, γ2) ∈ Γ0. The algebra extends in a non-chiral way the product of chiral and
anti-chiral algebras corresponding to [U(1)2p]n and [U(1)−2p]n, respectively. The characters
of the latter are holomorphic or anti-holomorphic and are given by products of the theta
functions in (3.19) (divided by eta functions) and their complex conjugate, which appear
in non-holomorphic functions ψab, etc.6

The structure of the momentum lattice shown in (5.6) is captured via the bulk-boundary
correspondence by a non-spin U(1)2n CS theory CS(Γ0) determined by the even lattice Γ0,
which is a special case of the Chern-Simons theory discussed at the beginning of this section.7
The codewords c ∈ C ≃ Λ(C)/Γ0 ⊂ Γ∗

0/Γ0 correspond to a subset of Wilson lines Wc (selected
by a boundary condition as we will see below). More general lines Wγ are given by arbitrary
γ ∈ Γ0 with spin γ ⊙ γ/2 mod Z. The level matrix is given by K(0)

IJ := bI ⊙ bJ = p ηIJ , i.e.,

K(0) =
[
0n×n p1n×n

p1n×n 0n×n

]
, (5.9)

where bI = √p (δiI)2n
i=1 form a basis of Γ0. The theory consists of n copies of the same BF

theory, which is equivalent to the topological Zp gauge theory [77, 78] and the low-energy
6See, for example, [23, 27] for the construction of code-based Narain CFTs that are not rational.
7Indeed, the wave function obtained by explicit quantization has a non-holomorphic dependence on τ when

the signature of K is indefinite [41, 76].
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2d
DOF

top.
b.c. CS = 2d

CFT

Figure 3. The bulk CS theory supports 2d degrees of freedom (DOF) on one boundary and is subject
to a topological boundary condition on the other boundary specified by the classical code C. At low
energies, the Narain code CFT describes the combined 3d+2d system.

limit of the Zp toric code model [79]. The diagonal components of K(0) are even (zero)
as they should be for a non-spin CS theory. The modular S- and T -transformations of
ψab(τ, τ̄) were computed in [33]. It is consistent with the modular S- and T -matrices of
the CS theory (5.5) determined by K(0).

We propose that the Narain code CFT on a Riemann surface Σ is realized by the Chern-
Simons theory CS(Γ0) on the spacetime Σ×(interval), which has two boundaries as illustrated
in figure 3. The bulk theory supports 2d degrees of freedom (DOF) on one boundary (edge
modes) [80], and is subject to a topological boundary condition on the other boundary. An
equivalence class of vertex operators, where two vertex operators are equivalent if they are
related by the multiplication of an operator of the form (5.8), corresponds to a Wilson
line that stretches between the two boundaries. It is well-known [81] that a topological
boundary condition is in one-to-one correspondence with a Lagrangian subgroup of Γ∗

0/Γ0
with respect to the bilinear form given by the level matrix. In the present set-up, the
“Lagrangian subgroup” is nothing but the classical code C ≃ Λ(C)/Γ0 that is self-dual with
respect to the metric η. The Lagrangian subgroup specifies the Wilson lines that can end
on the boundary. The evenness of Λ(C) implies that these Wilson lines have integer spins,
i.e., the boundary condition is bosonic.

The CS theory CS(Γ0) on the space Σ has a Hilbert space spanned by the building blocks
(∏n

i=1 ψαiβi
(τ, τ̄) if Σ is a torus) of the partition function. The topological boundary condition

specified by C defines a boundary state ⟨C|. Suppose that the classical code C corresponds
to a quantum stabilizer code, i.e., C satisfies the condition (3.5). Then, a Wilson line W
wrapping a cycle of Σ satisfies ⟨C|W = ⟨C| if and only if W corresponds to an element of C.
This means that we can interpret ⟨C| itself as the unique state of a quantum stabilizer code
(with zero logical qubits). In this interpretation, the general Wilson lines of CS(Γ0) represent
Pauli operators, and those labeled by elements of C represent stabilizers.8

8 Our picture is similar to [28, 82], but our Chern-Simons theory differs from theirs. The bulk Chern-Simons
theories in these works are products of two decoupled theories corresponding to chiral and anti-chiral sectors
of the 2d CFTs. Our Chern-Simons theories are generally not such products and correspond to non-chiral
CFTs with partition functions built from non-holomorphic functions ψab(τ, τ̄).
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5.2 Chern-Simons theories for orbifolded and fermionized CFTs

Next, we study the bulk-boundary correspondence for the orbifolded and fermionized Narain
code CFTs. We will often make use of an even lattice

Γe := {γ ∈ Γ0 |χ⊙ γ ∈ 2Z} . (5.10)

We assume that the value of n is such that the Z2 symmetry used for orbifolding and
fermionization is non-anomalous as described in section 3.

5.2.1 p ̸= 2

In the case of p odd prime, we have χ = √p12n. The absence of anomaly for the zero-form
symmetry (Z[0]

2 )χ generated by χ as in (3.26) requires that n ∈ 2Z. We note that χ ∈ Γe.
The lattice ΛO for the orbifold can be written as

ΛO =
⋃

c∈C
(ΓO + ν(c)) , ΓO = Γe ∪ (Γe + ζ) , (5.11)

where ν(c) ∈ Λ0 is a certain element determined by c,9 and

ζ =
{
δ + b2n if n ∈ 4Z+ 2 ,
δ if n ∈ 4Z . (5.12)

Note that 2ζ ∈ Γe. One can check that ΓO is an even lattice, with ζ ⊙ ζ even. Thus the
CS theory CS(ΓO) is non-spin. The vertex operators specified by ν(c) for c ∈ C correspond
to a subset of its Wilson lines that can end on the left boundary in figure 3. This means
that the quotient group ΛO/Γe specifies the topological boundary condition. The self-duality
of the lattice ΛO established in section 3 guarantees that ΛO/Γe is a Lagrangian subgroup
of Γ∗

e/Γe as it should be [81].
The non-spin theory CS(ΓO) arises by gauging a bosonic one-form symmetry of a non-spin

CS theory CS(Γe) [83, 84]. (See also appendix C of [85].) To see this, we note that the
even lattice Γe can be written as

Γe = {γ ∈ Γ0 | ζ ⊙ γ ∈ Z} ⊂ Γ0 . (5.13)

It follows that ζ ∈ Γ∗
e corresponds to a Wilson line Wζ of CS(Γe). The line Wζ has an integer

spin, i.e., it is bosonic. Let us consider the CS theory obtained by gauging the one-form
symmetry (Z[1]

2 )ζ generated by Wζ . (In the condensed matter language, Wζ represents the
bosonic anyon that condenses.)10 This eliminates the Wilson lines that have non-trivial
braiding with Wζ , i.e., the new labels of lines take values in {γ ∈ Γ∗

e | ζ ⊙ γ ∈ Z} = Γ∗
O.

Moreover, two lines that differ by the fusion with Wζ are identified, i.e., the new labels
are identified if their difference is in Γe ∪ (Γe + ζ) = ΓO. We conclude that CS(ΓO) arises
by gauging (Z[1]

2 )ζ .
9We omit the explicit expressions for ν(c), which are easy to calculate but are rather complicated. The

elements ν(c) specify the representations of the non-chirally extended algebra generated by the operators (5.8)
with γ ∈ ΓO.

10We denote by (G[1])λ the one-form G symmetry generated by the line Wλ.
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CS(Γ0) CS(ΓNS)CS(ΓO)

CS(Γe)

Narain
code CFT

Fermionized
CFT

Orbifolded
CFT

gauge

(Z[1]
2 )ι

gauge (Z[1]
2 )ζ

b.c.

gauge (Z[1]
2 )ξ

b.c.
b.c.

b.c.b.c. b.c.

gauge (Z[0]
2 )χ

gauge (Z[0]
2 )qu

fermionize

bosonize

Figure 4. The interrelations among 3d Chern-Simons theories and 2d CFTs. The zero-form
symmetry (Z[0]

2 )χ is the Z2 symmetry that defines the orbifold. (Z[0]
2 )qu is the corresponding quantum

symmetry [54].

For the fermionized theory, the relevant lattice is ΛNS = Λ0 ∪ Λ2, which we write as

ΛNS =
⋃

c∈C
(ΓNS + µ(c)) , ΓNS = Γe ∪ (Γe + ξ) . (5.14)

Here µ(c) is an element of Λ0 uniquely determined by c,11 and

ξ =
{

δ if n ∈ 4Z+ 2,
δ + b2n if n ∈ 4Z. (5.15)

One can check that ΓNS is an odd lattice with ξ ⊙ ξ being an odd integer, showing that
the CS theory CS(ΓNS) is spin. The vertex operators specified by µ(c) correspond to a
subset of Wilson lines in CS(ΓNS).

This spin CS theory CS(ΓNS) arises by gauging a fermionic one-form symmetry of a
non-spin CS theory CS(Γe). The even lattice Γe admits another rewriting as

Γe = {γ ∈ Γ0 | ξ ⊙ γ ∈ Z} ⊂ Γ0 . (5.16)

It follows that ξ ∈ Γ∗
e corresponds to a Wilson line Wξ of CS(Γe). The line Wξ has a half-integer

spin, i.e., it is fermionic. Let us consider the CS theory obtained by gauging the one-form
symmetry (Z[1]

2 )ξ generated by Wξ. (In the condensed matter language, Wξ represents the
fermionic anyon that condenses.) This eliminates the Wilson lines that have non-trivial
braiding with Wξ, i.e., the new labels of lines take values in {γ ∈ Γ∗

e | ξ ⊙ γ ∈ Z} = Γ∗
NS.

Thus, the spin CS theory CS(ΓNS) arises by gauging (Z[1]
2 )ξ.12

11For simplicity, we omit the explicit expressions for µ(c). The elements µ(c) specify the representations of
the non-chirally extended algebra generated by the operators (5.8) with γ ∈ ΓNS.

12For γ ∈ Γe, Wγ and Wγ+ξ have different spins mod Z and should not be identified [85].
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CS(Γ0) CS(ΓNS)CS(ΓO)
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CS(Γ1)

Narain
code CFT

Fermionized
CFT

Orbifolded
CFT

gauge (Z[1]
2 )χ

gauge (Z[1]
2 )ι

gauge (Z[1]
4 )ζ

b.c.

gauge (Z[1]
4 )ξ

b.c.b.c.

b.c.b.c. b.c.
gauge (Z[0]

2 )χ

gauge (Z[0]
2 )qu

fermionize

bosonize

gauge (Z[1]
2 )ζ gauge (Z[1]

2 )ξ

b.c. b.c.

Figure 5. The relations among 3d Chern-Simons theories and 2d CFTs for p = 2 and an F4-even
classical code C.

We note that using Γe in (5.10), there is yet another rewriting of Γ0, namely Γ0 = Γe ∪
(Γe + ι), where ι ∈ Γ0 is an element such that χ⊙ ι ∈ 2Z+ 1. Because Γ0 is even, ι⊙ ι ∈ 2Z.
Thus, the Wilson line Wι of CS(Γe) is bosonic and generates a Z2 one-form symmetry (Z[1]

2 )ι.
Gauging this one-form symmetry produces CS(Γ0). The topological boundary condition is
specified by the Lagrangian subgroup Λ(C)/Γe of Γ∗

e/Γe.
Thus, the three Chern-Simons theories CS(Γ0), CS(ΓO), and CS(ΓNS) all arise by gauging

one-form Z2 symmetries of CS(Γe). We can realize the Narain code CFT, its orbifold, and its
fermionization by imposing the topological boundary conditions on the fields of the non-spin
theory CS(Γe) such that the Wilson lines labeled by the Lagrangian subgroups Λ(C)/Γe,
ΛO/Γe, and ΛNS/Γe of Γ∗

e/Γe can end on the left boundary of figure 3, respectively. The first
two boundary conditions are bosonic while the last is fermionic. In this picture, the bulk
topological field theory CS(Γe) is invariant under the topological manipulations (orbifolding,
fermionization, and bosonization) on the 2d CFTs [42, 86]. The relations we have found
are summarized in figure 4.

5.2.2 p = 2 and F4-even C

Suppose next that p = 2 and that the classical code C is F4-even. The absence of anomaly
for (Z[0]

2 )χ generated by χ requires that n ∈ 4Z. (See section 3.3 for the definition.) In this
case, we have 12n ∈ C, χ = (1/

√
2)12n and Γe ̸= Γ0. Let us define

Γ1 := Γe ∪ (Γe + χ) ⊂ Λ0 . (5.17)

Since 2χ ∈ Γe, Γ1 is closed under addition and is an even lattice. We note that Γ1 is contained
in all of Λ(C), ΛO, and ΛNS. Both of the two CS theories CS(Γe) and CS(Γ1) reduce
to the Narain code CFT, its orbifold, and it fermionization, with appropriate topological
boundary conditions specified by the Lagrangian subgroups Λ(C)/Γe,ΛO/Γe,ΛNS/Γe ⊂ Γ∗

e/Γe
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gauge (Z[0]
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fermionize
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Figure 6. The interrelations among 3d Chern-Simons theories and 2d CFTs for p = 2, n ∈ 2Z, and a
non-F4-even classical code C.

and Λ(C)/Γ1,ΛO/Γ1,ΛNS/Γ1 ⊂ Γ∗
1/Γ1 imposed, respectively. The theory CS(Γ1) arises by

gauging the one-form symmetry (Z[1]
2 )χ generated by Wχ of CS(Γe).

Moreover, we again have Γ0 = Γe ∪ (Γe + ι). The Wilson line Wι of CS(Γe) is bosonic
and gauging (Z[1]

2 )ι produces CS(Γ0). The topological boundary condition for the Narain
code CFT is specified by the Lagrangian subgroup Λ(C)/Γe of Γ∗

e/Γe.
We can also introduce

ΓO =
3⋃

j=0
(Γe + j · ζ) , ΓNS =

3⋃
j=0

(Γe + j · ξ) (5.18)

with

ζ =
{

δ if n ∈ 8Z ,
δ + b2n if n ∈ 8Z+ 4 (5.19)

and

ξ =
{
δ + b2n if n ∈ 8Z ,
δ if n ∈ 8Z+ 4 , (5.20)

and consider the corresponding CS theories CS(ΓO) and CS(ΓNS).
The relations among the CS theories and the CFTs are summarized in figure 5. We note

that Wζ of CS(ΓO) and Wξ of CS(ΓNS) generate one-form Z4 symmetries.

5.2.3 p = 2 and non-F4-even C

In this case, we have 12n /∈ C and we take χ =
√
212n, so Γe = Γ0.

For n ∈ 2Z, we get

ΛO =
⋃
c∈C

12n·c∈2Z

(
ΓO + c√

2

)
, ΛNS =

⋃
c∈C

(Γ0 + µ(c)) (5.21)

with
ΓO = Γ0 ∪

(
Γ0 +

12n√
2

)
(5.22)
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Figure 7. The interrelations among 3d Chern-Simons theories and 2d CFTs for p = 2, n ∈ 2Z+ 1,
and a non-F4-even classical code C.

and
µ(c) =

{
c if 12n · c = 0 mod 2 ,
c+ 12n if 12n · c = 1 mod 2 . (5.23)

The Narain code CFT, its orbifold, and its fermionized CFT are realized by the single non-spin
CS theory CS(Γ0) with the topological boundary conditions specified by the Lagrangian
subgroups Λ(C)/Γ0,ΛO/Γ0,ΛNS/Γ0 ⊂ Γ∗

0/Γ0, respectively. Moreover, the orbifolded CFT
can be obtained by imposing the topological boundary condition specified by ΛO/ΓO on the
non-spin theory CS(ΓO). We summarize the relations in figure 6.

For n ∈ 2Z + 1,13 we get

ΛO =
⋃
c∈C

(Γ0 + ν(c)) , ΛNS =
⋃
c∈C

12n·c∈2Z

(
ΓNS + c√

2

)
(5.24)

with
ΓNS = Γ0 ∪

(
Γ0 +

12n√
2

)
(5.25)

and
ν(c) =

{
c if 12n · c = 0 mod 2 ,
c+ 12n if 12n · c = 1 mod 2 . (5.26)

The Narain code CFT, its orbifold, and its fermionized CFT are realized by the single non-spin
CS theory CS(Γ0) with the topological boundary conditions specified by the Lagrangian
subgroups Λ(C)/Γ0,ΛO/Γ0,ΛNS/Γ0 ⊂ Γ∗

0/Γ0, respectively. Moreover, the fermionized CFT
can be obtained by imposing a topological boundary condition on the spin theory CS(ΓNS).
We summarize the relations in figure 7.

6 Ensemble average

In this section, we will consider ensemble averages of the orbifolded and fermionized Narain
code CFTs over CSS codes defined by classical self-dual codes, and calculate their partition
functions in the large central charge (large-n) limit.

13The analysis here applies to the example in section 4.1.
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To this end, we first rewrite the building blocks (2.9) for the partition functions in terms
of the weight enumerator polynomial:

S = 1
2 |η(τ)|2n

[
WC({ψ+

ab}) +WC({ψ−
ab})

]
, (6.1)

T = 1
2 |η(τ)|2n

[
WC({ψ+

ab})−WC({ψ−
ab})

]
, (6.2)

U = 1
2 |η(τ)|2n

[
WC({ψ̃+

ab}) +WC({ψ̃−
ab})

]
, (6.3)

V = 1
2 |η(τ)|2n

[
WC({ψ̃+

ab})−WC({ψ̃−
ab})

]
, (6.4)

where ψ±
ab, ψ̃

±
ab are given in (3.67), (3.74) and can be written as

ψ+
ab = Θ

[
α

0

]
(0 |Ω) , (6.5)

ψ−
ab = Θ

[
α

0

]
(p δ |Ω) , (6.6)

ψ̃+
ab = Θ

[
α + δ

0

]
(0 |Ω) , (6.7)

ψ̃−
ab = Θ

[
α + δ

0

]
(0 |Ω + ∆) . (6.8)

Θ is the Riemann-Siegel theta function of genus-two defined by

Θ
[
α

β

]
(z |Ω) =

∑
n∈Z2

e
2πi
[

(n+α) Ω (n+α)T

2 +(n+α)(z+β)T

]
, (6.9)

and we define the parameters as

α =
(
a

p
,
b

p

)
, δ =

(1
2 ,

1
2

)
, Ω = p

[
i τ2 τ1
τ1 i τ2

]
, ∆ =

[
0 p

p 0

]
. (6.10)

Let us consider Narain code CFTs based on CSS codes defined by a single self-dual code
and average their partition functions over the set of self-dual codes

Mn,p = {self-dual codes over Fp of length n} . (6.11)

After averaging over the CSS codes, the complete weight enumerator polynomial becomes [33]

W
(CSS)
n,p ({xab}) =

1
|Mn,p|

∑
C ∈Mn,p

W
(CSS)
C,C ({xab})

=



∑
A

1(
2n

2 −1 + 1
)
· · ·
(
2n

2 −dim2(A)+1 + 1
) (n

A

)
xA if p = 2 ,

∑
A

1(
p

n
2 −1 + 1

)
· · ·
(
p

n
2 −dimp(A) + 1

) (n
A

)
xA if p odd prime .

(6.12)
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In the large-n limit, it reduces to

W
(CSS)
n,p ({xab}) = p−n

∑
a,b

xab

n (
1 +O(n−1)

)
. (6.13)

To proceed, we will be focused on the averaged partition function by fixing the torus
moduli τ = iβ/2π. Then we have q = q̄ = e−β and ψ±

ab, ψ̃
±
ab simplify to

ψ+
ab = ψ+

a ψ
+
b , ψ+

a ≡
∑
k∈Z

e
− pβ

2

(
k+ a

p

)2

,

ψ−
ab = ψ−

a ψ
−
b , ψ−

a ≡ (−1)a
∑
k∈Z

(−1)pk e
− pβ

2

(
k+ a

p

)2

,

ψ̃+
ab = ψ̃+

a ψ̃
+
b , ψ̃+

a ≡
∑
k∈Z

e
− pβ

2

(
k+ a

p
+ 1

2

)2

,

ψ̃−
ab = e

2πi p
(

a
p

+ 1
2

)(
b
p

+ 1
2

) ∑
k1∈Z

(−1)k1 e
− pβ

2

(
k1+ a

p
+ 1

2

)2
∑

k2∈Z
(−1)k2 e

− pβ
2

(
k2+ b

p
+ 1

2

)2
 .

(6.14)

We also find the summations over a, b ∈ Fp become

∑
a,b∈Fp

ψ+
ab = ϑ3

( iβ
2πp

)2
,

∑
a,b∈Fp

ψ−
ab = ϑ4

( iβ
2πp

)2
,

∑
a,b∈Fp

ψ̃+
ab = ϑ2

( iβ
2πp

)2
,

∑
a,b∈Fp

ψ̃−
ab = Θ

[
δ

0

] (
0 |Ω′) , (6.15)

where

δ =
(1
2 ,

1
2

)
, Ω′ =

[ i β
2πp

1
p

1
p

i β
2πp

]
. (6.16)

The averaged partition functions of the bosonic, orbifold, and fermionic theories without
background Z2 gauge fields are

Z̄ = S + T = 1

pn
∣∣∣η ( i β

2π

)∣∣∣2n ϑ3

( iβ
2πp

)2n

,

Z̄O[00] = S + U

= 1

2 pn
∣∣∣η ( i β

2π

)∣∣∣2n

[
ϑ3

( iβ
2πp

)2n

+ ϑ4

( iβ
2πp

)2n

+ ϑ2

( iβ
2πp

)2n

+Θ
[
δ

0

] (
0 |Ω′)n] ,

Z̄F [00] = S + V

= 1

2 pn
∣∣∣η ( i β

2π

)∣∣∣2n

[
ϑ3

( iβ
2πp

)2n

+ ϑ4

( iβ
2πp

)2n

+ ϑ2

( iβ
2πp

)2n

−Θ
[
δ

0

] (
0 |Ω′)n] .

(6.17)
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Figure 8. The ratio of the averaged partition functions Z̄ and Z̄O[00] of the Narain code CFTs
constructed from the CSS codes and their orbifolds for p = 3 and n = 25. The ratio approaches one
in β → 0 and β →∞ limits, but deviates from one in general, implying that the averages of Narain
code CFTs and their orbifolds are different theories. The position of the bump shifts to the right as p
increases.

To see the difference between the two bosonic partition functions Z̄ and Z̄O[00], we
numerically plot their ratio Z̄O[00]/Z̄ as a function of β in figure 8. We find the ratio
approaches one for small and large β, but deviates from one for the intermediate value. We
can understand the large β behavior as follows. In β →∞ limit, assuming n e−

β
2p ≪ 1, we find

S = O
(
e

nβ
12
)
, T = O

(
n e

nβ
12 − β

2p

)
, U, V = O

(
e

nβ
12

(
1− 3

p

))
, (6.18)

hence, the S term dominates in both Z̄ and Z̄O[00], and their ratio approaches one. In
β → 0 limit, with the help of the modular transformation laws of the elliptic theta, eta, and
Riemann-Siegel theta function (see e.g., [87, (21.5.9)]), we find

S = O

(
e

nπ2
3β

)
, T = O

(
n e

nπ2
3β

− 2π2p
β

)
, U, V = O

(
e

nπ2
β

(
1
3−

1
πp

))
, (6.19)

where we assume n e−
2π2p

β ≪ 1. Thus, the S term also dominates in both Z̄ and Z̄O[00],
and their ratio approaches one.

The above result shows that the averaged theories of the bosonic code CFTs and their
orbifolds have the same spectrum for small and large β in the large-c (large-n) limit, but
they are different ensemble averaging of Narain CFTs.

7 Discussion

In this paper, we considered the gauging of a Z2 symmetry in the bosonic Narain CFTs
constructed from qudit stabilizer codes and obtained their orbifolded and fermionized CFTs.
We established the correspondence between the Z2 even/odd Hilbert spaces in the un-
twisted/twisted sectors of the bosonic CFTs with the four sets of the lattice points associated
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with the codes. Under this identification, the orbifolding and fermionization of Narain code
CFTs are realized as deformations of the lattices by vectors that characterize the Z2 symmetry.

In section 2, we discussed the general lattice modifications to construct new even and
odd self-dual lattices from an already-known one. This technique has been used in Euclidean
lattices to realize dense sphere packings such as the Leech lattice [10]. Our formulation is valid
not only for the Euclidean signature but also for the Lorentzian one, so we expect the modified
Lorentzian lattices to have good lattice sphere packings and equivalently large spectral gaps.
It would be interesting to discuss the relationship between the modified Lorentzian lattices
and the optimal sphere packings found by the modular bootstrap in [88–90].

When a CFT has more than two Z2 symmetries, there is a rich structure known as orbifold
groupoid relating between the orbifolded and fermionized CFTs by several choices of the Z2
subgroup [3, 4, 9, 42]. In a Narain code CFT, such a groupoid structure may appear if there is
more than one vector χ in the Construction A lattice with which one can deform the original
lattice and obtain a family of new lattices. It remains open from what class of quantum codes
one can construct Narain code CFTs with symmetries including multiple Z2 subgroups.

We note that the orbifolding and fermionization of Narain code CFTs are not necessarily
Narain code CFTs constructed from qudit stabilizer codes in general. For chiral cases,
there are fermionic CFTs that can be built directly from classical codes without performing
fermionization [4, 5]. It would be worthwhile to examine if there are similar constructions of
non-chiral fermionic CFTs from quantum stabilizer codes without gauging a Z2 symmetry.

In section 6, we considered the ensemble average of Narain code CFTs of CSS type, their
orbifolded and fermionized theories, and derived the averaged partition functions in the large
central charge (large-n) limit. We pointed out that the averaged partition functions of the
bosonic Narain code CFTs and their orbifolds are different. This observation leads us to the
conclusion that the ensemble averages of the Narain code CFTs and their orbifolds describe
two different bosonic CFTs. Since the two theories are discrete subsets of Narain CFTs, it
may be reasonable to consider a more general ensemble that includes both Narain code CFTs
and their orbifolds and take the weighted average. It would be interesting to investigate if the
resulting CFT can have a holographic description such as U(1) gravity as in [90, 91]. Also,
the average of fermionic CFTs is considered and proposed to be holographically dual to a
spin Chern-Simons theory in [92]. A similar consideration may be applied to the average of
fermionized code CFTs, and the partition function Z̄F obtained in (6.17) would be useful
to identify the holographic description.

Fermionization of Narain code CFTs has been applied to searching for supersymmetric
CFTs in the recent paper [39], where the necessary conditions for CFTs to have supersym-
metry [93–95] are reformulated in terms of quantum codes. On the other hand, a new class
of Narain code CFTs has been constructed from quantum stabilizer codes over rings and
finite fields in [34]. Exploring supersymmetric CFTs through the fermionization of these
novel code CFTs would be a promising avenue for future research.
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