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1 Introduction

At the end of inflation [1, 2], most of the energy in the Universe resided in the potential
energy of an inflaton field. This energy is expected to have been transferred to the Standard
Model degrees of freedom through one or a combination of processes collectively referred
to as reheating [3]. One of these is tachyonic preheating [4], which occurs if at the end of
inflation a field (the inflaton itself, but more commonly another field coupled to it) becomes
unstable and undergoes a spinodal transition. In the process, the unstable field acquires very
large occupation numbers in the long-wavelength (IR) modes.

The most common realisation of this scenario is a two-field model [5], where one field
σ plays the role of the inflaton and a second field1 ϕ undergoes spontaneous a symmetry

1The “waterfall” field.
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breaking transition at zero temperature triggered by the (slow-)rolling of the inflaton. A
generic model for this follows from the action

S =
∫

d4x

[1
2∂µσ∂µσ − V (σ) + 1

2∂µϕ ∂µϕ − 1
2(g

2σ2 − µ2)ϕ2 − 1
24λϕ4 − V0

]
. (1.1)

where σ is real-valued and ϕ is here written as a real singlet, but could have any number of
components. The inflaton potential V (σ) is not specified but must have the property that the
potential minimum is at σ = 0 and allows for slow-roll inflation at values of σ larger than µ/g.

As the inflation rolls towards σ = 0, the effective mass of the second field ϕ changes sign

m2(t) = g2σ2(t)− µ2, (1.2)

and ϕ undergoes a symmetry breaking transition, as the potential acquires new minima
at non-zero field value

ϕ2 → v2 = 6µ2/λ, (1.3)

with a speed determined by the evolution of σ,

u = 1
µ3

dm2(t)
dt σ=µ/g

= 2gσ̇

µ2 . (1.4)

We may fix the constant V0 = 3µ4/2λ in such a way that the potential is zero at ϕ = v, σ = 0.
In hybrid inflation models [5], the end of inflation is itself triggered by the symmetry

breaking transition, as the increase of ϕ2 spoils the flatness of the σ-potential. In other
implementations, inflation has ended well before the transition. Either way, the potential
initially stored in V0 is transferred to all the degrees of freedom, and the system eventually
equilibrates to some reheating temperature Treh near the potential minimum.

The process of (p)reheating is often quite complicated and model-dependent, since in
addition to triggering symmetry breaking, the σ field itself may also oscillate around σ = 0
so that the sign of m2(t) flips multiple times. Such oscillations may also lead to resonant
preheating [3], where certain momentum modes in resonance with σ grow exponentially. A
substantial body of analytic and in particular numerical work has been done over the past 25
years, exploring many model of preheating after inflation [6–12]. A review can be found in [13].

Several aspects of a tachyonic reheating transition deserve detailed scrutiny. One is the
transition itself, where the field dynamics may be solved numerically in real-time and the
spectrum of fluctuations computed. Because occupation numbers are large, at least for some
modes, for some of the time, most numerical treatments rely on the classical approximation
to the dynamics [9, 14]. Yet, the initial state of the system is the quantum vacuum, and the
unstable modes are seeded by the vacuum fluctuations. Also, at late times classical dynamics
is notoriously incomplete, in that the classical equilibrium is badly defined and does not
match the quantum equilibrium state. To quantify the validity of the classical approximation
and follow the thermalisation process using quantum dynamics seems worthwhile [8].

The approach to equilibrium (kinetic and chemical) also has a set of characteristic
timescales and an effective equation of state which enters in the cosmological evolution. An
out-of-equilibrium regime with very large occupation numbers may be suitable for other
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interesting processes to take place. These include the creation of heavy exotic particles,
primordial black holes, gravitational waves, topological defects and a baryon asymmetry.
When model building in these contexts, it is useful to known how large occupation numbers
become, in which momentum range and over what timescales.

In the simplest analysis, one might assume that the potential energy is instantaneously
redistributed onto g∗ non-interacting relativistic degrees of freedom, so that the final reheating
temperature is simply

V0 = π2

30g∗T 4
reh → Treh

µ
=
( 45

π2g∗λ

)1/4
. (1.5)

In the Standard Model below Treh = 100GeV, one expects2 g∗ ≃ 107, while for the O(N)
model to be discussed below, the expectation is g∗ = N − 1. We will see that at intermediate
times, this naive estimate has limitations.

We may also quantify under what conditions we are allowed to ignore cosmological expan-
sion in our simulations. The longest timescale in the problem is the chemical equilibration time
τch, and so we can ignore expansion as long as Hτch < 1, where H is the Hubble rate. Since

H2 = V0
3M2

pl
→ H

µ
= 1√

2λ

µ

Mpl
, (1.6)

as long as Mpl/µ ≫ µτch and the coupling is not too small, expansion is negligible. If not,
the evolution equations have to be restated and solved in a Friedmann-Robertson-Walker
metric as in [15].

In the present work, we will ignore expansion and compute the out-of-equilibrium
quantum dynamics of a O(N) scalar field system under a mass quench, solving the Kadanoff-
Baym equations truncated at NLO in a 1/N-2PI expansion [16–18]. Early work considering
such a transition include [19–21], with a substantial body of work based on the Hartree
approximation (see for instance [22–24]), which in the 2PI-language is LO in a coupling
expansion. Truncations at LO are very useful for the early stages of the evolution, and
are numerically straightforward to implement. However, including only local (in time) self-
energies, they are unable to capture the quantum equilibration and ultimate thermalisation
of the system (see however [25, 26] for inhomogeneous systems).

The paper is organised as follows: in section 2 we set up our simplified model of spinodal
symmetry breaking. In section 3 we introduce the 2PI formalism, the quantum evolution
equations and their classical limit. We present our numerical results in sections 4, 5 and 6,
where the first section focuses on classical aspects of tachyonic preheating and the applicability
of classical approximations, and the second addresses questions outside the reach of classical
approximations, where quantum equations of motions are essential. We briefly consider the
early time dynamics in finite time mass quenches in section 6 and conclude in section 7. Some
technical aspects of the simulations are placed in an appendix A. Some of the present work
can be seen as a refinement and continuation of [8], and shares much of the notation.

2With the appropriate normalisation of V0 in the SM, Treh ≃ 42 GeV.
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2 Symmetry and symmetry breaking in the O(N) scalar field model

We will consider a N-component scalar field with an O(N)-symmetric potential, described by
the following action (sum over components a = 1, . . . , N implied)

S =
∫

d4x

[
1
2∂µϕa∂µϕa − m2(t)

2 ϕaϕa − λ

24N
(ϕaϕa)2.

]
(2.1)

This is a generalisation of the single real field ϕ in the preceding section. For N = 4 we
have a model reminiscent of the Standard Model complex Higgs doublet. Keeping N general
allows us to mimic an arbitrary number of spinodally unstable degrees of freedom to be
reheated at the end of inflation. We will also use 1/N as the expansion parameter to organise
our 2PI diagram series below.

When m2(t) = −µ2, the potential has minima at ϕaϕa = 6Nµ2/λ ≡ v2. A common
prescription is to choose a global rotation to fix this in the ϕ1-direction, ϕa = δa1v. Then
the mass spectrum becomes

M2
ab =

(
m2 + λ

6N
ϕcϕc

)
δab +

λ

3N
ϕaϕb = diag(2µ2, 0, 0, . . .), (2.2)

with a massive Higgs mode with mass m2
H = 2µ2, corresponding to fluctuations in the ϕ1

direction around v, and N − 1 massless Goldstone modes, corresponding to fluctuations
perpendicular to ϕ1. These two modes are often explicitly encoded in a longitudinal (along
the 1-direction) and transverse (to the 1-direction) propagator.

On the other hand, the system has O(N) symmetry, and so the equations of motion will
conserve ⟨ϕa⟩ = 0 for all a. We may therefore choose to study the dynamics keeping this
symmetry manifest, and consider only one “compound” correlator encoding both massive
and massless modes [8]. Close to equilibrium, the compound propagator contains N − 1
Goldstone modes and one Higgs mode, and at equal times it may be decomposed as3

⟨ϕa(x, t)ϕb(y, t)⟩ = G(x − y, t)δab =
[

v2

N
+ N − 1

N
F G(x − y, t) + 1

N
F H(x − y, t)

]
δab.

(2.3)
It follows that the expectation value v enters as a contribution to the zero momentum mode

G(k = 0)
L3 ≃ v2

N
. (2.4)

We will return to this point below.

3This is in contrast to the common procedure of defining the connected correlator Gc = ⟨ϕϕ⟩ − ⟨ϕ⟩2, and
from there the transverse and longitudinal components of this correlator. Here, symmetry ensures ⟨ϕ⟩ = 0,
but the correlator still solves dV/dϕ = 0 = (λ⟨ϕ2⟩ − µ2)ϕ.
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2.1 Triggering the symmetry breaking transition

The transition is triggered as the function m2(t) changes sign. This may be parametrised
in terms of a finite quench time τQ, as

m2(t) = µ2
0, t < 0, (2.5)

= µ2
0

[
1−

(
1 + µ2

µ2
0

)
t

τQ

]
, 0 < t < τQ, (2.6)

= −µ2, t > τQ. (2.7)

and the corresponding quench speed is given by u = − 1
µτQ

(1 + µ2
0

µ2 ). An instantaneous quench
amounts to τQ = 0, cutting out the transition region altogether

m2(t) = µ2
0, t < 0, (2.8)

m2(t) = −µ2, t > 0. (2.9)

In the general case of a dynamical inflaton m2(t) = g2σ2 − µ2, µ2
0 corresponds to some initial

value of σ. For simplicity, we will consider “symmetric” quenches where µ2 = µ2
0. In the

example of an instantaneous quench, modes with momentum k < µ evolve as

ϕk(t) ∝ e±iωkt → e±
√

µ2−k2t, (2.10)

which is the tachyonic (or spinodal) instability leading to exponential growth of the long-
wavelength modes. Performing a more detailed computation [7, 19, 21, 22], using as initial
condition the quantum vacuum prior to the quench (πk = ∂tϕk)

⟨ϕ†
kϕk⟩ =

1
2ω+

k

, ⟨π†
kπk⟩ =

ω+
k

2 , (2.11)

one finds

⟨ϕ†
k(t)ϕk(t′)⟩t=t′ = Fk(t, t′)|t=t′ = 1

2ω+
k

[
1−

(
ω+ 2

k

ω− 2
k

− 1
)
sinh2(ω−

k t)
]
, (2.12)

⟨π†
k(t)πk(t′)⟩t=t′ = ∂t∂t′Fk(t, t′)|t=t′ = ω− 2

k

2ω+
k

[
1 +

(
ω+ 2

k

ω− 2
k

− 1
)
cosh2(ω−

k t)
]
, (2.13)

where ω±2
k = ±µ2 +k2. For a linear quench, the corresponding expression may be found in [6].

The exponential growth continues until the self-interactions become important (see below).

3 Quantum evolution equations

3.1 The 2PI effective action

For a system with large occupation numbers, classical dynamics may be a good approximation
to the full quantum evolution. In that case, variation of the action provides classical equations
of motion for the field variables. Solving these equations straightforwardly in real time
and averaging observables over a suitable ensemble of initial realisations constitutes the
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ΦLO[G] = , ΦNLO[G] = + + + +· · ·

Figure 1. Feynman diagrams corresponding to LO (left) and NLO (right) in an 1/N expansion.
In contrast to standard perturbation theory, the diagrams are built from self-consistently dressed
propagators, resumming an infinite set of perturbative diagrams.

classical statistical approximation to quantum field theory (see, for instance [14, 27, 28]).
By construction, all quantum effects are then discarded.

Simulating quantum dynamics in real time is highly nontrivial. One very successful
approach is to derive evolution equations4 for the propagator and the mean field from the
2PI effective action [17]. We define

ϕ̄a(t) = ⟨ϕa(x, t)⟩, Gab(x − y, t, t′) = ⟨TCϕa(x, t)ϕb(y, t)⟩, (3.1)

where we have explicitly assumed a homogeneous state, but have not yet explicitly imposed
that the mean field vanishes. The two-point function is time-ordered along the Keldysh
contour C. The 2PI effective action may then be written in the form [29]:

Γ[ϕ̄, G] = S[ϕ̄]− i

2Tr lnG + i
2TrG

−1
0 [ϕ̄]G + Φ[ϕ̄,G], (3.2)

where for our model,

iG−1
0, ab(x, y) = δ2 S[ϕ̄]

δϕ̄a(x) ϕ̄b(y)
=
(

∂2
x δab + µ2 δab −

λ

6N
ϕ̄cϕ̄c δab −

λ

3N
ϕ̄aϕ̄b

)
δ(x − y). (3.3)

The functional Φ[ϕ̄, G] may be written as an expansion in terms of 2PI skeleton diagrams
with full propagators and mean fields and bare vertices. The equations of motion are obtained
from the stationarity conditions

δΓ[ϕ̄, G]
δGab(x, y) = 0, and δΓ[ϕ̄, G]

δϕ̄a(x)
= 0. (3.4)

In what follows we consider a system initially in the symmetric phase ϕ̄a = 0, for all a.
Because of the O(N) symmetry of the equations of motion, if ϕ̄a = 0 at the initial time it
will remain zero for all time. The first equation is formally solved by

δΓ[ϕ̄, G]
δGab(x, y) = 0 → G−1

ab (x, y) = G−1
0,ab(x, y) + iΣab(x, y), (3.5)

in terms of the self-energy

Σab(x, y) = −2 δΦ[ϕ̄, G]
δGab(x, y) . (3.6)

4Kadanoff-Baym equations or real-time Schwinger-Dyson equations.
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Multiplying (3.5) by Gbc(y, z) turns it into an integro-differential equation,

δacδ(x, z) =
∫

d4y
[
G−1

0, ab(x, y) + iΣab(x, y)
]

Gbc(y, z). (3.7)

At leading order (LO) in a 1/N expansion we have [18]

ΦLO[G] = − λ

4!N

∫
d4x Gaa(x, x)Gbb(x, x), (3.8)

Since Gaa ∝ N , the entire contribution is O(N) (see left-most diagram in Figure 1). At
NLO we have

ΦNLO[G] = i

2

∫
d4x lnB(G)(x, x), (3.9)

where

B(x, y;G) = δC(x − y) + i
λ

6N
Gab(x, y)Gab(x, y). (3.10)

The expression (3.9) resums an infinite set of diagrams of O(N0) (see Figure 1, [18]). We
note that the figure-8 diagram appears at both LO and NLO, providing local contributions
to the self-energy at both orders. We will work mostly at NLO, sometimes comparing to LO.
Including diagrams at NNLO is numerically highly challenging [30], and we will not do so here.

At this stage, it is useful to further decompose the propagator in terms of the statistical
(F ) and spectral (ρ) components as

Gab(x, y) = Fab(x, y)− i

2ρab(x, y)signC(x0 − y0), (3.11)

where

Fab(x, y) = 1
2⟨{ϕa(x), ϕb(y)}⟩, ρab(x, y) = i⟨[ϕa(x), ϕb(y)]⟩, (3.12)

and the sign-function again refers to ordering along the Keldysh contour in the complex
time plane.5 It follows that F (ρ) is symmetric (antisymmetric) with respect to space-
time indices (x, y). In particular, Gab(x = y) = Fab(x = y). An O(N) symmetric state
(ϕ̄a = 0) and spatial homogeneity allows to further simplify Fab(x, y) = δabF (x − y, t, t′) and
ρab(x, y) = δabρ(x − y, t, t′). We may similarly decompose the self-energy into two components

Σab(x, y) = ΣF δab(x, y)− i

2Σρδab(x, y)signC(x0 − y0), (3.13)

Inserting this decomposition into eq. (3.7), one obtains the real-time equations of motion
for F and ρ: (

∂2
t − ∂2

x + M2(x)
)
F (x, y) = −

∫ x0

0
dz0

∫
d3zΣρ(x, z)F (z, y)

+
∫ y0

0
dz0

∫
d3zΣF (x, z)ρ(z, y), (3.14)

(
∂2

t − ∂2
x + M2(x)

)
ρ(x, y) = −

∫ x0

y0
dz0

∫
d3zΣρ(x, z)ρ(z, y). (3.15)

5This decomposition is different from, but completely equivalent to, the +/- formalism, often stated to
be doubling the number of degrees of freedom. In both formalisms, there are two independent propagators
components, here F and ρ.
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We note that the evolution equations are explicit, and depend on the entire past history of
the evolution through the time integrals over the self-energy and propagator components.
The local parts of the self-energies are accounted for in the effective mass

M2
LO(t) = m2 + λ

6F (0, t, t), M2
NLO(t) = M2

LO(t) +
λ

3N
F (0, t, t). (3.16)

At NLO the non-local self energies are given by

Σρ(x, y) = − λ

3N

(
F (x, y)Iρ(x, y) + ρ(x, y)IF (x, y)

)
, (3.17)

ΣF (x, y) = − λ

3N

(
F (x, y)IF (x, y)− 1

4ρ(x, y)Iρ(x, y)
)

, (3.18)

where the 1/N resummation is performed through the objects IF,ρ, that in turn satisfy6

Iρ(x, y) = −λ

3

∫ x0

y0
d3zIρ(x, z)F (z, y)ρ(z, y) + λ

3F (x, y)ρ(x, y), (3.19)

IF (x, y) = −λ

6

∫ x0

0
d3zIρ(x, z)

(
F 2(z, y)− 1

4ρ2(z, y)
)
+ λ

3

∫ y0

0
d3zIF (x, z)F (z, y)ρ(z, y)

+ λ

6

(
F 2(x, y)− 1

4ρ2(x, y)
)

. (3.20)

3.2 Numerical implementation

The non-linear integro-differential equations of motion may be evaluated numerically, in terms
of a discrete set of degrees of freedom. This may be done either through discretising the system
on a space-time lattice at the level of the action, or through discretising momentum space and
time at the level of the equations of motion. We will here opt for the lattice implementation.

3.2.1 Discretization and observables

We introduce a cubic lattice of N3
x = 323 sites with lattice spacing aµ = 0.7, and a time

discretization at = adt, dt = 0.1. Although in principle, the memory integrals over the
non-local self-energies should stretch all the way to the initial time, in practice we keep only
the last nt timesteps for a memory range tK = ntat. Further discussion on this point may
be found in appendix A. The lattice momentum operator is

(ak)2
lat =

3∑
i=1

(2− 2 cos ki) , ki =
2π

Nx
ni, ni ∈

(
− Nx

2 + 1,
Nx

2

)
. (3.21)

The initial conditions for the spectral propagator follow from the basic commutation relations

ρk(t, t) = 0, ∂tρk(t, t′)|t=t′ = 1, (3.22)

6We note in passing that not iterating the IF,ρ, but simply inserting the local (no time integration) part of
the expression into (3.17), (3.18) reduces the evolution to NLO in a coupling expansion [17, 31].
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while for the statistical propagator we write

Fk(t, t′)|t=t′=0 = 1
ωk

(
nk + 1

2

)
, (3.23)

∂tFk(t, t′)|t=t′=0 = 0, (3.24)

∂t∂t′Fk(t, t′)|t=t′=0 = ωk

(
nk + 1

2

)
. (3.25)

Choosing nk = 0 and ωk = k2
lat + m2(t < 0) amounts to selecting the free-field vacuum

state prior to the mass quench. Conversely, for all later times, we may extract a particle
number and a dispersion relation from7

ωk(t) =
√

∂t∂t′Fk(t, t′)|t′=t

Fk(t, t) , (3.26)

nk(t) +
1
2 =

√
∂t∂t′Fk(t, t′)|t′=tFk(t, t), (3.27)

Very far from equilibrium, the physical interpretation of these quantities is not clear, but once
the system settles down enough that the field excitations are quasi-particle like, they are good
representations of the occupation number and frequency of a given mode (see for instance [25]).

Real time evolution derived from the 2PI effective action have the advantage of conserving
an energy functional. We monitor the energy and pressure densities during the simulations,
from which we compute the equation of state parameter ω = P

ρ . The expressions are given by

ρ(t)
N

= 1
2

∫
d3k∂t∂t′Fk(t, t) + 1

2

∫
d3k

(
k2 + m2 + λ

2
N + 2
6N

∫
d3k′

(2π)3 Fk′(t, t)
)

Fk(t, t) (3.28)

+ 1
4

∫ t

0
dt′
∫

d3k
(
Σρ

k(t, t′)Fk(t′, t)− ΣF
k (t, t′)ρk(t′, t)

)
+ V0,

and

P (t)
N

= 1
2

∫
d3k∂t∂t′Fk(t, t)− 1

2

∫
d3k

(
k2 + m2 + λ

2
N + 2
6N

∫
d3k′

(2π)3 Fk′(t, t)
)

Fk(t, t) (3.29)

− 1
4

∫ t

0
dt′
∫

d3k
(
Σρ

k(t, t′)Fk(t′, t)− ΣF
k (t, t′)ρk(t′, t)

)
+ 1

3

∫
d3k k2Fk(t, t)− V0.

Initially, the system is in a free-field vacuum state with energy ρ0/N = V0 and pressure
P0/N = −V0, where V0 = 3µ4

2λ . Hence the initial equation of state parameter is ω = −1.
Energy density and pressure are divergent quantities and subject to renormalisation as
described in the following.

3.2.2 Renormalisation

The evolution equations are UV divergent, and although the lattice provides a regularization, a
substantial cut-off dependence is present, calling for renormalisation. 2PI-truncated evolution
equations are renormalisable [32, 33], but because of the infinite resummation of diagrams,

7On the lattice, we further introduce a correction nk(t) + 1
2 → ck(t)(nk(t) + 1

2 ), where ck(t) =√
1 − 1

4 dt2ω2
k(t), to account for time-discretization effects (see, for instance [25]).
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a precise cancellation of all divergences comes at a substantial numerical cost [34]. An
approximate, but much simpler renormalisation procedure addresses only the local self-
energies and quadratic divergences. In effect, given an input renormalised aµ = 0.7, we must
perform the simulation with a bare mass parameter given by

−(aµ0)2 = −(aµ)2 − δ(aµ)2, (3.30)

where the counterterm on the lattice at NLO is given by:

δ(aµ)2 = λ
N + 2
6N

1
N3

x

∑
klat

1
2
√
(aklat)2 + (aµ)2 ≃

∣∣∣
aµ=0.7

λ
N + 2
6N

0.212. (3.31)

At LO the prefactor changes N+2
6N → 1

6 to account for only the LO local self-energy eq. (3.16).
This approximate subtraction works well8 for small-to-moderate values of the coupling, and
not too close to the continuum limit (as discussed for instance in [8]).

The energy density and pressure density (3.28), (3.29) are also divergent quantities.
After implementing the mass renormalisation, we can remove the remaining divergences by
adding an overall constant counterterm (one for energy, one for pressure). As renormalisation
condition, we choose for the initial renormalised energy and pressure density to be +V0
and −V0, respectively.

3.2.3 The classical approximation

The classical limit is intuitively when the occupation numbers are large, nk ≫ 1, and
indeed one may extend classical perturbation theory9 to this resummed non-equilibrium
framework [9, 14], in which case the classical limit amounts to

F 2 ≫ ρ2. (3.32)

This requirement is more general than nk ≫ 1, but since in the quasi-particle limit, F ∝ nk

and ρ ∝ 1, the two are consistent when both apply.
The 2PI-classical approximation consequently follows from discarding from the evolution

equations (3.17), (3.18), (3.19), (3.20) all instances of ρ2 (and ρIρ) when added to F 2 (or
FIF ). For the system and truncation considered here, we find

ΣF
cl(x, y) = − λ

3N
F (x, y)IF (x, y), (3.33)

Icl
F (x, y) = λ

6F 2(x, y)

− λ

6

∫ x0

0
d3zIρ(x, z)F 2(z, y) + λ

3

∫ y0

0
d3zIF (x, z)F (z, y)ρ(z, y). (3.34)

We note that at LO, the classical and the quantum evolution are the same, and so quantum
effects only enter at NLO.10 It is also only at NLO that non-local effects such at equili-
bration and thermalisation enter, which is why the LO truncation (as well as the Hartree
approximation) are insufficent for simulating preheating beyond the initial stages.

8In the sense that the measured output mass of the system matches the input mass of the simulation, and
that physical quantities do not change appreciably when varying the cut-off.

9Omitting certain vertices in the Keldysh field basis at the level of the action.
10This is true for Gaussian approximations, although beware of subtleties such as [35].
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Figure 2. Left: time evolution of the statistical propagator F (t, t, x = 0) in the free theory, LO and
NLO approximation for N = 4 and λ = 1. The dashed (dotted) horizontal line corresponds to the
minimum (α = 1) and inflection point (α = 1/3) of the potential, respectively. Right: comparing the
free field to the LO evolution for different λ. Note that the result is independent of the number of
fields N . Also note the different normalisation of F in the left vs. righthand plot.

4 Early time dynamics

4.1 Linear regime

To get us started, we will first consider the very early stages of the spinodal transition.
The initial state for the transition is the quantum vacuum prior to the mass quench, and
since occupation numbers are not large, the classical approximation would seem to not
apply. However, because the quantum and classical evolution of the propagators coincide
for free fields and in the LO approximation, at small coupling the classical and quantum
evolution will agree for some time.

When the field self-interaction may be neglected, λ ≃ 0, the evolution equation be-
comes linear (

∂2
t + ω2

k(t)
)
Fk(t, t′) = 0, with ω2

k(t) = m2(t) + k2, (4.1)

and closed-form solutions exist for the instantaneous (eqs. (2.12), (2.13), [7]) and linear
quench [6, 22].

For λ = 0, there is no notion yet of v (the bottom of the potential) and also no separation
into Higgs and Goldstone modes. The free field approximation to the interacting dynamics
is reliable until the non-linear term (order λ, at LO or NLO) becomes comparable to the
mass parameter,

F (x, x) = α
6µ2

λ
. (4.2)

with some number α. Often, the criterion is taken to be either α = 1 (the minimum of
potential is reached) or α = 1/3, (the correlator F passes the inflection point of the potential).
Figure 2 (left) shows the equal-time statistical propagator in the free field approximation,
and with LO and NLO corrections. The dashed line is the minimum of the potential and the
dotted line the inflection point. We see that the latter is perhaps a better criterion for the
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Figure 3. Left: time at which free theory approximation deviates from the LO result by 20 percent
(∆F (t, t, x = 0) = 0.2). Right: particle spectrum in the LO approximation for N = 4 at the time when
the free field approximation becomes unreliable for different values of λ. Even relatively high values of
λ produce highly occupied modes at this very early stage. The lattice has the size N3

x = 1283.

onset of non-linearities, as the LO (and NLO) depart from the pure exponential growth around
µt = 4. The non-linear evolution does still overshoot the potential minimum before settling
down to an equilibrium state. We will discuss the differences between LO and NLO below.

In figure 2 (right) we see that the inflection point of the potential (equivalently the
minimum of the potential) is reached earlier with higher λ in the LO approximation, thus
limiting the applicability for the free field approximation to earlier times. We can make this
statement more precise by defining a time at which the equal time statistical propagator in
the free field approximation differs from the LO approximation by 20 percent:

∆F (t) =
∣∣∣∣Ffree − Fλ

Ffree

∣∣∣∣(t) = 0.2. (4.3)

Figure 3 (left) shows the relation between this time and λ. Based on a simple fit, we conclude
that free theory is a good approximation until a time

µt∗ = a − b ln λ where a = 4.13± 0.20, b = 1.00± 0.03. (4.4)

The quoted error of the mean corresponds to varying the tolerance over an interval ∆F ∈
(0.1, 0.3). We can also examine the particle spectrum at the time when the free theory
approximation breaks down. Figure 3 (right) shows the occupation numbers in the IR for
various values of λ. Although the free field regime only lasts for a time µt ≃ 2 − 4 we see
that the unstable modes are already highly populated nk ≫ 1, even for large values of λ.
At least for these modes, as we leave the early time, small-coupling regime, the classical
approximation should be robust.

4.2 The classical regime

As we have seen, in the language of correlators, classicality follows in the limit where F 2 ≫ ρ2

(see also [9] for a discussion of the classical-statistical approximation). Often, nk > 1 is
applied as a minimal requirement, and often it is stated that as long as this is fulfilled for the
modes directly relevant to the phenomenon of interest, it is sensible to proceed classically
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Figure 4. Left: time evolution of the statistical correlator F (t, t, x = 0) at LO, quantum-NLO and
classical-NLO. Apparently, occupation numbers are large enough for the system to act effectively
classically. Right: the time evolution of the total particle number, summed over all momentum modes.
N = 4, λ = 6.

Figure 5. Highest value for total particle numbers ntot for the LO and NLO truncation. Even for
large coupling, ntot reaches large values. N = 4.

for all modes. That requirement is fulfilled during a spinodal transition, at least in the
range kL/µ < 0.8 and we may further test the classical nature of the tachyonic transition by
computing the evolution of F (t, t, x = 0) in the LO, the quantum-NLO and the classical-NLO
approximation, shown in figure 4 (left). We see that the classical and quantum evolution
agree very well, even though only unstable modes are highly occupied. Figure 4 (right) shows
the same agreement in terms of the total particle number. Since self-interactions stop the
instability when eq. (4.2) is satisfied, we can expect the individual occupation numbers to
scale as nk ∝ 1/λ. During the evolution, the total particle number (summed over all the
modes) grows to a maximum value and then decreases. In figure 5 we show this maximal
value as a function of λ, at LO and NLO. We see that the LO dynamics describes the early
time particle production process very well, and we find that for all λ, the maximal particle
number occurs at times µt < 15.
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Figure 6. Left: the particle spectrum at the early stage of NLO evolution. N = 4, λ = 6. Right: the
largest momentum wih nk > 1 in time, for different values of λ. N = 4.

Figure 7. Time evolution of F (t, t, x = 0) at NLO, in the quantum system and the classical
approximation.

5 Intermediate time dynamics

5.1 The classical momentum range

While the early-time dynamics of the tachyonic transition is well described by first a free
field and then the LO approximation, at times µt > 6, the non-local dynamics first entering
at NLO becomes important.

Figure 6 (left) shows the particle spectrum at several times during the evolution, and
we see that for µt ≲ 40 the range of momenta with nk > 1 grows, as the high occupancy
in the IR is redistributed towards the UV. In figure 6 (right) we show the value of the
largest momentum with nk > 1 (kmax), which at first grows and subsequently shrinks on a
time-scale of µt = 500. Judging from the local correlator F (t, t) only (figure 7), the classical
approximation for the whole system is valid throughout.

Several out-of-equilibrium processes may have taken place during the initial violent stage
of tachyonic preheating. Exotic heavy particles, topological defects, sphalerons and other
relics such as primordial black holes may have been created in this environment of large
IR field fluctuations. We can attempt to describe the out-of-equilibrium stage through an
effective infrared temperature T IR, which we define to be the average temperature in the
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Figure 8. Time evolution of the effective temperature in the IR according to eq. (5.1). The inset
shows the values of the temperature at the end of the evolution. The discontinuities are caused by
modes falling out of the classicality region and are therefore a discretisation effect. N = 4.

Figure 9. Left: particle spectra for various stages of equilibration and the corresponding fits to
Bose-Einstein distributions (straight lines). Right: the R2 value of the fit quantifies how close the
particle spectrum is to a thermal distribution. N = 4, λ = 6.

classical range, had the spectrum been classical equilibrium

T IR =
∑

nk>1 ωknk∑
nk>1 1

. (5.1)

This is shown in figure 8 as a function of time, and we see that although the asymptotic
equilibrium temperature is Treh ≃ µ or less, at intermediate times the effective temperature
may be twice as large or more. Provided the out-of-equilibrium process of interest takes
place over a time-scale µt ≃ O(100 − 1000), this effective temperature should likely enter
estimates of particle and relic production.

5.2 Kinetic equilibration

The (quantum-)NLO evolution equations provide correct thermalization, in the sense that
at late times, the occupation numbers approach a quantum thermal equilibrium state [17,
31, 36]. There are two thermalization stages: kinetic equilibration, whereby particles are
redistributed into a thermal distribution with a non-zero chemical potential; followed by
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Figure 10. Time scale of kinetic equilibration: time when R2 of Bose-Einstein distribution fit reaches
0.97 (left) and time scale defined by eq. (5.5) (right).

chemical equilibration, where the overall number of particles changes to eventually relax
the system to zero chemical potential and its final temperature. These processes may be
identified with certain constituent perturbative diagrams (2-to-2 scattering, 2-to-4 scattering,
. . . ), and so for small coupling, the timescales are expected to be well separated. We
can quantify the equilibration process by performing a fit of the particle spectrum with
a Bose-Einstein distribution:11

nk = 1
e(ωk−µch)/T − 1

, (5.2)

where ωk is the derived dispersion relation (3.26). We perform a least square fit with

ln
(
1 + 1/nk

)
= (ωk − µch)/T, (5.3)

and quantify kinetic equilibration by calculating the R2 value of this fit.12

In figure 9 we show the process of kinetic equilibration, for N = 4, λ = 6. On the left we
see the particle spectrum at various stages of equilibration and the corresponding fit to a
Bose-Einstein distribution. We restrict our fits to the IR defined by ωk/µ < 1.5, indicated by
the dashed vertical line. In figure 9 (right) we see that the R2 gradually approaches 1, and
that although after the initial growth of particle numbers the spectrum is far from thermal, at
intermediate times µt ≈ 150 the particles are reorganised into a thermal-like distribution. At
this stage the distribution is well approximated by eq. (5.2). We define kinetic equilibration
to be completed when R2 reaches 0.97, which happens at µt = 150 in figure 9. Furthermore

11We trust that the standard notation using µch as the chemical potential is not confused with the mass
parameter µ2.

12We use the standard definition

R2 = 1 −
∑(

yi − fi

)2∑(
yi − ȳ

)2 , (5.4)

where yi refers to the data points, ȳ to the mean and fi the predictions of the model with best fit parameters.
A R2 value of 1 corresponds to a perfect fit where all data points are matched by the model.The best fit
parameters T and µ in (5.3) can be associated with an uncertainty from the fit procedure, quantifying a range
of parameters in agreement with data. In the following these uncertainties are propagated to observables as
Treh and time scales. We stress that they are systematic rather than statistical.
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Figure 11. Temperature at the time when kinetic equilibrium is reached.

Figure 12. Left: the particle spectrum at µt = 550 for N = 4, λ = 6 at NLO and a fit to a
Bose-Einstein distribution, which in this variable corresponds to a straight line (ωk −µch)/T . The red
dots show the spectrum in the classical approximation. Right: comparison of UV part of the particle
spectrum at µt = 550 for quantum evolution at NLO and in the classical approximation. N = 4, λ = 6.

we can extract a kinetic equilibration time scale by fitting the R2 evolution to the form

R2(t) = R2
final + (R2

init − R2
final)e−t/τkin . (5.5)

where we discard R2 values < 0.97. The fit is also shown in figure 9 (right).
Figure 10 shows the time when R2 reaches 0.97 (left) and the kinetic equilibration time

defined by eq. (5.5) (right). The two are consistent, and reveal a linear dependence on
N and that larger coupling produces faster kinetic equilibration. At the onset of kinetic
equilibration we extract a temperature, shown in figure 11, with a chemical potential in the
range µchµ = 0.2 − 0.33. In the following stage of chemical equilibration the temperature
approaches its final value and the chemical potential goes to zero.

In figure 12 (left), we show an advanced stage of kinetic equilibration, for N = 4, λ = 6.
The distribution is very well approximated by eq. (5.2) (R2 > 0.99). For comparison, we show
the equivalent spectrum in a classical-NLO simulation, which does not agree very well, even
for modes with nk > 1 (shown by the dashed horizontal line). The classical line is lower than
the quantum spectrum, corresponding to larger occupation numbers. Only for nk > 3 do the
two spectra agree. This implies that one should be wary of approximating intermediate to
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Figure 13. Evolution of the Bose-Einstein fit parameters T and µch in time, and the fit to eq. (5.6)
and eq. (5.7). The dashed line indicates the beginning of the fit region. N = 4, λ = 6.

late time quantum evolution by classical dynamics. In figure 12 (right), we show the UV part
of the spectrum13 at this same time of µt = 550. The quantum dynamics correctly conserves
the zero-point fluctuations (nk + 1/2 ≥ 1/2, nk ≥ 0), as shown by the green dots. Zero point
fluctuations are there to scatter on, but it is not physical to extract net particles or energy
from the vacuum. The classical simulation however has no such constraint, and does not
distinguish between the nk and the 1/2, as shown by the red dots. As such, it allows to deplete
the UV vacuum so that nk + 1/2 < 1/2, to incorrectly increase the occupation in the IR and
ultimately to thermalise to an incorrect, classical equilibrium [27]. In a manifestly classical
simulation, one might consider not initialising with the zero-point fluctuations, or only in the
unstable modes [8]. This has some advantages, although one would lose some of the physics
of scattering on the UV fluctuations, and the late time equilibrium would still be wrong.

5.3 Chemical equilibration

The fit parameters µch and T are time-dependent, and are expected to asymptote to zero
and some finite reheating temperature Treh, respectively. Figure 13 shows T and µch in
time, and we may further extract a final temperature Treh and a chemical equilibration
timescale τch by a fit to

T (t) = Treh + (Tinit − Treh)e−t/τch . (5.6)

and
µch(t) = µfinal

ch + (µinit
ch − µfinal

ch )e−t/τch . (5.7)

We must note here that we are somewhat limited by the available computational resources.
The asymptotic temperature Treh and chemical equilibration time scale µτch depend on the
available time-range. Based on simulations of a smaller lattice size 163 to much late times
(µt = 2800), we find that data until µt = 700 overestimates Treh by about 20%. Furthermore,
the chemical equilibration time is underestimated by about 80% (see appendix B).

With this caveat in mind, we show in figure 14 the reheating temperature Treh for various
N and λ values. We also show for comparison temperatures from a simple toy model in which

13But without performing the transformation where a Bose-Einstein distribution becomes a straight line.
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Figure 14. Left: extrapolated equilibrium temperatures for various values of N and λ. Shown are
values obtained from the simulation (dots) and a simple Higgs-Goldstone model (solid line) and for
Goldstone modes only (dotted line). Right: chemical equilibration time for various values of N and λ.

Figure 15. Left: coupling strength dependence of Treh and power fit ∝ λ−x for which x = 0.37.
Right: coupling strength dependence of chemical equilibration time for N = 4.

all available energy is distributed among a massive Higgs mode with mH =
√
2µ and N − 1

massless Goldstone modes. We obtain the temperature in this model by solving

3Nµ4

2λ
=
∫

d3k

(2π)3

(√
k2 − m2

H nk(mH , T ) + (N − 1) k nk(0, T )
)
, (5.8)

for T , where we assume equilibrated constituents nk(m, T ) = (e
√

k2−m2/T − 1)−1. The
temperatures are almost independent of N . An even simpler model is to discard the Higgs
mode, in which case one returns to (1.5) (with N − 1 degrees of freedom). In that case the

temperature scales with T ∝
(

N
N−1

)1/4
, with T/µ = 0.93 for λ = 6. Taking into account the

overestimation of Treh due to the time range limitation, we see that the fit temperatures end up
between the Higgs-Goldstone and Goldstone-only models. Figure 14 (right) shows the kinetic
equilibration time µτkin and we identify an approximate linear N dependence. Furthermore,
we find as for kinetic equilibration that larger couplings lead to faster equilibration. The
systematic errors estimated from the fitting procedure are however substantial. In addition,
we note that for these rather large couplings, the chemical equilibration times are only about
twice as large as the kinetic equilibration time scale, so that it is hard to disentangle the two
processes. In figure 15 we show the coupling strength dependence on Treh and τch.
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Figure 16. Left: dispersion relation for N = 4 and λ = 6 and the fit to the result of the model of the
compound propagator. Right: the field expectation value (squared) extracted from the propagator by
eq. (2.4).

Figure 17. Time evolution of the equation of state for λ = 6. Left: equation of state derived from the
energy density and pressure density functionals. Right: equation of state from a quasi particle ansatz.

5.4 The compound propagator

As we discussed in section 2, the O(N) symmetric correlator is a compound of a Higgs mode
and N − 1 Goldstone modes. Sofar, we have been fitting the particle number with a single
Bose-Einstein distribution, in effect assuming that the N − 1 light modes dominate. In
figure 16 (left), we fit the decomposition eq. (2.3) to the dispersion relation, while inserting
the temperatures as obtained in the previous section. We indeed see that the dispersion
relation is a composite of two particle modes, one with non-zero mass (Higgs, purple line)
and one massless (Goldstone, green line). The field expectation value can be recovered
from the zero mode of the propagator eq. (2.4), which we show in figure 16 (right). We
see that although it asymptotes to a finite value, this is not the zero-temperature (vacuum)
expectation value, but is the minimum of the finite-temperature effective potential. Also,
settling into this minimum happens gradually on a time-scale similar to kinetic equilibration.

5.5 The equation of state

For cosmological purposes, complete equilibration is often less important than the effective
equation of state of the system, which often settles much faster [37]. In figure 17 we show this
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Figure 18. As figure 17 but with λ = 1.

quantity in time for λ = 6. One might have expected that the state was an equipartitioned
mixture of g∗ “radiation” Goldstone components with P/ρ ≃ 1/3 and (N − g∗) “matter”
components with P/ρ ≃ 0. In that case, the equation of state should be

ω ≃ g∗

3N
. (5.9)

At low temperature, one would expect g∗ = N − 1, so that for N = 4, ω = 1/4. But the
situation is more complicated.

On the left of figure 17 we show how the equation of state parameter evolves from the
initial ω = −1 to its final value for λ = 6, within a time µt = 100− 200. The dependence on
N and the overall magnitude is not as naively expected. This is due to our renormalisation
procedure, which calibrates to a potential minimum of V0, while the finite temperature
effective potential has much shallower minima. If we instead compute the equation of state
using a quasi-particle ansatz

ρ =
∫

d3k nkωk, P = 1
3

∫
d3k k2 nk

ωk
, (5.10)

we find in figure 17 (left) that the equation of state indeed approaches its radiation value
of 1/3 in the case of many Goldstone boson components (large N). In figure 18 we repeat
our simulation, but for λ = 1, where the expectation value is closer to the zero temperature
vev. We see that both for the direct (left) and quasi-particle (right) equation of state, the
system displays the correct behaviour.

6 Finite quench time

A natural generalisation of the instantaneous quench it to consider finite-time linear quenches
of the form (2.7). Implementing this as a by-hand mass function has the drawback that total
energy is no longer conserved. We straightforwardly have that

ρ̇ = 1
2

˙µ2(t)ϕ2
a = µ̇µϕ2

a, (6.1)

so that the total energy loss during the transition is

∆ρ =
∫ t

0
dt′
[
µ̇(t′)µ(t′)ϕ2

a(t′)
]

. (6.2)
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Figure 19. Energy loss for finite time quenches. Note that the post-quench, gradual energy loss is
due to a truncation of the memory kernel (see appendix A). N = 4, λ = 6.

Figure 20. Left: highest value for total particle numbers ntot for various quench times. Right:
particle spectrum in the LO approximation (N = 4, λ = 1) at the time when the linear approximation
breaks down (∆F (t, t, x = 0) = 0.2). Shown are spectra of unstable modes (kL/µ < 1) for different
values of quench times µτQ. The spectra are calculated with a lattice of size N3

x = 1283.

For a very fast quench, ϕa is not able to react to the quench of the mass parameter, and
since we start out at ϕa = 0, the energy loss is negligible. Conversely, if the flip is very slow
(adiabatic), the field is able to track the bottom of the potential ϕ2

a = 6Nµ2

λ in which case

∆ρ = −6N

λ

∫ t

0
dt′µ̇µ3 = −3µ4(t)

2λ
. (6.3)

In this limit, all the potential energy is lost, as the field is slowly deposited in the new potential
minimum. In figure 19 we show the energy loss for different quench times. In a real dynamical
realisation of the σ − ϕ coupling, the energy is strictly conserved and instead transferred to
the inflaton σ. The whole system of N + 1 degrees of freedom eventually thermalise to some
reheating temperature. We postpone this highly model-dependent complication to future
work, and only briefly discuss the early time dynamics.

Figure 20 (left) shows the relation between quench time and the maximum total particle
number that is achieved during evolution. Unsurprisingly, a fast quench leads to more overall
particle production. As for the instantaneous quench, we show in figure 20 (right) the particle
spectrum at the time when the free field description starts to fail. We find that for slower
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Figure 21. Time evolution of the maximum momentum with nk > 1 for different values of quench
time. N = 4, λ = 6.

quenches a smaller range of modes become classical (nk > 1) at this time, and that for
quenches slower than µτQ = 100, it is essentially only the zero mode that grows large during
the transition. The spectrum is also not completely monotonic in the quench time, although
the total number of particles created is. Finally, in figure 21, we show the evolution of the
classical range for different quench times. We see a separation into “fast” quenches µτQ < 20,
where the classical range is large at first before it adjusts, and “slow” quenches µτQ > 50
where the classical range is smaller, established later and changes on a longer timescale.

7 Conclusion

Tachyonic preheating provides a mechanism to reheat the universe after inflation. During
the process, a transient out-of-equilibrium state with very high occupation numbers in the
IR is generated, which subsequently relaxes to an equilibrium reheating temperature Treh.
Although the large occupation numbers allow an effective description in terms of classical
field dynamics, quantum evolution equations are necessary to reach the correct equilibrium
state and on the correct time scale.14 We studied several aspects of this transition in a O(N)
scalar field theory with a time-dependent mass, using the 2PI-1/N formalism at NLO.

We found that even for moderate couplings, the initial instability leads to IR occupation
numbers well in the classical domain nk > 1 before non-linearities become important around
µt ≃ 2− 4, and direct comparison of quantum and classical 2PI approximations confirm that
the early stages of the transition (say, µt < 50) may be treated classically (LO dynamics
agrees qualitatively, but occupation numbers tend to overshoot). Although this is as may
be expected, it does imply that on this timescale the effect of all the unstable modes with
low occupation is either negligible or at least does not introduce quantum corrections to
the IR mode dynamics. During the initial stages of the evolution, we argued that the IR
environment may be quantified through a classical effective temperature, which may be
twice as high as the overall temperature. This could have implications for IR-dominated
out-of-equilibrium processes taking place during this time.

14When not having access to full NLO dynamics, a semi-quantitative exponential relaxation from the LO
post-transition spectrum towards equilibrium may be a useful alternative [38, 39].
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As the system equilibrates kinetically on time scales µτkin ≃ O(100 − 300), however,
classical evolution is no longer reliable. The quantum and classical evolution is substantially
different, as energy from the initial zero-point fluctuations begins to leak from the UV into
the IR, making classical occupation numbers too large. This is true also for “classical” modes
with nk > 1. Hence from this time onwards we must rely on quantum 2PI-NLO evolution
(or higher truncation, when available) or only consider modes with nk ≫ 1.

We proceeded to study the kinetic equilibration process in some detail, noting that full
chemical equilibration is achieved at even later times somewhat beyond our current reach
(see, however [31, 40]). The equilibration time-scale for moderate couplings is linear in N

and of order µtkin ≃ 100− 300. In particular we pointed out that assuming an instantaneous
redistribution of potential energy onto (in this case) g∗ = N − 1 massless non-interacting
degrees of freedom fails to account for quantitatively significant effect of the equilibration
stage, the massive mode(s), the interactions and the effective chemical potential, which
lingers for O(> 1000) after the transition.

For application to the cosmological evolution, the equation of state of the system is
established very early (around µt = 150, see also [37]), but must be computed carefully. The
system indeed behaves as a mixture of light Goldstone modes and a heavy Higgs mode.

2PI-simulations remain numerically challenging. Because tachyonic preheating involves
very large occupation numbers, we made conservative choices in terms of lattice size, dis-
cretization and the length of the memory kernel. Technology exists for adding multiple scalar
fields [41, 42], fermions [36, 43, 44], Hubble expansion [15] and going to NNLO [30, 45] with
robust renormalisation [32, 33], and applications in cosmology are diverse [46–48]. Imple-
menting all or most of these improvements for realistic models of reheating for larger volumes
and the entire thermalisation process is daunting, but within reach. This would be a welcome
supplement to the information provided by classical-statistical simulations of reheating and
the post-inflationary evolution of the Universe.
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A Truncating the memory kernels

Throughout this work we used lattices with N3
x = 323 sites and a resolution aµ = 0.7. Giving

a physical lattice size (Lµ)3 of (22.4)3. This discretisation provides 833 distinct momentum
values (akL)2, of which 14 are unstable (akL) < aµ. At our choice of time resolution,
dt = at

a = 0.1 a timescale of µt = 700 corresponds to 10.000 timesteps. As mentioned in
the main text, the equations of motions eq. (3.15) are integro-differential equations that are
naturally solved by a simple Euler scheme. The computation time is heavily dependent on
the lattice size and the time extent. In principle, the calculation of the memory integrals
requires the entire history of F (t, t′), ρ(t, t′) which therefore needs to be kept in memory.
On the other hand, the magnitude of contributions to the memory integrals become smaller
far-in-the-past. In the interest of numerical efficiency, we may therefore put a cut-off on
the history to reduce the required memory. Since much of the work is done computing Fast
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Figure 22. The effect of using reduced memory integrals of size µtk = 38.5 and 200 on the zero mode
of ΣF (left), and the particle spectrum at µt = 700 (right). Nx = 16, N = 4, λ = 6.

Fourier Transforms in the memory integrals, the runtime scales as the N3
x logNx × t2

K × tf ,
where tf is the runtime and tK = atnt is the length of the memory kernel.

In the following we show the effect of this procedure. We choose a lattice size of N3
x = 163

and compare simulations with a memory of µtK = 200 and µtK = 38.5 as done in [8].
Figure 22 shows the zero mode of the real part of the self-energy ΣF at µt = 700 where, to a
good approximation, kinetic equilibrium has been reached. We see that the simulation with
memory length of µtK = 200 shows the expected damping over time, whereas the simulation
with µtK = 38.5 shows a cut-off effect. We also found that if the memory kernel is too
short, the simulations become unstable. Although figure 22 might raise concerns about this
approximation we found that the final states are the same for both, thus confirming previously
obtained results [8]. The final distributions at µt = 700 are shown in figure 22, and they are
almost indistinguishable, showing that neglecting far-in-the-past quantities provides correct
thermalization temperatures. The interaction strength and occupation numbers impact the
required kernel length, as large contributes to the memory integral need to be kept for longer.
Keeping only a limited history causes an energy loss inversely proportional to the interaction
strength (shown in figure 23), because smaller coupling leads to large occupation numbers.
The studied combinations of parameters required substantially larger physical memory length
to complete correctly. All simulations have been performed with kernel length of µtK = 224
and required 150 GB of memory and about 50 hours of computation time on a computing
cluster with 30 processing units.

B Chemical equilibration at late times on small lattices

The complexity of the algorithm allows us to calculate the dynamics only for times up to
µt = 700 − 1050, on a lattice size of N3

x = 323. As shown in the main text this allows to
quantify equilibration properties. In this appendix we investigate the dependence of these
estimates on having data for even longer times. Simulations of until µt = 2685 are accessible
for lattice sizes of N3

x = 163.
In figure 24 (left) we show the particle distribution at µt = 700 and µt = 2685 and the

corresponding fits to Bose-Einstein distributions. Note the reduced number of data points
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Figure 23. Energy loss for simulations caused by reduced memory kernels of size µtK = 38.5.

Figure 24. Left: particle spectrum comparison after µt = 700 and µt = 2685 and corresponding fits
to Bose-Einstein distributions. The latter shows not only temperatures and chemical potential closer
to equilibrium but also that particles for ωk/µ > 1.5 are also thermal. Right: R2 value, quantifying
how close the state is to a thermal one, calculated for times up to tµ = 2685. We show fits, taking
data into account for up to µt = 700 and µt = 2685.

Figure 25. Evolution of the Bose-Einstein fit parameters T and µch in time, and the corresponding
fits. The dashed line indicates the fit region.
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compared to simulations with N3
x = 323 lattice, e.g. figure 9. As mentioned in the main text,

particles in the IR equilibrate quicker than in the UV. In the figure we see that at µt = 2685,
particles for ωk/µ > 1.5 also align to the straight line, although the data points are still
not included in determining the fit parameters. On the right of figure 24 we show the R2

value that quantifies how closely the state has equilibrated (similar to figure 9 only that
now equilibration fit values for times up to µt = 2685 are available). We perform the same
analysis procedure as for N3

x = 323 lattices, namely discarding values for which R2 < 0.97
and fitting the rest with eq. (5.5). When analysing data for up to µt = 2685 we discard the
first µt = 300 data points. The figure shows both fits, taking data for up to µt = 700 and up
to 2685. Taking data up to µt = 2685 into account results in a kinetical equilibration time
scale of µτkin = 393, compared to 272. Therefore, taking only data up to µt = 700 gives
an equilibration scale that is about 50% smaller than the actual value. We note that the
quoted error bars, which are not of statistical nature but quantify a range of parameters
that are in agreement with the data drop from 7.6% to 0.6%. Figure 25 shows the time
evolution of the Bose-Einstein fit parameters T (left) and µ (right) with the corresponding
fits. For large values of µt the fit that takes values up to µt = 700 into account clearly
deviates from the data. The reheating temperature extracted from the left plot is determined
to be 0.86, whereas the short simulation predicts 1.1. Thus data up to µt = 700 gives a
temperature that is about 30% too large. Again, errorbars drop from 6.1% to 0.6%. The
chemical equilibration time scale, taken from the right plot in figure 25 is µτch = 660, whereas
the short simulation gives 333. Thus, the short simulation gives only 50% of the actual
value. The errorbars drop from 82% to 13%.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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