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1 Introduction

The landscape of F-theory compactifications [1–3] on elliptic Calabi-Yau manifolds has given
rise to the largest class of supersymmetric string vacua to date. Compactifications yielding 8d
N = 1 vacua correspond to elliptic K3-surfaces, which are completely classified. On the other
hand, 4d N = 1 vacua correspond to the choice of an elliptic Calabi-Yau fourfold, together
with the specification of fluxes and D3-brane data. In stark contrast, our understanding of
such vacua is largely bottom-up; there exists only algorithmic and computational approaches
towards classifying the bases of such fourfolds, together with recent mathematical results
on boundedness [4]. Moreover, in such ensembles, we have control only on the coarsest
aspects of the physics, such as the gauge symmetry. Finally, 6d N = 1 vacua occupy a
rather rich middle ground; there is a sharp link between the physics and the geometry of
an elliptic Calabi-Yau threefold. The classification of surface bases is significantly more
tractable, the massless content of the corresponding supergravity theories can be completely
determined, and there is a rich, growing interplay between swampland constraints and the
known boundaries of the landscape.

Nevertheless, there are known string compactifications in other duality frames which
involve intricate non-geometric data, even in higher dimensions. For example, in an M-
theory background on a C2/Γ singularity, an additional C3-field period can be specified on
the boundary, leading to frozen singularities [5] with a restricted deformation space. The
classification of compact backgrounds with such singularities and their low energy effective
physics have largely been ignored, due in part to a lack of understanding of frozen singularities,
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as well as the fact that such vacua are rather special and are somewhat insignificant when
searching for generic phenomena in the landscape.

A resurgence in their study was initiated in [6], which demonstrated that the only new
supersymmetric defect in F-theory from frozen singularities is a strongly coupled version of
the orientifold plane, O7+, with positive D7-brane charge. The study of 8d F-theory vacua
with O7+-planes first appeared in [7], and a systematic classification of such compact models
was investigated more recently in [8]. The effects of incorporating such defects in 8 dimensions
are markedly simple; they lead to either a rank 4 or a rank 12 vector multiplet moduli space,
reduced from the usual 20 dimensional space of vacua. In addition, they give rise to sympletic
(sp(n)) gauge algebras, which does not occur in conventional 8d F-theory compactifications.

The study of F-theory compactifications to 6-dimensions with O7+-planes was initiated
in [9], and a number of consistent compact and non-compact constructions [10] were given
based on dualities to other frames. On the other hand, the complete list of conditions that are
necessary and sufficient to specify a frozen 6d F-theory vacua and the resulting supergravity
spectrum is still unknown. In this paper, we take a first step towards understanding the
massless spectra of frozen F-theory compactifications to six dimensions. Our aim is to
identify a proxy to distinguish the frozen phase from the unfrozen phase of 6d F-theory
purely from the low energy spectrum, to construct compact embeddings of all known local
frozen models, and to compare the resulting supergravity spectrum with the conventional 6d

F-theory landscape. In the process, we will demonstrate the existence of 6d supergravities
with new massless spectra arising from the frozen phase.

We emphasize that this is merely a first step towards understanding 6d F-theory compact-
ifications with frozen 7-branes. The ultimate goal in this direction is the compilation of precise
necessary and sufficient conditions for specifying such compactifications, which would lead to
a systematic construction of frozen vacua. It would also be desirable to investigate phase
transitions among such models, and to make precise the relation with other interpretations
of frozen vacua as appearing in [11] through the specification of B-field fluxes.

1.1 Summary of results

In this paper, we study the massless supergravity spectrum in the frozen phase of F-theory.
We emphasize that there are no known necessary and sufficient conditions guaranteeing the
existence of a given F-theory model with frozen 7-branes. Nevertheless, we will study a
plethora of both local and global constructions, whose existence is strongly evidenced either
through dualities or through a weakly coupled type IIB limit.

As explained above, a critical new feature in six dimensions is that the frozen and
unfrozen phases of F-theory are, a priori, virtually indistinguishable at the level of the low
energy effective physics. This leads us to the central question of study in this paper:

Question 1.1. To what extent can we distinguish between the frozen and unfrozen phases of
F-theory from the non-abelian gauge sector and massless matter in the effective 6d N = (1, 0)
supergravity theories?

1. Section 3: for each known frozen 6d F-theory model, we explicitly construct an unfrozen
6d F-theory model with an identical massless spectrum. We give a criterion for
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distinguishing a frozen and an unfrozen supergravity theory with identical massless
spectra by gauge enhancements in moduli space.

2. Section 4: we prove that most of the known new constructions of superconformal
theories using frozen 7-branes do not admit a compact embedding. In the remaining
special cases, we explicitly construct a compact embedding. As a consequence, we
construct compact 6d F-theory vacua with new massless spectra in the frozen phase.

3. Section 5: we conjecture the existence of localized neutral hypermultiplets along
intersections of residual I1-loci with frozen 7-branes.

Our bottom-up analysis of the known constructions in the frozen phase of F-theory lead us
to the following statements, which comprise the main results of this paper.

We first study the known compact frozen F-theory models, whether they can be realized
in the unfrozen phase, and what criteria are sufficient to distinguish between the two
supergravity theories.

Claim 3.1. Let T1, T2 be two 6d N = (1, 0) supergravity theories with the same massless
spectrum, engineered via a frozen/unfrozen F-theory compactification respectively. Assume
that there exists an sp(n) factor in both theories, which is localized on a frozen 7-brane in the
case of T1.

Then T2 admits a limit in moduli space enhancing sp(n) to so(2n), while the analogous
limit for T1 realizes a (4, 6)-divisor.

The existence of a (4, 6)-divisor corresponds to an infinite distance limit, often realizing
a decompactification of the effective 6d theory. We note that such limits have been analyzed
and sharpened in the frozen phase of F-theory in 8 dimensions in [8].

A natural question is whether the massless spectrum of a 6d supergravity theory realized
in the frozen phase of F-theory, can be realized via an F-theory compactification in the
unfrozen phase as well. Given the wealth of constructions in [10], we answer this question.

Claim 4.1. Most, but not all of the new superconformal field theories and little string theories
exhibited in [10] do not admit a compact embedding.

Nevertheless there exists compact frozen F-theory compactifications whose massless spec-
trum cannot be realized in the unfrozen phase of F-theory.

Finally, based on our study of compact examples together with gravitational anomaly
cancellation, we make the following conjecture.

Conjecture 5.1. Consider a 6d F-theory compactification with a frozen 7-brane localized
along a divisor D with residual discriminant ∆̃. Then there exists at least 1

2D · ∆̃ localized
neutral hypermultiplets.

We conclude that the presence of O7+-planes in 6d F-theory compactifications lead to a
number of implications for the low energy effective physics. Most notably, as demonstrated
in Claim 3.1, these lead to a certain obstruction for gauge enhancement in comparison
with the unfrozen phase of F-theory, and this will be explored further in future work. In
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addition, we conjecture that the presence of such orientifold planes could potentially be a
new source of localized neutral hypermultiplets, and it would be interesting to investigate
this by establishing a weakly coupled type IIB limit in the frozen phase.

2 Consistency conditions for frozen F-theory models

In this section, we review the necessary conditions in specifying a compact, frozen 6d F-theory
model, first appearing in [9]. In section 2.1, we review the basics of 6d F-theory compactifica-
tions, emphasizing a perspective which generalizes well in defining compactifications with
frozen 7-branes. In sections 2.2 and 2.2.1, we review the basics of frozen singularities, their
realization in F-theory models, and present an example.

2.1 6d F-theory compactifications

In this section, we review the basics of F-theory compactifications to six dimensions.
An F-theory compactification to six dimensions is specified by the choice of an elliptically

fibered Calabi-Yau threefold π : X → B over a smooth complex algebraic surface B. Up to a
sequence of birational transformations [12], this data can be specified by a Weierstrass equation

y2 = x3 + fx + g, ∆: 4f3 + 27g2 = 0 (2.1)

where f and g are global sections of −4KB and −6KB respectively, with −KB denoting the
anti-canonical divisor on B. The torus fiber degenerates along the algebraic curve ∆ ⊂ B,
often called the discriminant locus, and in generic situations, the discriminant decomposes
into a union of smooth irreducible algebraic curves ∆ = ∆1 ∪ . . . ∪∆n. In particular, loops
around the codimension-1 irreducible components ∆i correspond to elements in SL(2,Z),
which naturally induce a monodromy action on the 1-cycles of the torus fiber.

The low energy effective physics is specified by a 6d N = (1, 0) supergravity theory, and
such theories occupy a particularly rich corner of the string landscape. On one hand, they are
strongly constrained by gauge, gravitational, and mixed anomalies, and on the other hand,
even the possible combinations of non-abelian gauge algebras and massless matter content
has evaded a complete classification. Our knowledge of the possible supergravity theories
resulting from string compactifications has progressed in tandem with our understanding of
elliptic Calabi-Yau threefolds, whose singular limits have not been completely classified. We
will not attempt to summarize the various constraints on 6d N = (1, 0) supergravity theories
and we point to the vast literature [13–22] for a comprehensive treatment.

The details of the effective 6d N = (1, 0) supergravity theory rely crucially on the
singularities of the total space X. Indeed, codimension-1 irreducible components ∆i, specify
the location of stacks of generalized (p, q) 7-branes, which can support non-abelian gauge
algebras. At codimension-2, pairwise intersections of the discriminant components ∆i ∩∆j

support localized modes corresponding to jointly charged matter. The precise non-abelian
gauge group can be deduced from the standard classification of Kodaira-singular fibers
together with an analysis of their global monodromies, and we refer to [23, Tables 1, 2] for
details. The precise counting of jointly charged hypermultiplets is somewhat more subtle and
depends on details of the intersections, and we refer to [24] for details.
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In general, the gauge group and matter content of a 6d F-theory compactification is
often studied via M-theory compactified on a crepant resolution X̂ → X, and then inferred
by taking the singular limit. Motivated by the non-existence of crepant resolutions in
certain examples as well as an intrinsic study of the gauge theory at the singular point, a
theme [25, 26] has emerged which aims to develop techniques to study F-theory directly on
X. In particular, the 6-dimensional physics is sensitive only to the associated Weierstrass
model (2.1), and not to the details of the total space X. This is exemplified through the fact
that the SL(2,Z)-monodromy associated to an irreducible component of the discriminant ∆i

admits a (unique up to conjugation) factorization [25, Section 3.2] and [27]:

Mi = Mp1,q1 · . . . · Mpn,qn , Mp,q =
(
1− pq p2

−q2 1 + pq

)

Put differently, every discriminant component ∆i can be decomposed uniquely into a com-
bination of (p, q) 7-branes and we will use this perspective in our analysis of the frozen
phase of F-theory.

2.2 Frozen 7-branes

A somewhat less understood class of singularities in M-theory arise from singularities of the
form C2/Γ, together with the specification of a fractional C3-field period on a boundary
3-sphere. These so-called frozen singularities [5] have a restricted deformation space and
exhibit a smaller gauge algebra than expected from the singularity itself.

Though understood for quite some time [28], O7+-planes (orientifold planes with positive
RR-charge), were demonstrated in [6] to be the only class of frozen singularities arising in F-
theory. This suggests that O7+-planes are the only remaining class of supersymmetric defects
in F-theory compactifications, and motivates a more systematic study of their effects on
compactifications to lower dimensions. We briefly review their critical properties, summarizing
the similarities and differences with the usual combinations of (p, q) 7-branes, and we refer
to [9] for details.

A single O7+-plane shares a number of similarities with a configuration consisting of
a single O7−-plane parallel to 8 D7-branes. As explored at length in [7], both exhibit +4
units of D7-brane charge, and a D3-brane encircling such defects exhibit a monodromy
SL(2,Z)-conjugate to that of an I∗4 -fiber:

MI∗
4
=
(
−1 4
0 1

)

Nevertheless, there are a number of critical differences; for one, an O7+-plane on top of n

D7-brane yields an sp(n) gauge symmetry, while an O7−-plane on top of n + 4 D7-branes
yields an so(2n + 8) gauge symmetry. As a consequence, a single D3-brane on top of a single
O7+-plane may fractionate into two, which does not happen in the latter case, due to a
factor of two in the relative Chan-Paton indices. Moreover, a D3-brane colliding with an
O7+-plane yields an O(2)-gauge theory with two charge 2 massless hypermultiplets, while
a collision with the latter configuration yields SU(2) Nf = 8 Seiberg-Witten theory. These
observations are in line with the results of [8], which concluded that (p, q)-strings must end

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
6

on an O7+-plane with both even p and q charges in contrast to the latter case, where p

and q can take arbitrary integer values.

2.2.1 F-theory constructions

As emphasized in section 2.1, we will specify an F-theory construction through the choice of
a smooth algebraic surface B, together with the location of (p, q) 7-branes localized along
curves in B. Similarly, an F-theory construction in the frozen phase will be specified through
the same information, together with the choice of replacing a stack of (p, q) 7-branes with
the monodromy of an I∗n+4-fiber by an O7+-plane with n D7-branes. Following [9], we will
denote the latter singularity with Î∗n+4.

On the other hand, as argued via duality in [9], such an F-theory construction does not
admit a canonical assignment of divisors supporting individual gauge algebras. In this section,
we will review the necessary conditions in specifying a frozen 6d F-theory compactification,
but we emphasize that these are not sufficient. Throughout this section, we will fix a smooth
compact algebraic surface B with canonical divisor K, and Weierstrass polynomials f and
g. The associated discriminant ∆ contains irreducible components ∆a, with corresponding
monodromies Ma.

A 6d F-theory compactification in the frozen phase is specified by the following data:

(a) For each irreducible component ∆a with monodromy matrix Ma conjugate to MI∗
n
, the

choice of an unfrozen/frozen 7-brane, designated by I∗n/Î∗n respectively. We denote by
F , the sum of irreducible divisors Da supporting a frozen 7-brane.

(b) A collection of gauge algebras gi, together with disjoint embeddings ρi,a : gi ↪−→ la such
that

⊕
i ρi,a(gi) ⊂ la

We define the associated gauge divisor by

Σi :=
∑

a

µi,aoi,aDa

where µi,a = 0 if ρi,a = 0, and is 1 if ρi,a is non-trivial. The coefficient oi,a is the Dynkin
index of the embedding ρi,a and we refer to [29] for a precise definition.

By invoking the Green-Schwarz mechanism in the presence of O7+-planes, one finds
the following modified anomaly polynomial

I8
GS = −1

2

(
−(K + F )p1(T )

4 +
∑

i

Σiν(Fi)
)2

where p1(T ) is the pontryagin class of the tangent bundle of B and ν(Fi) is the instanton
number density of the field strength Fi valued in gi. This agrees with the usual anomaly
polynomial when F = 0 and strongly suggests replacing the usual assignment of matter
content with the simple substitution

K 7→ K + F

which leads to the following additional consistency conditions. We will demand that the
following must hold to define a consistent frozen F-theory configuration:
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1. Σi · Σi ∈ Z, Σi · Σj ∈ Z≥0 for all i, j

2. (K + F ) · Σi +Σi · Σi = −2

3. For each pair (gi,Σi), the total number of all localized charged hypermultiplets must
add up to the total number of hypermultiplets of corresponding representation, dictated
by [9, Table 3.1].

4. nH,ch − nV < 273

Roughly, the first three conditions correspond to the cancellation of gauge anomalies, while
the last imposes gravitational anomaly cancellation. We will assume that all intersections
of gauge divisors are transversal, each of which hosts a single bi-fundamental, aside from
so − sp intersections which host a half bi-fundamental.

We briefly summarize the Aspinwall-Gross model, which first appeared in [30], and admits
a frozen variant described in [9]. Consider the base B = F4, with Weierstrass polynomials

f = e2f̃ , g = e3g̃, ∆ = e18q48∆̃

where f̃ , g̃, ∆̃ are generic members of the prescribed class. Moreover, e denotes the exceptional
divisor, and q denotes the fiber class of B. We note that a concrete tuning realizing such
polynomials on B can be found in [30].

In the conventional F-theory phase, e supports an I∗12-singularity with an so(32)-algebra,
q supports an Ins

48 -singularity with an sp(24)-algebra, and there is a single bi-fundamental
localized at the intersection. Following the above prescription, we now assume that e supports
a frozen Î∗12-singularity. In addition, we define the following frozen and gauge divisors

F = e, Σ1 = 1
2e, Σ2 = 2q

where Σ1 supports an sp(8) gauge algebra, and Σ2 supports a su(24) gauge algebra. We note
that the canonical embedding su(24) ↪−→ su(48) is an embedding of index 2, contributing a
factor of 2 in definition of Σ2. Finally we note that anomaly cancellation implies the following

(K + F ) · Σ1 = −1, Σ1 · Σ1 = −1, (K + F ) · Σ2 = −2, Σ2 · Σ2 = 0, Σ1 · Σ2 = 1

which gives 1 bifundamental of sp(8)× su(24) and 2 antisymmetrics of su(24). We note that
the gauge group appearing on the fiber class q in this compact case, is different from the
expected gauge group of transverse D7-branes intersecting an O7+-plane.

3 Frozen models via ordinary F-theory embeddings

In this section, we study in detail the massless spectrum of the compact models constructed in
the frozen phase of F-theory in [9]. These models admit alternative constructions via duality
to either the heterotic or type I string, and thus are particularly credible examples with which
to explore consistency conditions for constructing frozen F-theory compactifications. In order
to begin identifying universal features appearing in the frozen phase, for every such example,
we will explicitly produce an unfrozen F-theory model which engineers a 6d N = (1, 0)
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supergravity theory with precisely the same massless content. For simplicity, we will ignore
potential contributions from u(1) factors, as well as the global forms of the gauge group.

In section 3.2.1, we will construct an F-theory compactification on F1 reproducing the
Aspinwall-Gross model with a frozen 7-brane on F4. In section 3.2.2, we will perform a similar
construction for the frozen compact P1 × P1 examples. Such constructions are necessarily
more involved, and will proceed in two steps:

1. We first tune the required gauge algebras on curves with the correct mutual intersections
on P2 using a Tate model.

2. We then demonstrate that there exists blowups to a compact base with the correct
number of tensor multiplets and matter content.

In section 3.3, we identify a criterion to distinguish between unfrozen and frozen F-theory
compactifications realizing the same massless spectrum.

3.1 Tate forms and (4,6)-points

In this section, we briefly review a more generalized form of the Weierstrass equation (2.1) in
engineering elliptic Calabi-Yau threefolds. The main utility of such constructions is that it
allows us to engineer rather degenerate singular configurations using the results of [31].

In general, one can construct an elliptic Calabi-Yau threefold using a Tate model:

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 (3.1)

where the above coefficients are global sections of appropriate powers of the anti-canonical
class on B, in particular, an ∈ H0(X,O(−nKB)). Using [31, Tables 2, 3], we can easily
engineer Kodaira In and I∗m-fiber types which are critical in constructing frozen singularities.

In order to interpolate between the Tate and Weierstrass form, we will rely on the
results described in [32]. The Weierstrass polynomials corresponding to the Tate form (3.1)
are given by the following

f = 1
48(−(a2

1 + 4a2)2 + 24a1a3 + 48a4)

g = 1
864(−(a2

1 + 4a2)3 + 36(a1a3 + 2a4)(a2
1 + 4a2)− 216(a2

3 + 4a6))
(3.2)

The associated discriminant ∆ can then be readily computed using (2.1).
In practice, we will often engineer the desired singularities using a Tate form, and then

achieve the desired model through a sequence of phase transitions by blowing up the base of
the elliptic fibration. In order to preserve the Calabi-Yau condition, it is well understood
that one needs to first engineer a point p ∈ B such that the orders of vanishing of the
Weierstrass polynomials satisfy (ordp(f), ordp(g), ordp(∆)) ≥ (4, 6, 12). We may then blow
up B at p and together with a change of variables, this yields a Calabi-Yau threefold over
the blowup. Physically, such orders of vanishing indicate a conformal matter point, and
blowing up corresponds to moving out on the tensor branch of the theory. For details, we
refer to [33, Appendix A].
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gauge algebra sp(8)⊕
12⊕

i=1
sp(1)i

charged hypermultiplets 16 ⊗ 2i, 1 ≤ i ≤ 12

uncharged hypermultiplets 32

tensor multiplets 1

Table 1. Massless matter content of the generic Aspinwall-Gross model in the frozen phase. Through-
out, we will omit the supergravity multiplet.

3.2 Conventional embeddings of frozen F-theory models

3.2.1 Aspinwall-Gross model

We will take the base surface of the F-theory compactification to be the Hirzebruch surface
F4 with a unique curve of self-intersection −4. In [9, Section 5.1], a frozen variant of the
F-theory compactification [34] on F4 with a tuned I∗12 fiber along the zero section was given.

The massless spectrum consists of the following
We will reproduce the same massless content with a conventional F-theory compact-

ification with base surface B = F1, i.e. the Hirzebruch surface with a unique curve of
self-intersection −1.

We first consider the following tuning with a Tate model

a1 = 0, a2 ∼ p2, a3 = 0, a4 ∼ e8p4, a6 = 0 (3.3)

where the pi’s denote generic representatives of the corresponding global section. This particu-
lar tuning implies that we must have p4 ∈ |12f |. This leads to the following Weierstrass model

f = 1
3(−p2

2 + 3e8p4)

g = − 1
27p2(2p2

2 − 9e8p4)

∆ = −e16p2
4(p2

2 − 4e8p4)

From the form of the discriminant ∆, one verifies straightforwardly that this indeed reproduces
the desired massless spectrum.

3.2.2 Compact P1 × P1 with one frozen

In this section, we construct an unfrozen F-theory model reproducing the same massless
content as that of the P1 × P1 model with a single frozen 7-brane exhibited in [9, Section 5.3].
At a perturbative level, these coincide with the models of [35, 36], obtained by compactifying
type IIB on T 2/Z2×T 2/Z2, and flipping a single O7− to an O7+-plane. The model we consider
is obtained from the Higgs branch of an F-theory realization of such a compactification.

The massless spectrum for this model is given in table 2
In a conventional F-theory compactification, anomaly cancellation then implies that su(8)

must be supported on a (0)-curve and sp(4)i must be supported on (−1) curves, with all three
intersecting pairwise. We will reproduce this massless content with a base surface B = P2.
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gauge algebra su(8)⊕ sp(4)1 ⊕ sp(4)2

charged hypermultiplets 8 ⊗ 81, 8 ⊗ 82, 81 ⊗ 82
2× Λ28

uncharged hypermultiplets 16

tensor multiplets 5

Table 2. Massless content of a frozen F-theory model on P1 × P1.

We first consider the following tuning with a Tate model on P2

a1 ∼ p1, a2 ∼ q2h2
1, a3 = 0, a4 ∼ h4

1h4
2h4

3, a6 = 0

where h1, h2, h3 ∈ |h| are general lines. From the degrees of the Tate coefficients, p1 must
be a degree 3 polynomial, and q is a degree 2 polynomial. We may choose polynomials p1
and q such that they vanish simultaneously at a single point u on the line h1, two points
v1, v2 on h2, and two points w1, w2 on h3. Moreover, we may choose such points away from
the pairwise intersections hi ∩ hj .

Using the ansatz given in equation (3.2), this leads to the following Weierstrass model

f = 1
48(48h4

1h4
2h4

3 − p4
1 − 8h2

1p2
1q2 − 16h4

1q4)

g = 1
864(p

2
1 + 4h2

1q2)(72h4
1h4

2h4
3 − p4

1 − 8h2
1p2

1q2 − 16h4
1q4)

∆ = 1
16h8

1h8
2h8

3(8h2
1h2

2h2
3 − p2

1 − 4h2
1q2)(8h2

1h2
2h2

3 + p2
1 + 4h2

1q2)

In particular, one verifies straightforwardly that this realizes an su(8) algebra supported on
h1 and sp(4) algebras supported on h2, h3, with all three intersecting pairwise.

Next, we perform the required blowups to arrive at a model with precisely 5 tensor
multiplets. From the choices of p1 and q, as well as the above Weierstrass model, we note that
the five points u, v1, v2, w1, w2 are all (4, 6)-points. Blowing up all five points, we conclude
that the exceptional divisors do not support any additional gauge algebras, and that this
gives the desired self-intersections required by anomaly cancellation.

3.2.3 Compact P1 × P1 with two frozen

Finally, in this section, we construct an unfrozen F-theory model reproducing the same
massless content as that of the P1 × P1 model with two frozen 7-branes.

The massless spectrum now consists of the following
We note that anomaly cancellation requires that the so(8) factor is supported on a

(−4)-curve, while the sp(2) factors are all supported on (−1)-curves.
We consider the following tuning with a Tate model, again on P2

a1 = 0, a2 ∼ q2p2, a3 = 0, a4 ∼ h2
1h2

2h2
3h2

4q2, a6 = 0

where again, h1, h2, h3, h4 ∈ |h| are four general lines on P2. Moreover, again from the
Tate coefficients, q and p2 are general quadrics. Converting to a Weierstrass model, we
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gauge algebra so(8)⊕
4⊕

i=1
sp(2)i

charged hypermultiplets 4i ⊗ 4j , i < j

uncharged hypermultiplets 13

tensor multiplets 8

Table 3. Massless content of a frozen F-theory model on P1 × P1.

obtain the following

f = 1
3q2(3h2

1h2
2h2

3h2
4 − p2

2q2)

g = 1
27p2q4(9h2

1h2
2h2

3h2
4 − 2p2

2q2)

∆ = −h4
1h4

2h4
3h4

4q6(−2h1h2h3h4 + p2q)(2h1h2h3h4 + p2q)

it follows straightforwardly that this realizes an sp(2) factor on each line hi all intersecting
pairwise, as well as an so(8) factor supported on the quadric q.

As in section 3.2.2, we perform the required blowups to arrive at a model with 8 tensor
multiplets. We note from the form of the Weierstrass model, that the 8 points of intersections
q ∩ hi for i = 1, 2, 3, 4 are all (4, 6)-points. Blowing up all these points, we again conclude
that the exceptional divisors do not support any additional gauge algebras, and that this
gives the desired self-intersections required by anomaly cancellation.

3.3 Distinguishing frozen from unfrozen supergravity theories

Our goal in section 3.2 was to construct, for every compact model of [9], an F-theory
compactification without O7+-planes realizing the same massless spectrum. As a consequence,
we conclude that for such models, it is a priori impossible to distinguish between the frozen
and unfrozen phases purely from the non-abelian gauge algebras and massless matter content
in the low energy effective physics.

In this section, we will use our concrete F-theory models to propose an answer to
Question 1.1 for 6d F-theory compactifications. We will exploit the distinction in the moduli
spaces of two F-theory compactifications with the same massless spectrum, with one in the
unfrozen phase, and with the other in the frozen phase. Our main claim is the following:

Claim 3.1. Let T1, T2 be two 6d N = (1, 0) supergravity theories with the same massless
spectrum, engineered via a frozen/unfrozen F-theory compactification respectively. Assume
that there exists an sp(n) factor in both theories, which is localized on a frozen 7-brane in the
case of T1.

Then T2 admits a limit in moduli space enhancing sp(n) to so(4n), while the analogous
limit for T1 realizes a (4, 6)-divisor.

For simplicity, we will illustrate the claim in the example of section 3.2.1, but we note
that this can also be done for the examples computed in sections 3.2.2 and 3.2.3.

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
6

In section 3.2.1, we considered the following Tate model on the base B = F1.

a1 ∼ p1, a2 ∼ p2, a3 = 0, a4 ∼ e8p4, a6 = 0

Letting e, q denote the class of the exceptional and fiber classes respectively, we note that
p1 ∈ |2e + 2q|, p2 ∈ |4e + 4q|, and p4 ∈ |12q|. We consider the specialization of the Tate
coefficient by the replacement

a2 ∼ p2 7→ a′
2 ∼ ep′2

inducing the following specialization of the corresponding Weierstrass model

f = 1
3(−p2

2 + 3e8p4) 7→ f ′ = 1
3e2(−p2

2 + 3e6p4)

g = − 1
27p2(2p2

2 − 9e8p4) 7→ g′ = 1
27e3p2(−2p2

2 + 9e6p4)

∆ = −e16p2
4(p2

2 − 4e8p4) 7→ ∆′ = e18p2
4(−p2

2 + 4e6p4)

In particular, we note that the Ins
16 fiber of section 3.2.1 admits an enhancement to an I∗12 fiber

localized along the exceptional curve e of F1, leading to an so(32) algebra supported on e.
We now illustrate that a completely analogous enhancement in the frozen realization of

the Aspinwall-Gross model leads to a (4, 6) divisor, and hence an infinite distance limit [37]
in moduli space. We recall that the frozen Aspinwall-Gross model is given by the following
Tate model on the base B = F4, as considered at the end of section 2.2.1:

a1 = 0, a2 ∼ ep2, a3 = 0, a4 ∼ e8q48, a6 = 0

which leads to the Weierstrass model:

f = 1
3e2(−p2

2 + 3e6q24)

g = 1
27e3p2(−2p2

2 + 9e6q24)

∆ = e18q48(−p2 + 2e3q12)(p2 + 2e3q12)

We demand that e supports an Î∗12-fiber, and hence supports a frozen 7-brane. Subject to
the prescription of section 2.2.1, we define the gauge divisors

Σ1 = 1
2e, Σ2 = 2q

which leads to the massless spectrum of section 3.2.1 in the limit that all the sp(1) singular
fibers collide.

We now consider an analogous enhancement as performed in the unfrozen phase with
the same massless spectrum; namely, we attempt to tune an additional orientifold onto the
exceptional curve. This can be understood as attempting to tune the mass of open string
states between the 7-brane on the exceptional curve and the 7-brane on the residual I1 to
zero. In the low energy effective physics, there is an identification of unlocalized neutral
hypermultiplets between the two supergravity theories; the two tunings can then be identified
with giving non-zero vacuum expectation values to the corresponding massless multiplets.
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Geometrically, this corresponds to the following replacement:

a2 ∼ ep2 7→ a′
2 ∼ e2p′2

which leads to the Weierstrass model:

f = 1
3e4(−p2

2 + 3e4q24)

g = 1
27e6p2(−2p2

2 + 9e4q24)

∆ = e20q48(−p2 + 2e2q12)(p2 + 2e2q12)

Clearly, this induces a (4, 6) divisor on the exceptional curve e, signaling an infinite distance
limit. Such limits were first analyzed in [8], which demonstrated how infinite distance limits
can be realized in 8d N = 1 vacua through affinizations of the gauge algebra using string
junctions. The appearance of (4, 6)-points in 8d F-theory lead to infinite dimensional Kac-
Moody algebras, which result in decompactifications to either 9 or 10 dimensions. The
analogous statements in 8d F-theory with frozen singularities can then be obtained by
embedding the O7+-plane into the 9d affine algebras. By studying our model in 6-dimensions
adiabatically, we expect that our infinite distance limit corresponds to the 9d CHL vacua
compactified on a P1 with an appropriate twist.

4 Frozen LSTs, SCFTs and the Swampland

In this section, we investigate whether 6d N = (1, 0) supergravity theories which have not
been constructed in ordinary F-theory, can be realized in the frozen phase of F-theory. Our
main source of examples stems from a compilation [10] of local embeddings of new little string
theories and superconformal field theories using frozen 7-branes. Our goal is to study whether
such local models can be completed into a compact F-theory model with frozen 7-branes.

For unfrozen 6d superconformal field theories, only a number of top-down constructions
and constraints based on global symmetries [38, 39] are known for the existence of compact
embeddings. Nevertheless, we emphasize that for the new SCFT’s realized in the frozen phase,
most of the models do not admit a compact embedding based purely on their intersection
constraints, independent of the ranks of the individual gauge algebras.

The gauge theory sectors summarized in [10, Section 3.1] which do not admit a conven-
tional F-theory embedding are given by the following:

1. su(n) with 1 symmetric hypermultiplet and n − 8 fundamental hypermultiplets

2. su(n) with 2n fundamental hypermultiplets, with a subset transforming under so(m)

3. sp(n) with 2n + 8 fundamental hypermultiplets, with 3 subsets transforming under
three factors so(m1), so(m2), so(m3)

Our central claim can be summarized as follows:

Claim 4.1. Case (1) never admits a compact embedding, but cases (2), (3) do admit compact
embeddings in frozen F-theory models
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In section 4.1, we review our conventions for specifying gauge theory chains, and we
summarize a critical Lemma. In section 4.2, we use the Kodaira condition to demonstrate
that most of the above local embeddings can not be completed into a global model. In
section 4.3, we demonstrate the existence of new 6d N = (1, 0) supergravity theories via
explicit constructions with frozen 7-branes in F-theory. In the process, we explicitly realize
an argument [40] exploiting unitarity of string worldsheet theories in a compact F-theory
model, which may be of independent mathematical interest.

4.1 6d N = (1, 0) theories

We will primarily be interested in whether certain 6d N = 1 gauge theory sectors can be
completed into supergravity models. In this section, we review our conventions and our
central argument.

Let B be a smooth complex algebraic surface. We will specify a local gauge theory
sector through its non-abelian gauge algebra and matter content. This will be portrayed
through intersections between singular Kodaira fibers yielding non-abelian gauge algebras
with diagrams of the following type

K1(n1) K2 (n2)
C D

where Ki denote the associated Kodaira type, ni denotes the negative of the self-intersection
of the curve on which the fiber is supported, a line between two Kodaira fibers indicates
that corresponding curves intersect transversely in B, and C and D denote the curves of
support. If such a gauge theory sector indeed admits an F-theory embedding, then it must
satisfy the following necessary condition.

Lemma 4.1. Let ∆ ⊂ B be the discriminant locus of an elliptic fibration, admitting a
factorization into irreducible components

∆ = zm1
1 · . . . · zmk

k ∆̃

with associated divisors D1, . . . Dk. Then every divisor Di satisfies the condition

(−12KB − miDi) · Di ≥ 0

4.2 F-theory swampland

In this section, we prove that most of the new superconformal field theories (SCFTs) and
little string theories (LSTs) engineered via frozen 7-branes in [10] do not admit a compact
embedding. Our main technique will be to analyze the intersecting Kodaira fibers from [10],
focusing on particular sub-blocks of such constructions. We begin by assuming that there
exists an embedding into a compact, frozen F-theory model subject to the rules of [9].
In particular, when each Î∗4+n-fiber is flipped to an I∗4+n-fiber, the resulting configuration
should still be a consistent 6d F-theory model. Our main technique will be to analyze the
contradictions in the resulting model by applying Lemma 4.1.

In the following three sections, we will analyze three particular sub-blocks which feature
in every new frozen 7-brane construction in [10]. We will find that most of these sub-blocks
do not admit a compact embedding.

– 14 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
6

4.2.1 Tangential Intersections

We begin by demonstrating that a gauge theory sector which engineers an su(n) gauge theory
with 1 symmetric tensor and n − 8 fundamentals does not admit a compact embedding.
We remark that this was demonstrated earlier in [40], though such arguments are not a
priori, obviously independent of the choice of basis for the anomaly lattice. On the other
hand, our argument is geometric and assumes an F-theory realization, and so we view our
results as complementary.

We engineer this gauge theory using the following configuration of singular fibers

Î∗4 (4) t
Is

n (1)
C D

where the double line denotes a tangential intersection. Subject to the rules of section 2.2.1,
there is a single gauge divisor Σ = C supporting an su(n) gauge algebra. In particular, this
configuration leads to an su(n) gauge theory with 1 symmetric and n − 8 fundamentals.

We claim that the above configuration cannot be realized on any compact algebraic surface
B, but for a rather subtle reason. Indeed, let C, D ⊂ B be (−4) and (−1) curves respectively,
intersecting tangentially at a single point. Consider a contraction π : B → B0, blowing down
the (−1)-curve D. Then π(C) ⊂ B0 is a cuspidal curve with self-intersection 0. In particular,
its corresponding linear system induces a morphism |π(C)| : B0 → P1, with generic fiber a
smooth elliptic curve. On the other hand, any elliptic ruled surface giving a 6d (1, 0) F-theory
model must be a rational elliptic surface, and we claim that this cannot be the case.

To see the claim, we note that the anti-canonical bundle of B0 satisfies −KB0 = q, with
q the fiber class. Let f0 denote the cuspidal curve π(C). Then the induced Weierstrass
model on B0 must satisfy the following

f = f2
0 f̃ , g = f3

0 g̃, ∆ = f10
0 ∆̃

where the vanishing loci of f̃ , g̃, ∆̃ are localized on distinct fibers of B0 not intersecting
f0. Blowing up the singular point on f0 with exceptional divisor e, the proper transform
is given by the class f̃0 = π∗f0 − 2e. We claim that the singular fiber localized on the
exceptional divisor e must be non-split.

Indeed, the splitness condition is given by checking the quantity

9g

2f
= f̃3

0 g̃

f̃2
0 f̃

∣∣∣∣
e=0

= f̃0
g̃

f̃

∣∣∣∣
e=0

where f̃0 denotes the proper transform of the class on the blowup. On the other hand, as the
vanishing loci of g̃, f̃ correspond to distinct fibers on B0, their proper transform on B evaluated
along e = 0 cannot contain any powers of the proper transform f0. Thus we conclude that this
quantity cannot factorize, and the singular fiber localized on the (−1)-curve must be non-split.

We further note that a compact engineering of such a model is possible in the case
n = 8 realizing the following intersection.

Î∗4 (4) t
Is

8 (1)
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gauge algebra so(m)⊕ su(n)

charged hypermultiplets m ⊗ n
(2n − m)× n

(m − 8− n)× m

Table 4. Massless content of a 6d N = (1, 0) gauge theory which cannot be engineered in the unfrozen
phase of F-theory.

4.2.2 SU(n) on (−2)-curves

We next consider case (2) of Claim 4.1. A simple example of a configuration of singular
fibers giving rise to such a gauge theory is given by the following

Î∗4 (4) Ins
m (1)(C) Is

n(2)(D)

Î∗4 (4)

Using the rules of section 2.2.1, we consider the gauge divisors Σ1 = 2C, Σ2 = D, supporting
so(m) and su(n) respectively. Altogether, this leads to the following massless multiplets:

We briefly review the argument for why such a gauge theory cannot be realized in the
unfrozen phase of F-theory. In a conventional F-theory compactification, we must have the
so(m) supported on a (−4) curve C1 and the su(n) supported on a (−2)-curve C2, such
that C1 and C2 intersect transversely. In particular, the Weierstrass polynomial f must
take the following form

f = c2
1f̃ , f̃ ∈ −4K − 2C1

where c1 = 0 defines the curve C1. On the other hand, this implies that f̃ · C2 = (−4K −
2C1) · C2 = −2, and thus f must vanish to order at least 1 along C2. Together with a
similar argument for the Weierstrass polynomial g, we conclude that this contradicts the
assumption of C2 supporting an su(n) algebra.

Finally, we argue that many SCFTs and LSTs constructed in the frozen phase do not
admit a compact embedding. We consider a more generalized sub-block given by the following

I∗k(4)(D2) Ins
m (1)(D3) Is

n(2)(D4)

Î∗4 (4)(D1)

The discriminant must then factorize into the following form:

∆ = z10
1 z6+k

2 zm
3 zn

4 ∆̃

The intersection number of the residual discriminant with the divisor D1 is given by:

∆̃ · D1 = (−12K − 10D1 − (6 + k)D2 − mD3 − nD4) · D1

= −24 + 40 + 0− m + 0 = 16− m
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gauge algebra so(a)⊕ so(b)⊕ so(c)⊕ sp(k − 4)

charged hypermultiplets 1
2 × (a, 2k − 8), 1

2 × (b, 2k − 8), 1
2 × (c, 2k − 8)

((a − 8)− (k − 4))× a, ((b − 8)− (k − 4))× b, ((c − 8)− (k − 4))× c
(2(k − 4) + 8− a+b+c

2 )× 2k − 8

Table 5. Massless content of a 6d N = (1, 0) gauge theory which cannot be engineered in the unfrozen
phase of F-theory.

Similarly, we obtain

∆̃ · D2 = 4k − m, ∆̃ · D3 = −4− k + m − n, ∆̃ · D4 = −m + 2n

Applying Lemma 4.1, we demand that ∆̃ · Di ≥ 0 for all i, and this implies that the only
valid solution is m = 16, n = 8, k = 4, in which case ∆̃ · Di = 0 for all i.

In section 4.3.1, we will explicitly construct a compact embedding of such a model.

4.2.3 SU(n) and triple intersections

In this section, we consider case (3) of Claim 4.1. We first illustrate a simple configuration
of singular fibers giving rise to such a gauge theory:

Î∗4 (4)(D7)

Ins
c (1)(D6)

Î∗4 (4)(D1) Ins
a (1)(D2) Î∗k(4)(D3) Ins

b (1)(D4) Î∗4 (4)(D5)

Again, using the rules of section 2.2.1, we consider the assignment of gauge divisors

Σ1 = 2D2, Σ2 = 1
2D3, Σ3 = 2D4, Σ4 = 2D6

supporting the gauge algebras so(a), sp(k − 4), so(b), so(c) respectively. Altogether, this leads
to the massless content in table 5. The non-existence of a conventional F-theory realization
follows by a similar argument as in the previous section, which we briefly illustrate. To realize
such massless content in the unfrozen phase of F-theory, we must have so(a), so(b), so(c)
supported on individual (−4)-curves C1, C2, C3 transversely intersecting the curve C4 which
supports sp(k − 4). In particular, the Weierstrass polynomial f must take the following form

f = c2
1c2

2c2
3f̃ , f̃ ∈ −4K − 2C1 − 2C2 − 2C3

In particular, we have the intersection f̃ · C4 = (−4K − 2C1 − 2C2 − 2C3) · C4 = −2, and
hence f̃ must vanish to at least order 2 along C4. Arguing similarly with the Weierstrass
polynomial g, this yields a contradiction with the assumption that C4 supports an Ins

2k−8-fiber.
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Finally, we consider the general sub-block given by the following intersections:

I∗m(4)(D7)

Ins
c (1)(D6)

Î∗4 (4)(D1) Ins
a (1)(D2) I∗k(4)(D3) Ins

b (1)(D4) I∗l (4)(D5)

We analyze the discriminant locus, which takes the following form

∆ = z10
1 za

2z6+k
3 zb

4z6+l
5 zc

6z6+m
7 ∆̃

Computing the intersection of ∆̃ with D1, we obtain the following:

∆̃ · D1 = (−12K − 10D1 − aD2 − (6 + k)D3 − bD4 − (6 + l)D5 − cD6 − (6 + m)D7) · D1

= 16− a

Similarly, we obtain the following intersections

∆̃ · D2 = −4 + a − k, ∆̃ · D3 = −a − b − c + 4k, ∆̃ · D4 = b − k − l

∆̃ · D5 = −b + 4l, ∆̃ · D6 = c − k − m, ∆̃ · D7 = −c + 4m

Applying Lemma 4.1 again and imposing the non-negativity of all the above inequalities
implies the following unique solution a = b = c = 16, l = m = 4, k = 12.

In section 4.3.2, we will explicitly construct a compact embedding of such a model.

4.3 New massless spectra in 6d F-theory

In the previous section, we focused on ruling out infinite families of potential compact
embeddings of frozen 7-brane configurations by applying Lemma 4.1 to universal sub-blocks
of such constructions. Nevertheless, we discovered special cases which were consistent with
such a condition.

In this section, we will demonstrate that such cases do indeed admit compact embeddings
with frozen 7-branes, leading to 6d N = (1, 0) vacua with new massless gauge and matter
content. Along the way, we find a potential infinite family in section 4.3.3, which we rule
out by relying on string unitarity arguments introduced in [40, 41]. As a consequence,
we find a concrete geometric realization of their argument, which may be of independent
mathematical interest.

4.3.1 Intersections of su(n) with so(m)

We first consider the special case realized in section 4.2.2, given by the following configuration

Î∗4 (4) Ins
16 (1) Is

8(2)

Î∗4 (4)

(4.1)
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which realizes the following chain of gauge algebras

so(8)(4) su(8)(2)

We will construct a compact realization of such a model using the Tate form described in
section 3.1. Let B be the Hirzebruch surface F2 with a unique (−2)-curve E defined by e = 0.
Recall that the anti-canonical class satisfies −KB = 2e+4f and consider the following tuning

a1 ∼ qe, a2 ∼ qep2, a3 = 0, a4 ∼ e4q4, a6 = 0

where q = 0 defines a general curve Q in the linear system |e + 4f |. In particular, we
note that the polynomial p2 must take values in the system |2e + 4f |. This leads to the
following Weierstrass model:

f = 1
48e2q2(−16p2

2 − 8ep2q + 47e2q2)

g = 1
864e3q3(4p2 + eq)(−16p2

2 − 8ep2q + 71e2q2)

∆ = 1
16e10q10(−4p2 + 7eq)(4p2 + 9eq)

We may assume that Q defines a curve in F2 tangentially intersecting the zero section E. In
addition, we note that generically, the curve defined by p2 = 0 intersects with Q at 8 points,
as we have (2e + 4f) · (e + 4f) = 8. From the Weierstrass model, we conclude that there
exists 8 (4, 6) points localized along the intersections Q ∩ p2, as well as a single (4, 6)-point
localized at the tangential point of intersection Q ∩ E.

We perform the following phase transitions, moving along the tensor branch of an F-
theory compactification specified by the above Weierstrass model. We first blowup all 8 (4, 6)
points corresponding to the intersection of p2 = 0 with Q. As Q has self-intersection 6 on F2,
its proper transform has self-intersection 0. Next, we perform a blowup at the intersection
Q ∩ E, leading to an exceptional curve E1 supporting an Ins

8 -fiber, as can be seen from the
form of the discriminant ∆. As this is a tangential intersection, the proper transforms of Q

and E intersect E1 at a common point. Blowing up this common point once more leads to
an exceptional curve supporting an Ins

16 -fiber. A direct computation of the self-intersections
leads precisely to diagram (4.1), and we note that the proper transform of E1 must support
a split fiber since it has self-intersection (−2). The resulting discriminant takes the form

∆ = z10
1 z10

2 z16
3 z8

4∆̃

We note that ∆̃ · Di = 0 for all i, and hence there are no further (4, 6)-points in the
resulting model.
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4.3.2 Intersections of sp with so

Next, we construct an explicit Tate model for the following:

Î∗4 (4)

Ins
16 (1)

Î∗4 (4) Ins
16 (1) Î∗12(4) Ins

16 (1) Î∗4 (4)

(4.2)

Let B be the projective plane P2. Consider the following tuning of the Tate coefficients

a1 ∼ h1h2h3, a2 ∼ h1h2h3p2, a3 = 0, a4 ∼ h4
1h4

2h4
3, a6 = 0

where we take h1, h2, h3 to be three lines intersecting at a common point and we note that
p2 is a generic polynomial of degree 3. The corresponding Weierstrass model takes the
following form

f = 1
48h2

1h2
2h2

3(47h2
1h2

2h2
3 − 8h1h2h3p2 − 16p2

2)

g = 1
864h3

1h3
2h3

3(h1h2h3 + 4p2)(71h2
1h2

2h2
3 − 8h1h2h3p2 − 16p2

2)

∆ = 1
16h10

1 h10
2 h10

3 (7h1h2h3 − 4p2)(9h1h2h3 + 4p2)

We first note that the cubic Q defined by p2 = 0 intersects each line hi at 3 (4, 6) points.
Blowing up all the intersections Q ∩ hi, the proper transforms of the lines hi are (−2)-curves.

We next perform the following phase transitions, moving further along the tensor branch
of the corresponding F-theory model. We first blowup the triple intersection h1 ∩ h2 ∩ h3,
whose exceptional divisor E supports an I∗12 fiber as can be seen from the above Weierstrass
model. We note that the intersections E∩hi are also (4, 6)-points, and blowing up these three
points leads to three additional exceptional divisors Ei, each supporting an Ins

16 -fiber. We
conclude by noting that this produces precisely figure (4.2), and that the residual discriminant
does not intersect with any divisors in the diagram.

4.3.3 An infinite family

Finally, we note that there exists an additional, a priori infinite family of such models with
the following intersecting Kodaira fibers

Î∗m+4(4)

Ins
4m+16(1)

Î∗m+4(4) Ins
4m+16(1) Î∗3m+12(4) Ins

4m+16(1) Î∗m+4(4)

(4.3)
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We briefly provide an alternative argument to show that such models can only exist for
m = 0, demonstrating that our construction in section 4.3.2 is sharp. Based on the analysis
of [40, 41] used consistency of non-instantonic string probes in 6d supergravity backgrounds
to prove the finiteness of many classes of models. We refer to [40] for details, and we briefly
summarize the necessary aspects in applying the argument to our setting.

Our geometric construction in section 4.3.2 gives a natural embedding of the anomaly
vectors of the gauge algebras associated with the unflipped version of (4.3). A D3-brane
wrapped on an effective curve C in a compact algebraic surface B yields a 2d N = (0, 4)
supersymmetric worldsheet theory in the noncompact 6-dimensional spacetime. The condition
that this corresponds to a non-instantonic string with non-negative tension translates into
the following geometric constraints:

C2 ≥ −1, kl = C · (C + KB) + 2 ≥ 0, ki = C · Di ≥ 0

where Di denotes the divisors supporting the non-abelian gauge algebras in (4.3). Unitarity
of the string worldsheet theory then imposes the following constraint

∑
i

cGi ≤ cL = 3C2 − 9C · K + 2, cGi
:= ki

dimGi

ki + h∨
i

(4.4)

where cGi denotes the central charge associated with the current algebra of the gauge algebra
Gi, and h∨

i denotes the dual Coxeter number of Gi.
Taking the three outer (−4)-curves in (4.3), we recall that these were obtained as the

proper transform of hyperplane classes on P2 by blowing up three points each on three
intersecting lines. Choosing two out of these nine points such that these do not lie on the
same of the three lines, we take a separate line passing through these two points on P2. We
then take C to denote the proper transform of this curve. A straightforward computation
implies that C only intersects with one of the outermost vertices corresponding to the Kodaira
fiber I∗m+4. Evaluating equation (4.4) with C, we obtain the bound

cG = 8 + m ≤ 8

Thus, it must be the case that m = 0 and this implies that our geometric construction of
the model in section 4.3.2 is sharp. It would be interesting to interpret more generally, the
condition on the unitarity of the string worldsheet as a geometric constraint on engineering
singular limits of compact Weierstrass elliptic Calabi-Yau threefolds.

4.3.4 Remaining models

In this section, we list the remaining diagrams in [10] which admit a compact embedding
in the frozen phase of F-theory. We note in passing that this can be done using the same
techniques carried out in the previous sections, but we do not carry out the analysis here.

In each entry, we list the configuration of Kodaira singular fibers and the corresponding
equation in [10]. We refer the reader to the relevant section in [10] for the corresponding
gauge theory configuration.
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1. Equation (3.32)
Is

6(2) Ins
12 (1) I∗s

2 (2)

Î∗4 (4)

(4.5)

2. Equation (3.34)
Is

7(2) Ins
14 (1) I∗ns

3 (2)

Î∗4 (4)

(4.6)

3. Equation (3.36)/(3.38)

Is
4(2) Ins

8 (1) I
∗ss/ns
0 (2)

Î∗4 (4)

(4.7)

4. Equation (3.50)/(3.52)

Î∗4 (4)

Ins
12 (1)

Î∗4 (4) Ins
12 (1) Î∗s

8 (4) Ins
8 (1) I

∗ss/ns
0 (2)

(4.8)

5. Equation (3.54)

Î∗4 (4)

Ins
13 (1)

Î∗4 (4) Ins
14 (1) Î∗ns

9 (4) Ins
9 (1) I∗ns

0 (2)

(4.9)

6. Equation (3.57)

I∗ns
2 (3)

Ins
8 (1)

I∗ns
2 (3) Ins

8 (1) Î∗s
6 (4) Ins

8 (1) I∗ns
2 (3)

(4.10)
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7. Equation (3.58)

I∗s
2 (3)

Ins
11 (1)

I∗s
2 (3) Ins

11 (1) Î∗ns
9 (4) Ins

11 (1) I∗s
2 (3)

(4.11)

5 Conjectures on neutral hypermultiplets

In sections 3 and 4, we analyzed a number of compact F-theory models with frozen 7-
branes. Such concrete analyses are potentially helpful in deducing general properties of
frozen 7-branes in 6-dimensional compactifications. In this section, we analyze the simplest
compact embeddings of frozen 7-branes and make a simple observation based on gravitational
anomaly cancellation.

Conjecture 5.1. Consider a 6d F-theory compactification with a frozen 7-brane localized
along a divisor D with residual discriminant ∆̃. Then there exists at least 1

2D · ∆̃ localized
neutral hypermultiplets.

We note that none of the compact examples considered thus far exhibit non-trivial intersections
between the residual I1-locus and a frozen O7+-plane.

For a 6d N = (1, 0) supergravity, we recall that gravitational anomalies impose the
following constraint

H − V + 29T = 273

where H is the total number of hypermultiplets, charged and uncharged, V is the number
of vector multiplets, and T is the number of tensor multiplets.

We consider an otherwise generic Weierstrass model on a compact algebraic surface B with
an I∗s

n+4 fiber localized along a divisor D of self-intersection (−4). In the unfrozen phase of F-
theory, this realizes an so(2n+16) gauge algebra with 2n+8 fundamental hypermultiplets. In
the frozen phase, this realizes a sp(n) gauge algebra with 2n+8 fundamental hypermultiplets.
For 6d supergravity theories with such matter content, we compute the difference Hch − V

for every value of n in the following table. We note that for n ≥ 9, there does not exist any
number of tensor multiplets such that the resulting model satisfies gravitational anomalies.
In the last row, we subtract the second row from the first row. Using gravitational anomalies,
and assuming that the number of tensor multiplets is the same, this computes the difference
in neutral hypermultiplets between the two models.

In general, the total number of neutral hypermultiplets can be split into localized and
unlocalized hypermultiplets. We expect that unlocalized neutral hypermultiplets should
coincide with complex structure deformations of the total space of the Weierstrass model that
do not deform the singularities, and hence that this should yield the same answer between
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n 0 1 2 3 4 5 6 7 8

(Hch − V )(so(2n + 16)) 8 27 50 77 108 143 182 225 272
(Hch − V )(sp(n)) 0 17 38 63 92 125 162 203 248
nsp(n) − nso(2n+16) 8 10 12 14 16 18 20 22 24

Table 6. Table of the difference between the number of charged hypermultiplets and vector multiplets
of a generic F-theory model with an so(2n+16) and an sp(n) gauge algebra respectively. The difference
in the counting of neutral hypermultiplets is encoded in the last row.

the unfrozen and the frozen phase of F-theory on identical Calabi-Yau threefolds. Moreover,
the intersections with the residual discriminant are given by the following

∆̃ · D = (−12K − (10 + n)D) · D = −24 + 4(10 + n) = 16 + 4n

In the unfrozen phase, there are 2n + 8 fundamental hypermultiplets, and so there is 1
fundamental hypermultiplet for every double intersection1 with the residual discriminant.
We conclude that in the frozen phase, there must be 1 localized neutral hypermultiplet for
every double intersection of the frozen 7-brane with the residual discriminant.

It would be interesting to confirm such a result directly via a weakly coupled type IIB
limit in the frozen phase of F-theory. The existence of such localized neutral hypermultiplets
could perhaps be explained via a similar mechanism as in the I1-conifold model explored
in [42] and [43, Section 4.1].
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