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ABSTRACT: We study the renormalization of a particular sector of Horndeski theory. In
particular, we focus on the nonminimal coupling of a scalar field to the Gauss-Bonnet term
and its kinetic coupling to the Einstein tensor. Adopting a power expansion on the scalar
function that couples the Gauss-Bonnet term, we find specific conditions on their coeflicients
such that the action and charges are finite. To accomplish the latter, we add a finite set of
intrinsic boundary terms. The contribution of the nonminimal coupling generates an effective
scalar mass, allowing us to recover a modified Breitenlohner-Freedman bound. Furthermore,
we compute the holographic 1-point functions and Ward identities associated with the scalar
field and the metric. We constrain the parameter space of the theory by taking into account
the preservation of scaling symmetry at the boundary.
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1 Introduction

Scalar fields play a fundamental role in the description of systems in areas as diverse as
high-energy physics, gravity, cosmology, and condensed matter. They are essential to account
for spontaneous symmetry breaking by acquiring a nonzero vacuum expectation value. This
is the case of the behavior of superconductors but also of the mass-generating mechanism
in the electroweak sector of the Standard Model of particle physics.

In the more recent framework of anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence [1-4], coupling scalar fields to gravity introduces new sources and operators
in the dual boundary CFT. Indeed, holographic superconductors [5-13] and models featuring
momentum dissipation [14-16] are examples of systems with physical properties captured
by scalar fields. However, in black hole physics, different impersonations of the no-hair
theorem pose strong limitations to finding nontrivial scalar configurations in stationary
spacetimes [17-21]. Nevertheless, it is possible to circumvent these restrictions by introducing
a cosmological constant and/or a nonminimal coupling between the scalars fields and the
geometry. This allows to obtain black hole solutions in this class of scalar-tensor theories
of gravity [22-28] (for a review see [29]).

Finding sensible scalar-tensor theories whose dynamics and space of solutions are of
relevance for holography is per se an interesting quest. However, one should start with those
whose classical aspects have already been well understood, in order to find a reasonable
dual CFT at the boundary. In these regards, a natural possibility is Horndeski gravity [30].
This is constructed as the most general scalar-tensor theory that: (i) is invariant under
diffeomorphisms, local Lorentz transformations and it is torsion-free,! (ii) is constructed out
of the metric, a scalar field and derivatives thereof, and (iii) possesses second-order field

'For extensions of this theories in the presence of torsion see [31], and [32, 33] for further developments.



equations for the dynamical fields, avoiding the presence of ghosts. Their separated sectors
have been studied in different contexts. In particular, the one that remains invariant under a
constant shift of the scalar field has received a lot of attention in the last few years. This is
usually referred to as the shift-symmetric sector of Horndeski theory. A specific term that
belongs to the latter class is the nonminimal coupling between the Einstein tensor and the
kinetic term of the scalar field. Indeed, when general relativity is augmented by this term, it
has been shown that the space of solutions is endowed with black holes [28, 34-40], black
strings [41, 42], boson and neutron stars [43-45], gravitational instantons [46, 47|, among
many other compact and extended objects (for a review see [38]).

In holography, models of momentum dissipation have been studied in shift-symmetric
sectors of Horndeski gravity, allowing one to compute the DC conductivity analytically in
the dual field theory [48]. Indeed, the same sector admits asymptotically Lifshitz black holes,
providing a bridge for studying AdS/CMT correspondence [49]. In the context of quantum
information theory, holographic entanglement entropy has been studied in ref. [50, 51] and,
based on the complexity = action conjecture [52], the holographic complexity of AdS black
holes with planar transverse sections have been computed in ref. [53]. The thermodynamics of
charged black holes in Horndeski gravity has been investigated in ref. [54], showing that the
usual viscosity bound can be violated depending on the mass/charge ratio. Thus, different
holographic evidence has shown us that Horndeski gravity is a fruitful scenario for studying
holography (for additional references, for instance, see [48, 53, 55-62]).

Another sector of Horndeski gravity that has drawn considerable attention in recent
literature is the nonminimal coupling of scalar fields to the Gauss-Bonnet (GB) term. This
interaction term appears naturally in the dimensional reduction of string-inspired models of
gravity, e.g. Lovelock theory [63—67], and different black hole and wormhole solutions have
been found [68-75]. A remarkable feature of this interaction is that a scalar field coupled
to the GB term can undergo a tachyonic instability, triggering a spontaneous scalarization
of black holes [76-81]. Indeed, it has been shown that such instability can end up with a
scalarized black hole possessing either rotation [82-85] or charge [86] (for a review see [87]).
From a holographic viewpoint, this phenomenon can be seen as a condensation process in
the dual field theory, producing a critical phase transition characterized by a nonvanishing
vacuum expectation value [88].

In view of possible holographic applications of Horndeski gravity, finding a suitable
renormalization scheme in asymptotically AdS spacetimes for this theory has become a crucial
point. In Einstein-AdS gravity, there exists an approach for rendering the Euclidean on-shell
action and conserved charges finite in asymptotically AdS spacetimes, known as holographic
renormalization. It is a scheme relevant in the context of gauge/gravity duality and it consists
on the addition of intrinsic boundary counterterms [89-93]. A different possibility, referred
to as topological renormalization, consists in adding a single topological term to the bulk
action, which acts as a counterterm, cancelling divergences in the action and its variation.
This alternative has been widely explored in refs. [94-98] and it has been proved to be
equivalent to holographic renormalization for asymptotically AdS spaces with conformally flat
boundaries [99]. For a general boundary geometry, topological renormalization needs to be
supplemented by additional counterterms, which can be obtained by a proper embedding of



Einstein gravity into conformal gravity as proposed in ref. [100-103], in an improved framework
dubbed conformal renormalization (for the case including scalar couplings, see [104]).

In Horndeski gravity, the variational principle with Dirichlet boundary conditions for the
fields was studied in full detail in ref. [105]. The holographic renormalization of a particular
sector of the theory, i.e., the one considering the kinetic coupling to the Einstein tensor, was
worked out in ref. [106]. Additionally, in ref. [54], when computing the Euclidean on-shell
action of the black hole in ref. [35], it was pointed out that background subtraction methods
do not match the result of holographic renormalization. Moreover, to first order in the saddle-
point approximation, none of these approaches reproduce the computation of the black hole
entropy via the Noether-Wald formalism [107-109]. Thus, a careful analysis of renormalization
schemes in Horndeski gravity is a must in order to address this and other issues.

In this work, we analyze the renormalization of AAdS sector of Horndeski gravity. Taking
the idea of topological renormalization as motivation, we consider an arbitrary coupling
between the scalar field and the GB term. This is a suitable starting point since, for a
constant scalar coupling, one recovers the standard results of holographic renormalization for
pure gravity. In the general case, for a power expansion of the scalar coupling, we require
specific conditions on their coefficients such that the action and charges are finite. In the
presence of a quadratic sGB (sGB) coupling, a modified Breitenlohner-Freedman (BF) bound
is obtained by demanding that the holographic stress-energy tensor remains traceless. These
conditions provide a unitary CFT with scalar operators at the boundary.

This article is organized as follows. In section 2, we shortly review the holographic
renormalization procedure of four-dimensional Einstein gravity minimally coupled to a scalar
field and fix notation. In section 3, we move forward and consider Einstein sGB gravity.
We show that an asymptotic analysis restricts the possible couplings in order to have a
consistent holographic theory. In section 4, we obtain the proper boundary counterterms in
the presence of the scalar-kinetic coupling to the Einstein tensor and we show how the BF
bound is modified in this case. Section 5 is devoted to summarizing our results. Additionally,
we include appendix A for details about the boundary conditions for the scalar field.

2 Holographic renormalization with minimally-coupled scalar fields

Anti-de Sitter is a maximally symmetric space with negative constant curvature, whose
conformal compactification results in a manifold with a conformal boundary. The line element
of AdS4y1 spacetime can be expressed in Poincaré coordinates as

2 . .
ds® = g, drtde” = % (dz2 + m-jd:cldfc]) , (2.1)

where 2! = (t,z1,...,74_1) are boundary coordinates, 7;; represents the Minkowski metric,
z is the coordinate along the additional bulk dimension, and ¢ stands for the AdS radius,
which is related to the cosmological constant by A = —d(d — 1)/2¢2.

In order to overcome the boundary singularity, one can employ a conformal compactifi-
cation of the spacetime through a Weyl rescaling denoted by g = 22§, where the conformal
boundary is located at z = 0. As a result, the conformal metric g smoothly extends to the



boundary and defines the boundary metric as
9oy = lim 275 . (2.2)

The same procedure can be extended for more general spaces [110]. In particular, asymptoti-
cally AdS (AAdS) spacetimes are defined in this way, such that the bulk metric is written as

ds2—£(d22+—~( Nda'da? 2.3
= Gij(z,x")dz'dx’ ) . (2.3)

By construction, g;; has a smooth limit as z — 0, such that it admits the Fefferman-Graham
(FG) expansion [111]

Gij = 9(0)ij + 29(1yij T 2°9@2)ij -+ - (2.4)

The coefficients g(,);; with n # 0 can be obtained by solving Einstein’s equations order
by order. In doing so, the coefficients of the odd powers of z are set to zero. Here, for

2

later convenience, we will choose the radial coordinate as p = 2z°. Then, the metric for

AAdS spaces looks like

 dp? 12

ds* + —giidatda? 2.5
4,02 P) 1) ( )

where the asymptotic expansion of the boundary metric is given by

9ij = 9(0)ij T PY2)ij T T p? (g(d)ij + h(ayij log P) +.o. (2.6)

The coefficient h(g);; only appears in even boundary dimensions and the ellipsis denotes
higher powers of p which correspond to non-normalizable modes.

The near-boundary form of the metric realizes the asymptotically AdS condition on
the Riemann tensor

. . I
R;w)\cr = 2 (.gu)\gua - g,ngVA) +0 (p) . (27)

The FG expansion unveils the infrared divergences in the gravity action.? In order to remove
these divergences, one can introduce counterterms, which are the result of solving the Einstein

equations to determine the expansion coefficients g(,);;, in terms of g(. Finally, one inverts

ijs
the relations to obtain g(,);; as intrinsic covariant qujantities from the point of view of the
boundary metric, such that divergences of the action are removed. This procedure is referred
to as holographic renormalization and it was proposed in refs. [92, 113]. It is a systematic
method for extracting holographic quantities such as correlation functions, Ward identities,
and Weyl anomalies (see [93] for a review).

In a similar way that the boundary of AdS defines a conformal class of metrics, a bulk field
does not induce a specific one on the boundary. Thus, when imposing boundary conditions
in AdS, they have to deal with a conformal class rather than any specific representative,

a key ingredient to set the boundary value problem in AdS/CFT duality. For the metric

’In the AdS/CFT correspondence, the infrared behavior of the gravitational theory is mapped to the
physical properties of the gauge theory in the ultraviolet [112].



tensor, it is imperative to take a Dirichlet condition on g(g);; instead of fixing the boundary
metric h;; = gij/p; the latter obviously exhibits a divergent behavior. Therefore, the role
of the counterterms is two-fold: (i) they ensure the finiteness of the on-shell action, and (ii)
they define a well-posed variational principle for gg);;-

With a renormalized action, one obtains the holographic stress tensor by performing
a variation with respect to the boundary metric. The Gubser-Klebanov-Polyakov-Witten
dictionary relates the low-energy limit of String Theory (semiclassical regime of supergravity
on an AAdS background) to the generating functional of a gauge theory with conformal
symmetry at its boundary. The duality can be stated as

exp (ngrav[qb{O)]) = <exp (z /6/\/1 d%x ¢{0)OI>> , (2.8)

where Sgray is a gravitational action with dynamical fields living on an AAdSg4; background,
¢>([0) is the value of the fields at the conformal boundary, and Oy is the collection of gauge
operators sourced by gzﬁgo). Then, a gravitational action on a (d + 1)-dimensional AAdS
spacetime is related to the quantum effective action of a d-dimensional CFT. Considering
a scalar field in an Euclidean AdS gravity, the quantum generating functional of the dual
CFT living on a background metric g(g) reads

Zcrrl9(0): P0)] = <exp { » d xr( g(O)Z]T '+ b(0) >]> , (2.9)

where T% is the CFT stress-energy tensor and O is a scalar operator sourced by ¢(0)- Then,

one obtains a bulk/boundary relation, that is,
2 6Sren 2 551”611

1
ij 2 o i
= V=90) 09(0)ij ;g%\/jg 0Gij /El—%( sail W) (2.10)

where T%[h] is the stress tensor of the renormalized action. This tensor is made of two parts:

the first one is the canonical momentum which comes from the addition of the Gibbons-
Hawking-York (GHY) term to the Einstein-Hilbert action [114]. The second contribution
arises from the variation of the counterterms introduced to renormalize the theory. The
resulting holographic stress-energy tensor is, indeed, finite and it corresponds to a boundary
operator that is dual to the bulk gravitational field. This mapping between the asymptotic
behavior of a bulk field and the source of a boundary quantum operator in the dual CFT
is a fundamental aspect of the holographic dictionary.

For matter fields coupled to gravity, the procedure is analog. It involves the asymptotic
expansion of bulk fields near the conformal boundary. In a general setting, the 1-point
function of any field appears as the undetermined, subleading term as described in ref. [93].
The coefficient is determined by the boundary conditions imposed on the field, allowing for
a comprehensive understanding of the field’s behavior and its connection to the boundary
theory. Here, we focus on scalar operators that exhibit nontrivial interactions with the
boundary metric.

Let us examine first the four-dimensional Einstein-AdS gravity minimally coupled to
a massive scalar field. The action of such a theory is given by

/ e <R+6€_ (8¢)2_m2¢2> _% [ v, (2.11)



where M is an AAdS,; manifold, x is the gravitational constant related to the Newton’s
constant by x = 87G, R = g"VR,,, is the Ricci scalar, £ is the AdS radius, m is the mass
parameter of the scalar field ¢, and K is the trace of the extrinsic curvature of the boundary
surface, denoted by dM. An arbitrary variation of the action gives

3 = | doy=g (215 (B — KT) 69" + (06 — m?0) 5¢)

— | dPav=h (mihY + med0) | (2.12)
oM

where, in the bulk, we have defined
1
E,ul/ = R,ul/ - iRguu + Agul/ )

1
T = VbV = Sgu (VVOVa0 +m’6?) (2.13)
and the boundary variations define the canonical momenta associated with the radial evolution
of the metric and the scalar field by
1
2k

respectively. Thus, the field equations for the metric and the scalar field can be read as

(Kz - Khlj) and Ty = n“@ugb, (214)

7Tij =

Eun — kT, =0,
O¢p —m2¢p=0. (2.15)
In what follows, we shall consider the FG expansion with no logarithmic modes, which

describes a wide class of gravitational setups. In that case, the scalar field can be expanded
asymptotically as

¢(p7$1) — p(3—A)/2& — p(3—A)/2 <¢(0) + p¢(2) + .+ p(zA—g)/2¢(2A_3) 4. ) 7 (216)

where A is a constant to be determined. The holographic renormalization method for the
three-dimensional version of eq. (2.11) with A = 2 was studied in ref. [92]. Inserting the
asymptotic expansion of the fields into the equation of motion for the metric leads to the
following system of equations

0 =Rij(9) = 0pGij — 559" OpGmn + P (29imOp (4" 0pGnj) + 3" 0pGmn0pGi;)
+rwp? A (3mP 55 + p0i60;6) |

0= 3" 0pGmig" OpGpn + 20(3"" DpGimn) (2.17)
+rpt A ((3m2C +(3-10)) @ +4((3— A)p+p?) 69,0)

0= Vi (57 0pgjm) = Vi (97" OpGumi ) + 10* > ((3 = 2)60:6 + 200,00:6) ,

where R;;(g) is the Ricci tensor of the metric g. The equation of motion for the scalar
field, in turn, can be expressed as

0= (A(A =3) = m??) 6+ p (5:0:0;6 — 2(5 — 28)9,6 + (3 — A),(log §))
+ p? <28p(10g 9)0,0 + agq‘s) . (2.18)



At zeroth order in the holographic coordinate, this equation gives rise to a relation between
the mass and A given by

m2? = A(A - 3) . (2.19)

As shown in refs. [2, 3], this relation corresponds to the one between the mass of a scalar field
on an AdS background and the conformal dimension of the dual operator at the boundary.
The latter is determined by the rescaling properties of a scalar operator in the CFT and it can
be obtained by analyzing the 1-point function of the holographic operator. It is worth noticing
that, in a unitary dual theory, the scaling dimension of a scalar operator must be a positive
integer, which defines constraints on the allowed values of the mass of the corresponding bulk
field. The BF bound [115, 116], further restrict the mass to satisfy

B (;Z)Q <m0 (2.20)

This bound serves to understand the interplay between bulk and boundary physics in
AdS/CFT correspondence, matching the stability of the bulk scalar with the unitarity of
the dual theory. Indeed, an upper bound on the scalar mass can be obtained if alternate
quantization is allowed. The latter appears if one imposes that the scaling dimension in the
alternate quantization scheme is above the unitarity bound. Nevertheless, here we focus on
the standard quantization scheme that restricts the scalar mass according to eq. (2.20).

To determine the coefficients in the expansion (2.16), one needs to solve the field
equations (2.18) order by order in the holographic coordinate. This process, however, cannot
be carried out for a generic A and it needs to be addressed case by case, as discussed in ref. [92].
Looking at the scalar field expansion in eq. (2.18), at first-order in the holographic coordinate,
there appears a second-order differential equation for the scalar field which also involves first
derivatives of the boundary metric. In turn, in the equations of motion for the metric, the
lowest-order term in p is proportional to p>~2. To ensure a consistent asymptotic expansion,
one should demand that A < 3. For instance, when A = 2, a self-interaction emerges
between the boundary fields at the leading order, producing a backreaction on the geometry
of the dual CFT; this represents a critical value of the conformal dimension. Alternatively,
for A = 1, the kinetic term backreacts on the boundary only at the next-to-leading order.
Similarly, when A = 0, the bulk scalar field becomes massless and the backreaction mainly
comes from the kinetic term of the boundary scalar. These different choices of A lead to
distinct behaviors and interactions between the bulk and boundary fields, offering valuable
insights into the AdS/CFT correspondence.

Let us focus on the case A = 2 or, equivalently, m?¢> = —2. This value is, indeed,
admissible by the BF bound. Then, we proceed to solve the Einstein equations to determine
the first coefficient in the metric expansion in terms of the sources. The coefficient reads

K

92ij = —Sij(9(0)) — Zéb%O)g(o)ij ; (2.21)
where
1
Sij(900)) = Rij(9(0)) — 19(0)1']'73(9(0)) : (2.22)



is the Schouten tensor of the boundary metric g(). An arbitrary variation of the on-shell
action and using the asymptotic expansion yields

Smin = /BM \/7,0_1/2 l < —9(0)ij — 39(2)ij + O (,01/2)) 59%)
— 2 () + 0 (p'1?)) 5¢><0)] . (2.23)

Therefore, in order to preserve a well-posed variational principle, one needs to add only intrinsic
boundary terms. Indeed, inverting the series, one finds that the surface terms needed are
Set + S = 1/ d3z/—h (2 + eR(iL)) + 1/ d3x/—h il (2.24)

ct o) K Jom Y/ 2 K JM 20 ’ '
which renormalize the gravity sector [89, 92] and the counterterm for a massive scalar field
on AdS which cures the divergences coming from the scalar sector [116].> Then, the action

Sisin = Smin + Set + S, (2.25)

is finite on shell. Nonetheless, it is possible to add an extra term
. 3. 7

where n* is the outward-pointing unit normal to the boundary. Its coupling ~, by the use
of a Legendre transformation, redefines the mass of the scalar field. This extra boundary
term has been considered in refs. [117, 118] to obtain the correct thermodynamics for a
given v which matches the ADM mass. At first glance, this term may be at odds with a
variational principle based on mixed boundary conditions (see appendix A). However, within
a holographic framework, what is relevant is that the variation of the action is finite and
written down in terms of the variation of the holographic sources* That is the reason why,
one can replace this extrinsic term by another which depends explicitly on the sources and
the boundary conditions [119, 120]. Then, the counterterm for the scalar field is

/ d’zv/—h (;bz Kgﬁ(f;?)) <z>3) (2.27)

where W <¢(0)> is determined by the boundary conditions (see appendix A) such that

ba) = % . (2.28)

Considering these new counterterms is crucial for establishing a well-defined variational
principle for the source of the dual scalar operator under various boundary conditions. In

3The covariant counterterms for the massive scalar including logarithmic modes have been found explicitly
in ref. [92], up to second order.
A similar discussion, for the metric field, leads to extrinsic counterterms in AdS gravity [99].



the presence of mixed boundary conditions, the additional contribution from eq. (2.27) intro-
duces finite terms that represent multi-trace deformations of the CFT generating functional,
potentially disrupting scaling symmetry depending on the conformal weight of the scalar
operator. In the case of A = d, the deformations are marginal, and conformal symmetry is
preserved. Hence, the mass of the scalar field is important for a well-defined holographic
CFT. Later, we illustrate how coupling the GB invariant through a scalar field function
introduces an effective mass for the bulk scalar. This effective mass is constrained by the
unitary bound and, under certain boundary conditions, by scaling symmetry. The latter
constrains the parameter space of the scalar-tensor theory, crucial in the effective description
of string theory beyond the leading order in the string coupling [121, 122].

The renormalized Euclidean action for the minimally coupled scalar with A = 2 reads

1 R+607°
=3, d“wa( T - (00 - m2¢2)

K

1 , 2 ¢ & W (s0) ,
+KAMdmﬂLK—K—iMM—ﬁ(%+&%)¢ : (2.29)

Additionally, the quasi-local stress-energy tensor is given by

1 2 1 > W20
Tylh] = — [ Ky — Kby + This = € (Res = 3Ry )| = b (25 - ggb? | )o) . e
0

and it provides a regular holographic stress tensor through eq. (2.10). In the next section,
we follow to same procedure to find the covariant counterterms in theories of gravity with
a non-minimally coupled scalar field.

3 Scalar-Gauss-Bonnet gravity

Gravitational dynamics arising from the low-energy limit of string theory is not governed
solely by the Einstein equations. Indeed, higher-derivative terms induce effective theories
with nontrivial interactions between the dilaton and the gravitational field. In the case of the
heterotic string, the effective field theory contains higher-derivative terms at the first order in
o' corrections [121, 122] and its dynamics is dictated by the scalar-GB (sGB) action [123, 124].
Although these modifications are small compared with the string coupling from an effective
field theory viewpoint, they can be used to study scalar hair condensation holographically
with/without spontaneous symmetry breaking [88], as well as excitations of the ground state
of superconductors [125]. In the gauge/gravity correspondence, o’ corrections correspond
to the t’Hooft coupling corrections in the dual field theory. In this section, we study how
these stringy-generated gravity theories would modify the holographic correlators of the
scalar and graviton fields.

Let us consider sGB. This theory represents a particular sector of Horndeski gravity and
it involves the coupling of the GB invariant with an arbitrary smooth function of the scalar
field, building on top of the action in eq. (2.11) while omitting the GHY term. Specifically,



the action for sGB gravity is

R+ 6¢72
Scn =3 [ dov=g ( ~(00)" — m*? + 2f(¢)9) , 3.1)
where the GB term is given by
G = R\ R"™ — AR, R"™ + R? . (3.2)

The field equations of the theory from arbitrary variations with respect to the metric and
the scalar field, which yield

1
Ry — 59WR + Mgy = £ (T + Cp)

06 —m?¢ = — () (Buno R — 4R, R™ + R?) | (3.3)
respectively, where T}, has been defined in eq. (2.13) and
Ol = — 203 T RNV o (). (3.4)

Let us consider a power-series expansion of the scalar coupling function

¢) = fmyd" - (3.5)
n=0

Using the same asymptotic expansion as in the minimally coupled scalar [cf. eq. (2.16)],
the scalar equation becomes

24 f(1)p 2972 + (48f(2) + 0 (A(A 3) — )) o+ 0 ( (A“)/Q) =0. (3.6)

From this expression, one can see that the quadratic sGB coupling contributes to an effective
mass for the scalar field, say meg, that is defined through the relation
48f(2)

72

The explicit form of the field equations turns out to be lengthy and we shall not present

2€2_

m2gl? == m (3.7)

them here. However, the leading-order analysis indicates that A > 1 is necessary to have
a nontrivial scalar source. Additionally, if A > 3, there is no backreaction of the scalar
field on the boundary metric, giving a trivial scalar source. Thus, similar to the minimally
coupled case, we select A = 2 for our analysis. This choice leads to more interesting dynamics,
including the interaction between the scalar field and the boundary metric. Notice that, for
this value of A, the scalar field gives a finite contribution to the on-shell action at the cubic
order. Then, the relation between A and the mass of the scalar field becomes

48
m** = S5 fo) = mepl’ = A(A =3) = =2 (3.8)

Then, in order to have a well-defined unitary quantum field theory at the boundary, the
effective mass of the scalar field must satisfy the BF bound, that is,

—% < mZgl* . (3.9)

,10,



The asymptotic analysis of Einstein equations requires that f(;) = 0. Furthermore, the
consistency of higher-order terms in the expansion requires that either f3) =0 or that the
boundary value of the scalar field satisfies qb%o) = 0. In our analysis, we will assume the
former. This choice simplifies the equations and allows us to focus on the relevant aspects of
the theory. It is worth noticing that O(¢?) contributions in the function f(¢) are finite when
considering the on-shell action. Therefore, they do not play a role in the discussion.

Using the asymptotic expansion to solve the Einstein field equations order by order
one finds that

K 48
92y = — S (9(0)) 1 (1 - @f(2)> ¢%0)g(0)ij7
i 2K 48
V9@ = 3 { [32f(2)¢>(1) — 8k f(2) <1 - ﬁf(2)> ¢%0)} djd0) — (52 - 32f(2)) ¢(o)3j¢(1)} ;
4k 48 4k
Tr g =+ <1 - £2f(2)> <3€2f(2)¢?o) - ¢(1)) b0y » (3.10)

which recovers the coefficient of the minimally coupled scalar theory if f(2) = 0. An arbitrary
on-shell variation of the action alongside the asymptotic expansion of the fields yield

_ 1 3 =1 2 ijso 2\ ~ijs (9 &
0SsaB = 25/8Md wx/—gm [ (5 - 8'if(o>) 9" 6gi; +p{ (16f€f<o> —20 )g 6 (9p9i5)

TeT Nij Lioycij | cijomng = 72 ~ij
— 20%Kk¢0¢) — <8/<cf(o> (R(g) 7= 5R(9)97 + 379 pgmn) + 242k g"

+ 523pgij>5gij} +0 (pZ) ] . (3.11)
If the zeroth-order coefficient of the scalar function expansion is chosen as
£2
= — 3.12
f(O) Sk ( )

then, the Finstein-Hilbert sector becomes finite and a well-defined variational principle is
achieved in terms of the sources without the need of a GHY term. This coupling coincides
with the one obtained in ref. [96] for pure Einstein-AdS gravity. In four dimensions, the GB
term is purely topological. This means that adding it to gravity action does not introduce
modifications to the bulk dynamics, even though it changes the value of the on-shell action
and conserved charges in a nontrivial way. Moreover, the Einstein-Hilbert action coupled
to the GB term with the coupling (3.12) on-shell is a sector of conformal gravity as shown
in ref. [98]. The possibility to embed Einstein gravity in conformal gravity has shown to be
useful in renormalizing gravity coupled to conformally coupled scalar fields [104].

The inclusion of the GB invariant together with the counterterm in eq. (2.27) is sufficient
to have a renormalized on-shell action. To see this, let us first define

1 1
Ty = <TW - 2gWTW> + <C’W - 2gWC') . (3.13)

This structure appears in the on-shell value of the Weyl tensor and the GB density. Using
the on-shell relation

24 4k _ L 2__
v B _ pHY pof 2 [ cuv caXTFBAFM ey 2
Waﬁ Wﬁy = RaﬁRfZV — ?2 + 72 T+ k <5a55377T)\TV — 4TVTH — gT > , (3.14)
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we can write the GB density in terms of the square of the Weyl tensor. Then, the on-shell
action can be written as

Sn = [ dov=g [ it 5T+ (16 - 501@) (W;‘EWSE + 2
- %T + K2 (gT2 - 55;5391“‘;?2) )] — % /6 » B/ —hn'$d,é . (3.15)
Notice that
£(8) ~ 565'(8) = fio) — fnd — 2wd* + - = ﬁ_'fo (1-5) fwe". 310)

does not contain quadratic terms. Then, the sGB coupling cannot be used to remove
quadratic self-interaction terms.

Since the Weyl square term is finite for AAdS spacetimes, we can choose the value of
eq. (3.12) such that the first two bulk terms cancel. Then, we are left only with quadratic
terms in 7. These terms remain finite if the action contains quadratic kinetic terms and/or
quadratic self-interacting potentials as in the case in sGB gravity. Hence, the only divergences
that cannot be eliminated by the GB density are those associated with the minimally coupled
scalar field, that can be renormalized using the counterterm in eq. (2.27). As a result, the
renormalized action can be expressed as

GB = 95GB + 55 (3.17)

where f(¢) = % + f(2)¢2, even though higher-order terms could be considered as they
give finite contributions.

The holographic 1-point for the scalar field depends on the boundary conditions and is
controlled W (gb(o) . For the holographic stress-energy tensor we obtain®

32 8K 48
(Tij) = — £ {W (¢(o)) - <1 - ﬁf(2)> P00 + 2 o) (1 = 22]‘”(2)) ¢‘Z’0)] 9(0)ij
302
T 59 (3.18)

whose trace yields

(T) = —3¢2 {W (¢0)) - é¢(o>¢(1) - ;%f(z) (1 - %f (2>) d’?m} : (3.19)

Notice that if we consider mixed boundary conditions that respect conformal invariance,
ie., W (gb(o)) = Cd)?o), with C' some arbitrary constant (see ref. [120, 126]), and using the

fact that W’ <¢(0)> = ¢q) [cf. eq. (2.28)] one obtains

48
(1) = 165fi5) (1= 5 i2)) o5 (3.20)

5For Einstein gravity with a minimally coupled scalar field, i.e., f2) = 0, the stress-energy tensor matches
exactly that of ref. [120]. Our notation relates to theirs by identifying F(¢0)) = —€*W (d(0))-
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Focusing on the nontrivial quadratic self-interaction, that is f(z) # 0, we find that conformal
invariance of the boundary CFT implies®

€2

for =15 - (3.21)

Thus, the effective mass defined in eq. (3.7) becomes mgHEZ = m?¢? — 1. Then, replacing
this value into eq. (3.9), we find a modified BF bound for the bare mass m triggered by
the scalar-Gauss-Bonnet coupling, that is,

2 em, (3.22)

The above results indicate that the addition of the GB term in the bulk is useful to
renormalize the bulk theory, in a similar fashion as in the pure AdS gravity case. This
invariant, when expressed as a boundary term, can be thought of as an extrinsic counterterm
series. It is noteworthy that the boundary contribution of the GB term in four dimensions
cannot be seen as a quasilocal stress tensor. However, it does contribute to the holographic
stress tensor and renders the variation of the action finite.

If we consider Dirichlet boundary conditions, denoted as W (gf)(o)) = 0, the variation of
the renormalized action introduces an additional piece arising from the boundary value of
the scalar field. As a result, the vacuum expectation value of the boundary scalar operator
can be expressed as

1 6Spn ,(1 1 555

O = — 111m
> Vv —9(0) 5¢(0) e—0 \ eA—d vV—h 6¢

which matches the holographic 1-point function of the scalar operator dual to a scalar field

) = —¢0) = (A= d)ppa-a),  (3:23)

on an AdS background with Dirichlet boundary conditions.
If we take instead f(3) # 0 and (25%0) = 0, we found that asymptotic analysis of the
field equations gives

g2y = —9S <9(0)>¢j ;

i 2K 2
Vo9 = 3p [32f<2>¢><1)5j¢(0> - (5 - 32f<2>) ¢<o)<9j¢<1>] :
4k
T g = — 555 (€~ 48f)) 090 - (3.24)

Using the same counterterm as in the previous case, given in eq. (2.27), we find that

3K
(Tij) = (52 - 32f(2)) ¢0)P(1)9(0)ij + 22 93)is » (3.25)

which, independent of the boundary conditions, is traceless. Moreover, considering Dirichlet
boundary conditions one gets

(0) = —d1) = —(2A = d)d2a—a) » (3.26)

just as in the previous scenario.

5For more examples of breaking scaling symmetry due to the inclusion of scalar field, see ref. [120].

,13,



Another interesting scenario to explore involves setting A = 3. In this case, the scalar
field behaves as

d(p, ") = d(0)(z") + pda) (2") + p* 23 (") + ..., (3.27)

near the boundary. The relation between the mass and A becomes
48
m* = 53 fe) - (3.28)

Solving the field equations order by order, we can derive several conditions on the scalar
couplings f(,). First, the zeroth-order equations yield f;) = 0 = f(3), or alternatively,
Ja) = 0 together with gb%o) = 0. Assuming the former condition, the Einstein equations
impose foy = 0. Then, we obtain

R m
@i = —S90))i — 909" ¢(0)ImP(0) + £0i(0)9j¢(0) »
1
by = §D(O)¢(o) )
Tr g3y =0,
i 2K
Vi9®)ii = 73 21)9i%0) - (3.29)

Arbitrary variations of the on-shell action make evident that selecting the zeroth-order
coupling in eq. (3.12) eliminates the leading-order divergences. However, to address the
remaining divergences associated with the scalar field, we need to introduce an appropriate
counterterm. We have determined that including the intrinsic counterterm

Sty = _g /a » d3x\/—hh' 0,0 , (3.30)

together with the choice in eq. (3.12), renders the renormalized action
taB = SsaB + SiGB » (3.31)

finite on shell. This approach allows us to handle and regularize the divergences encountered
in the theory. The resulting holographic stress tensor is given by

(TVy = g7 (3.32)

Remarkably, this holographic stress-energy tensor is traceless as can be seen from eq. (3.29).
Additionally, we find a non-zero vacuum expectation value for the boundary scalar operator
when we consider Dirichlet boundary conditions

(0) = =3¢3) = —(2A — d)d2a-a) - (3.33)

This expectation value is akin to the behavior observed for the scalar field in AdS. These
results provide insights into the behavior of bulk fields and their dual operators in the context
of the AdS/CFT correspondence.
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Finally, considering ¢%0) = 0 while keeping f(3) unconstrained, the holographic data

now reads
oY m
@i = —S90)is = 790)iOnP© 9" b () ;
1 72 -1
¢ =3 (1 - ﬁf <3>¢<0>) D)9
64&
. 2% 32
Vi0)93)ij = 32 3+ ﬁf@) b3)05%(0) + ﬁf@)ﬁb(o)aj(?(?)) . (3.34)

In this case, the holographic stress tensor is

302

(Tig) = 59 — £2f 29(0)P(3) » (3.35)

which is traceless as a consequence of eq. (3.34).

4 Kinetic coupling to the Einstein tensor

A particular sector of the Horndeski theory, which has been widely studied, considers the
nonminimal coupling of the scalar field to the Einstein tensor. This term belongs to the
Horndeski class of gravity theories and it does not introduce higher-curvature terms. This
coupling has been studied holographically to break the viscosity/entropy bound [127-129]
of ideal fluids without the need of adding higher-curvature corrections [130]. This serves
to study how o' corrections to the hydrodynamics modify the holographic description of
the boundary theory.

In the case under consideration here, a scalar coupling of the GB term is also included

—2A

Su= [ dloy=g (T30 - 5007 - i+ [0 + 1GLTIVS) . (41)

The field equations can be obtained by demanding arbitrary variations for the metric and
the scalar field, giving

G,uz/ + Ag;w =K (T,uzz + C,uzx + H,ul/) ) (4'2>
vu [(g‘w - nGuy) vu¢] = ngb - f/(d))g

respectively, where T}, and C},, have been defined in egs. (2.13) and (3.4), and

H,, = [5;§§va¢vy¢32g SNV, GR’

+ 20,0, GagVoOVI6 + 2050090V 0V 36 (VadV70) | (44)
is the contribution to the field equations coming from the scalar-kinetic coupling to the
Einstein tensor.

For a massless scalar field, the absence of the GB coupling implies that this theory is
endowed with a shift symmetry in field space, namely, the field equations remain invariant
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under ¢ — & + ¢, where ¢g is a constant. This is the typical symmetry exhibited by
Galileons [131-133].7 In that case, however, there exists a no-hair theorem which prevents
from finding black hole solutions with a nontrivial scalar field [134]. Nevertheless, a suitable
on-shell condition on the metric can be imposed such that the no-hair theorem is circumvented,
allowing for asymptotically locally flat black holes [34]. Later, the same idea was extended to
the case with the cosmological constant [35] and with Maxwell fields [36]. In this section,
we consider the coupling between the scalar field and the GB term such that the shift
symmetry is broken, to see how the BF bound is modified with respect to the one found
in the previous section.

4.1 A =2

Performing the asymptotic analysis in the presence of the kinetic coupling to the Einstein
tensor, we find that the effective mass relation is modified according to

m2gl? = A(A - 3) (1 - 5’27;> =2 (1 - ;277) , (4.5)

where we have used A = 2 in the last equality. The boundary scalar equations impose
that f;) = 0, together with either f3y = 0 or gb%o) = 0. We choose f(3y = 0 to ensure
that the boundary value of the scalar field remains unconstrained, displaying a nontrivial
interaction with the boundary metric. Then, solving the equations of motion order by order,
the coefficients are found to be

K 48 5
925 = — S(90))ij — 1 <1 - ﬁf@) - 6277> ¢%0)g(0)ij7
4k [ 4K 5 48 3 6 48
Tr g3y = 5 {ngm) (1 — ol ng(Q)) Do) — (1 i ng(Q)) ¢(o)¢(1)] ;

) 2% 48 5
Vi0)93)ij = 352{ [(32f(2) + 277) by — 8k f(2) (1 - ﬁf(z) - 5277) ¢%0)} 9i9(0)

- (52 —32f2) — 577) ¢(0)3j¢(1)} : (4.6)

Let us consider the variational problem. Using the asymptotic expansion and taking
an arbitrary variation of the fields, we find

_ 3 _ij (5n -
55y = /6 » dBax\/=gp 2{ (62 - 8nf<0)) 9" (69ij + 2p00,3i5)
- - 1 —\ =17 —27 =mn — - —im=jn
= 2] (8 = 30) 366~ (450, (SR@G + 575Dy = R(G) g™ " )

12-ij 62 M =jng - P
=2k (77 + 12f(2)) ¢°g” + 59 g’ 0pgmn> 03ij

+ (’)(pQ)} . (4.7)

Notice that, in this case, eq. (3.12) also removes the divergences coming from the gravitational
sector. Additionally, we must take into account the counterterm in eq. (2.27) associated

TIf the scalar coupling to the GB is linear, the theory still has shift symmetry. However, this possibility
was excluded by the dynamics as shown in the previous section.
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with the scalar field. However, this counterterm should involve the kinetic coupling to the
Einstein tensor. Then, the renormalized action turns out to be

ren 1 3
SH™ = S + 4 (1 - e?”) Sy . (4.8)

Similar to the previous section, we can write the GB in terms of the square of the Weyl
tensor and check that the on-shell action in eq. (4.8) is, indeed, finite. For the holographic
stress-energy tensor, we find that it is given by

(Tij) = — C(0)i; [ (1 - ;W> W (¢0) - (1 - %f@) - ;U> ZOLIEH

5 48 302
+ 8k f(2) <1 — ol ng(Q)) ¢?o)] 596 - (4.9)

Imposing suitable boundary conditions, i.e., W(¢) = C(b?o) , the trace of the latter becomes

48 5
(T) = —165f2) <1 - fe) — 6277) ¢o) - (4.10)

Therefore, conformal invariance is preserved in the boundary field theory if the trace vanishes.
This implies that fo) = 0, or

2 5

=—1-— . 4.11
foy= 13 ( 7 77) (4.11)

The latter condition yields an effective mass for the scalar field given by

5

m2gl? =m0 — 1 + 2" (4.12)
which is continuously connected with the value obtained in section 3 in the limit n — O.
Then, the modified BF bound can be obtained by replacing eq. (4.12) into eq. (3.9), giving

5 5
—Z < m?? +

Moreover, if we consider Dirichlet boundary conditions, i.e. W (gf)(o)) = 0, we find an
additional contribution to the vacuum expectation value of the boundary scalar coming
from the kinetic coupling, namely,

©) == (1= Zn) oy =~ (1= 50) @A~ Doa (119

This modifies the result of the minimally coupled scalar field by a factor of (1 — 3np¢=2).
Moreover, the diffeomorphism invariance of g(g) at the boundary implies a holographic Ward
identity. While the coefficient in the expansion at a holographic order, g(3), can not be
determined, we can determine its trace and divergence throughout the field equations. Then,
the Ward identity reads

A 3
Vi) = (1= n) dwdisn =~ (@.15)
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which matches the result of ref. [92] for the minimally coupled scalar field. This computation
of the holographic energy tensor-momentum tensor is not associated to a quasi-local stress
tensor on the gravity side. However, the coupling of matter renders its divergence different
from zero, as it is related to the flow of momentum out of the boundary [114].

Let us examine Horndeski theory by considering a different possibility. For instance, if
we fix A = 2 with gb%o) = 0 while keeping f(3) arbitrary, we obtain

92)ij = — S(900))is »
4k 48 6
Tr g3y = — 3 (1 - gjf@) - €2U> ¢0)9(1) »

2 [(326a) + 2n) by D560) — (2 = 32fa) — 1) by Oyo)] - (4.16)

WO)Q(S) = 302

The variation of the on-shell action gives the same kind of divergences as in the previous
case. Therefore, the renormalized action must be the one in eq. (4.8). The holographic
stress tensor in this case becomes

352
(Tij) = /2 (1 - f P2 77) P0)P(1)9(0)ij T+ o S5 7903)ij (4.17)

which is always traceless as ¢(; is proportional to positive powers of ¢y when considering
mixed boundary conditions. Therefore, considering ¢ to be infinitesimal, one has a well-
defined boundary CFT with a continuous n — 0 limit. Finally, using Dirichlet boundary
conditions we find that the vacuum expectation value and the Ward identity associated to
the boundary scalar operator are the same as in the case with f(3) =0 and ¢ unfixed.

4.2 A =3

Consider now the case A = 3. For this choice, the mass simply becomes m?¢* = 48 f(2) and
the scalar equation imposes either f1) =0 = f3) or f1) =0= (;5%0). Moreover, the zeroth
order of the Einstein equations restricts further the theory with f() = 0 or qﬁ%o) = 0. Focusing
first on the case when ¢q) is arbitrary and solving for the coefficients of the metric, we obtain

K 3 m 2
925 = — S(900))ij — 1 (1 7 77) 0)ijIm®0) 0" P(0) + K (1 - 5277) 0i$(0)05b(0)

1
¢2) = 5H0)(0)

Tr g3y =0,
i 3
Vi0)93)ij = 26 <1 — 6277> ?(3)9i9(0) - (4.18)
An arbitrary on-shell variation of the action with f) = 02 /8k yields
1 = - SMI-=NJa 19 15— ~ij 1am e~
5Su= =5 [ dhev/ =g 2w (§75"0,60,605mn — 5000 963
2 Jom

+ <R(g)ij —~ %R(g)g” +gmgn apgmn> 0gi; + 4 (% = 3n) 9,000] . (4.19)
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In order to eliminate the divergencies in this case, we notice that the same counterterm as in
the sGB theory renders the theory finite but with a different coupling, that is,

s L (1 - 3n) [ v/ RnI0,6050 (4.20)
2 2 oM
Then, the action
SH™ = S+ Si, (421)

is on-shell finite. Although the counterterm in eq. (4.20) is necessary, most of the aforemen-
tioned solutions have a scalar profile that depends on the radial coordinate only, making the
counterterm identically zero. Thus, the particular value of eq. (3.12) is enough to remove the
divergences of the theory. Nevertheless, it has been found that the theory admits regular
solutions if one considers time-dependent scalar field [28], such that the scalar does not
inherit the spacetime symmetries, but the stress-tensor does. Moreover, there are interesting
solutions of scalar-tensor gravity theories containing scalar fields that depend on both the
radial and boundary coordinates such as accelerating black holes [135-138], whose holo-
graphic properties remain to be fully understood, and instantons [92, 139], that can be
used to explore vacuum decay of the boundary conformal theory [140]. In this case, the
holographic stress-energy tensor becomes

2
3C i (4.22)

(Tig) = 5,-9(3)

which is traceless. Moreover, the vacuum expectation value of the boundary source becomes
3 3
(0)=-3(1- 2" e =—{1-a" (2A = d)pa—a) - (4.23)

This shows how the couplings of the theory modify the value of the 1-point functions of the
dual operators. Moreover, the holographic Ward identity becomes

A 3
Vio(Tuh =3 (1= 531) dw i = ~(0)05600) (1.24)

just as in the previous cases.
Finally, for an arbitrary f(7) and setting the source of the scalar operator to be infinitesimal,
ie. qb%o) = 0, we find that the coefficients can be solved as

2
9@)i; = — Sy + k (1 - pn) 9ib0)05%(0)
K 1
tn (24f(2)¢(o)¢(2) ~1 (52 - 377) 3m¢(o)3m¢(o)) 9(0)ij

1 2 —3n
¢(2) 9 <g2 —3n— 72f(2)¢(0)> D(0)¢(0)

64k
Tr gi3) = ng(z)¢(o)¢(3) )

i 2% 32 9 32
V9@ = 32 [(3 + ﬁf@) - 6277> b(3)0j9(0) + ng(2)¢(0)8j¢(3)] , (4.25)
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Choosing f(g) as in eq. (3.12) and considering the same counterterm as in eq. (4.20), the on-
shell action becomes finite and the variational principle is well-posed. Then, the holographic
stress-energy tensor becomes

32 302
(Tij) = —ﬁf(2)¢(0)¢(3)9(0)ij + 5 9)is (4.26)

which is traceless by virtue of eq. (4.25). If we consider Dirichlet boundary conditions, the
scalar operator acquires a nontrivial vacuum expectation value, that is,

©)= =3 (1= ) é5) =~ 28 = d) (1= 50) b2 (4.27)

and a Ward identity which is given by

i 3
Vio(Tij) =3 (1 - pn) ¢3)9i90) = —(0)9i90) » (4.28)
Just as in the case with an arbitrary ¢).

4.3 Minimal Horndeski theory

Finally, we discuss on the particular case f(,) =0 = m?, Vn € Nxg [141, 142], which has
received a lot of attention in a holographic context [48, 53, 55-59] as it contains analytic
solutions [28, 35, 36, 38, 39, 42-45, 47, 143]. The action in this case is

R—-2A 1

s = 5 (O~ 16 VIV 6+ [ ) (429)

SHmin = / d4x\/ —g <
M

where we have included an arbitrary constant for the canonical kinetic term; this is achieved
by rescaling the scalar field and the metric.® Additionally, we have included the GB term
as it will serve as a counterterm in the scalar-tensor theories we are interested in. Recall
that this sector of Horndeski theory is endowed with a shift symmetry as the scalar field
appears only through derivatives in the action.

The field equations correspond to a subset of eq. (4.2); explicitly, they are

G;u/ + Aguu =K (T:}ll,m + Huy) s (430)
\%a [(aguu - nGuu) vy¢] = Oa (4.31)

where T;;m = $T,, with the latter defined in eq. (2.13) by setting m = 0. Using the FG

expansion, we find that the scalar field equation becomes
A(A=3)(Fa=3n)¢+0(p) =0, (4.32)

which is satisfied either if A = 3 or n = %EQa to all orders without fixing the conformal
weight. If the latter point in the parameter space is assumed, then the action is renormalized
simply by the GB term if one fixes f( as in eq. (3.12). Nevertheless, this is a critical point

8Consider ¢ — o~ '¢ and g, — agu., such that R — o *R. The Einstein tensor is scale-invariant, i.e.,
Guv — Guv and, rescaling, A — aA, k — ax, the minimal Horndeski theory with canonical kinetic term, i.e.,
a =1, becomes that of eq. (4.29).

— 20 —



of the theory. As shown in refs. [48, 53, 57|, the theory admits a solution that is nearly
AdS with a nontrivial scalar field whose integration constant appears in the same footing
as the cosmological constant. Therefore, to obtain a scalar field with a more interesting
backreaction, in this subsection, we focus on the A = 3 case with a # 3np¢~2. This choice
fixes Dirichlet boundary conditions for the scalar field; neither Neumann nor mixed boundary
conditions are allowed for A = 3. Additionally, the scalar field becomes massless (see eq. (4.5)
with f(,) =0, Vn € N5g), it lies within the BF bound, and its holografic stress-energy tensor
is traceless. This implies that there are no restrictions whatsoever on the parameter space
coming from the compatibility of the BF bound, the conformal invariance at the boundary,
and the absence of ghosts in the bulk theory — see eq. (4.34) below.

In an FEinstein-AdS background, the scalar sector of the minimal Horndeski theory
becomes simply a minimally coupled massless scalar, that is,

2
Thus, the absence of ghosts implies the inequality
3

The bound is saturated at the critical point in which the scalar contribution vanishes. These
kinds of critical points were also studied in the pure GB gravity [144] and the black hole
solution of ref. [35] simply becomes the Schwarzschild-AdS black hole with a vanishing scalar
field. In this case, the holographic stress-energy tensor is traceless and it equals that of the
pure gravity case. Nonetheless, it is possible to obtain an exact global AdS background
with a nontrivial scalar. The latter breaks the AdS isometries and it contains a logarithmic
mode in the FG expansion. This indicates that the dual theory is scale invariant but not
conformally invariant (see ref. [145] for details).

Solving Einstein’s equations order by order, we obtain f(1) = 0 = f(3) as before, and
the coeflicients of the metric expansion are now solved as

9@2)ij = — Sij (9(0)) e (5204 - 377) 0)ijIm 09" P(0)
+ (5204 - 2"7) 9i9(0)05b(0)

Tr gi3) =0,
i 2K 3
V(o)g(s)ij = 2 (04 - 6277> ¢(3)3j¢(0) . (4.35)

Considering an on-shell variation of the action with the GB coupling found in eq. (3.12),
we arrive at

1 3. -1 L ij o i ' 307
0 SHmin = 5 aMd x,/—g l 2 ( o — 377) (29(é)¢<o) -0 ¢(o>5”¢<o>) — 593 | 0905 -
(4.36)

This is finite if we choose the value in eq. (3.12) but the critical value of 7 is still needed.
Nonetheless, the latter can be rendered arbitrary if we add a suitable counterterm, that is,

St = —ﬁ 5204—377 / A3/ —hh 0,00, . (4.37)
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With this counterterm, the action is finite. Then, the holographic stress-energy tensor is
given by

302
(T) = 5 I@)id > (4.38)

and the vacuum expectation value for the boundary scalar operator and the holographic
Ward identity become

(0)=-3 <a - 5’2?7> b@) = — (a - 5277> (2A = d)pea-a) ; (4.39)
and
i 3
V{T;;) =3 (a - 6277) $(3)0i00) = —(0)0jd(0) » (4.40)

respectively. Notice that, at the critical point a@ = 31n¢~2, the vacuum expectation value
of the scalar field vanishes and the holographic stress-energy tensor becomes covariantly
conserved. In this case, the known scalar-field solutions either vanish or do not backreact
and the action becomes simply the one of Einstein’s gravity. This shows that taking the limit
to this critical value is consistent also at the level of 1-point functions.

5 Discussion

In this work, we have analyzed the holographic properties of different gravity theories of the
Horndeski class. The aspects of the renormalization of both the action and its variation,
for AAdS spaces, are worked out in great detail. To this end, we introduced the GB term
nonminimally coupled to an arbitrary function of the scalar field. One of the main results is
that the asymptotic analysis of the field equations restricts considerably the form of such
a function. In particular, we found that the linear-scalar coupling to the GB term is not
allowed in AAdS spaces as a consequence of the field equations. The sGB coupling contributes
to an effective mass of the scalar field and we find how the BF bound is modified by the
presence of this term in the bulk.

If the scalar-kinetic coupling to the Einstein tensor is introduced to the sGB theory, we
find that its contribution shifts the BF bound. We have analyzed different possibilities and, in
all cases, we obtained the counterterms that render the theory finite, the vacuum expectation
value of the scalar operator at the boundary, and the holographic stress-energy tensor.
Furthermore, we have studied the holographic Ward identity associated with coordinate
transformations at the boundary and identified how the nonminimal coupling of Horndeski’s
theory produces the correct anomalous term. When considering mixed boundary conditions,
we found that in all theories with A = 3 the deformations are marginal and there is no
breaking of scale invariance at the boundary. However, in the case of A = 2, we get that there
is a possible conformal anomaly that depends on the scalar potential. In the case of the general
coupling between the scalar field and GB invariant, the quadratic scalar induces on-shell
a modification of the effective mass of the scalar. Therefore, for certain values of the fy)
coupling constant, there is a breaking of scaling symmetry producing an anomaly term in the
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dilatation Ward identity. Such anomalous terms can be also avoided by coupling the Einstein
tensor with the kinetic term of the scalar and fixing the coupling in terms of the sGB potential.

The minimal Horndeski gravity theory considered in eq. (4.29) encompasses numerous
black hole solutions. However, only a limited subset among them possesses exact solutions
for the scalar field, as usually only its radial derivative is known, rather than the full analytic
expression. Nonetheless, there are a few cases in which this issue can be circumvented. In
these situations, the solutions feature either negligible backreaction or modify the geometry as
an effective cosmological constant. For instance, in ref. [35], an analytic solution corresponding
to a topological Schwarzschild black hole with a flat transverse section and such an effective
cosmological constant was found. There exists an analytic solution for the scalar field,
even though there are new logarithmic divergences near the boundary. For those cases, the
additional divergence introduced in the action (4.29) can be thought of as coming from an
effective cosmological, which appears as modified by the scalar field, such that can be properly
renormalized. This approach requires a fine-tuned coupling for the GB term as in eq. (3.12)
but in terms of an effective cosmological constant. As a result, introducing the GB term
with a different coupling is sufficient to renormalize the additional divergences in the action,
even in the presence of logarithmic modes of the scalar field.

Interesting questions remain open. In particular, extending this analysis to include the
logarithmic modes is certainly very important, since some of the known analytic solutions
in the literature are endowed with this asymptotic behavior. The latter will allow one to
check explicitly the compatibility between the Noether-Wald entropy and the one obtained
via Euclidean methods. Indeed, the additional boundary terms found here might contribute
to the renormalized Euclidean on-shell action at finite order, modifying the thermodynamic
variables. We expect that the latter will solve the discrepancy while satisfying the first
law of thermodynamics. However, since the black hole solution of ref. [35] is endowed with
logarithmic scalar modes, we postpone a deeper study of this point for a forthcoming paper.
Additionally, it is well known that in even boundary dimensions, the holographic trace
anomaly is related to the logarithmic modes of the metric [113]. The role of nonminimally
coupled scalar fields in the holographic trace anomaly is indeed worth studying, alongside the
generalization of the counterterms found here to higher dimensions. On the other hand, the
results found here are useful for studying holographic measurements such as entanglement
entropy and superconductivity, which may be the subject of future work.
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A Scalar field boundary conditions

In order to stress the importance of boundary conditions in the dual field theory, let us
analyze the case of a massive scalar field on global AdS as an example. The corresponding
action can be expressed as

S— % /M @12 /5 [(00)” +m?] (A1)

where M is an Euclidean AdS,,; background with spacetime coordinates z# = (z, ). Its

line element in the Poincaré patch is given by
P 2 i 3
ds* = - (42 + 6ijdaida’) . (A.2)

An arbitrary variation of the on-shell action with respect to the dynamic field yields

55 = — /M /g (V2 m?) 86 - /8 | deVh (n,0) 59

_ /BM dy (’Z)ldazqs&z) . (A.3)

Depending on the boundary conditions, an extra boundary term must be added such that
the on-shell action possesses a minimum. For Dirichlet boundary conditions, the variation
of the scalar field vanishes at the boundary, so there is no need to add such a term. For
Neumann boundary conditions, however, the normal derivative of the scalar field is fixed.
Thus, one needs to add

Sy = / il <Z>1_d¢8z¢, (A.4)

to the bulk action, such that the variational principle is well-posed. Then, the source of the
boundary scalar operator is given by the normal derivative of the field. This corresponds to
the radial canonical momentum associated with the scalar field. Additionally, it is possible
to impose mixed boundary conditions that involve a relationship between the scalar field
and its normal derivative. The latter specifies the behavior of the boundary scalar operator
according to

b= ¢+ A6, (A.5)

where A is a non-zero real number. Then, one needs to consider a boundary term of the form

St = —;/d% <;>1d¢az¢>, (A.6)

and the source is now related to ¢ .
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On the Euclidean AdS;;1 background, the field equation for the scalar field can be
written as

ARy (zlfda,z(p) + 2269 0,0;¢ = m20%¢ . (A.7)

Near the boundary, one can check that the solution is,”

¢(z,2") ~ 272 (2") + 22 (a') (A.8)

[ 12
Az%:l: dz+m2€2. (A.9)

In ref. [2], it was shown that A corresponds to the conformal weight of a scalar operator of a

where

d-dimensional CFT. This connection implies that for the scaling weight to be a real quantity,
the condition m?¢? > —d?/4 must be satisfied. Remarkably, this condition is compatible
with the BF bound [115], suggesting that a scalar field in AdS can possess a negative mass
while being stable. The functions ¢y and ¢y are the two linearly independent solutions
of the second-order field equations. The leading-order term can be either singular if A > d,
trivial if A < d, or constant if A = d. Then, depending on the mass of the scalar field, the
bulk geometry is modified while preserving the asymptotic structure.

As it can be seen from eq. (A.9), the conformal weight A is a positive real number such
that A > d — A. Therefore, ¢(g) is associated with non-normalizable modes at the boundary.
To identify the source of the boundary scalar operator, one needs to consider

o(z') = lim 227 9¢(z, z?), (A.10)

z—0

which is always finite. Boundary conditions fix a function of ¢y and ¢(;) at the boundary,
that corresponds to the source of the dual scalar operator. The relation between the modes
reduces the degrees of freedom in the dual theory by one-half. For instance, Dirichlet boundary
conditions fix the source to be ¢y and the remaining degree of freedom corresponds to
the normalizable mode. As shown in ref. [146], the non-normalizable mode ¢(;) does not
transform properly under Weyl rescalings. Therefore, from a holographic viewpoint, one
needs to consider the renormalized radial momentum 7, i.e., the first regular coefficient in
the asymptotic expansion of the canonical momentum mg. The latter usually differ from
¢(1) by a local functional of ¢ (. Then, for Neumann boundary conditions, one fixes 7,
rather than ¢(;). This shows that the leading and sub-leading coefficients in the asymptotic
expansion are canonically conjugated variables (see ref. [140] details).

In general, one introduces a boundary term that depends on the scalar field and derivatives
thereof, whose explicit form depends on the boundary conditions. As shown before, the
field equations fix the relation between derivatives of both the field and the boundary term
via boundary conditions. The extra boundary contribution to the gravity action implies
a modification of the boundary theory. In the case of mixed boundary conditions, this
corresponds to modifying the holographic CFT by multi-trace operators if the deformation

°Tf A = d/2, one needs to consider solutions with logarithmic behavior.
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function is built not only by the fields but also by the operators [147]. Then, the vacuum
expectation value of the dual operator with conformal dimension d — A corresponds to ¢(g)
and its current related to ¢(1). Since the on-shell action is identified with the generating
functional of connected correlators of the dual CFT, say I', the addition of the new term
modifies the dual theory as

I[¢()] = T[J] — / d*z/50)70) » (A.11)

where J is the current which depends on ¢y and 74 and is fixed by boundary condition in
the string theory side. Following ref. [119], we have encoded the deformations of the boundary
theory in W <¢(0)), which must be fixed such that the variational principle is consistent
with the corresponding boundary conditions. Then, the boundary CFT is deformed and
the boundary conditions impose [147]

_ W ()
J = b0 :

Using Neumann or mixed boundary conditions corresponds to modifying the conformal vacuum

(A.12)

at the boundary. In the case of mixed boundary conditions, the multi-trace deformations
could break the conformal invariance as they modify the n-point functions (see ref. [148]).
Then, the deformations could be marginal, relevant, or irrelevant depending on the mass of the
bulk scalar field. Moreover, multi-trace deformations have been associated to multi-particle
states in the dual gravity theory [149].
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