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Abstract: In this work, we classify all the possible local four-point couplings relevant for
tree-level flat space 2 → 2 scattering of external massive particles of spin one and spin
two which do not grow faster than s2 at large s and fixed t. This kinematic constraint
on local growth of tree-level S-matrices is known as Classical Regge Growth criteria or
CRG [1]. We first construct the spin one and spin two tree-level contact S-matrices as
modules of polarisation tensors and momenta over the ring of polynomials generated by
Mandelstam invariants. We then consider a general scattering process where the external
scattering particles are of different masses but of same spin and constrain this space to
obtain a finite number of CRG allowed local Lagrangians. Our concrete results are primarily
for D ≥ 8 but the process outlined is easily generalised to lower dimensions to include low
dimensional parity violating structures. The space of CRG allowed structures reduces when
we specialise to identical scattering and restrict to parity even couplings in D = 4. We show
that tree-level scattering amplitudes involving exchange diagrams and contact terms in de
Rham-Gabadadze-Tolley massive gravity (dRGT) violate CRG unless the parameters of the
theory take special values. The CRG allowed S-matrices, in the context of large N conformal
field theories (CFTs), can also be interpreted as bulk AdS counterterms consistent with Chaos
bound. Our classified structures therefore can be thought of as ambiguities arising in the
context of conformal field theory inversion formula for four point functions of unconserved
spin one and spin two operators in large N CFTs.
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1 Introduction

In interacting local quantum field theories, tree-level scattering amplitudes are generated by
local Lagrangians, given schematically by the interactive part of the action,

Sint =
∫

dDx
∑

i

γiLi, (1.1)

where D denotes the spacetime dimensions, γi are dimensionful couplings and Li are various
higher derivative local interaction Lagrangians of the fields, whose scattering process we
want to study. The tree-level amplitudes exhibit two main analytic structures. It involves
simple pole-type singularities in momenta, due to exchange of massless or massive particles,
while the other one comprises only of polynomial terms, known as contact terms. The
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contact pieces are completely analytic in momenta and polarisation tensors (corresponding
to external spinning states). For 2 → 2 tree-level scattering processes which are of interest
in this work the local Lagrangians can be at most quartic in the fields, but they can be
of arbitrary high order in derivatives.

In [1, 2], the authors proposed constraints on such Lagrangians which generate tree-level
amplitudes for four photon and four graviton scattering. The criteria called Classical Regge
Growth or CRG (which was subsequently proved in [3] using flat space limit of AdS/CFT ),
states that four point tree-level scattering amplitudes should always grow slower than or
equal to s2 at large s and fixed t (where s and t are Mandelstam variables) for all values of
the physical momenta and for all values of the polarisation tensors (if the external states have
spin). This kinematic limit is also known as Regge limit of flat space scattering in literature.
Because of the presence of dimensionful couplings associated with these Lagrangians, it is
important to state the energy scales we are working in. Let us assume that we are working
in a theory where there exists a hierarchy of scales, and our Regge limit probes the energy
regimes between the IR and UV scales. An example where one encounters such a hierarchy is
for example tree-level String theory. The dimensionful couplings that parametrize interactions
can be suppressed by the string length while the UV scale is the parameterised Planck
length. Another place where one encounters similar hierarchy of scales is Kaluza Klein
reduction of Einstein gravity where the relevant lower scale would be set by the length of the
compactification circle. For the four point tree-level scattering amplitude T (s, t), generated
by the Lagrangian eq (1.1), CRG then states that,

lim
s→∞, fixed t<0

T (s, t) ≤ s2,
1

L2
IR

≪ s ≪ 1
L2

UV

, (1.2)

where LIR is the string length for tree-level string theory or the compactification length
for the Kaluza Klein theory and LUV is the Planck length lp for these examples. Thus our
thought experiment truly probes the tree-level processes in such theories, since loops in these
examples would be suppressed by lp. One of the striking results of this criteria was to rule out
any finite polynomial modifications of Einstein Hilbert action in D ≤ 6, upto quartic order.1
More recently the authors of [5], proved CRG directly in flat space for massive and massless
scalar particles from flat space dispersion analysis. In particular, we refer the interested
reader to section VI of [5] for a proof of this bound on finite growth of scattering amplitudes.
Note that CRG is different from the Froissart-Martin bound [6, 7] which is a bound on the
full quantum amplitude (i.e including loops) of a quantum field theory with a mass gap (also
generalised to massless theories in [5, 8]). Froissart Martin bound is applicable for energies
s ≫ 1

L2
UV

, and the growth exponent must be strictly less than two. Our present investigation
encompasses generalising the work of [1] to constrain the space of contact term like amplitudes
generated by four-point Lagrangians of massive spin one and spin two particles using CRG.

In order to classify the Lagrangians which generate such local tree-level amplitudes, we
employ the approach adopted in [1]. Consider the 2 → 2 tree-level scattering of massive
spinning particles of different masses generated by all possible contact term like interactions.

1See also [4] for constraints on modification to Einstein Hilbert action (upto cubic order) from causality
principles.
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The scattering amplitudes are functions of polarisation tensors describing the external spinning
state and the Mandelstam invariants s, t and u satisfying s + t + u = ∑

i m2
i . The relevant

interaction Lagrangians generating these amplitudes are contact terms of arbitrary high
derivative order, quartic in the spin one and spin two fields. Lagrangians which give rise
to the set of tree-level amplitudes form an equivalence class - if two Lagrangians differ by
equations of motion and total derivatives they give rise to the same scattering amplitude. This
ensures that there is a one-to-one map between the space of contact scattering amplitudes
and the equivalence class of local Lagrangians. Thus classifying contact scattering amplitudes
is equivalent to writing down local Lagrangians.

Massive spinning polarisations have no gauge redundancy hence any Lorentz scalar
polynomial of polarisation and momenta with the correct homogeneity in polarisation tensors
is an allowed contact amplitude and therefore a local Lagrangian. It is useful to think of this
infinite space of analytic scattering amplitudes as a module over the ring of polynomials of
Mandelstam invariants following [1, 9]. The seemingly infinite set of amplitudes is then finitely
generated. The generators of these modules, called “primaries”, are polynomials of scalar
products of polarisations with momenta and polarisations with each other obeying correct
homogeneity. The Mandelstam invariants then act as “descendants” of these generators
giving rise to amplitudes for arbitrarily high order in derivatives. Unlike the massless case,
the module generators need not be only local Lagrangians of field strength Fµν for spin one
or Riemann tensor Rµναβ for spin two. Starting from zeroth order in derivatives, it is then
straightforward to classify the space of such linearly independent polynomials order by order
in derivatives. This is a finite task which truncates at four order in derivatives for the spin
one and eight derivatives for the massive spin two case. If we denote the primaries as gi

and the ring elements as ri, the most general S-matrix is given by ∑i gi · ri. In this work
we restrict our analysis to D ≥ 8 where this module is freely generated.

We also generalise to identical scattering, which implies imposing S4 invariance on the
space of primaries. It is useful to think of S4 as a semi-direct product S3 ⋉ (Z2 × Z2).
Thus, as explained in appendix A, we can impose this symmetry in two steps. We can first
impose Z2 × Z2 symmetry on the primaries, giving rise to the “quasi-invariant” or “local
module” which generate the amplitude corresponding to identical scattering. In the second
step, we impose the remnant S3 on these local modules. The local modules transform in
irreducible representations of S3 and the S-matrix corresponding to identical scattering is
obtained by singlet S3 projection of the quasi-invariants and its descendants [1]. The complete
classification of primaries and quasi-invariants for spin one and spin two are recorded in the
supplementary Mathematica files spinone_regge.nb and spintwo_regge.nb

In order to study Regge growth of these amplitudes, it is also necessary to classify
the independent data in scattering. We provide a convenient parametrization of massive
polarisation tensors in section 2 (see eq (2.5) and eq (2.9)) utilizing the equations of motion of
massive spinning fields and SO(D−3) symmetry of the four point scattering amplitude. Since
the scattering process takes place in a three plane defined by the momentum conservation
equation ∑4

i=1 pµ
i = 0, the scattering amplitude therefore must be left invariant by SO(D − 3)

rotations orthogonal to the plane of scattering. The kinematics of the scattering process
also enables us to count the number of primaries and quasi invariants as the number of
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SO(D − 3) singlets that can be constructed from product of representations of little group
of massive spinning particles with definite symmetry. We find agreement with our explicit
construction of the basis of primaries and quasi-invariants.

For non-identical scattering, a single Lagrangian can give rise to twenty four different
scattering processes, due to permutations of incoming and outgoing particles. These different
scattering processes translate to different S4 transformations of our primaries, i.e the generator
of the amplitudes. CRG then translates to the fact that the primaries must grow slower than
s2 at large s and fixed t for each of these scattering processes. We find that for spin one
twenty six couplings are CRG allowed (see section 6.1.1). Out of the twenty six structures
there are two structures at four derivatives, twenty one structures at two derivatives and
three structures at zero derivatives. We have listed them explicitly in the supplementary
file spinone_regge.nb. For spin two non-identical case, we found total five CRG allowed
structures. Out of these five structures, four are two-derivative structures and there is one
zero derivative structure. We have listed them explicitly in eq (6.21). One can also consider
descendants of our primaries which would correspond to constraints on higher derivative
couplings but we find that generically the space of CRG allowed primaries and descendants
can be very large for non-identical scattering and we don’t record them in this work.

For identical case we consider both local modules and descendants. There are ten CRG
allowed structures for spin one generated by the Lagrangians eq. (6.20)

L̃v
∂0,1 = (AµAµ)2

L̃v
∂2,1 = ∂σAµAµ∂σAνAν , L̃v

∂2,2 = F̃αβF̃ αβAνAν , L̃v
∂2,3 = AµFµνF̃ ναAα

L̃v
∂4,1 = FαβF βγFγδF δα, L̃v

∂4,2 = (FαβF αβ)2, L̃v
∂4,3 = FabF̃

bcFcdF̃ da,

L̃v
∂4,4 = Aµ∂σAν∂µ∂σAα∂νAα

L̃v
∂6,1 = ∂σFαβF βγ∂σFγδF δα, L̃v

∂6,2 = Fαβ∂αF γδ∂βFδηF ηγ ,

(1.3)
where we have defined Fab = ∂aAb − ∂bAa and F̃ab = ∂aAb + ∂bAa. Aµ denotes the massive
spin one field. There are four CRG allowed structures for spin two generated by the local
Lagrangians eq. (6.22).

L̃h
∂0 = δγ

[αδζ
βδρ

ξ δσ
δ] h α

γ h β
ζ h ζ

ρ h δ
σ , L̃h

∂2 = δγ
[αδζ

βδρ
ξ δσ

δ δν
µ] ∂ν∂µh α

γ h β
ζ h ζ

ρ h δ
σ ,

L̃h
∂4 = δγ

[αδζ
βδρ

ξ δσ
δ δν

µδν′

µ′] ∂ν∂µh α
γ ∂ν′∂µ′

h β
ζ h ζ

ρ h δ
σ ,

L̃h
∂6 = δγ

[αδζ
βδρ

ξ δσ
δ δν

µδν′
µ′δν′′

µ′′] ∂ν∂µh α
γ ∂ν′∂µ′

h β
ζ ∂ν′′∂µ′′

h ζ
ρ h δ

σ ,

(1.4)

where hµν is the massive spin two field and δµ1
[α1

δµ2
α2 · · · δ

µn

αn] is concise expression for product
of two Levi-Civita tensors εµ1µ2···µnεα1α2···αn . Throughout this work, we use the flat space
metric ηµν to raise and lower indices in quartic Lagrangians. We also find that in D = 4, three
of the spin two structures evaluate to zero and the only parity even CRG allowed Lagrangian
is given by the zero derivative Lagrangian L̃h

∂0 . This reduction, in some sense, obvious from
the topological nature of our Lagrangians which can be expressed as product of Levi-Civita
tensors. Note that the CRG allowed classification done in this paper is of a different nature
than [10], which sought to classify four point contact term in D = 4 in the Gross-Mende limit
(large s and large t). The authors of this paper do a complete classification of both parity
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violating and parity preserving four point as well as three point couplings in D = 4. It must be
noted however that although we use CRG for all massive spinning particles, the proof for this
statement is only there for massless spinning amplitudes [3] and massive scalar amplitudes [5].
We strongly believe CRG will continue to be true for other massive spinning particles.

UV consistency bounds in massive gravity theories have also been of interest in recent
years [10–21].2 It is interesting to ask if we the space of such massive gravity theories are
consistent in the “classical” sense by imposing CRG. In this regard, we explicitly compute
the tree-level amplitudes (both exchange diagams and contact term contributions) in dRGT
gravity theory [24, 25] where the amplitudes are a function of two parameters of the theory
(c3, d5).3 We now impose CRG on these tree-level amplitudes in the energy range,

m2 ≪ s ≪ M2,

where M ∼ (m3mP ) 1
4 is the cutoff of the effective theory, m is the mass of the massive

spin two particle and mP is the reduced Planck mass. We find that there exist polarisation
choices for which the tree-level S-matrix generated by the dRGT effective Lagrangian grows
like O(s3) at large s and fixed t unless

c3 = 1
4 . (1.5)

In this analysis, we have assumed that loop corrections are suppressed by M so that
CRG is applicable (See [26–28] for explicit loop computations in ghost-free massive gravity
where the one loop is suppressed compared to tree-level). This is also the conclusion of a
causality based analysis by [29]. While these bounds are not as strong as the positivity bounds
of [21], we feel CRG is an important criteria to construct tree-level effective Lagrangians
of massive gravity as we explain below.

Since our analysis involving just the contact terms demonstrates that there do exist
amplitudes which obey CRG, it would be worthwhile to consider CRG as a guiding principle
to construct massive theories of gravity. It would be interesting to see, at a more abstract
level, whether one can construct CRG obeying amplitudes that might be generated by a
two derivative theories of massive spin two particle with ghost-free degrees of freedom. This
would entail classifying all three point couplings of massive spin two field and restricting
to six derivative contact term like couplings that we have classified. Now, we can take
an arbitrary linear combination of these set of exchange amplitudes constructed from the
classified three point couplings with the ghost-free massive spin two propagator and the
contact amplitudes generated by the four point couplings. We would then look for linear
combinations which obeys CRG. It would be interesting to see if such solutions satisfy the
full UV consistency bounds as well. In this direction, the authors of [30] have considered a
single massive spin two field coupled to massless spin two field in D = 4 and have explicitly
shown no such theory can be consistent with CRG.

Consider the same Lagrangians listed in eqs (1.3) and (1.4) but now in AdS and let us
study the four point CFT correlator that they generate at large N . These correlators, in the

2See also [13, 22, 23] for causality motivated approaches to higher derivative theories of gravity with massive
spin two particles.

3We thank Shiraz Minwalla for pointing out this possibility to us.
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Regge limit, obey Chaos bound [31] and are solutions to large N crossing equation involving
just double trace operators in the CFT spectrum [32]. This has important consequences in
the context of Inversion formula of a CFT correlator [33, 34]. In [35], it was proven that scalar
CFT correlators in large N CFT can be completely determined by the double discontinuity
of the correlator up to a fixed number of AdS scalar contact term like interactions. Modulo
some caveats which we explain in detail in section 6.5, we interpret the Lagrangians in
eqs (6.20) and (6.22) as similar ambiguities in conformal inversion formula for four point
correlators of unconserved spinning operators.

This paper is organized in the following way. In section 2 we define the kinematics of our
process and explicitly state the unconstrained data in four point scattering after imposing
equations of motion. In section 3 we perform a group theoretic counting for the number of
primaries and quasi-invariants. In section 4 and section 5 we explicitly construct primaries
and quasi-invariants for spin one and two respectively. Finally in section 6 we classify CRG
allowed primaries as well as quasi-invariants and their descendants. In section 6.3 we comment
on our CRG allowed structures in D = 4. In section 6.4, we explicitly compute tree-level
amplitudes in dRGT massive gravity theory and show that for all possible choices of the
parameters in the theory, the amplitudes violate CRG. In section 6.5 explain the connection
with the inversion formula of a large N CFT.

2 Kinematics

In the 2 → 2 scattering processes that we study, the incoming and outgoing particles are
of the same spin but in general of different masses. We also generalise to the case where
the particles of same mass. For non-identical particles, we can study twenty four different
scattering processes (since we can permute the incoming and outgoing particles in twenty
four different ways). It is therefore, convenient to introduce some notation to denote various
scattering processes we study. We introduce the following notation for the scattering process
where massive spin one and spin two particles of mass mi and mj are incoming and mk

and ml are outgoing,4

Tvi(p1)vj(p2)→vk(p3)vl(p4), Thi(p1)hj(p2)→hk(p3)hl(p4), (2.1)

where v and h denote spin one and spin two particles respectively. This scattering process
obeys the following on-shell conditions and momentum conservation for the spinning particles,

(p1)2 = −m2
i , (p2)2 = −m2

j , (p3)2 = −m2
k, (p4)2 = −m2

l ,
∑

n

pµ
n = 0. (2.2)

The Mandelstam invariants for this process are given by

s = −(p1 + p2)2 = −2p1 · p2 + m2
i + m2

j , t = −(p1 + p3)2 = −2p1 · p3 + m2
i + m2

k,

u = −(p2 + p3)2 = −2p2 · p3 + m2
j + m2

k, s + t + u =
∑

i

m2
i . (2.3)

The different processes correspond to permuting the particles (labelled by different
masses) while we continue to label the incoming and outgoing momenta by p1, p2 and p3, p4

4(i, j, k, l) takes values from various permutations of (1, 2, 3, 4).
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respectively, it is convenient to represent the different processes pictorially. For example,
the two different processes involving scattering of spin one particles, Tv1(p1)v2(p2)→v3(p3)v4(p4)
and Tv1(p1)v3(p2)→v2(p3)v4(p4) can be pictorially represented as in figure 1 (time runs from left
to right). For identical particles, of course such a distinction is not there and there is only
one scattering process represented by, Tv(p1)v(p2)→v(p3)v(p4). We review the relevant degrees
of freedom for massive spinning particles.

Massive spin one. Massive spin one particles are parametrised by their polarisation
vectors, which obey the following free equations of motion [36]

ϵaµ(pi)pi
µ = 0, (p2

i − m2
a)ϵaµ(pi) = 0, (2.4)

where ϵa is the polarisation vector of the spin one field of mass ma.5 In the 2 → 2 scattering
experiment where the scattering plane is 3-dimensional (since ∑4

i=1 pµ
i = 0 due to momentum

conservation), we can divide polarisation in terms of a three dimensional vector ϵ
∥
a in the

scattering three plane spanned by the three independent momenta and a (D − 3) transverse
vector ϵ⊥a , orthogonal to the scattering plane.

ϵi = ϵ
∥
i + ϵ⊥i , where, ϵ

∥
i · ϵ⊥i = 0. (2.5)

In this equation, ϵ⊥i transforms as a vector of SO(D − 3). This decomposition is motivated
by the fact that since the four-particle scattering happens in the three plane spanned by the
momentum vectors, the scattering amplitude enjoys SO(D − 3) residual symmetry. Stated
differently, SO(D − 3) is a stabilizer group of four point scattering amplitude.

We now provide an explicit parametrization of ϵ
∥
i in terms of momenta. For non-identical

particles, solutions for our ϵa are process dependent. Let us consider the process,

Tv1(p1)v2(p2)→v3(p3)v4(p4) (2.6)

This indicates the scattering process in which we have incoming spin one particles of
mass m1 and m2 and the outgoing particles are of masses m3 and m4. The on-shell conditions
(and momentum conservation) for this scattering process are,

ϵi(pi) · pi = 0, p2
i = −m2

i , (2.7)

This process can be represented pictorially in subfigure a of figure 1. In general, ϵ
∥
1 can be

a function of all the three independent momenta,

ϵ
∥
1 = a

p1
f(mi, s, t, u) + b

p2
g(mi, s, t, u) + c

p4
h(mi, s, t, u) , (2.8)

for complex numbers a, b and c and functions f, g and h of the same dimensions as momenta
for dimensional consistency. Recall, if the particle were massless, the term corresponding to a

would have been gauge redundant but since our external states are massive, this corresponds
to a physical polarisation, usually termed as the longitudinal polarisation. The space spanned

5In order to avoid confusion, we use Latin letters to denote the type of particle and the Greek letters to
denote the Lorentz indices.
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(ϵ1, m1)

(ϵ2, m2) (ϵ3, m3)

p1

p2

p3

p4

(ϵ1, m1)

(ϵ3, m3) (ϵ2, m2)

(ϵ4, m4)

p1

p3
p2

p4

a
b

(ϵ4, m4)

Figure 1. Two different scattering processes Tv1(p1)v2(p2)→v3(p3)v4(p4) and Tv1(p1)v3(p2)→v2(p3)v4(p4)
described by figure a and b respectively. The ϵ denote the polarisation tensor for the massive spin one
particle.

by p2 and p4 is termed as transverse polarisation. Moreover, not all the three numbers are
linearly independent and we have only two independent in-plane polarization vectors because
of the equation of motion, ϵ

∥
a · pi = 0 (since by construction, ϵ⊥a · pi = 0). We find that the

most general solution of ϵ
∥
1, obtained in this manner, to be parametrized by two complex

numbers. Denoting the transverse and longitudinal polarisations by ϵT
1 and ϵL

1 respectively,
an explicit parametrization is given by,

ϵ
∥
1 = α1ϵL

1 + β1ϵT
1 , ϵL

1 · ϵT
1 = 0, |ϵL

1 |2 = |ϵT
1 |2 = 1,

ϵL
1 = NL

1

(
p1
m1

+ C1
p2
m1

+ C2
p4
m1

)
, ϵT

1 = N T
1

(
T1

p2
m1

− T2
p4
m1

)
,

(2.9)
where α1 and β1 are arbitrary complex numbers and explicit expressions for NL

1 ,N T
1 , C1, C2, T1

and T2 are given in eq (B.1) of appendix B. The two modes parametrized by α1 and β1
corresponding to the longitudinal and the transverse modes respectively. Hence, in conclusion,
the polarisation tensor for massive spin one particle is parametrized by (α1, β1, ϵ⊥1 ). The rest
of the polarizations ϵ

∥
2(p2), ϵ

∥
3(p3), and ϵ

∥
4(p4) can be obtained by just applying the double

transposition elements Z2 ⊗ Z2 ∈ (P12P34, P13P24, P14P23) of the permutation group S4 on
the ϵ

∥
1(p1) polarisation vector, where Pij implies swap of the particle indices i and j.6 If we

denote the unit vectors in the D − 3 dimensional orthogonal space to the scattering plane as
êa

µ, the most general massive spin one polarisation vector therefore is given by

ϵµ = 1√
2

(
αϵL

µ + βϵT
µ

)
+ ϵ⊥µ,

D−3∑
a=1

ea
µ = ϵ⊥µ, ea

µ = eaêa
µ. (2.10)

6See appendix A for a brief review of the representation theory of the discrete group S4 that we use in this
paper.
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Here ea are arbitrary numbers and we have suppressed the mass label for convenience. In
Regge limit, (large s, fixed t) the leading s behaviour of the ϵ

∥
1 is given by,

ϵ
∥
1µ =α1

(
p1µ

m1

)
+ β1

(
p2µ + p4µ√

−t

)
+ O

(1
s

)
(2.11)

This is consistent with the fact that we expect the longitudinal mode to grow with energy
while the transverse mode remains constant.

Massive spin two. The spin two field is parametrized by a symmetric traceless polarisation
tensor obeying the free equations of motion [36, 37],

ha
µν(pi)pµ

i = 0, (p2
i − m2

a)ha
µν(pi) = 0, haµ

µ = 0, (2.12)

where, similar to the spin one case, ha
µν is the polarisation vector of the spin two field of

mass ma. Suppressing the index associated with different masses, we can also express the
polarisation tensor as,

hµν =
D(D−1)

2∑
i=1

εi
µν , hµ

µ = 0, (2.13)

where i runs over the basis elements of a symmetric (D − 1) × (D − 1) matrix and
the index µ runs over D spacetime dimensions. Without any loss of generality , we choose
to parameterize the massive spin two field polarisation as tensor product of two spin one
polarisations with the additional constraint of tracelessness. To be precise, we define the
following two vectors in plane of three-dimensional ϵ∥.

ϵ+
µ = αϵL

µ ϵ−µ = βϵT
µ (2.14)

The polarisations are therefore given by,

• Three in-plane components of polarisation tensors determined by,

ε++
µν = ϵ+

µ ϵ+
ν , ε−+

µν = 1
2
(
ϵ−µ ϵ+

ν + ϵ−ν ϵ+
µ

)
, ε−−

µν = ϵ−µ ϵ−ν . (2.15)

• Off diagonal terms are 2(D − 3) in number and are of the form (see eq (2.10) for
definition of ea

µ)

εa±
µν = 1

2
(
ϵ±µ ea

ν + ϵ±ν ea
µ

)
. (2.16)

• A symmetric tensor of dimensions (D−3)(D−2)
2 composed of direct product of ϵ⊥,

εab
µν = ea

µeb
ν . (2.17)

We also impose the constraint of tracelessness which implies

hµ
µ =

D(D−1)
2∑

i=1
ϵiµ

µ = α2 + β2 +
D−3∑
a=1

ea
2 = 0. (2.18)
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In other words we can choose hµν = ϵµϵν where ϵµ is the spin one polarisation with the
condition of tracelessness. In this expression we have used the following orthogonality relations

ϵL · ϵT = êa · êb = êa · ϵL/T = 0. (2.19)

The total degree of freedom is (D+1)(D−2)
2 , which is indeed the degree of freedom for

massive spin two particle as is evident from eq (2.12).

Nh
dof = D(D + 1)

2 − D − 1 = (D + 1)(D − 2)
2 . (2.20)

For the remainder of the paper, we choose to represent the scattering of four massive
spin one and spin two particles using the following notation

T
v/h
ϵi(p1)ϵj(p2)→ϵk(p3)ϵl(p4). (2.21)

The generalisation of these solutions to the identical particles is straightforward by
setting mi to m in eq (2.9).

3 Group theoretic enumeration of amplitudes

Before we explicitly compute the analytic S-matrices, we first record our expectation from
a group-theoretic analysis. The enumeration of possible analytic structures contributing to
tree-level 2 → 2 scattering of spinning particles can also be formulated as a group theory
problem which has been addressed recently in great detail for massless and massive particles
in [1, 9, 38–41]. The little group for massive spinning particles is SO(D − 1). Consider
a particle whose polarisations transform in the irreducible representation ρ of the little
group. As explained insection 2, in a 2 → 2 scattering experiment, the scattering plane
is 3-dimensional and scattering amplitude has a residual SO(D − 3) symmetry. Therefore,
the number of structures contributing to the scattering of four non-identical particles then
becomes the number of SO(D − 3) singlets in ρ⊗4 [1, 42].

Nnon-id = ρ⊗4|SO(D−3). (3.1)

In order to compute this, it is convenient to restrict the SO(D − 1) representation ρR

to irreps of SO(D − 3).

ρ|SO(D−3) = ⊕g ngρ̃g, (3.2)

where ρ̃g represents irreducible representations of SO(D − 3), ng represents their degeneracy
and the sum is over all possible irreducible representations that appear in such a restriction.
The explicit structures are the SO(D − 3) invariant polynomials of ρ̃i

g with appropriate
homogeneity where i labels the particles. The restriction of a generic SO(M) irreducible
representation to irreps of SO(M − 1) is a mathematical problem whose solution is given
by “Branching rules”, reviewed in great detail in the context of scattering amplitudes in [2]
and we will use their results extensively in this section.

If the particles are identical, the amplitudes enjoy an additional S4 symmetry ( the
symmetry group pertaining to permutations of four objects, see appendix A). Recall that S4

– 10 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
3

group has an normal subgroup Z2 × Z2, and S4 can be written as the semi-direct product
of S3 and Z2 × Z2.

S4 ∼= S3 ⋉ (Z2 × Z2).

We first impose the Z2 × Z2 symmetry on our polynomial of ρ̃i
g. The space of such

structures are called “quasi-invariant” S-matrices [1]. The counting of such structures is
given by ,

NQuasi-inv = ρ⊗4|Z2×Z2 = ρ⊗4 − 3S2ρ ⊗ ∧2ρ, ρ ≡ ρ|SO(D−3) = ⊕g ngρ̃g, (3.3)

where S2 and ∧2 denote the symmetric and the anti-symmetric tensor product and the
singlet condition for SO(D − 3) is implied. The quasi-invariant structures can further be
organised into irreducible representations of S3. As reviewed in appendix A, there are three
irreducible representations of S3,

1S = , 2M = , 1A = . (3.4)

These constitute the one dimensional symmetric and anti-symmetric representations of
S3 and the two dimensional mixed symmetric representation. We now enumerate amplitudes
for the cases of scattering of massive spin one and massive spin two particles. Note that in
this work, we will mostly consider the space-time dimension D ≥ 8. The group theory and the
subsequent enumeration of structures are only valid in this context. For lower dimensions, we
can have reduction of the structures we classify in this work as well as appearance of additional
parity violating structures in specific dimensions (Additional Lorentz invariant structures can
be formed by contraction with space time Levi-Civita tensor in lower dimensions).

3.1 Massive spin one

The polarization parametrizing a massive spin one particle transforms under vector repre-
sentation of SO(D − 1) in D dimensional space-time. A SO(D − 1) vector transforms as a
direct sum of a SO(D − 3) vector and two SO(D − 3) scalars.

ρv = ⊕ 2 •. (3.5)

This is consistent with our analysis regarding in-plane and orthogonal decomposition
of the massive spin one polarisation vector around eq (2.10). We identify the two scalars
as α, β while the vector is identified with ϵ⊥.

3.1.1 Scattering amplitudes for non-identical particles

In order to evaluate eq (3.1) it is convenient to enumerate the direct product ρv ⊗ ρv.

ρv ⊗ ρv = ⊕R nR ρR = ⊕R (nS
R + nA

R) ρR, (3.6)

where nR deontes the degeneracy of the SO(D−3) irreducible representation ρR that appears
in the tensor product. The degeneracy nR that appears for each representation R in eq (3.6),
is a sum of the degeneracies of the representation R appearing in the symmetric and the
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Irreps S2ρ Λ2ρ

1 0

0 1
• 4 1

2 2

Table 1. Product of two vector space of massive spin 1 polarizations.

anti-symmetric product of the two representations ρv. The number of SO(D − 3) singlets
in ⊗4ρv is then easily obtained,

Nv
non-id =

∑
R

(nS
R + nA

R)2. (3.7)

For vectors transforming in the little group of massive spin one, we group the product
into irreducible representations arising out of symmetric and anti-symmetric product of the
two representations in table 1.

From eq (3.6) we easily see the number of singlets is,

Nv
non-id = 12 + 12 + (4 + 1)2 + (2 + 2)2 = 43. (3.8)

We verify this counting in the later sections by explicitly constructing the independent
S-matrices for the massive spin one case in section 4.

3.1.2 Scattering amplitudes for identical particles

For identical particles, using eq (3.3), we can count the number of S-matrices which are
Z2 × Z2 invariants [1, 42],

ρ⊗4
v |Z2×Z2 = ρ⊗4

v − 3S2ρv ⊗ Λ2ρv, (3.9)

The number of tensor structures in the symmetric and antisymmetric tensor product of
ρ is given in the table 1. The number of Z2 × Z2 invariant spin one S-matrices is therefore

Nv
Quasi-inv = (43 − 3(4 × 1) − 3(2 × 2)) = 19, (3.10)

where we have used eq (3.8).

3.2 Massive spin two

In D dimensional space-time, a massive spin two particle transforms in a symmetric traceless
tensor representation of the little group SO(D−1). The symmetric traceless SO(D−1) tensor
transforms as 2 vectors, 3 scalars, and a symmetric traceless tensor representation of SO(D−3).

ρh = ⊕ 2 ⊕ 3•. (3.11)

This is consistent with our analysis around eq (2). We identify the three scalars as parametriz-
ing the tensors ε++

µν , ε−+
µν , ε−−

µν , the two vectors parametrize ε+a
µν , ε−a

µν , while the symmetric
traceless tensor parametrizes the components of εab

µν without the trace.
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Irreps S2ρ Λ2ρ

1 0

0 1

1 0
2 2

2 2
8 8
7 4

1 4
• 10 4

Table 2. Product of two symmetric traceless representation of massive spin 2 polarizations.

As a consistency check we show that the degrees of freedom encoded in this decomposition
is as expected for a SO(D − 1) symmetric traceless tensor. Denoting by d[R], the dimensions
of the representation R of SO(D − 3),

d[ ] + 2d[ ] + 3d[•] = (D − 2)(D + 1)
2 , (3.12)

which is the expected degree of freedom for a symmetric traceless SO(D − 1) tensor.

3.2.1 Scattering amplitudes for non-identical particles

As before, we find the Clebsch-Gordon decomposition of the tensor product ρ⊗2. There
are now nine irreps appearing the tensor product. The organisation of their degeneracies
in the symmetric and the anti-symmetric sector is given in table 2. Number of structures
contributing to non-identical scattering is given by,

Nh
non-id = 633. (3.13)

3.2.2 Scattering amplitudes for identical particles

For identical particles, we can enumerate the quasi-invariant structures using eq (3.3),

Nh
Quasi-inv = 201. (3.14)

We explicitly construct these structures in section 5.

4 Explicit construction of the S-matrices: spin one

In this section we explicitly construct the contact tree-level amplitudes that contribute to
scattering process involving four non-identical spin one particles and also impose S4 symmetry
for the situation when the particles are identical. Massive spinning particles do not have any
gauge symmetry and since, at first, we are considering non-identical particles, we don’t need
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to consider the symmetry of S-matrices under the permutation group S4. The allowed local
S-matrices are therefore easy to construct. The massive spin one fields admit plane wave
solutions, parametrized by the polarisation tensor ϵµ

a(pi), which obeys the following condition.

ϵa(pi) · pi = 0, pi
2 = −m2

a (4.1)

where a denotes a particle of mass ma.
Let us consider the scattering process in which particles labelled by the polarisation

vectors ϵµ
1 and ϵµ

2 are the incoming particles and particles corresponding to ϵµ
3 and ϵµ

4 are
the outgoing particles. In terms of the notation introduced in eq (2.1),

T v
ϵ1(p1)ϵ2(p2)→ϵ3(p3)ϵ4(p4) (4.2)

The on-shell conditions (and momentum conservation) for this scattering process are,

ϵi(pi) · pi = 0, p2
i = −m2

i , (4.3)

Since the particle mass label and the momenta index label coincide, we also represent this as

T v
12→34 (4.4)

For the scattering process in eq (4.2), we can construct all independent local S-matrices
by using independent scalar data which we determine as follows. Using equations of motion,
eq (4.3) and momentum conservation, the linearly independent data constitutes,

A12 = ϵ1.p2, A14 = ϵ1.p4, A21 = ϵ2.p1,

A23 = ϵ2.p3, A32 = ϵ3.p2, A34 = ϵ3.p4,

A41 = ϵ4.p1, A43 = ϵ4.p3, bij = ϵi.ϵj ,

(4.5)

where, ϵi ≡ ϵi(pi), and pi are the polarisation and the momentum of the ith spin one
particle. The reader can easily check that other Aij = ϵi.pj can be reduced to the set in
eq (4.5) using eq (4.3) and momentum conservation. For notational convenience, we name
ϵi.pj independent structures for each i as follows,

ϵ1.p2 = α1, ϵ1.p4 = β1, ϵ3.p2 = β3, ϵ3.p4 = α3,

ϵ2.p1 = α2, ϵ2.p3 = β2, ϵ4.p1 = β4, ϵ4.p3 = α4.
(4.6)

For the rest of the paper, we will denote Ai,j by ξi, which can take two values corresponding
to the two different values of j index- αi and βi. Thus our S-matrices are local polynomials
of Aij , αi and βi with appropriate homogeneity and graded by derivatives. We start at
the lowest derivative order i.e derivative order zero and move to higher derivative orders,
looking for linearly independent polynomials of Aij , bij with the correct homogeneity at each
derivative order. Such polynomials without any symmetry, where the derivative order is
counted through the number of Aijs in the structure, i.e we don’t have explicit Mandelstam
variables in the structures, are called primaries.
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4.1 S-matrices as module and descendants

The process outlined in the previous subsection is finite and the polynomials of Ai,j and bij ,
classified in this manner, are termed generators of ‘primaries. The space of such polynomials
can further be multiplied by local polynomials of Mandelstam invariants, which are termed
“descendants”. Analytic S-matrices form a module rather than a vector space over the ring of
polynomials generated by s, t and m. Note that pole exchanges imply multiplication with
non-analytic polynomials in momenta and hence are not descendants of the primaries.

For identical particles we have to impose additional S4 symmetry on the space of primaries
and there is a nice structure which emerges [1, 9]. We impose S4 invariance on the space
of primaries in two steps. The first step involves imposing Z2 × Z2 invariance to obtain
quasi-invariants which generate the “local module” for identical scattering. The local module
can further be organised into irreducible representations of S3. The symmetric and the anti-
symmetric module are one dimensional and are denoted by e∂l

1S
and e∂l

1A
respectively where

the superscript ∂l denotes the derivative order of the module. The mixed symmetric modules,
on the other hand, are two dimensional and are represented as a triplet {e

∂l,(1)
2M

, e
∂l,(2)
2M

, e
∂l,(3)
2M

}
with the following condition between its orbit elements,

e
∂l,(1)
2M

+ e
∂l,(2)
2M

+ e
∂l,(3)
2M

= 0.

Following the conventions of [1], we canonically choose the orbit element e
∂l,(1)
2M

to be
symmetric under P12, e

∂l,(2)
2M

to be symmetric under P23 and e
∂l,(3)
2M

to be symmetric under P13.
An efficient way of generating S-matrices from the quasi-invariant modules was outlined in [1].
Given the set of polynomials of Ai,j and bi,j with no symmetry, we impose S4 symmetry in
two steps. We first impose Z2 ⊗ Z2 symmetry using the projector eq (A.3) in appendix A

Π0 = 1
4 (1 + P12P34 + P13P24 + P14P23) , (4.7)

and find the set of linearly independent quasi-invariants. Given the set of quasi-invariant S-
matrices {T QI

i } we find the linearly independent set of tensor structures in the set {ΠR

(
T QI

i

)
},

where the projectors have been worked out in eq (A.5),

Π1S = 1
6 (1 + P12 + P23 + P13 + P132 + P123) ,

Π1A = 1
6 (1 − P12 − P23 − P13 + P132 + P123) ,

Π(1)
2M

= 1 + P12
2 − Π1S ,

Π(2)
2M

= P23 + P132
2 − Π1S .

(4.8)

This enumerates the number of linearly independent quasi-invariant S-matrices transform-
ing in the irreducible representation R and their orbits. For tensor structures transforming
in 2M the other element in the orbit is generated by the action of the Π(2)

2M
or Π(3)

2M
(see

eq (A.5)). These quasi invariants form the generators of the module in the sense that all
the higher derivative structures are obtained from these generators by multiplication of
appropriate polynomials of Mandelstam invariants. To be precise, given a quasi-invariant

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
3

module of derivative order l, which transforms in the irreducible representation R of S3, the
nth derivative descendant module are generated by multiplying a polynomial of derivative
order n− l transforming in the same irrep R. The S-matrix generated by a generator module
at any derivative order are therefore obtained from these descendant quasi-invariant mod-
ules by projection onto S3 singlets. The polynomial ring, which generates the descendants,
corresponding to each irreducible sector has been classified for the massless case [1] and the
same classification carries over to the massive case with a minor modification since we have
an additional scale in the problem due to the mass “m” of the identical particles. Besides
this minor modification, the most general descendant S-matrices for each irreducible sector
can be generated as follows,

Sn
1S = ma(s2+t2+u2)b(stu)ce∂l

1S ,

Sn+2
2M,1 = ma(s2+t2+u2)b(stu)c

(
(2s−t−u)e∂l,(1)

2M
+(2t−s−u)e∂l,(2)

2M
+(2u−t−s)e∂l,(3)

2M

)
,

Sn+4
2M,2 = ma(s2+t2+u2)b(stu)c

(
(2s2−t2−u2)e∂l,(1)

2M
+(2t2−s2−u2)e∂l,(2)

2M
+(2u2−t2−s2)e∂l,(3)

2M

)
,

Sn+6
1A

= ma(s2+t2+u2)b(stu)c
(
s2t−t2s+t2u−u2t+u2s−s2u

)
e∂l

1A ,

(4.9)

where n = a + 4b + 6c + l. In particular note that the S-matrices generated from a module
that transforms in 2M or 1A must be a higher derivative descendant.

The amplitudes classified in this manner are in one-to-one correspondence with the
equivalence class of local Lagrangians [1]. Two Lagrangians differing by equations of motion
and total derivatives, give rise to the same scattering amplitude. The generators of the local
module correspond to the linearly independent Lagrangians at lowest order in derivatives.
Descendants of the local modules are generated by putting contracted derivatives on different
fields in the Lagrangians which span the basis of local modules. These contracted derivatives
in the momentum space correspond to polynomials of Mandelstam invariants multiplying
the generators of local module. In this work, we will not attempt to list the explicit local
Lagrangians or their descendants that generate these amplitudes except in special cases. In
this subsection and the next we provide the non-identical and identical module construction
in terms of possible polynomial structure for each derivative order, relegating the explicit
structure to the Mathematica files spinone_regge.nb (and spintwo_regge.nb for spin two)

4.2 Non-identical particles

We classify the amplitudes corresponding to the non-identical scattering corresponding to
the process,

T v
ϵ1(p1)ϵ2(p2)→ϵ3(p3)ϵ4(p4) (4.10)

This construction is accomplished in two steps. In the first step, we saturate the homogeneity
in polarisation by counting the number of structures consisting of ξ and bij . In the second
step, we count the degeneracy of each such structure keeping in mind that each ξi can
take two values {αi, βi}.
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Zero derivative S-matrices: structures at zero derivatives are just polynomials of bij .
It is not hard to convince oneself that homogeneity requirement ensures that only one kind
of structure is possible

Mv
∂0,1 = bijbkl, ∀ i, j, k, l = 1, · · · 4, (4.11)

where the superscript denotes this is a structure corresponding to spin one scattering and
the subscript denotes the derivative order of the structure and labels the degeneracy. Taking
into account the symmetricity of bij , we can have only three possible structures

b12b34, b13b24, b14b23. (4.12)

Two derivative S-matrices: for the two derivative S-matrices, there can be one possible
tensor structure,

Mv
∂2,1 = ξiξjbkl, (4.13)

where the indices i, j, k, l = 1, · · · 4 taking into account homogeneity of the polarisation tensors.
There are

(4
2
)

ways of selecting the i, j indices and each of the ξis can take two values. This
brings the total number of two derivative structures to 6 × 22 = 24.

Four derivative S-matrices: for the four derivative S-matrices, again, there can be one
possible tensor structure,

Mv
∂4,1 = ξiξjξkξl, ∀ i, j, k, l = 1, · · · 4, (4.14)

taking into account the homogeneity of the polarisation tensors. Each of the ξis can take two
values, which brings the total number of two derivative structures to 24 = 16.

We have forty three massive spin one S-matrices, as expected from our group theoretic
counting in eq (3.8).

4.3 Identical particles

In this subsection, we specialise to the case when the four particles are identical and the
amplitudes have an additional S4 permutation symmetry. As explained insection 4.1, we
impose S4 invariance in two steps. We first impose Z2 × Z2 symmetry and enumerate the
quasi-invariant S-matrices. In the second step we classify the amplitudes into irreducible
irreps of S3.

Zero derivative quasi-invariant S-matrices. Quasi-invariant S-matrices are invariant
under the double transposition generated by
(P12P34, P13P34). We record the behaviour of our building blocks under the double trans-
position. For the building block bij , we have two possibilities depending on which Z2 cycle
of Z2 × Z2 it is invariant under. For example,

P12P34(b12) = b12, P13P24(b12) = P14P23(b12) = b34, (4.15)

where (P12P34, P13P24, P14P23) are the elements of Z2 × Z2 and i, j ̸= k, l. For each bij ,
therefore it remains invariant under one element of Z2 × Z2. Zero derivative structures in
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eq (4.12) are, hence, already Z2 × Z2 invariant and they are three in number. The zero
derivative quasi-invariant structures transform in a 1S + 2M representation of S3.

3 = 1S + 2M. (4.16)

The generator of the quasi-invariant module transforming in 1S and 2M are respectively
given by

e∂0
1S = 1

3(b1,2b3,4 + b1,3b2,4 + b1,4b2,3)

e
∂0,(1)
2M

= 1
3(2b1,2b3,4 − b1,3b2,4 − b1,4b2,3)

(4.17)

Two derivative quasi-invariant S-matrices. The other building block, ξi, was used to
denote two possibilities ξi ∈ (αi, βi) in eq (4.5). We explicitly see from eq (4.5),

PijPkl(αi) = αj , PijPkl(βi) = βj . (4.18)

Recall the two derivative structures we enumerated in eq (4.13).

Mv
∂2,1 = ξiξjbkl, ∀ i, j, k, l = 1, · · · 4. (4.19)

Our analysis in eqs (4.15) and (4.18) imply that the two derivative Quasi-invariant S-matrices
must be of the form.

Mv
∂2,1|Z2×Z2 = (ξiξjbkl + ξkξlbij) , ∀ i, j, k, l = 1, · · · 4 (4.20)

This combination is invariant under all elements PZ2×Z2 ∈ (P12P34, P13P24, P14P23) , for all
i ̸= j ̸= k ̸= l. We can choose the indices i, j in

(4
2
)
/2 = 3 ways because of the Z2 × Z2

symmetry. Recall that all the bijs are invariant under one of the elements of Z2 × Z2. Hence
the choices for ξiξj that leaves this combination invariant under the Z2 × Z2 element, which
leaves bkl invariant, amounts to three possibilities (because of eq (4.18))

αiαj , βiβj , (αiβj + αjβi) . (4.21)

Hence the total counting of quasi-invariant S-matrices at two derivative order is 9. The
S3 representation theory is given by,

9 = 2 1S + 1A + 3 2M. (4.22)

Four derivative quasi-invariant S-matrices. Similarly, quasi-invariant S-matrices at
the four derivative order can be constructed from eq (4.14). This is a polynomial of ξ with
two possible choices for each particle. It is easy to see that two of the possible Z2 × Z2
combinations are the structures having all αis and all βis.

M
v,(4,0)
∂4,1 = α1α2α3α4, M

v,(0,4)
∂4,1 = β1β2β3β4, (4.23)

where the superscript (a, b) denotes the number of α and β s respectively. For structures
having two αis and two βis the possibilities are three in number

M
v,(2,2)
∂4,1 = α1α2β3β4|Z2×Z2 , M

v,(2,2)
∂4,2 = α1β2α3β4|Z2×Z2 , M

v,(2,2)
∂4,3 = α1β2β3α4|Z2×Z2 .

(4.24)
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Similarly for structures having one αi and three βis and vice versa,

M
v,(1,3)
∂4,1 = α1β2β3β4|Z2×Z2 , M

v,(3,1)
∂4,1 = α1α2α3β4|Z2×Z2 , (4.25)

where these structures are to be considered after imposing Z2 × Z2. In total we have seven
structures. Proceeding as in the two derivative case, we get the following S3 decomposition
of S-matrices,

7 = 1S + 3 2M. (4.26)

In total therefore, we find nineteen quasi-invariant S-matrices for spin one scattering.

5 Explicit construction of the S-matrices: spin two

We now evaluate independent scattering amplitudes relevant for massive spin two scattering.
The massive spin two field admits plane wave solutions parametrized by a symmetric traceless
tensor hµν(pi). As explained previously, it is often convenient to specialise to a special choice
of polarisation without any loss of generality,

hµν(pi) = ϵµ(pi)ϵν(pi), ϵ(pi).ϵ(pi) = 0, ϵ(pi).ϵ∗(pi) = 1, (5.1)

where the second constraint implements the tracelessness condition and third condition is a
normalisation condition. This enables us to classify the structures relevant to gravitational
scattering in terms of building blocks eq (4.5). The exact expressions for all the structures
are recorded in the supplementary Mathematica file spintwo_regge.nb. Here we present the
counting of the number of the structures, in terms of the scalar invariants without presenting
the explicit expressions. We grade the structures by their derivatives.

5.1 Non-identical particles

We first enumerate the non-identical amplitudes. Similar method is followed, we list by
counting structures which saturate homogeneity in polarisations as polynomials of ξi and
bij . Then estimate the possible degeneracies of each such structure because of two possible
values of ξi.

Zero derivative S-matrices. Structures at Zero derivatives are just polynomials of bij .
The number of independent bij structures are 6. We can think of it as the number of
independent structures of b1σ(1)b2σ(2)b3σ(3)b4σ(4) with the constraint, bii = 0 because of the
tracelessness of hµν and bij = bji because of symmetricity of hµν . It is helpful to think in
terms of the conjugacy classes of the S4 permutation group. Due to the condition bii = 0,
the two conjugacy classes which survive are the double transposition (or Z2 × Z2) and the
four cycles generated by,

(12)(34), (13)(24), (14)(23),
(1234), (1243), (1324), (1342), (1423), (1432). (5.2)

The Z2 ×Z2 action generates terms which are quadratic in bij , these are three in number. We
further note that due to the symmetricity of the scalar bij , three of the amplitudes generated
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by six four cycles are independent. Thus the number of linearly independent zero derivative
structures are 6. In equations, we have two classes of zero derivative structures with three
linearly independent structures for both of them,

Mh
∂0,1 = b2

ijb2
kl, Mh

∂0,2 = bijbjkblkbli, ∀ i, j, k, l = 1, · · · 4, (5.3)

where the superscript denotes this is a structure corresponding to spin two scattering and
the subscript denotes the derivative order of the structure and labels the degeneracy. It
is also implied that i ̸= j in bij .

Two derivative S-matrices. We now systematically classify the higher derivative struc-
tures. At two derivatives we expect the following three classes of structures

Mh
∂2,1 = ξiξjbijb2

kl, , Mh
∂2,2 = ξiξjbilblkbkj , Mh

∂2,3 = ξ2
i bjlblkbkj , (5.4)

where it is implied that the indices i, j, k and l take values from 1 to 4. We now count each
of such possible structures. For the structure Mh

∂2,1, we can choose ξi, ξj in
(4

2
)

ways. Note
that the structure bijb2

kl is automatically fixed by this choice. Hence the total counting for
Mh

∂2,1 becomes
(4

2
)
× 22 (Recall that we had two choices for each ξi). For the structure Mh

∂2,2,
we can similarly choose ξi, ξj in

(4
2
)

ways. However for the tensor structure bilblkbkj , we have
two possible choices due to the fact that the indices l and k take two possible values. In
other words, once i and j are fixed, there are two possible chains of bilblkbkj with two fixed
end points- bilblkbkj and bikblkblj . Hence the total counting for Mh

∂2,2 becomes
(4

2
)
× 2 × 22.

For the tensor structure Mh
∂2,3, we can choose ξ2

i in 4 ways but the possible choices for ξ2
i

is now three (corresponding to α2
i , β2

i and αiβi) and moreover, the tensor structure bjlblkbkj

is fixed. The counting becomes
(4

1
)
× 3. In total, we get 84 structures.

Alternatively, we can also construct Mh
∂2,1, Mh

∂2,2 from the zero derivative structures by
replacing bijs by ξiξj . For Mh

∂2,2, consider the zero derivative non-quadratic structures, there
are three structures and from each structure, we can choose 1 bij in

(4
1
)

way and make it a
scalar of type ξiξj . So the total number of ways is

(4
1
)
× 3 × 2 × 2. For Mh

∂2,1, we get 2 ways
to replace the bij by ξiξj and there are three such structures so we get 2 × 3 × 2 × 2.

Four derivative S-matrices. For four derivative structures, we have the following pos-
sible tensors,

Mh
∂4,1 = ξ2

i ξ2
j b2

kl, , Mh
∂4,2 = ξ2

i ξjξlbjkbkl, Mh
∂4,3 = ξiξjξkξlbijbkl. (5.5)

In a similar manner, we enumerate the degeneracy of each class. For Mh
∂4,1, we can choose i

and j indices in 6 different ways and each ξ2
i can have three possibilities which brings our

counting to 6 × 32. For the second structure Mh
∂4,2, we can choose ξ2

i in 4 possible ways,
which leaves us with three possibilities to choose ξjξl, which automatically fixes the rest of
the tensor structure. Our counting becomes (4 × 3) × (3 × 22), where we have taken into
account that ξ2

i can take three values while ξi can take two values. For the second structure
Mh

∂4,3, we note that we can construct bijbkl in three different ways (This is essentially the
zero derivative photon structure), which also automatically fixes the ξis. Hence the counting
becomes, 3 × 24. In total we have 246 structures at four derivatives.

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
3

Six derivative S-matrices. For six derivative structures, we have the following possi-
ble tensor,

Mh
∂6,1 = ξ2

i ξ2
j ξkξlbkl. (5.6)

Recall that we had 6 independent bijs. Homogeneity in the polarisations ensures that
the rest of the structure is fixed once we make a choice for bij . Hence the counting becomes,
6 × 22 × 32 giving us 216 structures at six derivatives.

Eight derivative S-matrices. At 8 derivative, we can only have one possible tensor
structure,

Mh
∂8,1 = ξ2

i ξ2
j ξ2

kξ2
l . (5.7)

The counting becomes 34 = 81.
Hence, the total number of spin two structures is 633.

5.2 Identical particles

In this section we enumerate the reduction in the number of four point scattering amplitudes
for spin two scattering if the particles were identical. Analogous to the case of identical
scattering of spin one particles, we impose S4 invariance in two steps. We will enumerate
the quasi-invariant structures and their S3 irreps, relegating the explicit formulae for the
amplitudes to our Mathematica file spintwo_regge.nb.

Zero derivative quasi-invariant S-matrices. There are six structures at zero derivatives
given by eq (5.3). We immediately see that these two classes of structures are Z2 × Z2
invariant by themselves. The generators of the local module Mh

∂0,1 and Mh
∂0,2 transform in

3 = 1S + 2M which accounts for six quasi invariant structures.

6 = 2 1S + 2 2M. (5.8)

Two derivative quasi-invariant S-matrices. There are three classes of two derivative
structures contributing to massive spin two scattering given by eq (5.4). We think of a subset
of the graviton structures as the product of the two spin one modules at zero derivative
and two derivative order,

Mv
∂2,1|Z2×Z2 = (ξiξjbkl + ξkξlbij) , Mv

∂0,1|Z2×Z2 = bijbkl (5.9)

The quasi-invariant structures that can be constructed from them are as follows.

Mh
∂2,1|Z2×Z2 =

(
ξiξjbijb2

kl + ξkξlbklb
2
ij

)
, Mh

∂2,2|Z2×Z2 = (ξiξjbilblkbkj + ξkξlbilbijbkj) ,

(5.10)

For the structure in Mh
∂2,1|Z2×Z2 we note that it is generated by the product of the spin

one structures which remain invariant under the same Z2 × Z2 cycle, while for the second
structure, it is the product of Mv

∂2,1|Z2×Z2 with the other Z2 × Z2 invariant element in the
orbit of Mv

∂0,1|Z2×Z2 . For the class of structures, Mh
∂2,1|Z2×Z2 , we can choose the indices i, j

in 3 ways because of Z2 × Z2 symmetry which fixes rest of the structure and there are three

– 21 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
3

Z2 symmetric (of Z2 × Z2 ) combinations possible for ξiξj . We therefore obtain 3 × 3 = 9
for Mh

∂0,1|Z2×Z2 . While for Mh
∂2,2|Z2×Z2 , we can choose the indices i, j in 3 ways and there

is a further choice of
(2

1
)

to be made for the tensor structure bilblkbkj (because of the chain
like structure). Therefore, we obtain 3 × 3 × 2 = 18, giving us a total of 27 quasi-invariant
S-matrices for spin two. The third structure which cannot be expressed as product of two
spin one structures is given by,

Mh
∂2,3|Z2×Z2 =

(
ξ2

1b23b34b24 + ξ2
2b13b34b14 + ξ2

3b12b24b14 + ξ2
4b12b23b13

)
. (5.11)

It is easy to see that we have three such structures corresponding to choices of ξ2
i (see

eq (4.21)). So the total number of two derivative quasi invariant structures becomes 30
and their S3 representation is given by,

30 = 6 1S + 4 1A + 10 2M. (5.12)

We derive this explicitly by using the S3 projectors (see eq (A.5)). We provide the explicit
construction of the irreps in the Mathematica files.

Four derivative quasi-invariant S-matrices. The four derivative quasi-invariant S-
matrices fall into the following three classes from eq (5.5)

Mh
∂4,1|Z2×Z2 = (ξ2

i ξ2
j b2

kl + ξ2
kξ2

l b2
ij),

Mh
∂4,2|Z2×Z2 = (ξ2

i ξjξlbjkbkl + ξ2
j ξiξkbilbkl + ξ2

kξlξjblibij + ξ2
l ξiξkbilblk),

Mh
∂4,3|Z2×Z2 = ξiξjξkξlbijbkl.

(5.13)

For the first class of quasi-invariant amplitudes, the number of independent amplitudes can
be counting by noting that for all we have 3 possibilities for the i, j indices due to Z2 × Z2
symmetry. For each of them the product ξ2

i ξ2
j takes six possible combinations symmetric

in Z2 of Z2 × Z2 in terms of αi and βi

α2
i α2

j , α2
i β2

j + α2
j β2

i , α2
i αjβj + α2

j αiβi,

αiβiαjβj , αiβiβ
2
j + αjβjβ2

i , β2
i β2

j .
(5.14)

Thus there are 18 structures in total for the first class. For the second class, we note that
the primary structure from which this is generated, requires explicit Z2 × Z2 symmetrization.
For a given index i, there are

(3
2
)

ways of choosing the indices j and k and this fixes the rest
of the structure. Taking into the fact that ξ2

i and ξi can take three and two possible values
respectively, the number of structures is 3 × 3 × 22 = 36. For the third structure, the number
of linearly independent Z2 × Z2 invariant combinations possible is three (basically set by
bijbkl). The possible choices for the combination ξiξjξkξl, was evaluated in eq (4.26) giving
a total of 21 structures of this class. The total number of four derivative quasi-invariant
structures therefore becomes 75.

Through explicit use of the projectors outlined in the eq (A.5), we explicitly construct
the S3 representations of our quasi invariant S-matrices,

75 = 15 1S + 25 2M + 10 1A. (5.15)
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Six derivative quasi-invariant S-matrices. The possible class of quasi-invariant struc-
tures at six derivatives is given by,

Mh
∂6,1|Z2×Z2 = (ξ2

i ξ2
j ξkξlbkl + ξ2

l ξ2
kξjξibji). (5.16)

The counting is facilitated by rewriting this as product of the four derivative and two
derivative spin one module as follows,

Mh
∂6,1|Z2×Z2 = (ξiξjξkξl)(ξiξjbkl + ξlξkbji). (5.17)

The term in the first bracket is Z2 ×Z2 invariant by itself with seven possibilities as explained
before eq (4.26). The term in the second bracket has nine possibilities as explained around
eq (4.22). In total there are 63 quasi-invariant S-matrices. Their S3 properties can be
worked out similarly,

63 = 11 1S + 21 2M + 10 1A (5.18)

Eight derivative quasi-invariant S-matrices. For this case, it is convenient to write
the tensor structure again in terms of product of two spin one four derivative structure,

Mh
∂8,1 = (ξiξjξkξl)(ξiξjξkξl), (5.19)

We can there fore construct these amplitudes explicitly using product of the spin one four
derivative amplitudes eq (4.24), eq (4.23) and eq (4.25). Schematically the amplitudes
are given by

M
v,(α,β)
∂4,i M

v,(γ,δ)
∂4,j , α + β = γ + δ = 4, i ≤ j (5.20)

The number of such product amplitudes turn out to be 28 but with one relation amongst them,

M
v,(0,4)
∂4,1 M

v,(4,0)
∂4,1 = −1

4
(
M

v,(2,2)
∂4,1 M

v,(2,2)
∂4,2 + M

v,(2,2)
∂4,1 M

v,(2,2)
∂4,3 + M

v,(2,2)
∂4,2 M

v,(2,2)
∂4,3

)
+ 1

4M
v,(1,3)
∂4,1 M

v,(3,1)
∂4,1 .

(5.21)

Thus, we find that there are 27 independent amplitudes. Their S3 representations are
worked out to be,

27 = 6 1S + 9 2M + 3 1A. (5.22)

In total we find two hundred and one quasi-invariant S-matrices for spin two scattering.

6 CRG allowed four point couplings

In this section we address the main question of our paper and study the Regge growth of our
non-identical as well as identical amplitudes for spin one and spin two particles. Each of the
amplitudes classified in section 4 is generated by unique four point coupling in the Lagrangian,
which, in principle, can contribute to 23 different processes other than the one studied in
section 4, when the particle masses are different. Classical Regge Growth states that four
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point tree-level scattering amplitudes should always grow slower that s2 at large s and fixed
t (where s and t are Mandelstam variables) for all values of the physical momenta and for
all values of the polarisation tensors (if the external states have spin). The Lagrangians we
classified in the previous sections occur at different orders in derivatives and the most general
S-matrix can be schematically generated by the Lagrangian∑

i

γiLi, (6.1)

where γi are dimensionful couplings and Li are quartic Lagrangians which generate the
primaries (or local module for identical scattering) and their descendants classified in the
previous section. CRG states that for the tree-level scattering amplitude T (s, t) generated
by eq (6.1),

lim
s→∞, fixed t

T (s, t) ≤ s2,
1

Λ2 ≪ s ≪ 1
l2p

, (6.2)

where Λ is a low energy scale relevant to the theory we are studying. As elucidated in the
introduction, Λ can be the string length for tree-level string theory or the compactification
length for the Kaluza Klein theory and lp is the Planck length. We only consider the tree-level
processes in such a theory, since loops in these examples would be suppressed by lp. For
non-identical particles, CRG implies that a linear combination of the classified interactions (as
well as its descendants) has to obey CRG for each of the 24 processes. For identical particles,
all the processes are the same and CRG then implies that linear combination of S-matrices
obtained by S3 projection of quasi-invariants must grow slower than s2 for large s at fixed t.

6.1 Massive spin one couplings

We first demonstrate how to obtain the amplitude for different processes from a single
process. Let us be precise and consider a processes generated due to the following spin
one Lagrangian term,

A1µ∂νAµ
2 A3α∂νAα

4 , (6.3)

where the spin one fields A1, A2, A3 and A4 denote spin one particles of masses m1, m2, m3
and m4 respectively. The scattering amplitude generated by the Lagrangian eq (6.3) in the
process where particle of mass m1, m2 are incoming while m3, m4 are outgoing, is given by,

T v
12→34 ≡ T v

ϵ1(p1)ϵ2(p2)→ϵ3(p3)ϵ4(p4) = −ϵ1(p1) · ϵ2(p2)ϵ3(p3) · ϵ4(p4)(p2 · p4). (6.4)

We also have to consider the process in which particles m1, m3 are incoming and m2, m4
are outgoing. This corresponds to the amplitude

T v
ϵ1(p1)ϵ3(p2)→ϵ2(p3)ϵ4(p4), (6.5)

with the on-shell conditions

ϵi(pi) · pi = 0, p2
i = −m2

i , i = 1, 4,

ϵi(pj) · pj = 0, p2
i = −m2

j , i, j = 2, 3, i ̸= j. (6.6)
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The scattering amplitude generated by the Lagrangian eq (6.3) for this process is given by,

T v
ϵ1(p1)ϵ3(p2)→ϵ2(p3)ϵ4(p4) = −ϵ1(p1) · ϵ2(p3)ϵ3(p2) · ϵ4(p4)(p3 · p4), (6.7)

which is distinct from eq (6.4). We can get the amplitude in eq (6.7) directly from eq (6.4),

T v
ϵ1(p1)ϵ3(p2)→ϵ2(p3)ϵ4(p4) = T v

12→34

(
ϵi(pσ(i)), pσ(i)

)
, p2

σ(i) = −m2
i , (6.8)

where, for the scattering process in eq (6.5), σ = P23. In total, there could be twenty four
different processes from the Lagrangian eq (6.3), which can be related by elements of S4 to
a single amplitude. Hence, we generate amplitudes for all the twenty processes from the
process in which m1 and m2 are incoming and m3 and m4 are outgoing,

T v
σ(12→34) ≡ T v

ϵσ(1)(p1)ϵσ(2)(p2)→ϵσ(3)(p3)ϵσ(4)(p4) = T v
12→34

(
ϵi(pσ(i)), pσ(i)

)
, p2

σ(i) = −m2
i ,

(6.9)
where σ on the l.h.s. acts on the mass labels without changing the incoming or outgoing
momenta labels. However, solving for ϵi(pσ(i)) is a tedious process and an equivalent way
(and also computationally convenient way) of getting the amplitudes for different processes
is the following,

T v
σ(12→34) = T v

12→34

(
ϵσ(i)(pσ(i)), pσ(i)

) ∣∣∣∣
mσ̄(i), ϵ⊥

σ̄(i)

, (6.10)

which implies we get the amplitude in two steps. First we permute the ϵi(pi)s in the process
eq (2.6) according to the relevant element of S4 and then in this result undo the effect of
permutation σ in the masses and ϵ⊥i . This enables us to solve the ϵ

∥
a only once and hence

deriving the amplitude for different processes computationally less arduous.
We have classified in section 4 and section 5, all the contact scattering amplitudes for

the particular process in eq (4.2) corresponding to massive spin one and two external states.
Each of the scattering amplitudes is equivalent to a local Lagrangian. Our analysis implies
that each of these different processes can be obtained directly from the scattering process in
eq (4.2), without explicitly deriving the Lagrangian interaction term generating it,

T
v/h
j, σ(12→34) = T

v/h
j, 12→34

(
ϵi(pσ(i)), pσ(i)

)
, p2

σ(i) = −m2
i , (6.11)

where σ denotes one of the elements of S4 and j keeps track of the original scattering amplitude
or the Lagrangian giving rise to that amplitude in the process eq (4.2). More precisely, for
spin one, j takes values from 1 to 43 while for massive spin two j takes values from 1 to
633. Demanding that the amplitudes obey CRG in each of the twenty four processes, we
arrive at the bounds on the classified scattering amplitudes. Using our kinematics described
in section 2, we present the results below.

6.1.1 Non-identical scattering

The space of scattering amplitudes for the process T v
12→34 has been evaluated in section 4

and section 5. Explicit expressions for the same have been given in the supplementary
Mathematica file spinone_regge.nb and spintwo_regge.nb. For spin one we have forty three
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structures labelled as T v
j, 12→34(ϵi(pi)), where j = 1 · · · 43. In general, all of these amplitudes

are generated by local Lagrangians of the form

L =
∑

i

γiLi, (6.12)

where i = 1, · · · 43 for spin one and γi are dimensionful parameters. There is a one to one
map (upto equations of motion and total derivatives) between the local Lagrangians Li and
the classified amplitudes generated by the process T v

12→34. However we will not explicitly
derive the map in this work and its enough for the purpose of this note to know that such
a unique map exists. Thus a generic four point scattering amplitude for spin one or spin
two external states takes the form,

T
v/h
12→34, total =

∑
j

γjT
v/h
j, 12→34, (6.13)

where, on the r.h.s. , j = 1, · · · 43 for spin one (while for spin two, j = 1, · · · 633) and the
subscript 12 → 34 in the amplitude T ℓ

j, 12→34 denotes the corresponding process. In order
to classify the Regge allowed S-matrices, we search for linear combinations which are CRG
allowed i.e, grow less than s2 in the Regge limit. In particular, this linear combination
has to be CRG allowed for all of the twenty four possible processes that we can have for
non-identical particles.

T
v/h
σ(12→34), total =

∑
j

γjT
v/h
j, σ(12→34), (6.14)

where T
v/h
j, σ(12→34) is defined in eqs (6.9) and (6.11). Note in particular, the coefficients γj do

not change since they label the Lagrangians rather than the process.
We now outline the algorithm to find the CRG allowed combination of couplings for

spin one. Algebraically the criteria for finding the linear combination of γis such that these
amplitudes obey CRG, translates to a set of twenty four simultaneous equations in forty
three couplings γi,

lim
s→∞, fixed t

T v
σ(12→34), total ≤ s2, ∀ σ. (6.15)

We first use eq (6.11) to generate the amplitudes for rest of 23 different processes obtained
from the Lagrangians dual to each of the forty three amplitudes for the process in eq (2.6).
Secondly, using the explicit parametrization of ϵ

∥
i s in section 2 (more precisely eqs (2.5)

and (2.9)), we evaluate the amplitudes and expand T v
σ(12→34), total at large s and fixed t. This

expansion is organised as a power series expansion in sn. At each order in sn, the expansion
contains polynomials of the independent scattering parameters αi, βi, ϵ⊥i , polynomials of t
such that the homogeneity is satisfied and we solve for the constraints on γi by setting the
coefficient of each polynomial of αi, βj , ϵ⊥i · ϵ⊥j and t (since these are independent data)to zero
for n = 3, 4. In particular, we allow for the possibility of mass dependent constraints among
the dimensionful parameters γi. We explicitly demonstrate these steps in our supplementary
Mathematica notebook spinone_regge.nb.
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∂n 1S 2M 1A

n = 4 1 3 0
n = 2 2 3 1
n = 0 1 1 0

Table 3. S3 classification of spin one quasi-invariant modules (primaries) for D ≥ 8 organised by
derivatives, where n denotes the derivative order of the structures.

We just provide the counting of the final results here since the number of structures
are too large and explicit expressions are un illuminating. We get three Regge allowed
structures in the zero-derivative order, twenty one Regge allowed structures in the second
derivative order, and two Regge allowed structures in the four-derivative order from the
list T v

j,1(ϵi(pi)). These structures imply we have twenty six local Lagrangians which are
CRG allowed for any of the twenty four different scattering processes we study. We also
find that constraints do not depend on mass. We can also consider descendants of these
structures. Considering descendants leads to a larger space of allowed structures at each
derivative order because of cancellations between the primary structures at each derivative
order and descendants of lower primaries. It is a tedious but a finite process and we find
the end results not illuminating enough to record them.

6.1.2 Identical scattering

In this section we study the scattering of four external spin one states of the same mass m.
For identical particles, there is no distinction between different processes. The amplitudes
enjoy additional S4 symmetry. Naively one would have thought that given the classification
of CRG allowed non-identical amplitudes that we have already done, the allowed identical
amplitudes would be the singlet projection of them. A crucial difference in these two cases is
the fact that for the non-identical case, we demanded that the Regge growth be less than s2

for each individual process which translates to each individual orbit of S4. However, for the
identical scattering, this is too strong a criteria and would exclude potential cancellations in
the leading Regge behaviour between different orbits of S4. In other words the S4 invariance
and the Regge limit do not commute. The correct order of limits is to impose S4 invariance
and then take Regge limit.

We recall the classification into the irreps of S4 that we had done for the massive spin
one scattering amplitudes and summarise the classification in table 3 and provide explicit
expressions for the module generators in the file spinone_regge.nb. We scan over the space of
S-matrices order by order in derivatives. At each derivative order, we can construct the most
general S-matrix (including descendants) using eq (4.9) and table 3. Let us illustrate this
construction in detail for spin one with the understanding that the spin two construction, later
on, will be done in the same manner. The most general S-matrix at zero order in derivatives
is generated by e∂0

1S
. From table 3, we see that at this derivative order we have only one such

structure. At second order in derivatives, the basis at second order in derivatives is spanned by

B∂2
ℓ=1 ≡

(
e∂2

1S ⊕
(
(2s − t − u)e∂0,(1)

2M
+ permutations

)
⊕ m2e∂0

1S

)
, (6.16)
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∂n ℓ = 1 ℓ = 2
n = 6 2 1
n = 4 4 1
n = 2 3 1
n = 0 1 1

Table 4. Number of CRG allowed four point amplitudes for massive spin one and massive spin two
identical scattering where n denotes the derivative order.

where we have considered the “m”-descendant of the lower order guys. In total, at second
order in derivatives, we find that there are four linearly independent S-matrices out of which
two are primaries and two are descendants. We can similarly list the basis at fourth and
sixth order in derivatives,

B∂4
ℓ=1 ≡

(
e∂4

1S ⊕ (s2 + t2 + u2)e∂0
1S ⊕

(
(2s − t − u)e∂2,(1)

2M
+ permutations

)
⊕
(
(2s2 − t2 − u2)e∂0,(1)

2M
+ permutations

)
⊕ m2B∂2

ℓ=1

)
,

B∂6
ℓ=1 ≡

(
(s2 + t2 + u2)e∂2

1S ⊕ (stu)e∂0
1S ⊕

(
(2s − t − u)e∂4,(1)

2M
+ permutations

)
⊕
(
(2s2 − t2 − u2)e∂2,(1)

2M
+ permutations

)
⊕
(
s2 + t2 + u2

) (
(2s − t − u)e∂0,(1)

2M
+ permutations

)
⊕ m2B∂4

ℓ=1

)
.

(6.17)

From table 3, we get that there are one primary and nine descendant structures at four
derivatives and twenty descendant structures at six derivatives. Higher order descendants can
similarly be constructed. The counting of S-matrices at each derivative order can be recast
into a partition function which encodes the number of linearly dependent S-matrices at each
derivative order and also their S3 transformation properties [1, 9, 43, 44]. However, we will
not explore that avenue in this present work for massive spinning particles.

Having classified the basis at each derivative order, we can now summarise the Regge
growth at each order in table 4. For this exercise, we use the explicit form of the polarisation
vectors ϵ

∥
i s, obtained from eq (2.9) in the limit of equal external masses,

ϵ̃L
1 = Ñ1

(
k1
m

+ C̃1
k2
m

+ C̃2
k4
m

)
, ϵ̃T

1 = Ñ2

(
T̃1

k2
m

− T̃2
k4
m

)
, (6.18)

where,

Ñ1 =

√
s̃2 − 2s̃t̃ũ + ũ2

s̃2 − 2s̃t̃ũ + t̃2 + ũ2 − 1 , Ñ2 =
√
− s̃2ũ2

s̃2 − 2s̃t̃ũ + ũ2 ,

C̃1 = (ũt̃ − s̃)(
s̃2 − 2s̃t̃ũ + ũ2) , C̃2 = (s̃t̃ − ũ)(

s̃2 − 2s̃t̃ũ + ũ2) , T̃1 = 1
s̃

, T̃2 = 1
ũ

,

s̃ = s

2m2 − 1, t̃ = t

2m2 − 1 and ũ = u

2m2 − 1,

(6.19)
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where s, t and u are the Mandelstam variables defined in eq (2.3) for equal masses. The
rest of the ϵ

∥
i s are obtained as usual using Z2 × Z2 projections of ϵ

∥
1. We have checked that

there are no CRG allowed structures at eight derivatives which are not trivial m descendants
of the lower order structures. The explicit structures are cumbersome and we list them in
the supplementary Mathematica file spinone_regge.nb. In the main text we provide a more
concise form for the amplitude in terms of local Lagrangians. We find that the Regge allowed
structures are generated by the following set of local Lagrangians,

L̃v
∂0,1 = (AµAµ)2

L̃v
∂2,1 = ∂σAµAµ∂σAνAν , L̃v

∂2,2 = F̃αβF̃ αβAνAν , L̃v
∂2,3 = AµFµνF̃ ναAα

L̃v
∂4,1 = FαβF βγFγδF δα, L̃v

∂4,2 = (FαβF αβ)2, L̃v
∂4,3 = FabF̃

bcFcdF̃ da,

L̃v
∂4,4 = Aµ∂σAν∂µ∂σAα∂νAα,

L̃v
∂6,1 = ∂σFαβF βγ∂σFγδF δα, L̃v

∂6,2 = Fαβ∂αF γδ∂βFδηF ηγ ,

(6.20)
where we have defined Fab = ∂aAb − ∂bAa and F̃ab = ∂aAb + ∂bAa. In the labelling of

the structures, the superscript denotes it generates a massive spin one amplitude while the
superscripts keep track of derivative order and the number of structures at each derivative
order. In particular we note that the structures L̃v

∂4,1, L̃v
∂4,2, L̃v

∂6,1 and L̃v
∂6,2 were noted in [1]

as Regge allowed structures for massless spin one scattering as well. The appearance of these
polynomials for the massive case as well can be justified as follows. For massless spin one
particles, since we have gauge invariance, the local Lagrangians are functions of the field
strength. For massive spin one, as we have seen that we do not have this constraint and this
leads to a broader class of Lagrangians which are not strictly polynomials in field strength.
However the gauge invariant combination of field strength ensures that the longitudinal
component (i.e the fastest growing component for the massive polarisation) of the spin
one polarisation cancel and the Regge limit of polynomials of field strength evaluated over
solutions of massive polarisations grow similarly as massless ones. Hence the space of Regge
allowed structures for the identical massive spin one scattering should atleast include the
Regge allowed structures corresponding to the massless spin one case and possibly some
more. Happily we find this indeed is the case and this serves as a sanity check for our
bootstrap method and the Regge analysis.

6.2 Massive spin two couplings

In this section we perform the same exercise for massive spin two scattering amplitudes. We
analyse both non-identical and identical scattering in these subsequent subsections.

6.2.1 Non-identical scattering

As for the case of massive spin one particles, we use eq (6.11) to generate the amplitudes for
rest of 23 different processes obtained from the Lagrangians dual to each of the six hundred
thirty three amplitudes (evaluated in section 5) for the process in eq (2.6). Secondly, using
the explicit parametrization of ϵ

∥
i s in section 2 (more precisely eqs (2.5) and (2.14)), we do

the Regge expansion of the amplitude in sn. We solve for the constraints on γi by setting the
coefficient of each polynomial of αi, βj , ϵ⊥i · ϵ⊥j and t (since these are independent data) in the
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expansion to zero for n which now runs from 3 to 8. We find five Regge allowed S-matrices
for the process T h

12→34 ( and also for 23 different processes, T h
σ(12→34)) which are listed below.

A1 = b2
14b2

23 − 2b14 (b13b24 + b12b34) b23 + (b13b24 − b12b34) 2

A2 = A2
43b12b13b23 + A43 [(b13b24 − b14b23) (A23b13 − A13b23) − b12b34 (A13b23 + A23b13)]

+ b34 ((A23b13 − A13b23) (A23b14 − A13b24) + A13A23b12b34) ,

A3 = A2
32b12b14b24 − A21A32b2

14b23 + 2A34A32b12b14b24 + A21A32b13b14b24 − A14A34b13b2
24

− A14A24b12b2
34 + A23A34b2

14b23 + A2
41b12b13b23 − A23A34b13b14b24 + A14A34b14b23b24

+ b34 [b14 (A21 (A32b12 − 2A23b13 − A14b23) − A23 (A34b12 + A23b13 + A14b23))
−A14b24 (−A34b12 − A24b13 + A14b23)] + A41 (A21b13 (−b14b23 + b13b24 − b12b34)
+A32b12 (b14b23 + b13b24 − b12b34) + A34b12 (b14b23 + b13b24 − b12b34)) ,

A4 = A2
21b13b14b34 + A21 [A34b14 (−b14b23 + b13b24 + b12b34) + 2b34A23b13b14

+A14b34 (b14b23 + b13b24 − b12b34)] − A14A23b12b2
34 − A23A34b23b2

14 + A14A34b13b2
24

+ A34b24b14 (A34b12 + A23b13 − A14b23) + A23b14b34 (A34b12 + A23b13 + A14b23)
+ A14b24b34 (−A34b12 + A23b13 + A14b23) ,

A5 = (A12A23 − A14A21) b12b2
34 + b34

(
A14

(
b23 (A21b14 − A43b12)

+ b24 (−A34b12 + A21b13 − 2A12b23)
)

+ A23 (A43b12b13 − A12b24b13 + b14 (A34b12 + 2A21b13 − A12b23))
)

− (b13b24 − b14b23) (A23 (A43b13 − A34b14) + A14 (A43b23 − A34b24))
+ A41 (2A43b12b13b23 − (b13b24 − b14b23) (A21b13 − A12b23) + b12b34 (A21b13 + A12b23)
+A34b12 (−b14b23 − b13b24 + b12b34)) + A32A43b12 (b14b23 + b13b24 − b12b34)
+ A32A21b14 (b14b23 − b13b24 − b12b34)
+ A32b24 (−2A34b12b14 − A12 (b14b23 − b13b24 + b12b34))

(6.21)

These amplitudes are generated by the local Lagrangians in the process T v
12→34. The

analysis in the section establishes that these Lagrangians also obey CRG also in any of the
23 other distinct processes that we can study for non-identical scattering.

6.2.2 Identical scattering

In this section we compute the Regge allowed couplings contributing to polynomial S-matrices
for massive spin two scattering. The procedure is same as outlined in section 6.1.2. We
construct the space of most general S-matrices (i.e including primaries and descendants)
using the data from table 5 and eq (4.9). Following the steps exactly as in the case of spin
one, we find that there are exactly one CRG allowed structure at zero, two, four and six
derivatives and no higher derivative order structures. We present the explicit amplitudes
for these Regge allowed structures in the Mathematica file spintwo_regge.nb and present
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∂n 1S 2M 1A

n = 8 6 9 3
n = 6 11 21 10
n = 4 15 25 10
n = 2 6 10 4
n = 0 2 2 0

Table 5. S3 classification of spin two quasi-invariant modules (primaries) for D ≥ 8 organised by
derivatives, where n denotes the derivative order of the structures.

here the local Lagrangians giving rise to them.

L̃h
∂0 = δγ

[αδζ
βδρ

ξ δσ
δ] h α

γ h β
ζ h ζ

ρ h δ
σ ,

L̃h
∂2 = δγ

[αδζ
βδρ

ξ δσ
δ δν

µ] ∂ν∂µh α
γ h β

ζ h ζ
ρ h δ

σ ,

L̃h
∂4 = δγ

[αδζ
βδρ

ξ δσ
δ δν

µδν′

µ′] ∂ν∂µh α
γ ∂ν′∂µ′

h β
ζ h ζ

ρ h δ
σ ,

L̃h
∂6 = δγ

[αδζ
βδρ

ξ δσ
δ δν

µδν′
µ′δν′′

µ′′] ∂ν∂µh α
γ ∂ν′∂µ′

h β
ζ ∂ν′′∂µ′′

h ζ
ρ h δ

σ ,

(6.22)

where δµ1
[α1

δµ2
α2 · · · δ

µn

αn] is concise expression for product of two Levi-Civita tensors
εµ1µ2···µnεα1α2···αn . Note that the Lagrangian which is of the order six derivatives reminds
us of the second lovelock term that was classified as Regge allowed for massless graviton
scattering in [1]. Indeed the S-matrix generated by this term involves a seven dimensional
Levi-Civita tensor and is similar to the massless case,

S∂6 = (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k1 ∧ k2 ∧ k3)2 + S3 permutations. (6.23)

Similar to the massive spin one case, we note that the second lovelock term was precisely
the gauge invariant Lagrangian that was not ruled out by CRG in [1] for D > 6. The
four derivative lovelock like structure gives a S-matrix involving six dimensional Levi-Civita
tensor of the form,

S∂4 = (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k1 ∧ k2)2 + (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k3 ∧ k4)2 + S3 permutations. (6.24)

Since gauge invariance is no longer a requirement for massive spinning particles, we expect
such structures to appear. Similarly, the two and zero derivative structures arise from
“lovelock-like” Lagrangians which generate S-matrices involving five dimensional and four
dimensional Levi-Civita tensors of the form,

S∂2 = (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k1)2 + (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k2)2 + (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k3)2

+ (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4 ∧ k4)2 + S3 permutations,
S∂0 = (ϵ1 ∧ ϵ2 ∧ ϵ3 ∧ ϵ4)2 + S3 permutations.

(6.25)
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6.3 Scattering in D=4

In lower dimensions we have additional parity-violating structures which can contribute
to tree-level scattering [1, 42] but we will not attempt to classify them in this work. We
now specialise to scattering in D = 4 and restrict our analysis to the parity even sector.
In D = 4, ϵ⊥i is a one dimensional vector parametrized by a single number. The algebraic
implication of this fact is that the inner products of the form ϵ⊥i · ϵ⊥j reduce to products of
numbers. As a consequence the following structure which would have transformed under
a 3 now transforms in a 1S

ϵ⊥1 · ϵ⊥2 ϵ⊥3 · ϵ⊥4 ∼ ϵ⊥1 ϵ⊥2 ϵ⊥3 ϵ⊥4 . (6.26)

The space of orthonormal vectors is now three dimensional and generated by (ϵL
i , ϵT

i , ϵ⊥i ).
We use rotational invariance in our problem to express our scattering amplitude in the rotated
orthonormal frame (ϵ′Li , ϵ′Ti , ϵ⊥i

′), where,

ϵ⊥i
′ = sin(θi)

(
cos(ϕi)ϵL

i + sin(ϕi)ϵT
i

)
+ cos(θi)ϵ⊥i ,

ϵL
i
′ = cos(θi)

(
cos(ϕi)ϵL

i + sin(ϕi)ϵT
i

)
− sin(θi)ϵ⊥i ,

ϵT
i
′ =

(
cos(ϕi)ϵT

i − sin(ϕi)ϵL
i

)
,

(6.27)

where we have ϵ⊥i · ϵ⊥i = 1. Note that the condition ϵi · ki = 0 holds in the rotated frame
as well. For spin two scattering, we also have the constraint of tracelessness. The complex
basis of in-plane polarisations in the rotated frame can be written as

ϵ±i (θi, ϕi) =
√

1
2
(
ϵL
i
′ ± iϵT

i
′)

= (cos(θi) cos(ϕi) ∓ i sin(ϕi)) ϵL
i + (cos(θi) sin(ϕi) ± i cos(ϕi)) ϵT

i − sin(θi)ϵ⊥i .

(6.28)

Now we can see that, ϵ+
i (π − θi, ϕi) = −ϵ−i (θi, ϕi). The in-plane polarisations in this rotated

frame, i.e ϵ+
i (θi, ϕi) suffices for a general spin two analysis in D = 4, if we consider the θi’s

and ϕi’s are arbitrary variables with, 0 ≤ θi ≤ π, 0 ≤ ϕi < 2π.7
For identical scattering with spin one external particles, there is a reduction in the

number of linearly independent parity even quasi- invariant structures in D = 4 compared
to D ≥ 8 that we have listed in this work (see eqs (4.52) and (4.53 ) of [42]). However, the
Regge allowed S-matrices continue to be generated by the Lagrangians in eq (6.20). We have
checked their linear independence using explicit parametrisation of the polarisation tensors
in D = 4 (using eqs (2.5) and (6.27) and the fact that ϵ⊥i · ϵ⊥j ∼ ϵ⊥i ϵ⊥j in D = 4).

For spin two massive external states, the situation is a bit more dramatic, the amplitude
generated by the six derivative term in eq (6.22), vanishes since it is topological in D ≤ 6. This
is easy to see from the structure of the S-matrix and the decomposition of the polarisation
tensor we have implemented in this work. A generic polarisation ϵi corresponding to a
spinning particle of mass mi, is decomposed into a in-plane and out-of plane part

ϵi = ϵ⊥
i + ϵ∥

i
, ϵ∥

i = αik1 + βik2 + γik3, (6.29)
7It will be interesting to map this parametrization in D = 4 to other ways of parametrizing massive spinning

polarisations in the literature [45].
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where in D = 4, ϵ⊥
i is now just a number- more precisely it is constrained to be ±i if we

normalise our polarisation tensors to be |ϵi|2 = 1 (recall ϵi · ϵi = 0 because of tracelessness).
The six derivative S-matrix involves a seven dimensional ε-tensor and becomes immediately
clear from the structure

εabcdefgϵ1
aϵ2

bϵ3
cϵ4

dp1
ep2

f p3
g

that we need ϵ⊥
i to be atleast four-dimensional for this quantity to be non-zero (We have

used momentum conservation to discard the fourth momenta k4 throughout). Note that
this argument is also true for the four and two derivative structure where we need ϵ⊥

i to
be atleast three and two dimensional respectively for the amplitude to be non-zero. In
summary, for D = 4, there is only one parity even Regge allowed structure, generated by
the 0 derivative Lagrangian in eq (6.22).

6.4 CRG analysis of massive gravity

In this subsection we show that tree-level massive graviton scattering violate CRG in dRGT
gravity [24, 25]. The effective Lagrangian is described by

S =
∫

d4x
√
−g

(
m2

P

2 R − m2
P m2

8 V (g, h)
)

, (6.30)

where R is the Riemann scalar built out of gµν = g0
µν + hµν . Here g0

µν is the Minkowski metric
ηµν , hµν is the massive spin two field, m is its mass and mP is the reduced Planck mass. The
interactions are concisely packaged into V (g, h) = V2(g, h) + V3(g, h) + V4(g, h) + · · · as

V2(g, h) = b1⟨h2⟩ + b2⟨h⟩2,

V3(g, h) = c1⟨h3⟩ + c2⟨h2⟩⟨h⟩ + c3⟨h⟩3,

V4(g, h) = d1⟨h4⟩ + d2⟨h3⟩⟨h⟩ + d3⟨h2⟩2 + d4⟨h2⟩⟨h⟩2 + d5⟨h⟩4,

(6.31)

where ⟨h⟩ = hµνgµν , ⟨h2⟩ = hµνgµαhαβgβν and so on. The ghost free conditions yields
the following relations,

b1 = −b2 = 1, c1 = 2c3 + 1
2 , c2 = −3c3 −

1
2 , d1 = −6d5 + 3c3

2 + 5
16

d2 = 8d5 −
3c3
2 − 1

4 , d3 = 3d5 −
3c3
4 − 1

16 , d4 = −6d5 + 3c3
4 .

(6.32)
We wish to compute exchange diagrams and contact terms which contribute to tree-level

scattering of 2 → 2 massive spin two fields in this theory and study their Regge growth.
Our Regge limit probes the energies,

m2 ≪ s ≪ M2, M ∼ (m3mP )
1
4 , (6.33)

such that loops are suppressed and we can impose CRG on the tree-level amplitude. We
follow [37] and use gµν = ηµν + hµν to expand this Lagrangian to cubic and quartic in

– 33 –



J
H
E
P
0
5
(
2
0
2
4
)
1
2
3

order to get the vertices. We use the following quadratic expansions of the inverse metric
and its determinant,

gµν = ηµν − hµν + hµ
αhαν + O(h3),

√
−g =

(
1 + 1

2hµ
µ − 1

4

(
hµνhµν −

hµ
µ

2

2

))
+ O(h3).

(6.34)
At quadratic order, the Lagrangian in eq (6.32) gives rise to the following ghost-free spin
two propagator.8

Pµ1µ2,ν1ν2(p) = 4
m2

P

1
p2 + m2

(
1
2
(
θµ1ν1θµ2ν2 + θµ1ν2θµ2ν1

)
− 1

3θµ1µ2θν1ν2

)
,

θab = ηab + papb

m2 .

(6.35)

It was shown in [26–28], that despite the higher derivative terms in the propagator, the loop
contributions are suppressed in mP (and hence M) and we can safely consider tree-level
amplitudes in the energy range in eq (6.33). For computing the tree-level, scattering relevant
three point vertices and four point vertices have to be evaluated. We note that the off-shell
cubic and the on-shell quartic vertices from √

−gV (g, h) are given by

g
(3)
V = −m2m2

P

8

(
b1

(
hαβhβαhµ

µ

2 − 2hαβhβγhγα

)
+ b2

(
(hµ

µ)3

2 − 2hαβhβαhµ
µ

)

+ c1hαβhβγhγα + c2hαβhβαhµ
µ + c3(hµ

µ)3
)

,

g
(4)
V = −m2m2

P

8

(
(3b1 − 3c1 + d1)(hαβhβγhγµhµα) +

(
−b1

4 + b2 − c2 + d3

)
(hαβhβα)2

)
,

(6.36)

In these expansions, the indices of hµν are raised and lowered by the flat space background
metric. We have also imposed hµ

µ = 0 in deriving the on-shell four point couplings. The

8Note the change in normalisation of the propagator in comparison with eq 2.44 of [37].
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relevant couplings from the √
−gR are given by,

g
(3)
R = m2

P

2

(
1
8(hµ

µ)2∂σ∂ρhρσ−
1
4h2

µν∂σ∂ρhρσ−
3
4hµν∂µhρσ∂νhρσ +hµν∂σhµρ∂νhρσ + 1

2hµν∂σhµρ∂ρhνσ

−3
2hµν∂σhµρ∂σhνρ+hµν∂ρhµρ∂σhνσ +2hµν∂σhρσ∂νhµρ−hµν∂σhρσ∂ρhµν +hµνhµρ∂ρ∂σhνσ

+hµνhµρ∂σ∂ρhνσ−hµνhµρ∂σ∂σhνρ+hµνhρσ∂σ∂νhµρ−hµνhρσ∂σ∂ρhµν−∂ρhδ
δhµν∂νhµρ

+1
2∂ρhδ

δhµν∂ρhµν−∂νhδ
δhµν∂ρhµρ−hµνhµρ∂ρ∂νhδ

δ + 1
4∂σ∂σhδ

δh2
µν + 1

4∂µhδ
δ∂νhδ

δhµν + 3
8hδ

δ (∂σhνρ)2

−1
4hδ

δ∂ρhνσ∂σhνρ−
1
2hδ

δ∂νhνρ∂σhρσ−
1
2hδ

δhνρ∂ρ∂σhνσ−
1
2hδ

δhνρ∂σ∂ρhνσ + 1
2hδ

δhνρ∂σ∂σhνρ

+1
2hδ

δhνρ∂ρ∂νhδ
δ + 1

2hδ
δ∂ρhδ

δ∂σhρσ−
1
8(hµ

µ)2∂σ∂σhδ
δ−

1
8hδ

δ

(
∂ρhδ

δ

)2
)

,

g
(4)
R = m2

P

2

(
− 3

16 (∂αhρσ)2h2
µν + 1

8∂σhρα∂αhρσh2
µν + 1

4∂ρhρσ∂αhσαh2
µν + 3

4∂νhσα∂ρhσαhµνhµρ

−∂ρhσα∂αhνσhµνhµρ−
1
2∂σhρα∂αhνσhµνhµρ+ 3

2∂αhνσ∂αhρσhµνhµρ−∂σhνσ∂αhραhµνhµρ

−2∂ρhνσ∂αhσαhµνhµρ+∂σhνρ∂αhσαhµνhµρ+ 1
6∂α∂σhσαhµνhµρhνρ−∂σ∂αhραhµνhµρhνσ

−∂α∂σhραhµνhµρhνσ +∂α∂αhρσhµνhµρhνσ + 1
4∂σ∂αhραh2

µνhρσ + 1
4∂α∂σhραh2

µνhρσ

−1
4∂α∂αhρσh2

µνhρσ−
1
2∂νhσα∂ρhµαhµνhρσ + 3

2∂ρhµα∂σhναhµνhρσ

−∂νhµα∂σhραhµνhρσ +∂σhρα∂αhµνhµνhρσ−∂σhνα∂αhµρhµνhρσ + 3
4∂αhµρ∂αhνσhµνhρσ

−1
4∂αhµν∂αhρσhµνhρσ−2∂νhµρ∂αhσαhµνhρσ +∂ρhµν∂αhσαhµνhρσ +∂ρ∂νhσαhµνhµρhσα

−∂ρ∂αhνσhµνhµρhσα−∂α∂ρhνσhµνhµρhσα+∂α∂σhνρhµνhµρhσα) ,

(6.37)

where we have obtained the off shell three point and the on-shell four point vertices from
the √

−gR using xAct tensor programme [46]. The four point scattering therefore consists of
exchange diagrams which are generated by two vertices g

(3)
V and g

(3)
R and contact diagrams

generated by g
(4)
V and g

(4)
R . The exchange diagram is constructed by stitching together two

three point functions as explained in section 7.2.2 of [1] using the massive spin two propagator
in eq (6.35). For this purpose, it is necessary that we obtain the off-shell three point vertices
(i.e without imposing the EOM (2.12)). Thus we have three different kinds of exchange
diagrams corresponding to three different choices of the vertices.

A
g

(3)
V −g

(3)
V

, A
g

(3)
V −g

(3)
R

, A
g

(3)
R −g

(3)
R

, (6.38)

The computation of these diagrams can be automated. We also have contact term amplitudes

A
g

(4)
V

, A
g

(4)
R

. (6.39)

After a tedious calculation the complete four point amplitude is given by the sum of each
individual pieces.9 The final answer is quite complicated and a Mathematica file containing

9As a consistency check we reproduced tree-level scattering amplitude in Einstein gravity from g
(4)
R and

g
(3)
R using this procedure but with a massless spin two propagator.
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the answer will be available on request. Using our explicit polarisation parametrisation in
eqs (2.9) and (2.12), we find that the Regge limit depends on the tunable dimensionless
coupling c3 and the amplitude grows like O(s3). The coefficient d5 in the amplitude precisely
occurs in the combination given by the zero derivative CRG allowed Lagrangian in eq (6.22)
and hence drops out in the Regge limit. However there exists a particular value of c3 for
which the leading behaviour of the four point amplitude can be ameliorated.

c3 = 1
4 . (6.40)

Thus dRGT massive gravity violates CRG for all other possible values of couplings c3 and
d5. This is also the conclusion of a causality based analysis by [29]. Authors of [5], showed
that for tree-level amplitudes, local growth of S-matrices (i.e growth for energy scales below
the cutoff but larger than other energy scales in the problem) is bounded by s2 at large s

and fixed t, as a consequence of the unitarity of the full quantum scattering amplitude. If
a theory violates CRG, which is a tree-level criteria, it might be sick when one considers
the unitarity of the full S-matrix as well (as shown in [21] using dispersion relations). In
summary, it seems to be crucial that while constructing such theories of massive gravity,
CRG is an important criteria to impose if we want to construct massive theories of gravity.

Our analysis involving contact terms in this paper shows promise in this regard. One
might approach the problem in a bootstrap sense. Let us restrict to two derivative theories
of gravity (say) and classify all amplitudes upto possible two derivative for three point
amplitude and upto six derivative for four point amplitudes. The reason for considering upto
six derivatives in contact S-matrices is that we might generate such six derivative amplitude
when computing exchange diagrams involving two derivative three point Lagrangian couplings
in our proposed theory (due to the higher derivative terms in the propagator eq (6.35)).
We now consider the space of 2 → 2 scattering amplitudes generated by these three point
and four point amplitudes. Since we want ghost-free theories of gravity, we use the massive
spin two propagator derived from ghost-free gravity in eq (6.35) to construct the exchange
diagrams. One then demands that arbitrary linear combination of these amplitudes cannot
grow faster than s2 at large s and fixed t. It will be interesting to find out if there exists a
non-zero solution for this problem other than dRGT massive gravity theory. One can then
try to see if these other CRG allowed massive gravity theories obey the full UV consistency
derived through dispersion relations.

6.5 Ambiguity in inversion formula

In this subsection we interpret the CRG allowed Lagrangian structures as ambiguity in
inversion formula in large N conformal field theories ([33–35]). Let us review the argument
of [35] for ambiguity in the inversion formula for scalars. Four point functions of primary
scalar operators in conformal field theories are constrained by symmetry upto a function
of crossratios u and v, which we define below. Operator product expansion enables us to
express this as a series expansion involving a purely kinematic piece called the conformal
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block and a part containing information about the CFT.

⟨O(x1)O(x2)O(x3)O(x4)⟩ = 1
x∆O

12

1
x∆O

34
g(u, v) = 1

x∆O
12

1
x∆O

34

∑
∆,J

C∆,JG∆,J(u, v),

where, u = zz̄ = x2
12x2

34
x2

13x2
24

, v = (1 − z)(1 − z̄) = x2
23x2

14
x2

13x2
24

,

(6.41)

where C∆,J is the product of OPE coefficients, G∆,J (u, v) is the conformal block and the sum
over ∆ and J runs over the dimensions and spin of the primary operators that appear in
the OPE expansion of two external operators. The data of the CFT is completely specified
by the scaling dimensions and spin of the primary operators and their three point functions
C∆,J . In [33, 34], it was shown that this data can be obtained from the double discontinuities
of the correlator. Schematically this was expressed in [35] in the following manner,

I∆,J =
∫ 1

0
dzdz̄Kt

∆,J(z, z̄)⟨[O(x2), O(x3)][O(x1), O(x4)]⟩

+ (−1)J
∫ 0

−∞
dzdz̄Kt

∆,J(z, z̄)⟨[O(x2), O(x4)][O(x1), O(x3)]⟩,
(6.42)

where the functions Kt
∆,J(z, z̄) are explicitly known. The function I∆,J encodes the data for

the CFT. The poles in ∆ correspond to the dimensions of the operators appearing in the OPE
of the two external operators and the residue at these poles generate the OPE coefficients.
The r.h.s. of the formula involves double discontinuity of the correlator which receives non-zero
contribution from all the single trace operators in the spectrum but is unaffected by double
trace operators. Hence the inversion formula enables us to extract double trace data about
the CFT from just knowing about the single trace operators. The residues are analytic in
spin but for a generic CFT this formula valid only for J > 1. This bound follows from the
boundedness of the CFT correlator in Regge limit, a kinematic limit of the Correlator in the
Lorentzian regime [33]. This is particularly interesting for large N CFTs where this constraint
is weaker [47] and we can get data only for J > 2. Hence, two correlators having the same
double discontinuities can differ by presence of J = 0 and J = 2 double trace operators in the
spectrum. On the other hand, in large N CFTs, the double trace operators appearing in the
large N crossing equations of the CFT four point function are in one to one correspondence
with local counterterms in the bulk [32]. Putting these two pieces of argument together,
in [35], the authors proved a theorem that the four point functions of scalar operators in large
N CFTs are completely fixed by the double discontinuity of the correlator and three local
counterterms in AdS with arbitrary coefficients.10 These set of counter terms in AdS give
rise to CFT correlators whose Regge growth are bounded by Chaos bound [47]. In particular,
the correlators generated by bulk contact like terms in the Regge limit behave as [3],

lim
σ→0

gCR(z, z̄) ∝ hCR(ρ)
σA′−1 , z = σe−ρ, z̄ = σeρ, (6.43)

where the superscript CR denotes that limit is taken in a Lorentzian Regge configuration,
which is obtained by analytically continuing from the euclidean correlation function by an

10Similar arguments have been used in [48] to constrain the mixed four point functions in large N Chern
Simons theories with vector matter.
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anticlockwise rotation of the cross ratio z̄ about the point 1, (1 − z̄) → (1 − z̄)e−2πi while
z is held fixed in the upper half plane (UHP). Causally, this the configuration in which
O(x2) is in the future light cone of O(x3) and O(x4) is in the future light cone of O(x1) but
these pairs of particles are space like separated from one another. Regge limit corresponds
to boosting the operators O(x2) and O(x4) in this Lorentzian Regge configuration, which
translates to z → 0, z̄ → 0 with z/z̄ held fixed (also expressed as σ → 0 at fixed ρ). For
large N CFTs, Chaos bound implies A′ ≤ 2.

There exists a different Lorentzian kinematic limit for correlators of large N CFTs
called the “Bulk point” limit which generates tree-level flat space scattering amplitudes
corresponding to bulk interactions [31, 49, 50]. For a Lagrangian which generates flat space
S-matrix which grows in Regge limit as sA, the small σ behaviour of the bulk point correlator
takes the following form

lim
σ→0, ρ→0

gCS(u, v) ∝ 1
σA−1ρα

, (6.44)

where the superscript CS denotes that limit is taken in a Lorentzian scattering configuration,
which is analytically continued from the euclidean correlation function by an anticlockwise
rotation of the cross ratio z̄ about the point 1, (1 − z̄) → (1 − z̄)e−2πi while z is held fixed
in the UHP followed by anti-clockwise rotation of z → ze−2πi while z̄ is held fined in UHP.
Causally, this the configuration in which both O(x2), O(x4) are in the future light cone of
O(x3) and O(x1). Bulk point corresponds to the limit z/z̄ → 1 or ρ → 0. The coefficient
α encodes the derivative order of the bulk interaction. For CFT correlators generated by
contact term like interactions, one can analytically continue from the causally Regge sheet
to causally scattering sheet [3].

hCR(ρ)
σA′−1 → hCS(ρ)

σA′−1 . (6.45)

In particular, this analytic continuation does not affect the exponent of σ for contact term
interactions in the bulk. Eq (6.44) captures the behaviour of the CFT correlator when both
the cross ratios are small while (6.45) is for small σ but finite ρ. For correlators of scalars,
massless spin one and spin two, this analytic continuation between two different Lorentzian
kinematics and detailed analysis of two order of limits of cross-ratios imply that flat space
Lagrangians that violate CRG necessarily violate Chaos bound, when we study the Regge
limit of the correlators generated by these Lagrangians in AdS.

A ≤ A′ ≤ 2. (6.46)

Violation of Chaos bound however does not imply violation of CRG. Although this leaves
the possibility that there might be Lagrangians which are CRG allowed but violate Chaos
bound in AdS, we do not expect this to happen from the structure of AdS integrals involved
in the proof for scalar, massless spin one and spin two particles (see [3] for detailed analysis
in this regard). In fact, in all the examples explicitly studied in [3], A′ = A. Indeed, the set
of scalar AdS counterterms classified by [35], are same as the set of scalar counterterms that
are allowed by CRG for four point flat space scattering of scalars [1]. This argument then
generalises to inversion formula for conserved spinning external particles [51–53]. The local
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four photon and four graviton counterterms that are CRG allowed were classified in [1] and
they can be interpreted as the local counterterms which are AdS ambiguities for the inversion
formula for four point functions of conserved currents and stress tensors.

We would like to interpret our CRG allowed massive spin one and massive spin two
Lagrangians, in eqs (6.20) and (6.22), as ambiguities of the inversion formula corresponding to
four point functions of unconserved currents and symmetric traceless tensors. Indeed one can
check that using spinning AdS propagators [54], the tree-level AdS correlators generated by
our CRG allowed Lagrangians all obey Chaos bound. However, even though we believe this
is the exhaustive list of Regge allowed counter terms, we are unable to provide a proof of this
statement due to the following reason. For massive external states, “Bulk point” limit is not
the correct kinematic limit to probe flat space scattering (appendix I of [3]). Hence a naive
extrapolation of the chain of arguments for massless scattering, that led us to establishing
that CRG violation implies violation of Chaos bound, to massive scattering is not feasible. In
particular, this leaves open the possibility that there might exist CRG violating interactions
in flat space which obey Chaos bound in AdS for massive particles. While we believe this
cannot be the case, it would be nice to establish a proof of this fact. Recently much progress
have been made in trying to understand flat space scattering of massive external particles
from AdS correlators [55–58]. Using this machinery it would be interesting to derive the
analogue of eq (6.46) for massive scattering, which would constitute a proof of the statement
that violation of CRG for S matrices of massive particles implies violation of Chaos bound
for correlators of unconserved spinning operators in CFT.

7 Conclusion

In this work, we have classified the space of contact S-matrices (analytic in polarisation
tensors and momenta) that contribute to 2 → 2 tree-level scattering of massive spin one and
spin two particles which obey CRG criteria. Our results are for both identical as well as
non-identical scattering of particles in D ≥ 8. In the first part of this work, we constructed
the space of all allowed S-matrices that can contribute to such tree-level processes. As was
done in [1], it is useful to think of this space as a module of polarisation tensors over the ring
of polynomials of Mandelstam invariants. The classification then entails constructing the
generator of these modules and together with the polynomial of Mandelstam invariants, these
modules generate the most general S-matrix at any derivative order. Unlike the massless case,
the local module generators for massive spinning particles are easy to construct. Since there is
no gauge redundancy, the local generators need not only be polynomials of field strength (for
spin one) or Riemann tensor (for spin two). The classified structures can also be organised in
irreducible representations of S4 when they correspond to scattering of identical particles. Our
process have been summarised in section 4 and section 5 and we present the explicit structures
in the supplementary Mathematica files. The counting of number of linearly independent
structures contributing to the scattering can also be thought of constructing SO(D − 3)
singlets out of representations of little group of massive spinning particles. We obtain exact
agreement between the group theory counting and explicit construction of structures. Our
construction, although done for D ≥ 8, can easily generalised to lower dimensions as well
where we expect reduction of parity even structures and appearance of additional parity
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violating structures due to the Levi-Civita tensors corresponding to each dimensions. In lower
dimensions the modules might not be freely generated as well. It would be interesting to
verify this through Hilbert series for the massive spin one and spin two fields [1, 9, 44, 59, 60].
For non-identical scattering, each of the primaries corresponds to a local Lagrangian while
for identical scattering, the quasi-invariants correspond to a Lagrangian coupling.

In the second part of this work, we study the Regge behaviour (large s at fixed t) of
these structures for both identical and non-identical scattering and classify the couplings
consistent with Classical Regge Growth criteria. For non-identical scattering, a single coupling
can contribute to different processes (obtained by permutations of the external states). We
demand that amplitude generated by a coupling grows slower than or equal to s2 in the
Regge limit for all possible choices of polarisation tensors and each of the possible processes.
We generalise this study for the case of identical scattering as well. Our method and results
have been summarised in section 6.1 and section 6.2. For the identical scattering, we find
that only a finite number of module generators and their descendants are CRG allowed and
the corresponding local Lagrangians are given by eq (6.20) for the massive spin one and
eq (6.22) for the massive spin two scattering. We specialise to the case of D = 4, where
remarkably only a single parity even structure survives for massive spin two, given by the
zero derivative Lagrangian in eq (6.22).

We show that dRGT theory [16, 24] violates CRG except for the special choice of its
parameter values c3 = 1

4 . We do so by explicitly computing the four point tree-level amplitude
in this theory. We propose that one should consider CRG as a criteria that a theory must
satisfy when constructing tree-level massive gravity theories. In particular, our preliminary
analysis involving contact-terms suggest that it would be worthwhile exploring this problem
in the space of scattering amplitudes in a bootstrap manner by considering both exchange
diagrams and contact terms together.

We, then, interpret our CRG allowed Lagrangians as possible AdS contact term ambi-
guities that relevant for inversion formula for large N CFTs. We believe, our list of CRG
allowed counterterms is exhaustive despite the fact that it assumes CRG violation in massive
flat space scattering implies violation of Chaos bound in the bulk (since the existing proof of
the statement in [3] deals with massless particles). It would be interesting to prove this using
recent developments in massive scattering in flat space physics from AdS [55–58].

In [1], a broad goal of constraining classical theories of gravity was proposed. One of
the conjectures was that there exist exactly three classical gravitational S-matrices that are
consistent with a set of physically motivated ‘low energy’ constraints- Einstein S-matrix
generated by Einstein Hilbert action, the type II S-matrix and the Heterotic S-matrix
generated by their classical truncations. This conjecture implied but is not implied by two
more conjectures. The only consistent classical gravitational S-matrix whose exchange poles
are bounded in spin is the Einstein S-matrix and the only consistent classical gravitational
S-matrix with massless spin two pole is the Einstein S-matrix. For D ≤ 6, the second and
third conjectures were shown to be true for four point scattering in the sense that there
exists no finite polynomial deformation of Einstein gravity consistent with CRG criteria [1].
However to address the first conjecture, we need to consider scattering of massive spins, mixed
scattering as well as higher point scattering. In this regard, its worth mentioning recently
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in [61], the authors construct a space of new amplitudes with dual resonance for a tunable
spectrum along with tame high-energy behavior and an infinite spin tower. In [62], however
demanding the factorization on massive poles onto a set of three-point amplitudes constrained
the simplest bespoke model, putting forth more empirical evidence for our first conjecture.

Let us consider dimensional reduction of pure Einstein gravity in from R1,D−1 dimensions
to R1,D−2 × S1/Z2 [63]. The D − 1 dimensional theory has real massive spin one, massive
spin two as well as massless spin two, massless spin one and scalar particles. The interactions
generating tree-level amplitudes in the dimensionally reduced theory can be worked out by
linearising the Einstein gravity action to quartic orders. The three point and four point
couplings of the dimensionally reduced fields are infinite in number and are highly fine
tuned with very specific numerical coefficients appearing in front of them. The tree-level
scattering amplitudes in D dimensional pure gravity theory saturates CRG. If one were to
study scattering amplitudes in the D − 1 dimensional theory, this would be a consequence
of cancellations in the Regge growth due to fine tuning in the Kaluza Klein (KK) theory.
Thus this is a nice toy model for making progress on conjecture I of [1]. In the context of
this toy model, we can now ask the following question. We take a linear combination of all
possible two derivative three point functions and contact terms of massive spin one, spin two
and massless spin one and two particles in a D − 1 dimensional theory and try to see if there
exist a solution by demanding that the scattering amplitude, that this linear combination
generates, must obey CRG. One would expect that if we try to, say, impose CRG over just the
space of four point couplings of massive spin one without taking into account the exchanges,
we should find that no finite combinations of such four point couplings should be allowed
because of our toy example. But as we show in section 6.1 that there exists a finite solution
to this bootstrap problem. Thus a preliminary analysis leads to a conclusion that CRG is
not enough to completely fix the spectrum to KK spectrum in this approach. Despite this, it
would be interesting to see how close we can constrain the spectrum to KK theories using
CRG by considering both exchange amplitudes and purely contact amplitudes together.11

We leave these threads for future endeavours.
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A S4 representation theory

In this appendix we review the group theory for discrete group S4, relevant for main text.
The discussion closely follows §2.3 of [1]. S4 the discrete group that permutes four objects,
which, in the context of this paper are the four scattering particles. S4 has a normal abelian
subgroup generated by Z2 ×Z2, the double transposition. This normal subgroup is generated
by (P12P34, P13P24) (where Pij swaps i ↔ j) and has four elements

{1, P12P34, P13P24, P14P23}. (A.1)

Since the Mandelstam invariants are invariant under this normal subgroup, it is convenient
to impose the S4 symmetry in two steps. Given a polynomial of polarisation tensors and
Mandelstam invariants, we first impose Z2 × Z2 and then impose the remnant permutation
group given by the coset S3 = S4

Z2×Z2
. The remnant symmetry group is generated by

{1, P12, P13, P23, P123, P231}. (A.2)

The total action of S4 therefore corresponds to first gauge fixing an S4 element to the form
(ijk4) using Z2 × Z2 and then the left action of S3 on (123). Using the above factorization
we first project polynomials of momenta and polarisations to the Z2 × Z2 invariants by
using suitable projectors and then construct the S3 irreps of those S-matrices using the
projectors corresponding to the S3 irreps. The Z2 × Z2 invariant structure is also known as
the “quasi-invariant S-matrix” following the terminology in [1]. The projector corresponding
to quasi-invariant S-matrices is,

Π0 = 1
4 (1 + P12P34 + P13P24 + P14P23) . (A.3)

Now, we construct projectors corresponding to different irreps of S3. There are three
irreducible representations of S3,

1S = , 2M = , 1A = . (A.4)

1S is the complete symmetric, 1A is the complete anti-symmetric, and 2M is the 2
dimensional mixed symmetric representation. The corresponding projectors are given below:

Π1S = 1
6 (1+P12+P23+P13+P231+P123) , Π1A = 1

6 (1−P12−P23−P13+P231+P123) ,

Π(1)
2M

= 1+P12
2 −Π1S , Π(2)

2M
= P23+P123

2 −Π1S , Π(3)
2M

= P13+P231
2 −Π1S .

(A.5)
One can easily check that Π3

2M
is not independent. The projectors satisfy the identity,

Π(1)
2M

+ Π(2)
2M

+ Π(3)
2M

= 0, (A.6)

as 2M is a 2 dimensional representation. These are the final set of S4 projectors that we will
use in the orbit classification S-matrices. It is also instructional to record the action of S3 on
the space of polynomials of Mandelstam invariants subject to the condition s + t + u = 4m2.
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It is easy to convince oneself that the polynomials of (s, t, u) transforming in various irreps
of S3 subject to the condition of s + t + u = 4m2 are given by,

f1S(s, t, u) = ma(s2 + t2 + u2)b(stu)c,

f
(1)
2M

(s, t, u) = ma(s2 + t2 + u2)b(stu)c{(2s − t − u), (2s2 − t2 − u2)},

f1A(s, t, u) = ma(s2 + t2 + u2)b(stu)c
(
s2t − t2s + t2u − u2t + u2s − s2u

)
.

(A.7)

B Explicit expressions for polarisation vectors

We present the explicit expressions for NL
1 ,N T

1 , C1, C2, T1, T2 used in eq (2.9).

NL
1 =

√
m2

2k2
14 + (s − 2m2)

(
m2

4k12 − k14k24
)

m2
1
(
k2

24 − 4m2
2m2

4
)

+ m2
2k2

14 + k12
(
m2

4k12 − k14k24
) ,

N T
1 =

√
m2

1k2
12k2

14
−m2

4k2
12 − m2

2k2
14 + k14k24k12

,

C1 = m2
1
(
k14k24 − 2m2

4k12
)

m2
2k2

14 + k12
(
m2

4k12 − k14k24
) , C2 = m2

1
(
k12k24 − 2m2

2k14
)

m2
2k2

14 + k12
(
m2

4k12 − k14k24
) ,

T1 = 1
k12

, T2 = 1
k14

, ϵL
1

2 = ϵT
1

2 = 1.

(B.1)

Here we define, kij = −2ki.kj = sij −m2
i −m2

j . sij is symmetric in i and j and s12 = s34 = s,
s23 = s14 = u, and s13 = s24 = t.
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