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ABSTRACT: Inspired by the structure of top-down derived models endowed with modular
flavor symmetries, we investigate the yet phenomenologically unexplored binary dihedral
group 2D3. After building the vector-valued modular forms in the representations of 2D3 with
small modular weights, we systematically classify all (Dirac and Majorana) mass textures of
fermions with fractional modular weights and all possible 2 + 1-family structures. This allows
us to explore the parameter space of fermion models based on 2D3, aiming at a description of
both quarks and leptons with a minimal number of parameters and best compatibility with
observed data. We consider the separate possibilities of neutrino masses generated by either
a type-I seesaw mechanism or the Weinberg operator. We identify a model that, besides
fitting all known flavor observables, delivers predictions for six not-yet measured parameters
and favors normal-ordered neutrino masses generated by the Weinberg operator. It would
be interesting to figure out whether it is possible to embed our model within a top-down
scheme, such as T?/Z4 heterotic orbifold compactifications.
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1 Introduction

One of the extant questions of the Standard Model (SM) is the flavor puzzle: what is the
origin of the observed multiplicity of matter generations or flavors, and their masses and
mixings? It is conceivable that the answer is associated with the existence of a symmetry
among flavors, likely encoded in a non-Abelian finite group (see e.g. [1-5]). In his seminal
work [6], Feruglio showed that it is possible to build phenomenologically viable extensions of
the SM in which such a symmetry is modular, implying that couplings are modular forms
that depend only on a complex modulus field 7. Interestingly, flavons are not mandatory in
this formalism as the vacuum expectation value (VEV) of 7 sets all observable properties.
Hence, the flavor model’s parameter space is greatly reduced with respect to scenarios
based on non-modular or traditional flavor groups. Despite some challenges [7], this idea
triggered a vigorous bottom-up quest to extract predictions from promising models based
mostly on finite modular groups of the type I'y := PSL(2,7Z)/T(N) or Iy := SL(2,Z)/T(N),
where T'(N) (['(N)) is a congruence subgroup of level N of PSL(2,Z) (SL(2,Z)). In this
framework, several models fitting observable data have been identified. E.g. for N <7, we
find models based on FQ = 53 [8, 9}, F3 = A4 [6, 9712], F4 = S4 [13716], F5 = A5 [13, 17, 18],



g = S5 x Aq [19], T'7 = PSL(2,Z7) [20], T% = T7 [21, 22], T, = S} [23, 24], Tt = AL [25],
'y = S3 x T [26]. These models rely on a clever choice of representations and modular
weights for both the modular forms associated with the couplings and the matter fields, as
well as on the VEV of 7, whose stabilization mechanism deserves further analysis [27-33].
Besides successful fits to flavor observables, including texture zeroes [22, 34-37], this scheme
suggests that the origin of flavor hierarchies might be the breakdown of modular symmetries
close to fixed points in moduli space [12, 19, 38-43].

Beyond I'y and I'y modular symmetries, the bottom-up modular framework can be
straightforwardly extended to metaplectic [44, 45] and symplectic groups [46], as well as
the resulting quotients from dividing PSL(2,7Z) or SL(2,7Z) by any of their various normal
subgroups [47, 48], all supporting generalized vector-valued modular forms (VVMFs). This
enlarges the possibilities for a modular theory of flavor. However, it could also be considered
a challenge in bottom-up constructions as there has not been identified a way to single out
the right set of modular symmetry, representations and modular weights for the elements
of the models.

On the other hand, additional motivation for modular symmetries comes from their
natural appearance in top-down constructions [49-51] and their direct interpretation as flavor
symmetries [52-58]. This typically includes a generalized CP-like modular transformation that
accompanies the flavor symmetry [59] (which has been studied from a bottom-up viewpoint
too [60, 61]). Contrasting with bottom-up constructions where global supersymmetry (SUSY)
is mostly chosen, top-down flavor models offer a full scheme within supergravity (SUGRA),
in which the Ké&hler potential transforms non-trivially and the superpotential carries a
modular weight to yield a modular invariant theory. Among the top-down constructions,
T2/Zx two-dimensional (2-d) toroidal heterotic orbifold compactifications have shown to
lead to simple yet promising modular scenarios [62-65]. In the cases studied so far, the
flavor symmetry comprises a modular component plus a traditional geometry-based flavor
subgroup [66], building a so-called eclectic flavor group [67].

A great advantage of this top-down formalism is that string properties fully define not only
the flavor group, but also other aspects, such as the modular representations and weights for
matter fields and the modular features of the couplings among them. The simplest top-down
scenario emerges from a T?/Zs orbifold, which leads to an eclectic group [63] built from a
I', = T modular symmetry combined with a traditional A(54) flavor group [54, 59]. The three
SM generations in this case are accommodated in 2'& 1 or 2” &1 representations of 7" instead
of the apparently more natural triplets [62], and the Higgs is a trivial or non-trivial singlet [65].
The 2 + 1-family structure seems to be quite generic in these top-down constructions [68-70],
and is phenomenologically favored given the known mixings and mass textures of observed
fermions. Furthermore, top-down models of flavor exhibit multiples of 1/3 as modular weights
for matter generations [51, 63, 71] while the Higgs fields enjoy vanishing or interger weights.

Additionally, T?/Zs heterotic orbifolds yield an eclectic structure that include a Iy =
S3 modular flavor component, fermions with multiples of 1/2 as modular weights [72, 73].
Following this pattern, it is expected that modular flavor symmetries from T?/Zy models
are associated in general with Iy, groups. After Zsy and Zs orbifolds, the next simple case
arises from T?/Z,4 orbifolds, which may contain a I’y & S = [48, 30] modular flavor group.



(We use the Small-Groups library GAP Id [74], where the first number in the square brakets
denotes the order of the group.) A careful top-down study of this case reveals that only its
quotient group S}/Zso x Zs = 2D3 = [12,1] is the actual modular flavor group respected
by effective matter fields at the massless level [75]. Interestingly, the binary dihedral group
2D3 corresponds to the second smallest possible finite modular group [47] and its flavor
phenomenology remains unexplored. Further, the two doublets and four singlets of 2Dj3
suggest the 2 4+ 1 promising structure for matter generations.

Inspired by these observations, one of the goals of this work is to arrive at possible
bottom-up realizations of viable models based on the modular flavor symmetry 2 D3, exhibiting
some of the top-down features: i) 2 + 1-family structure, ii) fractional modular weights for
fermions as multiples of 1/4, and iii) Higgs fields building singlet representations with vanishing
weights and singlet representations. Our models should be complete in the sense that they
must not only comply with observable constraints on leptons alone, but also on the quark
sector, which has revealed to be more challenging to be fit in the modular framework,
see e.g. [22, 43, 46, 76-84]. Hence, we aim at providing the vector-valued modular forms
corresponding to our chosen group, classify the possible mass and mixings, and identify a
complete fit of both the quark and lepton sectors.

This paper is organized as follows. In section 2 we review the theory of vector-valued
modular forms [47]. Section 3 contains the group theory of the binary dihedral group whereas
in section 4 we identify the vector-valued modular forms under the irreducible representations
of the binary dihedral group up to weight 7. Section 5 is devoted to the invariant theory
under the group 2D3 and a systematic classification of mass textures for the whole fermion
sector considering all possible Dirac and Majorana mass matrices, associated with neutrino
masses generated either by a type-I seesaw mechanism or the Weinberg operator. Finally, in
section 6 we present the results of our systematic numerical analysis leading to the best-fit
complete models for the quark and lepton sectors separately, and a complete model for
quarks and leptons together.

2 Modular symmetry and vector-valued modular forms

Modular theories of flavor are mostly based on the modular group I" := SL(2,7Z). While in
bottom-up models the appearance of this group can be just assumed, in top-down constructions
I" can arise from the geometric symmetries of a 2-d torus T? on which two extra dimensions
are compactified. Regardless of its origin, I' can be defined by

r:{(a b) ‘ad—bc:l, a,b,c,dEZ}. (2.1)
c d

This group can be generated by two elements S and 7' obeying the relations
St = (ST =1,  S*T=T8?, (2.2)

which can be represented as

S = ( 0 1) and T= (1 1) . (2.3)
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Note that S = —15, where 15 denotes the 2-d identity matrix. The moduli space of a T? is
spanned by a modulus 7, which lies in the complex upper-half plane # = {7 € C | Im7 > 0}.
The modular group acts on the moduli space H through the linear fractional transformation

atr +b
ct +d

T — T = with v = (a b) el. (2.4)
cd

We note that, despite v belonging to I', its action on 7 is equivalent to the action of
—~. This implies that the modulus only perceives the action of the projective modular
group I' := I'/ £ 1.

A special class of vector-valued holomorphic functions Y (1) = (Y1(7), ..., Yy(7))" exist
in the extended upper-half plane H (including the point 7 — ico), exhibiting the non-trivial
modular transformation under v € T’

Y(r) = Y(yr) = (er + )™ py (1) Y(7), (2.5)

where ky is a positive integer referred to as the modular weight of Y (7), and py denotes a
d-dimensional representation of v € I' (with finite image). Such holomorphic functions are
known as vector-valued modular forms (VVMFs) or modular form multiplets, and they play
a central role in the theory of modular flavor symmetries.

All of the VVMFs in 1-d irreducible representations (irreps) encompass the Eisenstein
series F4(7), Eg(7) and eta products [85]:

Ey(1) =1+4240 ) o3(n)q", (2.6a)
n=1
Eg(t) =1-504) 05(n)q", (2.6b)
n=1
nzp(T) = qp/12 H (1-— q")2p . with ¢:=e?™7, (2.6¢)
n=1

where oi(n) = >4, d* is the sum of the kth power of the divisors of n, p € IN* and n(7)
is the Dedekind-eta function.

It should be noted that all VVMFs in the irrep p make up a free module (denoted by
M(p)) over the ring M(1) = C[E4, Eg], whose rank is exactly equal to the dimension of
p. The module M(p) always has one or more VVMF of minimal weight, which is uniquely
determined by the representation matrix p(7"). The basis of module M(p) can typically be
obtained by applying the modular differential operators D} to these VVMFs of minimal
weight. The modular differential operators D} are defined as

Dy = Dito(n—1) © Dito(n—2)© -+ 0 Dy, (2.7)

where the modular derivative is defined by

1 d kEs(7)
D= —— — N* 2.
kT oridr 2 kel (2:8)
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Table 1. Representations of the binary dihedral group 2D3 = Z3 x Z4 = [12,1].

and Ey(7) denotes the quasi-modular Eisenstein series [85],
[e.o]
Ey(t)=1-24) o1(n)q". (2.9)
n=1

It is not difficult to show that the operator D} acting on a VVMF Y (1) of weight k gives
a VVMF DY (7) of higher weight k + 2n in the same representation [47, 86, 87]. For
d := dim p < 3, its VVMF module contains only one VVMF of minimal modular weight, and
the basis of the module comprises the set {Y (%0) D, v (ko) Dgle(’“O)}, where Y (ko) jg
the VVMF of minimal weight kg. The modular form multiplets of higher weight kg 4+ 2d can
be written as a linear combinations of these bases on the ring M(1) = C[Ey, Eg), i.e.

(Dfy + MaDj? 4+ 4 My(q_1) Dk, + Maa)Y#) =0, (2.10)

where M}, € C[Ejy, Eg] is the scalar modular form of weight k. Eq. (2.10) can at the same
time be interpreted as a modular linear differential equation (MLDE) satisfied by the VVMF
of minimal weight ko, whose solution provides us with the specific form of Y %0). For all
1-d, 2-d, and 3-d irreps p, the solutions Y (%0) can be expressed either as eta products or
generalized hypergeometric series. A more comprehensive overview of the theory of VVMFs,
including more specific results, can be found in ref. [47].

3 Binary dihedral group of order 12

The binary dihedral group 2D5 (with GAP [74] Id [12, 1]) also known as the dicyclic group
Dics of order 12, is the preimage of the dihedral group D3 under the spin group double
cover map SU(2) = Spin(3) — SO(3). Equivalently, 2Ds is also the lift of the dihedral group
D3 through the pin group double cover map Pin_ (2) — O(2) [88]. The group 2D3 can be
generated by the modular generators S and T satisfying the relations [47]

St = (ST =8°T> =1, ST =15 (3.1)

The cyclic group 7§~ = {1,5%} = {1,7?} is the center of 2D3, and the quotient group
2Ds/ Z§2 is isomorphic to S3, which means that 2D3 can be regarded as a central extension
of the finite modular group I'y & S3. Notice also that 2D3 = Z3 x Z4.

2D3 possesses four singlets 1,1/, 1,1’ and two doublet representations 2,2. The explicit
forms of the representation matrices p,(S) and p,(T) in these irreps are given in table 1.
As mentioned above, 2D3/ ZgQ = S3. Hence, all the irreducible representations of Ss are
included in the list of representations of 2D3. They correspond to the representations 1,



Classes 1Cy | 1Cy | 3Cy | 2C5 | 3CY | 2Cs
Representative 1 S? T TS | TS? | TS3
1 1 1 1 1 1 1
1’ 1 1 —1 1 -1 1
i 1| -1 | —i 1 i -1
i/ 1 ~1 i 1 —i | -1
2 2 2 0 —1 0 -1
2 2 | 2| 0 | -1 ] 0 1

Table 2. Character table of the binary dihedral group 2D3 = Z3 x Z4 = [12,1].

1’ and 2 of table 1. On the other hand, a similar relationship exists between 2D3 and the
finite modular group I'y = S). In fact, S} is the split extension of 2D3 by Zsy x Zs, i.e.,
S4 = (Z2 x Zs) x 2D3. Consequently, 2Ds3 is isomorphic to the quotient group S}/(Za x Zs).
This implies that all irreducible representations of 2D3 are also irreducible representations of
S)j. As one can verify, the above four singlets and two doublets coincide with the 1-d and
2-d irreps of S} [23, 24, 89]. Note that 2Ds is also a subgroup of S}.

The 12 elements of 2D3 can be divided into six conjugacy classes. The corresponding
character table is shown in table 2, which can be obtained, as usual, by taking the trace
of the explicit representation matrices.

The tensor products between singlets are given by

o1 =1, ei=1, 1l =1, ici=1, il =1, 'el’ =1".(32)

The tensor products between singlet and doublet with components (31, 2)T are given by

1’w2=2, 1"®2=2
{ N : a1 B2 , (3.3a)

1'2=2, 12= —b

s s o B

{iev2=2, Te2=2 () (3.3b)
2

Finally, the tensor products between two doublets with respective components (al,ag)T

and (B, B2)" are computed as

D (1B + azfa) @ (B2 — azfh) @ <a262 - alﬁl) , (3.4a)

a1 B2 + anf

22=101¢2
202=101a2

A

{2 R2=101d2 : (a1f2—a2B1)® (a1f1 + a2f2) ® @102 + a2fy . (3.4b)
a1 — a2

4 VVMFs of the modular binary dihedral group

Since all the VVMFs (denoted by M(2D3)) in the representations of the binary dihedral
group 2D3 are simply the set of each irreducible VVMF module, we can formally express



M(2D3) as the direct sum of six irreducible VVMFs modules,
M(2D3) = M(1) & M) & M(1) & M(1") & M(2) & M(2). (4.1)

Each M(p) = @iy Mx(p) in a representation p is a graded module over the ring M(1) =
C[Ey4, Eg). A basis of the module M(p) is sufficient to generate the entire space of VVMFs.
From the general theory of vector-valued modular forms [47], we can determine the basis of
each module and the VVMF of minimal weight within them. Specifically, each module can
be generated by the following generators over the ring M(1) = C[Ey, Eg):

M(1) = (1), M) = (Y,
M) = ), M) = vy, (4.2)
M2) =037, Do), M@) =, DY)

The methodology employed here to obtain the VVMFs of 2D3 with their admissible weights
is similar to that described in ref. [47] and will not be reiterated here. The resulting VVMFs
of minimal weight read

YO =n2(r),  YO@) =), Y =),

i i
¥ (r) = ' (7) (’1(7(;8)) : 25;1 (—%, 3 %,K(T)) |
Bt (50) V2 (4,33 K 0) s
NCTN CYETRG) (iﬁggj)” LR (5L 5K ()
: 7710@')({1%2) /62F1 (_%,%,%,K(T)) 7

where o[ is the generalized hypergeometric series and K (7) := 1728/j(7) is the inverse of
Klein-j function j(7), as defined in appendix A.
It is interesting to note that the structure of the VVMFs in eq. (4.3) implies
5 3 2 3 2 T
v = (VP oy de), -vPmvm) (4.4)
which is exactly what we would expect from the tensor product 1’ ® 2 = 2. The linearly

independent modular form multiplets of 2D3 at each allowed weight can be obtained straight-
forwardly by multiplying the polynomial of E4, Es with the bases of modules in eq. (4.2):

k=2: v,
IRRC)
k=3: Y,

k=5: Y, (4.5)



Interestingly, there are no VVMFs at weight & = 1 for the finite modular group 2Dj.
Alternatively, all modular form multiplets of weights greater than 3 mentioned above can be
obtained through tensor products from the modular form multiplets of weights 2 and 3.

As mentioned in section 3, all the representations of 2D3 coincide with the corresponding
representations of I} = S’). Hence, these modular-form multiplets also coincide with those
of Iy = S). Therefore, we can construct these modular multiplets also from the modular
forms of level N = 4, as in refs. [23, 24]. For example,

@, [ 03(21)+65(27) Gy, (V3(03(27)0%(27)—05(27)03(27))
()= (—2i/§0§(2§9§(2ﬂ> Y= ( %(922(27)92?227)—032(27)033(27)) ) » (46)

where the Jacobi theta constants 02(27) and 03(27) can be expressed by the Dedekind eta
function n(7) as

21 (47) 1°(27)
n(27) n2(T)n?(47)

It is easy to verify from the associated g-expansions that the modular multiplets in eqs. (4.3)

02(27) = and 03(27) = (4.7)

and (4.6) indeed coincide.
Notice that the modular-form doublets can always be written as

V3 = (MY 4+ pa(r)DaYy”

Yﬁ(kY) = (T)YQ(E)) + ZQ(T)DQY(Q)

(4.8)

where y;(7) and y2(7) are polynomials of E4(7), Eg(7), and they are scalar modular forms of
SL(2,Z) with weights ky — 2, ky — 4, respectively. Analogously, z1(7) and z2(7) are modular
forms of SL(2,7Z) with weights ky — 5, ky — 7 respectively. The corresponding functions are
vanishing if the modular forms at some of these weights do not exist.

5 Mass textures in models with 2D3; modular flavor

In the formalism of A/ = 1 SUGRA, a model is defined by its Kahler potential K and its
superpotential W (together with a gauge kinetic function, which is unimportant here), where
®; and 7 denote respectively the matter fields and the modulus of the theory. Inspired by
string models, 7 may arise from the description of a T?/Zy orbifold compactification of two
extra dimensions [64]. In such models, the modular covariant Ké&hler potential in Planck
units (Mp; = 1) is given at tree level by [90]

K(®r, @p;7,7) D —log(—ir +i7) + Y _(—ir +i7) @ (5.1)
I

Meanwhile, the superpotential is a holomorphic function of the matter fields and the modulus,
which can be expressed in power series of the matter fields as

W(@r,r) > Y () e -0, (5.2)

where YT(Y I)l 1, (1) isa VVMF of weight ky transforming in the ry-dimensional representation

of a generalized finite modular group G. In the superpotential (5.2), just to simplify the



notation, we have omitted the numeric (modular-invariant) coefficients of each term in the
sum. It is customary to assume that such numeric coefficients are real, which can be the
result of imposing an additional CP or CP-like symmetry.

Modular invariance of the theory imposes restrictions on the representations and modular
weights of modular forms and matter fields. As also happens naturally in models arising
from string compactifications, we assume that matter fields transform as

b
O = (er+d) Mo (N1, 7= (Z d) er, (5:3)

where matter fields are proposed to build r;-dimensional irreducible representations of G and
to carry modular weights, which are known to be rationals in string models, i.e. k; € Q, see
e.g. [51, 71, 91, 92]. Demanding modular invariance amounts first to imposing

!
ryQr, ®---@r;, O 1. (5.4)

A second constraint arises from the transformation of the Kéhler potential. We note that, due
to the form of the ®;-independent part of eq. (5.1), K transforms non-trivially under v € T" as

K L K+ f(r)+f(r)  with  f(r) :=log(er +d). (5.5)

Hence, noting that a Ké&hler transformation [93, section 23] can remove the extra terms
in eq. (5.5) at the expense of altering the superpotential by W — /W = (¢r + d)W, we
conclude that W must transform under v € ' as W =5 (¢r + d)~'W to cancel the factor ef
i.e. it must have modular weight kyy = —1. Consequently, we are left with the condition

|

by —kp —--—kp, =—1. (5.6)

These general features of modular flavor models can be used to build models based on
our particular modular flavor symmetry G = 2D3, provided a number of top-down-inspired

working assumptions:

e 2 4 1-family structure. Since 2D3 supports only singlet and doublet irreducible
representations (see section 3), we adopt the natural 2 4+ 1-family structure of the group,
where two of the generations (most likely the lighter families) build any of the two
doublets whereas the third generation transforms as any of the four singlets of 2Ds.
This implies that three (MSSM) fields with the same gauge quantum numbers build a
reducible triplet that can be written as 1 = (¢ p,v3), with ¥p transforming as 2 or 2,
and 13 as any of the 2D3 singlets {1,1/,1,1'}.

e Singlet representations for Higgs fields. For simplicity, our SUGRA models do
not exhibit an extended Higgs sector, hence up and down-type Higgs fields are (trivial
or non-trivial) singlets of 2Ds.

e Modular forms with weight 2 < ky < 7. The higher the modular weight, the
more linearly VVMFs there are, which introduces too many parameters into the model.



In the interest of simplicity, we restrict ourselves to the Yukawa couplings Yr(fY)(T)

given in egs. (4.5).1

« Fractional modular weights for matter generations. 2D3 arises from T?/Z,4 string
orbifolds and the modular weights of matter fields take the form k; = n/a, n € Z, [75].
In addition, as we must satisfy the condition (5.6) and ky < 7, we assume that

kr € {—4,*715,*77,...,;%,4}. (5.7)

¢ Vanishing modular weights for Higgs fields. In the top-down constructions we
inspire our study, Higgs fields have modular weights 0, 1, see e.g. [65, 94]. Thus, we
choose that k; = 0 for the Higgs fields of our models.

These properties allow us to draw some general remarks. First, assuming kg, = kg, = 0
and kyy = —1, see eq. (5.6), implies that the p-term cannot be generated at the fundamental
scale of the theory. Interestingly, this is a key ingredient of the Giudice-Masiero mechanism [95].
In this scenario, a neutral spurion field X has a VEV (X) that breaks supersymmetry
spontaneously and induces a hierarchically small u-term. In our case, the spurion field can
be a gauge and flavor singlet with vanishing modular weight. This precise situation happens
in the top-down constructions that inspire our assumptions, as studied in [96] in terms of
R instead of flavor symmetries. Note that one can establish an interesting relation between
R-charges and modular weights in the top-down approach, see e.g. [64, eq. (105)]. From a
bottom-up perspective, since VW carries nonzero modular weight, modular symmetries are
naturally R-symmetries. If the spurion contribution to the u-term was too small, one can
additionally consider the inclusion of hierarchically suppressed contributions a la Frogatt-
Nielsen due to the possible existence of gauge singlets (a hidden sector) with some nontrivial
modular weights, as shown in explicit string models [97, 98]. Even though the goal of this
work is the flavor puzzle and thus the details shall not be worked out here, it is interesting
to observe that our scenario can solve more than one problem at once.

As a second remark, as usual in bottom-up models, we must make a couple of assumptions
on the Kéhler potential due to two potential challenges: the existence of non-canonical
contributions [7] and the possibility of large corrections due to the signs of the modular
weights [99]. Inspired by string-derived models, we shall assume that both issues can be
controlled. The former can be controlled by the natural appearance of traditional flavor
symmetries, building a so-called eclectic flavor group [67] that restricts K to its canonical
form [62]. The latter challenge can be controlled by considering all other possible features
appearing in full string-derived models, which do not only exhibit positive and negative
modular weights [51, 62, 65, 71, 99], but also extra moduli that can cancel out the dangerous
corrections [99].

With these elements, we are ready to classify all mass textures that arise in models based
on 2D3 as modular flavor symmetry and the mentioned priors. In the following, we classify

!One must remember that there is also a trivial modular form at weight 0 that can be taken as an
arbitrary constant (usually set to 1 for convenience). Beyond this, one could include also combinations of
the Klein’s j-invariant or (modular meromorphic) j(7) function (A.3). This non-trivial 7-dependence will be
studied elsewhere.

,10,



separately all Dirac and Majorana mass textures for generic fermions. These structures will
be used in the generation of quark and lepton masses in section 6.

5.1 Dirac mass textures

Allowing for right-handed neutrinos, as we shall do, up and down quarks as well as charged
leptons and neutrinos accept Dirac masses. Thus, it is necessary that we know all possible
Dirac mass textures that can arise in models with a 2 4+ 1-family structure.

In the superpotential (5.2), let us denote as ¥ = (1)p,13) the reducible flavor triplet
corresponding to left-handed fermion SU(2);, doublets and as 9¢ = (%), ¥§) the reducible
flavor triplet associated with right-handed fermion SU(2); singlets. Further, let s and
§ denote, beyond s,5§ = 1, any of the two pairs of 2D3 singlets that deliver the trivial
singlet, s ® § = 1, according to the product rules in eq. (3.2). In these terms, the resulting
superpotential terms with the Higgs field H,, /4 transforming as a § singlet, takes the form

W [a (Y5 wien) +8 (Y wis) +v (Vi vsun) +8 (Ve vsus) | (Huya)

= Wpp+Wp3s+Wsp+Wss, (5.8)
where «, 3,7 and § are some real numeric coefficients. Further, YSCDDD ), Yg;M), Yg(gw ) and
Y3(§33) are general VVMFs with modular weights kpp := kye +ky, — 1, kps := kye +ky, — 1,
ksp = kwg + ky, — 1 and k33 = k:d,g + ky, — 1, respectively. (Recall that we assume
ku,,, = 0.) The subindex s denotes the combination of the components of the fields in
parentheses associated with the singlet s that results from tensoring the field representations.

The explicit forms of the superpotential components in eq. (5.8) depend on the specific
representations and weights of the matter fields. Evidently, the four components of the Dirac
superpotential arise from the 2 4+ 1-family structure, and this also implies that the Dirac
mass matrix can be divided into four blocks as

My, = (oo [ Mos VuJd - (5.9)
Mszp | Ms3

where v,/ denotes the VEV of the Higgs field H, /4, and Mpp, Mps, M3p and M3z3 are
2x2,2x1,1x2and 1x 1 sub-matrices, respectively. Here, M, is given in the right-left
basis, such that ¥§(My);1; is a superpotential mass term.

We can now classify all possible Dirac-mass blocks in eq. (5.9) arising from all representa-
tion configurations (g, vy, Hy/q) of the fields. Here the indices a,b can be the doublet label
D or the singlet label 3. For example, for a = D and b = D we can take the configuration
(Ve v, Hyyq) = (2, 2,1’). In this case, we obtain the flavor-invariant 2x2 block Mpp that
results from the product ry ® 2® 2® 1/, i.e. the one associated with (ry ®2® 2)1/ ®1 =1.
Note that, in this case, there are three choices of ry leading to a 1’ in the parentheses,
ry € {i, 1, ﬁ} We can take care of this ambiguity by setting three different «;, i = 1,2, 3,
coefficients. Of course, not all of the resulting terms are relevant in all models. The relevant
contributions can only be obtained once the modular weights kpp, ’%g, ky, of Yl()%m ), V5, Yp
are identified. For a given weight configuration satisfying eq. (5.6), there is at most one ry
that also complies with eq. (5.4). Thus, at most one «; is non-vanishing.
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The full classification of all possible Dirac mass blocks is given in table 7 of appendix B.
In our illustrative case, the resulting Mpp block is labeled as Mpp,. Our table includes all
12 independent blocks, four of each independent type Mpp, Msp, Mps. Once chosen the
representation configuration for these blocks, the Ms3 block is automatically defined.

The full set of possible mass textures is obtained by combining the classified blocks.
There is a total of 4 x 4 x 4 = 64 possible Dirac mass textures M, which are presented
in table 8 of our appendix B.

The final task to arrive at a model of masses for quarks or leptons is to set the
possible modular weights of matter fields ¢ and v, which define the modular weights
ky € {kpp,ksp,kps, kss} of the VVMFs Yr(ffY) appearing in the mass textures of table 8.
In our survey of models, we consider combinations of the modular weights in eq. (5.7) for
the fields in the Yukawa couplings. Combining those weights, we arrive at 158,208 full
3 x 3 Dirac mass textures, but fortunately out of them just 12,316 matrices deliver three
non-zero masses. Many of these mass matrices have identical structure; we find that only
1,412 Dirac mass textures with full rank are also inequivalent. We shall use this final set
for our scans in section 6.

5.2 Majorana mass textures

It is known that generating the small masses of the three observed neutrino may minimally
require, in addition to the Dirac terms that can arise from eq. (5.8), introducing Majorana
terms. In the minimal scenarios of neutrino masses, (symmetric) Majorana mass matrices can
arise either from the mass terms for right-handed neutrinos in the type-I seesaw mechanism,
or from the so-called Weinberg operator.

If neutrino masses originate from a type-I seesaw mechanism, the superpotential terms
corresponding to Majorana textures can be in general written as

W o [a(VEEPuhuh) +8 (YhY Whus+usun)) +v (Y vses) JA (5.10)

for a 2 + 1-family-structured triplet associated with right-handed fermion SU(2);, singlets.
Here, a, 3, are some real coefficients. For seesaw neutrino masses, A denotes the seesaw scale,
and the triplet 1 corresponds to the multiplet of heavy right-handed neutrino superfields,
(N, NS). Further, from the condition (5.6) we see that the modular weights of the various
different VVMFs Yggm), Yl()l;m) and Y3(§33) must be given by kpp := 2kne — 1, kps =
kN/% + kNg — 1 and k33 := QkNg — 1.

On the other hand, if neutrino masses arise from the Weinberg operator LH, LH,, the
general structure of the required mass textures reads

WD % {a <Y[()’€5’D)¢D¢D)s + 6 (YI%M) (Ypips + ¢3¢D>)s

(5.11)
+y (Y3(§33)w3¢3)s } (HuHu)g )

where A denotes the SM lepton-number violation scale, and s ® § = 1 with s = § being either
1 or 1’ according to eq. (3.2). As anticipated, the reducible triplet ¢ must be the multiplet
(Lp, L3) containing the superfields associated with lepton SU(2);, doublets. In this case, the
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modular weights of the different VVMFs Y[()%D ), YggD 3) and Yg(:f ) are respectively given by
kpp := 2/<JLD —1, kpg := kLD + kL3 — 1, k33 := 2/€L3 — 1, and kg, = 0 by choice.

As for the Dirac case in section 5.1, we can perform an analogous procedure splitting
the Majorana mass texture M, in block structure, where v, /4 should be replaced by either
A or v2/A, depending on the mechanism that yields the Majorana masses. Then, we must
combine them to build the 3 x 3 mass matrices. Interestingly, we find only the eight different
cases listed in table 9 of our appendix C, where the modular weights of the 2D3 VVMFs
must still be fixed. After setting modular weights for matter fields from the set in eq. (5.7),
we find 312 cases, out of which there are only 52 inequivalent Majorana mass textures that
deliver three non-vanishing masses.

6 Benchmark models and numerical analysis

Based on the general classification of fermion mass matrices in the previous section, all
possible quark or lepton mass models can be constructed, building a huge set of models.
Among them we must identify only the ones that best fit observations with the least number
of parameters. In fact, since different choices of representations and weights for matter fields
deliver the same textures and these are the ones responsible for flavor predictions, we must
only identify the best textures for quark and lepton masses.

Whether a mass model is realistic or not can be assessed by the conventional x? function

X(z) =3 (Mi’exp = m’mOdel@))Q : (6.1)

- ag;
i 4

where the vector x represents the input parameters of the model, 1; model are the model
predictions for flavor observables, which include fermion mass ratios, mixing angles and
CP violation phases, ji; exp and o; are the corresponding experimental central values and
lo errors. The observable data we use for leptons and quarks are summarized in table 3.
Because the leptonic Dirac CP phase 5£7> has not been accurately measured, it will not
be included in x? function.

The values of the input parameters at the minimum of the y? function of a model can be
regarded as their best-fit values. A model can be considered as a phenomenologically viable
benchmark model if the observables predicted at the best-fit values fall within the 30 range
of the experimental data. Recall that, in order to reduce the number of free parameters, we
have assumed an underlying CP symmetry. Further, as shown in table 1, the representation
matrices of the generators S and T are taken to be symmetric, and all Clebsch-Gordan
coefficients are real. Consequently, all numeric coefficients in the superpotential, such as
a;, Bi, v and so forth, can be constrained to be real numbers. In this way, any complex
phases or CP violation within the theory are exclusively attributed to the CP-violating
modulus VEV (7) [60, 61, 102]. With these priors, we can now build some benchmark
models for quarks and leptons.

6.1 Quark model

We were unable to identify a fully phenomenologically viable model of quarks with less than
10 parameters. We find some models with 9 parameters that are mostly compatible with
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Quark sector Lepton sector
Observables | Central value and 1o error Observables Central value and 1o error

M/ Me (1.9286 + 0.6017) x 103 me/my, 0.00474 + 0.00004
me/my (2.8213 4 0.1195) x 1073 my/m; 0.0586 =+ 0.00047
mq/ms (5.0523 4 0.6191) x 1072 || Am3, /10 5eV? 7411020
ms/mp (1.8241 4 0.1005) x 1072 | Am3, /10~ 3eV? 2.51110028
54n/° 69.2133 + 3.1146 Sbp/m 1.0944 103335

61, 0.22736 =+ 0.00073 sin? 04, 0.30310.0:2

01, 0.00349 + 0.00013 sin? 04, 0.022031000525

03, 0.04015 + 0.00064 sin? 05, 0.572003%

Table 3. Experimental central values and 1o errors of the mass ratios, mixing angles and CP-violation
phases for quark and lepton sectors. The data of charged lepton mass ratios, quark mass ratios and
quark mixing parameters are taken from ref. [100] with Mgysy = 10 TeV and tan 8 = 10,7, = 0. The
lepton mixing parameters are taken from NuFIT 5.2 (2022) [101] for normal ordered neutrino masses,
without including Super-Kamiokande atmospheric data.

observations, excepting for one mass ratio that is slightly out of the 30 range. Fortunately,
there are many fully viable 10-parameter quark models. Therefore, in this section we give an
example of a semi-viable model with 9 parameters and a viable model with 10 parameters.
The modular weights and representations defining our 9-parameter quark-mass model are
Seds~201, upeus~201, QpaQ@s~2®1, Hy~1, H,~1. 62)

kgo =3, ki =kug =2, kg, =1, ko, =k =4, kg,=kpy, =0. '

This leads to the superpotential terms W > Wy + W, for down and up quark masses, where
Wa = [0f (50011 ), + 8 (d5Qsv3" ). +47 (5QpYs”), | Ha, (6.3)
u c 4 u c 4 u c 7 u c 2
W = [t (up@p¥s "), + a3 (upQpyi"), + 8" (uhQs¥y"), +7" (usQpYs”) | Hu.

We see that this model corresponds to D17 and D4 mass textures of table 8 for down and
up quarks, respectively, which are given for the chosen weights by

oY 0 pivyY
Md = 0 agYi(?) 6dY2(,62) d , (64&)
2 2
g o

atYyy vy +asv pey )
M,= | oty —agv?  —aty) -y [ (6.4b)
2 2
—7uY2(,2) v 2(,1) 0

By minimizing the x? function, we identify the best-fit dimensionless parameters

(1) = —0.484521 4 0.891827i,  (%/ad = —0.264015,  ~%/ad = 11.457,

6.5
ol /y" = —450.529 agy /" =123.919, p*/y* = -0.63101, (0:2)

which deliver the mass ratios and mixing angles given by

My /me = 0.00193121, me/m; = 0.00287386 , mq/ms = 0.0230934 , m/my, = 0.018243
0%, = 0.227392, 0% = 0.00349376, 6% = 0.0400987, &2, = 70.2738°, (6.6)
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with x2,;, ~ 19.9. Comparing with the observable data of table 3, we find a great compatibility
within 1o of three mixing angles, the quark CP-violation phase and three mass ratios. Only
mg/ms is smaller than the experimental central value by about 4. Interestingly, the best-fit

27ri/3

value of the modulus of this model is close to the critical point w := ™73, and there are

no large hierarchies between the input parameters.
For our 10-parameters quark mass model, the quark fields transform under the 2Ds3

modular symmetry as

C@d5~2®1, uSdus~2®1, Qp®Qs~231, Hy~1, H,~1.
kas =kop =kus =4, kg =0, kg, =kue =1, kg, =ky, =0. (6.7)

The corresponding contributions to the modular-invariant superpotential are given by
c 7 c 7 C 4 C
Wa = |of (d5QpYy"), +af (d5QpYy ) + 8 (d5QsY5") + 6% (d5Qs),| Ha,  (6.8)
u, c 4 w , c 4 u( ¢ 7 ul ¢ 4
Wa = [0 (up@0¥;"), + o (up@o1") |+ (15@0Y;"), +0" (15", | Hu

The corresponding down and up-quark mass textures are labeled as D19 and Dy3 in table 8,
respectively. With our chosen weights (6.7), the mass matrices read

oYyl +afvy? afyy?) gy,
My = ofvy)  —afvy) + gyl plvgY | va, (6.9a)
0 0 5
atyyy  avay +asv? o
M, = | atvy) — sy —atvyy 0 | v (6.9b)
Ty ey gy

The best-fit values of the dimensionless input parameters in this model are

(1) = —0.0458127 + 1.07561i, ad/ad =1.16987, B /ad = 7.00978,

6%/al =0.62122, o¥/y% =0.0187396, al/y*=0.0186667, &“/y* = —13.3257,
(6.10)

leading to the model’s predictions for flavor observables
my/me = 0.00192771, m./m; = 0.00282204, mg/ms = 0.0505254, ms/mp = 0.0182414 ,
01, = 0.227368, 0f5 = 0.00349295, 603, = 0.0401456, &}, = 69.2212°, (6.11)
with x2,, ~ 0.0002. Comparing with table 3, these predictions are compatible with the
experimental data within the 1o interval. Interestingly, the best-fit value of modulus of

this model is close to the critical point i, and there is no large hierarchies between the
input parameters.

6.2 Dirac neutrino model

Let us study the possibility of neutrino masses arising purely from Yukawa couplings, which
requires assuming the existence of extra right-handed neutrinos N¢ := (N§f,, N§) with a 2 + 1-
family structure. In this case, we find that at least 8 input parameters are needed to agree with
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Models | pge pL pne  pH, PH, | kB, kEs  kLp, kL kne,kne  kn, .,
DI |2¢1 201 201 1 1 |-5/2,-5/2 11/2,13/2 -3/2,-1/2 0
D2 |21 261 201 1 1 |-7/2,-1/2 15/2,17/2 -3/2,—-1/2 0
D3 | 201 201 201 1V 1 |-1/2,-1/2 7/2,13/2 -1/2,-1/2 0
D4 |201 201 201 1 1 |-1/2,-7/2 13/2,11/2 -1/2,-3/2 0
Model D1 Model D2 D3 D4
Re(r) -0.0323914 |  Re(r) 0.484077 | 0.146315 0.42963
Im(7) 1.28408 Im(7) 1.37015 0.989238 1.7516
§t/at -0.634163 B/t -379.019 -1057.33 -13.1399
7t /at -17.0629 7t /at -25.0074 -3789.24 -225.982
o [ -3.13884 o [ -6.06662 | -0.763583 12.6598
BY [+ -0.402086 BY [+ 1.12118 5.80788 1.39089

afvgMeV] | 73.4193 | afvg[MeV] | 3.14488 0.285387 5.75080

Y uu[meV] | 45.5403 | vv,[meV] | 40.9040 30.8341 32.5682
me/my, | 0.00473701 | me/m, | 0.00473696 | 0.00473706 | 0.00473702
my,/m. 0.058568 my/m, | 0.0585677 | 0.0585678 | 0.0585678
sin? 04, 0.302989 sin? 04, 0.302963 | 0.305668 | 0.302990
sin?#{; | 0.0220300 | sin?6{; | 0.0220303 | 0.0218065 | 0.0220301
sin? 05, 0.571993 sin? 05, 0.571986 | 0.492503 | 0.571995
Sbp/m 1.49060 Sbp/m 1.68648 1.00000 1.30863
m1[meV] 17.5723 m1[meV] 29.8436 28.9179 25.6255
ma[meV] 19.5675 ma[meV] 31.0603 30.1720 27.0327
m3[meV] 53.1012 m3[meV] 58.3225 57.2755 56.2816
mg[meV] 19.6484 | mg[meV] 31.1112 30.1944 27.09129

i 10-6 P 107° 16.09 107°

Table 4. Summary of the four benchmark Dirac neutrino models based on 2D3 modular symmetry.
The assignments of the representations and weights of these models are not unique, just chosen to
exemplify the potential of our framework. The concrete forms of their respective mass matrices can
be found in eq. (6.12). The best-fit values of the input parameters and the corresponding predictions
for neutrino mixing angles, and Dirac CP-violation phase, and the neutrino masses are also included.

the experimental values of lepton flavor observables. There are about 7,000 non-trivial Dirac
neutrino models with 8 parameters, and about 15% of them are compatible with observations.
We present four benchmark examples of Dirac neutrino models here, labeled as D1, D2, D3
and D4. A summary of their weight and representation assignments can be found at the
top half of table 4. It should be noted that the negative weights kyc assigned to the heavy
neutrino fields N¢ naturally prohibit the presence of Majorana mass terms in these models.?

The mass textures for these models can be read directly from table 8. Specifically, the
charged-lepton and neutrino mass matrices of model D1 arise from the textures labeled
(D42, D17), the matrices for model D2 come from (Dag, Da2), those for model D3 come from
(D4s, D1o), and the textures for model D4 arise from (Dsg, D5p). Given our chose of weights,

20n the other hand, the negative ke also leads to the large weight kr. We admit this to happen because
the weights of the VVMFs that appear in those models are still within our preset range.
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the resulting matrices are explicitly given by

0 A T A | vy 0 g\
, ) ’ v
DI: M.=| o'vy) —a'vyy 0 (v, M,=| 0 oV sy e
2 2 3
v v st VYar 7Yy 0
o0 Yy A R CY AT
, B 3 4 . o5 v 5 (6 Uy
D2: M, = 0 ) azyi((%i 8 ve,  My=|a Yﬁ(,l) —a YQ{Q) 8Y,Y T
—*Yy 5 7£Y21 0 D Cx 0 ¢ U
2 5) v (2 v (2 vy (D
atvyy  afviy gy, —a"Yy] a'Yyy By P
D3: M. =| afv?) - €Y22) By [vas M= | oy arvgd —pvy) | R
2 v 2 v 2
—VZYz(,Q) Eyz(,l) 0 - YZ(,Q) Y Y2(,1) 0
) 0y 5) gy (@) vy (3) 1y (5) i)
ol B ol B |
Di: M= | o'vf) a'vy) %43 | va. M, = | a"Yy) o'y 8,5 | &
2 2 vy (4) vy (4
W’ZYz(z) W’ZYz( ) 0 - Y2(,2) Yz( 1) 0
(6.12)

Interestingly, in all models the predicted sum of neutrino masses is near the upper bound
of the Planck Collaboration result [103], >, m; < 120 meV. For models D1, D2 and D4, their
predicted Dirac CP-violation phases d¢p are near 1.57, while model D3 predicts a trivial
Dirac CP phase because the associated best-fit modulus value falls right on the CP-conserving
boundary of the fundamental domain, |(7)| = 1.

6.3 Majorana neutrino model for type-I seesaw mechanism

Let us now explore the generation of neutrino masses by means of the type-I seesaw mechanism.
In this case, we find that we need at least 9 parameters to arrive at a realistic model. Out of
approximately 6,000 non-trivial seesaw neutrino models with 9 parameters, about 25% of
them are compatible with observations. We present a benchmark model here, in which the
modular weights and representations of the matter fields are given by

ES®ES~2@1, Lpe®Li~2@®1, NYaoNS~2@®1, Hy~1, H,~1.
kge =5/2, kps =kp, =kne =kne =3/2, kp,=9/2, kp,=kpn,=0. (6.13)
These choices lead to the 2D3 modular invariant superpotential contributions
¢ c (6) L c (2)
= o (o), 5 (B Eab®), o (Bs1o) ] i
v c (5) v c (2)
, = [a” (NDLDY2 )1 + 8" (NpLsY, )1 +9" (N§LpY, )1] H, (6.14)
(2) N c arev(2) N care v (2)
+ [0 (NpNpY; )1 + 8 (NpNSY; )1 + 8 (N§NpY; )1] A.
Note that W, includes Yukawa terms and Majorana contributions to the masses, corresponding
to two different texture contributions from tables 8 and 9. From the model definition (6.13),
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we see that in the notation of our appendices B and C, the Dirac mass texture for charged
leptons is D53, while the two textures for neutrino masses are labeled Di3 and Nj. Once
we set the chosen modular weights, their explicit forms read

0 O/YA(?’) _5ZY2(62)
1’ 3
M=oY 0 g |, (6.15a)

2 2
7€Y2(,1) VEYz(,z) 0

_OZVY2(721) OéVY2(722) 5uyé(i) 70[NY2(’21) aNY2(,22) ﬂNYZ(,zl)
Mp=| a"vy3 a3 gYS) lvw,  My=| oVvyy oVvyy pNYsY A (6.15b)
’ 2 2
,YI/YZ(?I) ’VUYZ(,22) 0 ﬂNYZ(,l) BNY2(72) 0

From the neutrino textures (6.15b), we see that the light neutrino mass matrix M, is given
by the standard seesaw formula,

M, = —MhMy'Mp. (6.16)
After minimizing the x? function (6.1), we find that the best-fit point is determined by
(r) = 0.197328 + 0.9872581, 2, =447.984, 2, = 325607, Zr = -3.63238,
20— 500039, 2y = —26.6449, a‘vy = 1.96115 MeV, @ — 958397 meV,  (6.17)
which lead to the lepton-sector predictions
sin? 07, = 0.302991, sin®@%; = 0.02203, sin®04; = 0.572022, d6p = 1.27887~,
a9 = 1.277827, agz; = 0.418302w, m./m, = 0.00473698, m,,/m, = 0.0585681,

2
Ams,

2
Amsg,

=0.0295108, my =39.09 meV, my=40.02meV, msz=63.55meV,  (6.18)

with x2,;, ~ 1075, Note that in this case neutrino masses are predicted to be in normal
ordering and all the predictions are compatible with the experimental data within lo.
Further, one can show that the effective mass mgg = 22.48 meV is compatible with the
current bound [104]. In addition, it is interesting that the significant CP violation phase
S6p = 1.278877 is predicted entirely from the small deviation of the modulus vacuum (7) from
the CP-conserving boundary, | (7) | = 1.00679 2 1. On a lower key, the sum of neutrino masses
>-;m; = 142.66 meV is slightly larger than the upper bound of the Planck Collaboration
results [103], >, m; < 120 meV.

6.4 Majorana neutrino model for Weinberg operator

In the case of neutrino masses generated by the Weinberg operator, we find that at least 7
real parameters are needed to explain the measured values of lepton observables. Among
approximately 300 models of this type with 7 parameters, around 15% are found to be
compatible with the experimental data. We present a sample lepton model in which the
modular weights and representations of the matter fields are

ES®FES~201, LpoLi~2®i, Hy~1, H,~1.
k’ECDZQ/Q, k?E§:k:LD:kL3:3/2, kg, = knu, =0. (6.19)
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The corresponding modular invariant superpotential includes

We = {O/ (ECDLDYQ(S)) + B (ECDL3Y§(5)) ++f (E§LDY2(2)> } Hg,
Ly <21) v (21) v (;) (6:20)
W=+ 0 (LoLpYy? ) + 8" (LoLsYs”) + 8" (LaLpYy”) | HuH,.

From the defining properties (6.19) of our model, we observe that we must consider the mass
textures Dog from table 8 for charged leptons, and N7 from table 9 for the neutrino masses.
After setting the corresponding weight assignments, the mass matrices read
ey B) ey (B) 5y (5)
@ Y§,2 . Yﬁ,l p YﬁQ

I () 03 (5) ey (5)
M. = oYy =o'V =AY | v, (6.21a)

auy(y) VY2(§> ﬁyy@ -
M, =| oYy —o/’Y2(§2) 8YsY T (6.21b)
14 2 v 2
v v o
The best-fit values of the input parameters are given by
(T) = 0.143202 4 0.981206i, (/o' = —3782.55, v /ol = 47.0628,
o’ /BY = —0.69875, ofvg = 1.33421 MeV,  (f%v,)?/A = 34.8028 meV .
(6.22)

The predictions of the lepton masses and flavor mixing parameters at this best-fit point are
sin? 07, = 0.302725, sin® 6% = 0.0220538, sin? 05, = 0.656858, d5p = 1.46771n,

agr = 1.932057, a3 = 0.9515947, m./m, = 0.00473702, m,/m, = 0.0585681,

= 0.0295217, mp =30.15meV, mgo =31.35 meV, mg3z = 5847 meV, (6.23)

with x2;, ~ 17.14. We observe that neutrino masses are normal ordered, and that all
predictions are compatible with the experimental data at 3¢ level, except for sin? 053, which
is slightly outside the 30 range. The CP-violation phase 5£'7> is found close to 1.5m. Moreover,
the sum of neutrino masses ), m; = 119.96 meV is close to the upper bound of the Planck
bound, >, m; < 120 meV. Finally, the effective mass mgg = 30.97 meV agrees with the
current bound [104] and can be confronted with data by future large-scale Ov[/3-decay
experiments [105].

6.5 A complete model of quarks and leptons

After having built some promising separate models of quarks or leptons, we are ready now
to study whether our top-down motivated framework can yield a complete model of quarks
and leptons. To keep contact with top-down constructions, we focus on complete models
where all matter fields have the same representation assignments. We find that we need at
least 16 input parameters to provide all of the 22 flavor parameters in the SM. Despite being
challenged by some slightly more predictive models [48], our model reveals the potential
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d° u‘ Q E° L H, | Hy
pl 201 | 201 | 2071 20171 201 |1V | 1
k|1/2,5/2|5/2,1/2]5/2,5/2 | —=1/2,7/2 | 7/2,3/2] 0 | 0

Table 5. Transformation properties of quark and lepton fields under the binary dihedral group 2Ds3,
and the modular weight assignments for a complete model of quarks and leptons, where neutrinos
acquire masses via the Weinberg operator.

and simplicity of realistic modular flavor models based on 2D3. The details of the defining
modular properties of all matter fields are summarized in table 5.

By choice, all matter fields except for the Higgs fields have the same representation 2 & 1/
under 2D3. These assignments mean that the model can be naturally embedded in a Grand
Unified Theory, and could in principle naturally arise from string theory compactified on a
T2 /7.4 orbifold [75]. Since the right-handed neutrino fields N¢ are not introduced in this
model, neutrino masses originate from the Weinberg operator. In our complete model, due to
the identical modular charges for all kinds of matter, the up-quark and down-quark mass
matrices as well as the charged-lepton mass matrix are given by the texture Dg from table 8.
The neutrino mass matrix is given by the texture Ny from table 9. In detail, our model yields

_adYZ(,Zl) OédY2(’22) _BdYQ(?Q)

My = O‘dYZ(,QQ) adY2(’21) 5dY2(,21) Vg, (6.24&)
_,ydy(é) ,ydyz(i) 5dY1(4)
—O‘1Y2(,1) ‘|’O‘2Y1( ) 0‘1Y2(,2) —p Yz(,z)
M, = ayYyy atvy) + oy grvsy | vu, (6.24b)
uy (2 e
—7Y5Y 7Yy 0
—O/Yz(i) O/Yz(é) 0
M, = O/Y2(22) O/Y2(21) 0 V4, (6240)
_’Y€Y2(,62) ’YZY2(’61) 5€Y1(4)
(6 (6 (6 (4
Y9 +c§2Y1(,) aéYz(’l) N Y2(’41) 2
M, = Y —atyy +ayvy? prvgy | (6.24d)
v 4 v 4
B Y2(,1) B Y2(,2) 0

In table 6 we summarize the resulting best-fit input parameters, product of a x? mini-
mization, along with the predictions for all flavor observables. The identified values yield an
accuracy of x2. ~ 8.4, implying that all observables are found well within the experimentally
allowed 30 ranges. Besides, our model predicts, as in previous partial models, that the
leptonic Dirac CP-violation phase (%P is located around 1.57, and the sum of neutrino masses
> mi = 65 meV is somewhat lower than the current experimental upper bound. Another
interesting finding is that the best-fit of (7) is slightly off the CP conserving boundary Rer = 0
and somewhat close to the critical point at ico in moduli space, similar to what was found
previously in stringy models [65, table 6]. This small deviation in moduli space results in
both a suitable C’P-violation phase for the quark sector and a larger CP-violation phase
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Input parameters Predicted flavor parameters
Re(r) —0.0613689 Im(r) 2.68637 Quark sector Lepton sector

af/v" | —6422.49 /o 17.0445 My/me | 0.00192463 | me/m, | 0.00473731

al /v —6413.76 0°/a" | ~0.0808854 | [ m./m, | 0.00282265 | m,/m, 0.058568

B 4383.68 of/B” 2.3088 mg/ms | 0.0505174 o1/ 0.901365

pe/a? 20.3565 ag/pr | —UT842 | T 0.0182406 as /T 0.526527

7;1 /a;i —1040.08 aivd[MeV} 76.207 07, 0.227464 sin? 7, 0.31818

5/ 309.699 | « U;[Me\/] 0.891348 67 000339533 | sin2éL, 0.021746

v vy, [MeV] 6.44174 Yo /AleV] | 0.010066 04, 0.0403661 sin2 6L, 0527212

§¢p/° | 69.1464 Sbp/m 1.59044

mi[meV] 5.23272

ma[meV] 10.0738

ms3[meV] 49.6888

AmZ, /AmZ, | 0.030349

Table 6. Best-fit values of the input parameters together with the corresponding predictions for
flavor observables delivered by our complete model of quarks and leptons, defined in table 5, endowed
with a 2D3 modular flavor symmetry. The accuracy of this model is x2, ~ 8.4.

for the lepton sector, which turn out to add up very close to 2, i.e. we find the intriguing
approximate quark-lepton complementarity relation

8p +05p ~ 21, (6.25)

7 Conclusions

One interesting and unusual generalized finite modular group of small order that appears in
some string compactifications is the binary dihedral group 2D3 2 [12, 1]. Hence, unlike some
other symmetries explored from the bottom-up perspective, there is additional top-down
motivation to analyze the phenomenology arising from this modular group. In this work,
we have systematically studied, from a bottom-up perspective, all the elements that are
required to arrive at phenomenologically viable scenarios, in order to provide with the tools
that top-down constructions shall eventually need.

We have first presented detailed group theoretical information for 2D3, whose represen-
tations suggest in particular a 2 4 1-family structure. By applying the theory of VVMFs, we
have then explicitly constructed all the modular-form multiplets of 2D3 with all admissible
weights ky < 7. They coincide with the VVMFs building doublets and singlets of the finite
modular group I') = S, as 2D3 = S} /(Zy x Zs).

In our framework, we have adopted a number of top-down motivated assumptions, which
differ slightly from typical bottom-up priors:

(i) Framework based on SUGRA, implying that W has a modular weight —1;
(ii) Matter fields with fractional weights whenever possible;
(iii) Higgs fields H, 4 are allowed to be non-trivial 2D3 singlets; and

(iv) Families are accommodated in 2 + 1 structures instead of triplets.

Beyond bringing many unexplored phenomenological possibilities, this serves as a bridge
between the bottom-up and top-down approaches.
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As a first general step towards phenomenology, we have comprehensively classified all
Dirac and Majorana fermion mass textures that are consistent with a 2D3 finite modular
theory of flavor. In our classification, aiming at minimalism, we have considered that neutrino
masses can arise purely from Dirac terms, a type-I seesaw mechanism or the Weinberg operator.
We identify all inequivalent mass textures with only the real numeric coefficients and modular
weights as varying parameters in tables 8 and 9. This allows the interested readers to perform
their own scans using the modular weights that are more convenient in their formalism.

Applying our classification, in section 6 we presented some results from a random scan
among a large set of admissible combinations of fractional modular weights for matter fields.
This scan allowed us first to find separate models with a reduced number of parameters for
quarks and for leptons. Of course, only a complete model of quarks and leptons can faithfully
be compared with observations. By scanning thousands of models, we identified a complete
sample model, based on the 2D3 modular flavor symmetry, with only 16 parameters, that
successfully provides all 22 flavor observables with x? ~ 8.4, cf. table 6. Interestingly, neutrino
masses are generated by the Weinberg operator, hence avoiding the need of right-handed
neutrinos. Further, the 2D3 representations of all matter fields can be restricted to be
identical, as observed in promising string-derived scenarios. The predictions of our complete
model are also interesting; for instance, neutrino masses are relatively small with a total mass
of only 65 meV, and the CP phases approximately satisfy a quark-lepton complementarity
relation, 527; + ‘%P ~ 2m. The sample models of section 6 should be regarded as the main
phenomenological result of our work.

The top-down motivated research in this paper opens up new options for both bottom-up
and top-down flavor model building. First, as usual, it remains the challenge of finding
mechanisms to stabilize the modulus at the best-fit point. Further, it would be interesting to
investigate whether some of our models can be consistently embedded into some top-down
framework, such as the heterotic string compactified on a T?/Z,4 orbifold [75]. This suggests
the possibility of mixing the modular flavor symmetry 2D3 with a traditional flavor group, in
an eclectic scheme, allowing us to fix the (canonical) structure of the Kahler potential and
possibly induce further physical constraints. These tasks are left for future works.
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A Generalized hypergeometric series

The MLDESs in eq. (2.10) for 2-d and 3-d VVMFs can always be transformed into the
generalized hypergeometric equation of the form [87]

[(Ok +B1—=1)+- Ok +Bn—1) = K(0kx + 1) (0x + )] fi =0, (A1)
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where

Ok = K% with K(1)=1728/4(7). (A.2)

Here j(7) is the Klein j-invariant, defined as [85]

_ Ei(n)

3(r) — E2(r
o= B _ Eir) - B

1728

with A(T): (A.3)

When the numbers i, ..., 3, are distinct mod Z, eq. (A.1) has n independent solutions
which are given by the generalized hypergeometric series

fi= K" (L4 a1 =B Lt an — B 14+ B — Bi .71+ B — B K),  (A4)

where ” denotes the omission of 1 + 3; — 8; = 1. The generalized hypergeometric series
nfn_1 is defined by the formula

0o n (m)
i—1@; 2™ .
nFn_l(al,...,an;bl,...,bn_l;z) = E ]7Jmf, m,j, k€N, (A5)
o [Tzt o™ m!

where ag-m) (and bém)) is the rising factorial or Pochhammer symbol, defined for ag-m) by

(m) 1 m:07
aj(aj+1)---(aj+m—1) m>1.

An analogous definition holds for bggm). In these expressions, a;, by, € C.
For the 2-d case, the matrix p(T') corresponding to the unitary irreducible representation

of T € SL(2,7) has eigenvalues €*™"1 and e?™'"2 such that
1 1
0<r,m<1, T1+T2€6Z, T1—T‘2¢Z,Zi6. (A.7)

In this case, the parameters 51 2 and a1 2 can be solved by the indicial equation of the MLDE,
and they solely rely on r; and ry according to

_7"2—7’1 11 _7'1—7'2 11
ﬁl_ 9 +127 52_ 9 +12a

1
a1:0, 01225. (AS)

Accordingly, the 2-d VVMFs Y (#0) of minimal weight kg can be expressed through the
hypergeometric series (A.4) as Y(k0) = Cy(n? o f1, Cin? o f5)T, where the overall coefficient
Cy can be generally taken as 1 and the determination of the relative coefficient C; relies
on the representation matrix p(S). Note that the minimal weight ko here is determined
to be kg = 6(r; + r2) — 1.

B Clasification of Dirac mass matrices

We can compute the explicit form of the terms in eq. (5.8) for the different field assignments
by taking into account the 2D3 product rules, egs. (3.2)—(3.4). All admissible independent
mass blocks Mpp, Mps and Msp in eq. (5.9) arising from considering the combinatorics of
all 2D3 representations for every field, including the four different singlets for the Higgs fields,
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Block Representation configuration Explicit form
label (e, Yo, Hyya) of block mass texture
(kpp) (kpp) kDD) (kpp)
, A A 7 PPN, —a1Yy +ozY 1Yy + azYy,
Mpp, (2.2,1), (2,2,1), (2,2, 1) ( Y(kDD) _ asyl(kDD) o Y(kDD) +a Y(kDD)
. . R +ay Y(kDD +a Y (kpD) +a Y(kDD) +a Y(kDD
Mpp,= (2,2,1)7,(2,2,1)7,(2,2, 1)) ialYuCDp) o Y( 00) 2o Y( ¢oo) s Y(kpp
A A + Y(kDD) Y(kDD) i Y(kDD) Y(kDD)
Mpp,+ (2,2,1)%,(2,2,1)7, (2,2,1)7 ( izly< ipD) +z y ko) $z vk :op) iz ykoo)
1 _
M (2,2.1), (2,2.1), (2.2,1) T o
IpD. ) 4y ) s 4y L),y ) 4y k k 3 k
4 QIYZ(QDD) _ CYQYI( DD) 041Y2( DD) +a Y( DD)
" (2,1,1), (2,11, (2.1".1), (2,11, Y5
D3, (2,1’,1), (2,1,1), (2,1",1), (23,1,1") By (ko)
M (271,71)+7 (27171/) ) (271’1)73 (2ai/7il)+7 :FﬁY2kD3
D32i (2717 1)+7 (27 il7 1/)7’ (2717 i)77 (27 1/7 i/)+ iﬁyzled
~ - - - E
v @D eI LD @1 T 6%,
N > > SO NEGR ;
D33 (2,1,1)*, &, 1,1, (2,1, 1), 2,1, ¢6Y§'§D3)
- - - - %
v (2,i",1), (2,1,1"), (2,1/,1), (2,1,1), BY5
s (2,1.1), (2,1,1), (2, i,i) 2,171 gy kpa)
, (1,2,1), (1/,2,1), (I’,2,1), (i,2,1), (ksp) < (ksn)
A/[ . N N A . A SN 3D 3D
3D (1/7271)7 ( 7 71/) (1/ 71) (17271/) (’YYZ,I 7Y2,2 )
1,2, 1)%, (1,2,1), (i,2,1)-, @ 2,1)%, (ksp) (ksp)
Af R N a A A R {dD ,"SD
3Dy d,2.1)*, {d,2,1), 1,2,1), 1,2,1)* (:F'YYZ,Z Y5, )
(17271)+7 (1,7271/)_’ (1727A)+7 (1,72’1,)_7 (k'ZD) (k3D>
M. A A PR A A A +Y, Y.
3Ds* 1,2, 1)+, 1,2,1), (",2,1)+, 1.2.1)- ( RESP) + 51 )
(117271)- (172,1,), (1/,2,1), (1-271/)7 (k‘ZD) (kSD)
M- P A A A A ~) A A Y. Y,
50, (1',2,1), (1,2,17), (i,2.1), (1,21 (3™ 7357

Table 7. Admissible blocks in the Dirac mass matrix (5.9) for all possible 2D3 representation
configurations of the involved fields (1§, ¢%, H, /q), where a, b are either D or 3. The superscript + and
— in the representation configurations must be read as follows: the superscript + in a representation
configuration means that one must place + (—) in all terms where the explicit form of the block
displays &+ (F). Analogously, — in the representation configuration means a — (+) when + (F)
is found.

are shown in table 7. In this table we present the explicit form of the three independent blocks
in eq. (5.9). In particular, as mentioned in section 5, the block Ms3 is fixed once the three
representation configurations (1, 1y, H,/q) with (a,b) = (D, D), (D, 3) and (3, D) and, hence,
the respective blocks are chosen. For example, consider the configurations (2, 2.1 ), (2,17,17)
and (1,2,1’). It follows that the configuration corresponding to Mss must be (1,1’,1’),
which would yield an M33 being a modular form transforming in the 1’ representation of 2D3.
All possible values of M33 are 5Y1(k33) 5Y1(k33) 6Yi(k33) and 6Yi(,k33), with 6 € R.

In the second column of table 7, we gather together all representation configurations that
lead to the same block structure up to a permutation of ay and 3. Since «; do not refer to
any physical property, but simply to the order in which one considers the various terms arising
in the products of the field representations, the blocks with permuted constants are equivalent.
There are cases in the third column of our table where the sign of oy or 3 is relevant. The
cases where £ or F appear yield in principle two different blocks. However, this sign difference
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can be consistently redefined as long as both positive and negative coupling constants are
considered, as we do in our scans. This eliminates in practice the duplicity of the blocks.

The weights ky € {kpp, ksp, kps, k33} of the modular forms in table 7 are defined in
section 5.1, below eq. (5.8). As they depend on the modular weights of the matter fields and
these are fractional, it is clear that some of the resulting weights and required representations
for modular forms are incompatible with the existent VVMFs of 2Ds3, egs. (4.5). If no
corresponding modular form multiplet exists at the given ky, then YT(ffY) = 0. For instance,
if kye + kyp, = 4, then kpp := kyg + ky, — 1 = 3 and thus Y32 = y*?2) = 0,

Without setting explicitly the modular weights of matter fields, we can still build the
full 3 x 3 Dirac mass textures My, (5.9) by combining together the independent blocks from
table 7 and the corresponding M33. We list all 4 x 4 X 4 = 64 resulting textures in table 8
in terms of the full representation configuration (¢, v, H,4)-

Model | Irrep configuration D toxct
1rac mass texture
label (1/167 T/% Hu/d)
2®1,291,1), —a1 Y3577 4 ap¥ PP g VPP 4 gy orpyy )
Dl (Q D i, Q D i, 1’), OQYZ(ZDD) - Oéng(,kDD) OQYZ(’leD) + OéQYl(kDD)ﬂYé,kQDS)
2e1,2e1,1) Yy kar) yYhe) gy, ko)
(261,291,1), 7a1Y2(’leD) + a2Y1(k‘DD) ale(,kzDD) + agyl(lkDD)ByéﬁDz)
D, (2 o i Q@i 1) a1Y2(/€2DD) _ OéSY1('kDD) a1Y2(leD) +a2Y1(kDD)ﬁY2(kQD3)
2e1,201,1) —yyikee) yygkae) gy e
2ai2e1,1), —ar Yy PP+ an¥{ PP 0 P 4 asyer gy e
Dy (2 o130 1) alyz(];DD) . QBYI('ICDD) alyz(leD) +a2Y1(kDD)5Y2(k2D3)
+r(ksp) ’ (ksp) (kaz)
291,241,1) vYﬁ ;D - ’yyé 13D (5Yi, 33
2ai.251,1), —a, Yk aa v For) a viker) o ey e gy hes)
D, (Q o1 5 @i 1,) a1Y2(1€2DD) _ QBYI("CDD) a1Y2(leD) + 042Y1(kDD)5Y2(kQD3)
el 2eii) Y en) Y hep) gy ke
2®1,201,1), | [ —a¥si " +ax¥{"7?) a1V 5P 4 apyor gy hpe)
D, (é oidei 1/) alyz(’;DD) - agyl(/kDD) alyz(kiDD) +a2Y1(k7DD) 5}/2(’@11:)3)
(201,201,1") 7Yyt R C R £
2a1,201,1), | [ —a¥3i??) + aY{*P) aY5P?) 4 apv e gy i)
Ds | el 2e1, 1), a1 Y3 2P) — oz Y ag Y, heP) 4 any Fer) gy hes)
2ol 261, 1) —Y,ker) yYkep) gy, ko)
(26 i2pm1 1) 7a1Y2(kiDD) + aQYI(kDD) alyz(’;DD) + Oégyl(’kDD)iﬂyz(kQDS)
b [Gor ety || adn g e oyt i
AA A, A (kap) (k33)
2ei,2s1,1) ’YYQ)QSD o ’YYQ( 13D) 6Yi 33
(2 ® i/’ 201, 1)7 7a1Y2(7]§DD) + aQYI(kDD) a1Y2(7’;DD) + OéBYl(’k'DD)iﬂYZ(,kQDS)
Ds | @o1,201,1), || a¥ah?? —asv[f??) a, v hPP) 4 apv*o) gy hes)
2 i"5a1 j‘_/) ’yYA(kSD) ’YYA(kaD) (SYA(kM)
) ) 5.1 39 i

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,
assuming vanishing modular weights for Higgs fields (continues ... ).
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Model | Irrep configuration .
Dirac mass texture
label (’l/)cvw7Hu/d)
(2 ©1,20 17 1), 7a1Y2()]§DD) + aQYI(kDD) ale(,’;DD) + a3Y1(1€DD) 5Y§(ZB3)
Dy | 2@1,201/,1), ale(gDD) - ang(,kDD) ale(ﬁDD) + ang(kDD)—BYﬁ(ﬁDs)
(201,201,1) yYyher) v kar) sy ks
@or.201,1), | [ —a¥at"? +apV ) a vhrr) 4 apyFor) gy
Do |Gain2e1,1), || av? —ayler) a vl 1oy ieel gyl
2e1,201,1) —yyiker) ko) oy ks
@ai2ei1), | [ —a¥ah?? +ay ) avire) 1+ asviier) gry i
Di | Ge1,2e1,1), || aVy?? —as¥{i??) Ve 4 apv e gy i)
(2@ i, 50 1,17 7Y2(1€23D) _ fYYé(leD) 5Y1(,k33)
@oi,201,1), | [ —a¥at"?) £y avirr) 4 asviier) gry i
Dis (2 ®1.201/ 1/) a Y2(/CDD) a Y(kDD) a1Y2(/€10D) + azyl(kDD)_ﬁY(kD?»)
b ) b N ’ s 2,1
2@ i’2a1/ A/) ,_yy(ksD) ,Yy(ksD) (5Y1(k33)
) ) 51 59
2e1,20i,1), —an YR eV PP ag v 1 apyFer sy,
Diz | 2@1,201,1), a YZ(ZDD) - ochl(,kDD) quz(’leD) + ang(kDD),BYQ(kQDS)
2o1 31 i') 'sz(klw) 'YYz(kQSD) 5y(k33)
) ) R , i
2e1.201.1) —an YRR apvEPP) g vhee) 4 agy{Fee gyt
) ) ) , , ’ 3.1
Du | 2ol 201,1), ale(’kDD) Yl(,kDD) ale(fClDD) + ang(kDD)ﬂYﬁ(ZDS)
(2e1,261,1) v kep) v kan) sy (kas)
’ ’ , ) ir
2@ 1,291, 1), —a1Y2(’k1DD) + ozzYl(kDD) a1Y2(’kzDD) + ang(,kDD)BYQ(ﬁDS)
D15 (ﬁ ®1.201, 1), o Yz( D) agY(kDD) ale(ﬁDD) + ang(kDD)ﬁYﬁ(Zm)
2 i,2901 i,) 7Y(k3D) _ ’}/Y( 3D) 5Y1(k33)
’ ’ 2.2 2.1
2ei,201,1) —an YRR apv{FPP) g vihee) 4 agy{Fer gy iy
) 9 ) 5 s 7 2’
D16 (Q ®1,2@1, 1), «a Yz( D) agY(kDD) ale(ﬁDD) + ang(kDD)ﬁYﬁ(ZDs‘)
2o i7.2¢1 i’) er(]%D) ,yy(ksD) 5Y1(k33)
) ) 51 59 )
(2 e 117 2 @ 17 1)’ QIYQ(’QDD) 4 OégYi(,kDD) alyé(ﬁDD) + aQYi(kDD) ﬂyz(’klps)
Dir | 2ol 201,1), | | a1y —aa¥{"?) —ar Vi) + gV pyg )
(Q d1 p) e1 i') ,yy2(kl3D) ,7Y2(];3D) 5y(k33)
) ) , , i
A a (kpp) (kpp) (kpp) (kpp) (kp3)
(2@1,2@1,1), alyéz +Q3Yi’ alyél +042Yi 5Y2,1
Dis | (201,201,1), a Y 5P — v or) —a v {her) 4 gy terigyiee)
(2 o1/, 20 1, i') _7Y2(1923D) ’)/Yz(kﬁD) (SYA(kM)
: ; i
2 172 e 1,1), alYQ(ZDD) + agYi(’kDD) alyé(ﬁDD) + a2Yi(kDD) BY2(,k1D3)
Dy | (201,201, 1), Yy PP — apY{*PP) —an YR 4 ag{ PP BY, Y
(A (S5 1,2 ®1 i') 'yYA(k3D) _ ’YYA( 3D) 5Y1(k33)
) ) 59 51

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,

assuming vanishing modular weights for Higgs fields (continues ... ).
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Model | Irrep configuration .
Dirac mass texture
label (V¢ %, Hyq)
261.,201,1), alYQ(ZDD) + agYi(,kDD) alYé(leD) + agYi(kDD) BYéﬁD?’)
Dy | (2e1.2e1.1), | | Vi) =¥ * ) —aytem) 4 agvForpyg e
2ol 2e1,1) yykar) yykae) sy o)
’ ’ 2.1 2.2 !
2o i/’ 5m 1/,1), alyé(éDD) + agyi(’kDD) alyé(ﬁDD) + azyi(k?DD) 7ﬂY2(,k2D3)
Doy (2 117 23 :’[7 i)’ alyﬁ(leD) . aQYi(kDD) _QIYQ(I;DD) + CVSYi(,kDD) ﬂYZ(,les)
(ﬁ ®1, Q ® 1/, i/) ,yyz(kl:zD) VYZ(ESD) 5Yi(,/€33)
2a i, 5 1), alYé(ZDD) + O[3}/1(1/’%1)) alyé(ﬁDD) + a2Yi(kDD) _ﬂyz(,kQDs)
Dy | (2e1,201,1), alYé(ﬁDD) _ 0‘2Yi(kDD) _alY;z;Dm n OégYi(,kDD) By ko)
(201,261.1) — P yYkap) gy )
2®1,201/,1), a1YQ(gDD) + OéSYi(,kDD) alyé(ﬁDD) + 042Yi(kDD) —5Y2(,k2m)
Doz | (201,2601,1), alyéﬁDD> — apykor) _QIYQ(ZDD) + ag¥ (o) gyfkes
Cei2er, i) Y Fap) Y ) e
’ ’ 3.2 3.1 !
2e1, 5 1,1), alyé(j;DD) + agYi(/kDD) alyé(ﬁDD) + a2Yi(kDD) _ﬁYZ(ZD3)
Do | 201,201,1), || arV{""?) — v 2P —a,v[52) 4 agv(for) gy i)
Gaoi2e1,1) Jythen) e gyl
(2 ® i/’ 5 ® i, 1)7 alyé(f;DD) + aSYi(,kDD) alyé(ﬁDD) + a2Yi(kDD) ﬁYQ(ZDB)
N N k k k k
Dy | (201',201,1), alYé(,lDD) - a2Yi( ov) _O‘lYQ(QDD) + O‘3Yi(' DD)_BYQ(JDS)
2e12ell) Sy ) o) gy
2 i, 5 ]A_’ 1), alYQ(ZDD) + agyi(’kDD) alyé(ﬁDD) + a2Yi(kDD) 5Y§(ZD3)
Dy | (2el2011), || a¥ ) ??) —ay o2 —a, 0 4 agy (o) gy i)
Ge1,2¢1,1) — Ay kep) Y kap) s5Y,F)
(2®1,281,1), a1Y§ZDD) + agYi(,kDD) aﬁéﬁw) + ozzYi(kDD) BYQ(ZDS)
A k k k k
Dy (2 81,201, 1), alyé(JDD) _ OQYi( DD) _OZIYQ(QDD) + O‘3Yi(z DD)_ﬁYQ(,lDii)
5% 5,4 4 k Ka:
el 2eii) ) — qy ko) gy )
2e1,201,1), a1Y§ZDD) + agYi(,kDD) a1Yﬁ(ﬁDD) + azYi(kDD) BYQ(ZDS)
Dys | (201,20 1,1), Ollyé(leD) - azyi(kDD) —Oz1YQ(kQDD) + OtsYi(,kDD)—ﬁyﬁ(le‘g)
el 2ei i) Y her) Y her) gy k)
2@ 117 5m i/’ 1), QIYQ(QDD) + a3Yi(,kDD) alyé(ﬁDD) + aQYi(kDD) Byﬁ(ips)
Dy | (201, 201.1), | | ai¥]""?) —anV 7P —ayyFop) 4 gy (Ferigy [heo)
Go1,20i, 1) Y ksp) Yy {ksp) sy Fes)
(2 i’ 5@ i/, 1), alyﬁ(gDD) + Oé3Yi(/kDD) alyﬁ(ﬁDD) + QQYi(kDD) ﬂYﬁ(ﬁDS)
Dy | (2ol,201,1), | | arvy"??) —apv 27 —a,Y[5PP) 1 agyier gy hes)
Co1.201,1) v ko) v kan) sy (k)

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,
assuming vanishing modular weights for Higgs fields (continues ... ).
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Model | Irrep configuration D coxt
1IraC mass texture
label (’l/)cvw7Hu/d)
2a130i,1), | [ aYsr?) +asy PP a v er) ya,yer) gy (hes)
Dy | 2e1201,1), a YRR — v or) _a v [her) 4 gy (tergy (foo)
5% &5m 37 37 " y(ksp) 7 (k3p) (kas)
Goi2ei,i) vk —yy}" 3y,
201,201,1), Y 50P) 4 agY{PP) gy Eee) 4,y o) gy (heo)
D | @el,201,1), | | a¥)"??) —axv 7P —ay*op) 4 gy (ierigy (heo)
(2 D ].,7 2® 1/, i) nyQ(ka) ,yyﬁ(k;D) 5Yi(’/€33)
(2 ® 117 50 i/, 1), a1Y2(7k2DD) + agYI(IkDD) alyz(ﬁDD) + aQYI(k?DD) 5}/2(”@11:)3)
Di3 | (201,28 1,1), a1 Y3 PP) —any ) o, Y hPP) ey gy ke
2e1/, 2 i” i) ,YY2(7’€13D) 7Y2(23D) 5Y1(’kss)
Gal2el 1), | [ aYss? +as¥ PP a0 +apy o) gy
Dy | (201,201,1), | | a1Vah?®) — V(" P —a V529 4 apy sy ipe)
(201,201"1) —y Yy yygkae) gy e
Ge1,2e1,1), a Y PP 4 apY ), v hee) o anyFee) gy kes)
Dy | 201,2011), | | a1Vah??) — "7 —a, PP 4 apy o )py,ipe)
A k- ks k
(2 @ 1/’ 2 @ 1/’ 1/) ’YYQ( 23D) _ ’Yyé( lsD) 6Yi( 33)
Ga1,201,1), | [ aYas?” +asV PP arahe?) 4 apvFPP) gy i)
Dy | (201,2011), a Yo hPP) —anyFe) —a Y hP) ey gy ke
- (k3p) (k3p) (k33)
2eil2e1,1) VY, VY, ep Y
Gal 2al,1), | [ aYss?? +asV PP aYahP?) 4 apv PP gy kpe)
Dy | (201,201,1), || a1Vah??) — a,¥{"??) —a, v PP 4 ayv FoP) gy hee)
(2 o1/, 2 &) i, i) VYZ(ﬁ3D) ’YYZ(,kQaD) 5Y1(k33)
(2 ) i, 2 D i, 1), 041Y2(7k2DD) + Oéng(/kDD) ale(ﬁDD) + Ozng(kDD) _ﬁYZ(,kQDS)
Dss | (201,201,1), || a1¥ah??) —a¥{"??) —a,v 5P 4 apv 7P) gy hee)
(2 ®1, ) D i, i) _,YY2(7’€23D) PVYZ(,klsD) 5Y1(,k33)
(Q o1, 5m 17 1), ale(,kQDD) + a3Y1(,]CDD) alyz(ﬁDD) + a2Y1(kDD) _BYZ(,ICQDS)
Dsg (2@ :’[/7 5@ i, i)’ alyz(ﬁDD) _ a2Y1(kDD) _alyz(gDD) + QBYI(”CDD) ﬂyz(’les)
1 ksp) (k3s3)
(2ei,201,1) Yy — yY *er) gy e
Co1,201,1), | [ aYa?® +asVF P a vher) asyFer) gy iee)
Dy | 261,241,1), a Y3 hPP) —anyFer) o, Y heR) o agyFee) gy kes)
i k ksp) (ka3)
2ei2e1,1) Y her) Yy gy ke
@ei201,1), | [ Vi) +agv{F7?) a viEee) 4 a,viter) gyiey
Dy |(201,201,1), | [ V") — V™) —ar V3PP + agvyy P - gy o)
(2e1,261,1) Y, ksp) Yyee) gy k)
Goi2e1,1), | aVi?? +av 7P avher) 4 a,vter) gyt
D42 (2 D ].7 2 D il, 1’), 011Y2(7]€1DD) — Oéng(kDD) 70[1Y2(7’€2DD) —+ Oéng(,k‘DD)*ﬂYQ(leS)
2®1,291,1) —yy ke Y kso) o (k)

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,

assuming vanishing modular weights for Higgs fields (continues ... ).
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Model | Irrep configuration .
Dirac mass texture
label (’l/)cvw7Hu/d)
Go1,201,1), | [ eVl +a V) a¥iher) 4 agyhee) gyginy
Dus (2 117 5@ 1, i)’ alyz(ﬁDD) _ aQYI(kDD) _alyz(gDD) + ang(,kDD)_Byﬁ(ﬁDS)
1 1 k: k k
el 2611 'VYQ(;D) _ ,yyé( 13D) 5Y1( 33)
@o1.201,1), | [ @i +as¥P) aYiher) 4 agyher) gyyiny
Du | 2ei,2e1,1), || aVidi?? -y 22 —a v (5P 4 agv oo gy iee)
2 i, 20 i', 1/) nyQ(ka) ,YYQ(IC;D) 5Y1(’/€33)
2ei 2e1,1) a Y{EP) 4 agvFor) a ykee) o g,y (or) gy (heo)
) s L)y , ’ , 5.1
Dys | (201,261,1), ale(ﬁDD) — ang(kDD) —ale(’kzDD) + ang(,kDD)ﬂYﬁ(ZDS)
(201,201,1) 'Vyz(,klw) 7Y2(,];3D) 5Yi(,’<33)
(Q © i, Q D 1,, 1), OqYZ(ZDD) + Cngl(,kDD) ale(ﬁDD) + Cszl(kDD) BYQ(ﬁDS)
D46 (2 fan ]_’ 2P i’ ]_/)7 alyz(ﬁDD) _ OéQYl(kDD) —OK1Y2(7]€2DD) 4 a3Y1(,kDD)ﬁY2(]€2D3)
(201,201,1) — v kap) Y {kap) sy )
) ) , , i
Co1,2a1/,1), Yo £ azYPP) anYiher) g apyter) gyt
’D47 (2 @ i/ é @ 1/ i) O[1Y2(kiDD) _ a2Y1(kDD) _alyz(kéDD) _|_ agyl(kDD)BY(sz)
) ) b N s 7 2)2
1 k: k- k
(2 ® 1/7 201, 1/) PYYQ(,;D) B fyyﬁ( 13D) (5Y1(, 33)
2o1,201,1), | [ Vi + a7 avher) 4+ apvFer) grghey
Dis | (201,201,1), ar Y34 — ap V(PP —an v hpr) + agy gy hee)
2® i’ 2@ i’ 1) ,)/Y?(k;aD) ’)’Yﬁ(k;D) 5Y1(k33)
(2@ i’ 53 1/,1%), —041Y§]€1DD) + agyi(k’DD) alyﬁ(kQDD) + O‘QYi(/kDD)Byz(leS)
Dy | Co1,201,1) a Y ee) v kee) g ykee) o gy (ep)gy (kps)
’ o 2,2 ir 2,1 i ,
2oi201,1) Y her) v her) sy k)
(20i1,2901,1) —ay YFPr) gy Fee) o,y tEoe) azYA(kDD)BY(kDS)
) » L) 21 i 22 i 2,1
Dso (2 1, 5@ 1/, i)’ alYQ(ZDD) _ a2Yi(,kDD) alyﬁ(JDD) + Q3Yi(kDD)ﬁY2(ZD3)
291,291,1) _,YY2(Z3D) ’YYZ(,klaD) 5Yi(k33)
2o1, 5@ 17,1, —041Y§(k1DD) + agyi(kDD) Ollyé( 2DD) + aQYi('kDD)ﬁyz(’les)
D51 | 221,201',1) aYErr) _ gy ken) o ykeo) agYA(kDD)ﬁYz(I;Ds)
’ e 2,2 2,1 i ;
291,291,1) ny(k3D) _ ’}/Y( 3D) 5Y1(k33)
’ 2.2 2,1 ’
2a1,301,1), | [ —aYsyt?) +agV PP a Y AP 4 an v PP )gy k)
Dss (201,20 ]A_’ i), alYQ(kQDD) aQY(kDD) CY1Y2(leD) + QBYi(kDD)ﬁYz(ZDS)
(2 @ i, 241/, i) ,YYQ(]?D) ,yyé(k;;D) 5Y1(k33)
(2 S¥) i, 2 e1, 1’), —OZlYQ(leD) + OégYi(kDD) OqYQ( 2DD) + OAQYi(,kDD)—ﬂYZ(];D3)
Dss | 201,201,1), Y o) — anY{PP) anYyrr)  agy Pr) gy
2el2e1,1) Y ksp) Sy k) sy (k33)
. . i

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,

assuming vanishing modular weights for Higgs fields (continues ... ).
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Model | Irrep configuration D toxct
1IraC mass texture
label (V¢ %, Hyq)
A, A k k k k
2oeil2a1,1, _QIYQ(JDD) + QBYi( DpD) a1YQ(72DD) + OZQYi(, DD)*ﬂYQ(,kQDS)
5 5 3 (kpp) _ (kpp) (kpp) (kpp) gy (kp3)
D54 (2@1,2@1,1), alYQz Cszi/ alyﬁl +C¥3Yi ﬂYZ,l
el 2011 Yy Ayghee) gy
e1,361,1), | [~y + eV angi b aoY gy
Dss (ﬁ ® :’I‘_/7 53 1, i), alYQ(kQDD) - aQYi(’kDD) OllYQ(leD) + agyi(k?DD) 5}/2(”@1133)
2e1,201,1") vy Fap) — yksp) 5y {ks2)
’ ’ 2.2 2,1
(2e1,381,1), | [ —0¥3"" + e[ g+ aoV gy
D56 (2 D i, 2 D 1, i), Ozlyé(,;DD) - OéQYi(,kDD) Ozlyé(leD) + Oégyi(kDD) ﬁyz(,leS)
2e1,20 i/’ i/) 7Yé(klsD) ’yYA(k;'D) 5Y1(,k33)
2,
(2 @ 17 5 ® 117 1/)7 _alyé(,leD) + agyi(kDD) alYQ(ZDD) + azyi(’kDD) ’BYQ(,kQDS)
Dy (é o1, 5 & i/’ 1)7 alyé(’;DD) - aQYi(’kDD) alyé(kiDD) + aSYi(kDD)_ﬁYQ(leB)
2eiz2e1,1) yyikar) Y kon) v,
2ol 2ei,1), | [~y +aa¥ (P vy hPP) + apv o) gy i)
Dss (Q o1, 5m 117 i)’ alyé(’;DD) _ azyi(’kDD) Oélyé(leD) + O‘3Yi(kDD)_ﬁY§(le3)
2a® i', 201/, i') _ryyz(gw) VYZ(ﬁSD) (5Y1(k33)
2a1, 5@ :’[17 1), _alyé(’leD) + asyi(kDD) alyé(ZDD) + a2yi(’kDD) 5Y§(ZD3)
Dso | G@i,2011), || a¥y??) —apv {77 oy Ve 4 agyier) gy Foe)
2e1.,261, j‘_/) ’YYQ(IZ3D) _ ’YYQ( 13D) 5Yi(k33)
(2 o1, 5 ® i/’ 1/)7 _alyé()leD) + a3yi(kDD) OZIY;ZDD) + a2yi(’kDD) 5Y§(ZD3)
Deo 201,201, :’[i)7 alyé(gDD) —ay i(/kDD) alYQ(JDD) + agyi(kDD)_ﬂyﬁ(ﬁDs)
(Q ol 2l i) ’yY(k3D) ,yy(kSD) 5Y(k33)
’ ’ 2.1 2.2 i
(2@ i’ 5@ :’[7 1), _alyé(fﬁlDD) + a3Yi(kDD) alyé(gDD) + a2Yi(IkDD)5Y§(ﬁD3)
De1 (é ®1 5 ® i i) alyA(kDD) _ Oé2YA(kDD) alyA(kDD) + agYA(kDD)ﬁY(sz)
’ o 2,2 i’ 21 i 32
2eiz2011) Yy Y kar) sy kse)
2® :’[17 5m 17 1), _alyé(’leD) + agyi(kDD) alyé(QDD) + aQYi('kDD)Byé(”VlDS)
A ISP k k k
Des Go1,201,1), alYQ()QDD) N Y( DpD) alYQ(JDD) + 043Yi( DD)ﬁYﬁ(ZDS)
2@ 1,7 231, i/) _,YY2(7€23D) ,yyz(klsD) 5Y1(’k$3)
(2 o 1,’ 2 @ i, 1,)7 7041Y?(7]€1DD) + a3Yi(kDD) alYQ(ZDD) + O‘ZYi(,kDD)BYQ(ﬁDS)
De3 (Q ® i/’ 5 ® i, 1)7 alyé(QDD) . aQYi('kDD) alyﬁ(iDD) + asyi(kDD)Byé(”;DS)
(201,291,1") vy Fap) — oy kan) sy lks)
’ ’ 2.2 2.1 i’
261, 5 i, 1), 7Q1Y§(77€1DD) + QSYi(kDD) alYﬁ(ZDD) + OLQYi(/kDD)BYQ(ﬁDS)
A~ k k k
Des (2 ©1,201, 1/)7 O[11/2(’21:)17) - 0¢2Yi(, DD) O[11/2(’11:)17) + agyi(kDD)Byﬁ(”;DS)
(ﬁ @ 17 Q @ 17 i) ,_YYﬁ(k;SD) ,YYQ(IZSD) 5Yi(k733)

Table 8. All admissible Dirac mass textures in models based on a 2D3 modular flavor symmetry,
assuming vanishing modular weights for Higgs fields.
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Model Representation configuration Mai toxt
ajorana mass texture
label | N° (L, (H,)?) ! *

- aZYI(kDD) — al}/z(’kiDD) alyééDD) BYZ(ﬁDs)
N | 281| (2e1,1),@eil ) ar vk a YiPP) 4 any ) gy thes)
a2yl(kDD) _ alyz(kiDD) alyz(lzDD> :Fﬁyz(kém)
N 201 | (2ol 1)t 2al 1) ar Yy a3 4 apyFor) gy e
(Fypp) (kpp) (kpp) (kp3)

OéQYl - ale,l O¢1Y2,2 ﬂyﬁ.l
Ny | 201 (2ell),GeLy) ar Yy pP) arY3hPP) + apy o) gy [ies)
5YA(kD3) 5YA(kD3) ,Yyl(lkzs)

2,1 2,2

a2Y1(kDD) . alyz(ﬁDD) a1Y2(ZDD) 7BY2(’]C2D3)
N 241/ 2@ il’ 1), (ﬁ 1,1 a1Y2(ZDD) OZIYZ(’]?[DD) + aQYI(’CDD) Byé(,les)
_5Y2(792D3) 5Y2(7€1D3) 7Y1(]€33)
aQYI(IkDD) i QIY;EDD) iQIY;ﬁDD) ﬂyé(leS)
N [ 21| Ga1,1)*, 21,1 +ag Yyhor) @Y PP £ g vk 5YQ<(’;D3>

kp: kp: fes:
BYQ(JDS) ﬂyﬁ(_QDd) 7Y, 33)
ale(kDD) + alyél;DD) ia1Y2(kiDD) _ﬁy(km)

! ) ) Q,Q

A A a _ k k k kp:
N 51 Ga1, 1)+, (231’1 ialYZ(JDD) QQYI(/ DD) T alyz(QDD) 5}/2( le)
7/8}/2(162173) 6Y§(’€1D3) ’Yyl(kSS)
QQY]_(/]CDD) + alyz(ZDD) ialyz(ﬁDD) q:BY2(]C2D3)
N 201 | el (2e1,1)" +aYyhor) asY{op) £ o v {ker) 4 gy (kps)

kp: kps) k
¥BY2< ZD.S) :tﬁY;lDd) ’YY]_(I 33)
o o OCZYl(IkYDD) + alYZ(.,kQDD) ialyz(ﬁDD) Byz(ﬁm)
Ne |21 | ol 1, 2a1,1)" +a,Y,hPP) @Y PP £ g viher) gy
5Y2(/€1D3) Byz(kQDS) ,yyl(,kgs)

Table 9. Majorana mass textures for eq. (5.10) and eq. (5.11) with 2D3 modular symmetry. We
follow the same standards for the use of + and F as in table 8.

C Classification of Majorana mass matrices

Following a similar procedure as in appendix B with the discussion of section 5.2, we consider
all Majorana mass textures. In this case, there are not as many cases as for Dirac masses.
For example, if the Majorana term arises from a type-I seesaw mechanism, the number of
inequivalent cases results from counting the combinations of possible 2D3 doublets for the
neutrino fields N7 and singlets for N§. As there are two doublets and four singlets, there
are only eight possible Majorana mass textures. It turns out that there are also only eight
textures for Majorana masses generated via the Weinberg operator.

All possible Majorana mass textures in terms of the modular weights of the relevant
VVMFs, as defined in section 5.2, are given in table 9. The second column presents all
different representation configurations for the right-handed neutrinos appearing in the type-I
seesaw mechanism, eq. (5.10). The third column exhibits the configurations of L and the
product H, H, in the Weinberg operator, eq. (5.11), considering all the different 2 4 1-family
structures for the field L and every 2Dj3 singlet representation for the Higgs field H,,.
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