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1 Introduction

It is widely acknowledged that strong evidence has recently emerged supporting the accelerated
expansion of the universe. This acceleration is attributed to the presence of an effective
positive cosmological constant and associated with this dark energy issue. Dark energy offers
an explanation for the observed accelerated expansion of the universe. This phenomenon is
well-supported by a wide array of astronomical observations [1–8]. Observations allow data to
accurately constrain cosmic parameters [9]. It is remarkable that dark energy aligns with the
common assumption that General Relativity (GR) based on Einstein-Hilbert action serves
as the correct theory of gravity. Nevertheless, one drawback of GR is that it needs to be
modified at the ultraviolet (UV) limit, as it fails to adequately explain microscopic physics.
The Einstein-Hilbert action leads to non-renormalizability, which has been acknowledged
for decades [10–12].

The modified gravity models serve as a purely gravitational alternative to explain
dark energy. The fundamental concept behind these approaches involves augmenting the
gravitational Einstein-Hilbert action with additional gravitational terms. These terms might
dominate the cosmological evolution either during the very early or the very late epochs of the
universe. One well explorable possibility in this field was quantum R2 gravity [13]. It adeptly
elucidates the early cosmic inflation phenomenon by introducing additional curvature terms in
parallel. Additionally, a straightforward f(R) model that directly extended to the curvature
scalar R was investigated, along with its related quantum behaviour [14–17]. This model can
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provide insights into both the early universe’s inflationary phase and its subsequent late-time
accelerated expansion. From the perspective of quantum f(R) gravity, initial calculations
were performed for the one-loop divergent part in the maximally symmetric spacetime [18],
and these computations eventually were extended to arbitrary scenarios [19]. Futhermore,
another approach to gravity modification was higher-order gravity [20], which incorporates
contributions from higher-order curvature tensors [21–23]. However, a challenge arises with
this model as it gives rise to ghost particles with a mass of spin-2, exhibiting the non-unitary
in its original quantization following the Feynman prescription [24]. Subsequently, numerous
promising works have been tried to address the issue of unitarity [25–27].

One of the most promising theories within modified gravity, which is nonlocal gravity [28–
30]. The model could guarantee the unitarity and avoid the ghost particles. Simultaneously,
the nonlocal interaction term could be adopted in various physical fields, particularly the
string theory [30–32]. The modification that contains a function of the operator □−1 has been
investigated [32]. In addition, the history of the universe, including periods such as inflation,
radiation/matter dominance, and the dark epoch, could be explained by this model [33].
It aligns with the results of testing the Solar System and provides a coherent framework
for comprehending these cosmic epochs.

In this paper, we will explore the modified nonlocal f(R) model with a particular emphasis
on investigating the stability of the de Sitter solution. The stability holds significance in various
contexts; for instance, in the ΛCDM model, it ensures the absence of future singularities
in the solution. However, it’s worth noting that the cosmological term must suffers the
well-known cosmological constant problem, which remains an unsolved issue to date. On
the contrary, as previously noted, modified gravity models may offer a naturally geometric
approach consistent with Einstein’s original concepts. Therefore, the stability or instability
around a de-Sitter solution is of some interest in modified gravity.

The paper is organized as follows: in section 2, we will firstly localize nonlocal f(R)
gravity by redefining the field, then transform it into the Einstein frame and establish the
ghost-free condition (GFC). In section 3, we will employ the mini-superspace approach to
derive the perturbation matrix and compute the classical stability condition (CSC) in the
de-Sitter spacetime. In section 4, based on the most fundamental zeta-function method for
one-loop calculations, we will investigate the effective action of nonlocal f(R) gravity in
the de-Sitter background. We find that the difference between this result and that in GR
lies in the contributions from the scalar modes, with its minimum eigenvalue determined
by the roots of a quartic equation. Finally, we will explore the quantum stability condition
(QSC) in the one-loop context and provide the on-shell and off-shell one-loop divergence
term using Vieta’s theorem.

2 Nonlocal f(R) gravity and ghost-free condition

Nonlocal gravity theories have emerged as a focal point of theoretical research due to their
more favorable quantum behavior [32]. Initially, some nonlocal theories was used to explain the
accelerated expansion of the universe and later evolved into a gravitational theory explaining
quantum phenomena [34–39]. The profound influence of the phenomena is revealed through
the utilization of a nonlocal interaction term (This nonlocal interaction term is also present
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in the string/M theory) [34, 40]. In an effort to describe physical phenomena, most nonlocal
quantum gravity models introduce either nonlocal scalar fields or the d’Alembertian operator
□. In our research, we focus on a nonlocal f(R) model, represented by the following action

S =
∫

d4x
√
−g

[
f(R)− 1

2F (R)□
−1F (R)

]
, (2.1)

where R is the Riemann curvature scalar. Both f(R) and F (R) are functions of curvature
scalar. The field equation are nonlinear integro-differential equation due to the nonlocal
term. For convenience, it can be proved that the above action is equivalent to the local form
by performing transformation ϕ ≡ □−1F (R) [41].

S =
∫

d4x
√
−g

[
f(R)− 1

2∂µϕ∂
µϕ− ϕF (R)

]
, (2.2)

such a transformation of nonlocality into locality simplifies the computation of the equation.
Additionally, by using two extra auxiliary fields, A and B, we can further modify the above
action reading

S =
∫

d4x
√
−g

[
f(A)− 1

2∂µϕ∂
µϕ− ϕF (A) +B(R−A)

]
. (2.3)

The variation of the aforementioned two fields respectively yield the constraint equations{
A = R

B = fA − ϕFA,
(2.4)

where fA ≡ df(A)
dA and FA ≡ dF (A)

dA . In order to provide the ghost-free condition (GFC), we
transform it to the Einstein frame by the conformal transformation gµν = e−τ g̃µν and B ≡ eτ ,

S =
∫

d4x
√
−g

[
R̃− 3

2∂µτ∂
µτ − 1

2e
−τ∂µϕ∂

µϕ− U(ϕ, τ)
]

U(ϕ, τ) ≡ −e−2τf(A(ϕ, τ)) + e−τA(ϕ, τ) + ϕe−2τF (A(ϕ, τ)).
(2.5)

By examining (2.4), we can ascertain that the field A exhibits a dependence on both τ

and ϕ. We can establish the GFC through the analysis of the kinetic term. The condition
met when the coefficient determinant is greater than zero. This condition is expressed as
B = fA(A) − ϕFA(A) = eτ > 0. Consequently, this criterion provides a robust assurance
that the nonlocal f(R) gravity theory remains devoid of ghost term.

3 Classical stability condition

It is imperative to investigate the classical stability condition (CSC) that the model adheres
to under the de-Sitter solution. To achieve this, we will utilize the mini-superspace approach
to establish the CSC as outlined in references [42, 43]. The equation of motion for the model
can be derived by varying (2.2) as follows

□ϕ = F (R)

gµν

[
f(R)− 1

2∂µϕ∂
µϕ− ϕF (R)

]
− 2Rµν (fR − ϕFR)

+ 2∇µ∇ν (fR − ϕFR)− 2gµν□ (fR − ϕFR) +∇µϕ∇νϕ = 0.

(3.1)
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We find that there exist constant solutions R = R0 and ϕ = ϕ0, which could construct
maximally symmetric de-Sitter solution. By substituting constant solutions into the field
equation (3.1), we can obtain

F (R0) = 0

f(R0) =
1
2R0

(
f
(0)
R − ϕ0F

(0)
R

)
,

(3.2)

where f (0)R ≡ df
dR |R=R0 and F

(0)
R ≡ dF

dR |R=R0 . It’s important to note that F (R0) = 0 does
not necessarily imply that its derivative is also zero. Therefore, when R0 satisfies condition
F (R0) = 0, F (0)

R ̸= 0 and is positive, we have a solution describing de-Sitter spacetime with

ϕ0 =
R0f

(0)
R −2f(R0)
R0F

(0)
R

. Then, the ghost-free condition B > 0 is equivalent to f(R0) > 0. when
R0 is negative or zero, it is associated with anti-de-Sitter solution and Minkowski spacetime.
we primarily focus on the de-Sitter case in the article.

Subsequently, in order to investigate whether this solution is a stable point of minimum,
we redirect our focus to isotropic and homogeneous solution using the spatially flat FRW
metric, specifically

ds2 = −N(t) dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (3.3)

where t represents cosmic time, N(t) is an arbitrary lapse function that exhibits this degree
of gauge freedom associated with the reparametrization invariance of the mini-superspace
gravitational model. The curvature scalar for the metric tensor can be determined by

R = 6
(

ä

aN2 + ȧ2

a2N2 − ȧṄ

aN3

)
. (3.4)

To operate within the first-derivative gravitational system, we introduce the Lagrange
multiplier y to express eq. (2.3) as

S =
∫

d3x
∫

dtNa3
[
f(R)− 1

2∂µϕ∂
µϕ− ϕF (R)− y

(
R− 6

(
ä

aN2 + ȧ2

a2N2 − ȧṄ

aN3

))]
,

(3.5)
when we perform the variation with respect to R, we obtain y = fR − ϕFR. Furthermore, we
insert this expression into above equation to derive the Lagrangian, employing the integration
by parts,

L(a, ȧ, R, Ṙ, ϕ, ϕ̇, N) = −6ȧ2a (fR − ϕFR)
N

−
6ȧa2

(
Ṙ (fRR − ϕFRR)− ϕ̇FR

)
N

+Na3
(
f −RfR − ϕ (F −RFR) +

ϕ̇2

2N2

)
.

(3.6)

In this scenario, the Lagrangian involves a, R, ϕ, N and their derivatives as independent
variables. Four equations of motion can be derived, with three of them being independent.
These three independent equations are used in the analysis system. Specifically, we choice
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N(t) = 1 in this research. Subsequently, the equations of motion corresponding to N , R,
and ϕ are 

ϕ̇ = Y

Ẏ = −F − 3HY

Ḣ = R

6 − 2H2

Ṙ =
Y FR + Y 2

12H −H (fR − ϕFR)− 1
6H (f −RfR − ϕ (F −RFR))

fRR − ϕFRR
,

(3.7)

where H ≡ ȧ
a correspond to the Hubble parameter, and the auxiliary field Y ≡ ϕ̇ can reduce

the derivative order of ϕ. It is worth noting that we don’t need to consider the Euler equation
for a, as it can be derived from the three previously mentioned independent equations.

The critical points R0, H0, which are defined as Ṙ = 0 and Ḣ = 0, are necessary for
the examination of the stability of the system. It is demonstrably true that the right side
of the aforementioned formula, which can result in (3.2) (the critical point of the de-Sitter
solutions). After that, the system is linearized at these points.


δϕ̇

δẎ

δṘ

δḢ

 =



0 1 0 0
0 −3H0 −F (0)

R 0
−H0F

(0)
R

f
(0)
RR−ϕ0F

(0)
RR

F
(0)
R

f
(0)
RR−ϕ0F

(0)
RR

H0
−4f(R0)

R0

(
f

(0)
RR−ϕ0F

(0)
RR

)
0 0 1

6 −4H0




δϕ

δY

δR

δH

 (3.8)

It is straightforward to demonstrate that these two conditions ensure stability. The first
requirement automatically guarantees due to the trace of the matrix that is less than zero.
The second condition demands that the determinant is greater than zero, which can be
equivalently expressed as f (0)RR − ϕ0F

(0)
RR < 0. We can also confirmed the equivalence between

CSC investigated through the mini-superspace method and the minima with CSC derived from
the (2.5). (potential functions which satisfy U ′ = 0 and U ′′ > 0 in the Einstein framework).
However, it’s important to note that the matrix degenerates when considering F (R) = 0 and
ϕ = 0, thus necessitating additional constraint to obtain the result for the f(R) model.

Given the significant quantum fluctuations during the inflation and accelerating expansion
phases, our focus is primarily on the model’s quantum behavior. In the following section,
we will calculate the one-loop effective action and outline the quantum stability condition
(QSC) for the de-Sitter solution.

4 One-loop effective action and quantum stability condition in the
nonlocal f(R) gravity

In quantum field theory (QFT), the concept of the quantum effective action assumes a pivotal
role in comprehending the behavior of quantum fields and their interactions. It emerges
as a potent tool for capturing the intricate dynamics inherent in quantum systems. The
quantum effective action serves as an extension of the classical action, encompassing quantum
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fluctuation. It encapsulates the collective influence exerted by all quantum fields, thereby
offering profound insights into these influences under various conditions.

One of the effective action fundamental application is calculating the quantum correction,
notably through loop diagram. These corrections are crucial in comprehending particle
interactions at the quantum level. We can extract valuable information regarding particle
masses, coupling constants, and other critical parameters in the correction term. Moreover,
the quantum effective action assumes indispensable significance in the examination of phase
transitions, notably within the domains of condensed matter physics and cosmology. It
facilitates the elucidation of phenomena like spontaneous symmetry breaking and the formation
of diverse phases within physical systems [44].

In this section, we employ the background field method to calculate the one-loop effective
action of the gravitational field. We will calculate the one-loop partition function in de-Sitter
background using the Euclidean (or Wick rotation) approach [45]. The formulation for the
effective action, which applies to the general scalar field case, can be expressed as

e−Γ(1) = Z = e−SE [ϕcl]
∫
Dφe−φLφ, (4.1)

where ϕcl represents the classical field, L represents fluctuation operator, and φ is the
perturbation of the background field. Γ(1) is the one-loop effective action which contains all
the physical information. Taking the logarithm of (4.1) gives the expression of Γ(1) as

Γ(1) = − lnZ = SE [ϕcl] +
1
2 ln det L

µ2
, (4.2)

where µ2 is a renormalization parameter, which appears in order to make the fluctuation
operator dimensionless. The functional determinant can generally be written in integral form

ln det L
µ2

= −
∫ ∞

0
dtt−1Tre−

tL
µ2 , (4.3)

one of the most fundamental methods for determining the effective action is the heat kernel
trace. We have the asymptotic expansion for a well-defined operator L.

Tre−t L
µ2 ≈

∞∑
i=0

ai

(
L

µ2

)
ti−

d
2 , (4.4)

where ai

(
L
µ2

)
are Seeley-deWitt coefficients [46]. To address the divergent term in (4.3), we

employ zeta-function regularization on the effective action, following the procedure detailed
in the literature [47]. The expression for the effective action is

Γ(1)(ϵ, ϕcl) = SE [ϕcl]−
1
2

∫ ∞

0
dt tϵ−1

Γ(1 + ϵ)Tre−
tL
µ2 = S[ϕcl]−

1
2ϵζ(ϵ|

L

µ2
). (4.5)

In four dimension, the function ζ(s|L) converges for Re(s) > 2 and can be expressed as
ζ(s|L) = 1

Γ(s)

∫ ∞

0
dtts−1Tre−tL

ζ(s| L
µ2

) = µ2sζ(s|L),
(4.6)
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where the integral representation of zeta-function is given by the above equation. We can
eventually extract the contribution of the divergence term by utilizing (4.6) and Taylor
expansion of zeta-function

ζ(ϵ|L) = ζ(0|L) + ζ ′(0|L)ϵ+O(ϵ2), (4.7)

and
Γ(1)(ϵ, ϕcl) = SE [ϕcl]−

1
2ϵζ(0|L)−

ζ(0|L)
2 lnµ2 − 1

2ζ
′(0|L). (4.8)

The last three terms of the formula should be summed when multiple fluctuation operators
are present. We set µ = 1 for the present situation since the appearance of µ only depends
on the renormalization group equation. Importantly, the zeta-function evaluated at zero is
responsible for completely addressing the divergent term of the one-loop effective action. In
the framework of a one-loop renormalizable theory, the divergence term can be effectively
eliminated by introducing bare parameters and scale-dependent physical quantities related to
coupling constants. Furthermore, the one-loop effective action can be written as the derivative
of the zeta-function at zero, which will be resolved in the following section.

4.1 Quantum field fluctuations around the de-Sitter background

We explore the one-loop quantization of the nonlocal f(R) model in the de-Sitter background.
Initially, the Euclidean action given by (2.2) can be described as

SE =
∫

d4x√g
[
f(R)− 1

2∂µϕ∂
µϕ− ϕF (R)

]
. (4.9)

The model has a de-Sitter solution with constant curvature since it satisfies on-shell con-
dition (3.2). The spacetime of positive curvature scalar R0 has the topological structure
S4. Its metric tensor is denoted by

dS2
E = dt2E

(
1−H0r

2
)
+ dr2

(1−H0r2)
+ r2 dΩ2, (4.10)

where dΩ2 represents the line element of the unit sphere. The volume of this metric isV (S4) =
384π2

R2
0

R0 = 12H2
0 ,

(4.11)

while Riemann and Ricci tensors are given by the metric and can be characterized as
R

(0)
ijkl =

R0
12
(
g
(0)
ik g

(0)
jl − g

(0)
il g

(0)
jk

)
R

(0)
ij = R0

4 g
(0)
ij .

(4.12)

Subsequently, the metric field can be characterized as the background field adds a
perturbed term, and the component can be expressed as

gij = g
(0)
ij + hij

gij = g(0)ij − hij + hikhj
k

h = g(0)ijhij ,

(4.13)
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where, we only consider terms up to second order in the metric perturbation. The following
equation is required to expand the action to second-order term



√
g√
g(0)

= 1 + h

2 + h2

8 − 1
4hijh

ij

R(1) = ∇i∇jhij −□h− R(0)

4 h

R(2) = 1
4hij□h

ij + 1
4h□h+ R(0)

12 hijhij +
1
2∇ih

ij∇kh
k
j + 1

24h
2,

(4.14)

∇i represents the covariant derivative operator associated with the background metric g(0)ij .
Utilizing equations (4.11)–(4.14), we can express the Lagrangian (4.9) as follows



S=S0+S1+S2

S0=
∫

d4x
√
g(0)L0=

∫
d4x

√
g(0) (f(R0)−ϕ0F (R0))

S1=
∫

d4x
√
g(0)L1=

∫
d4x

√
g(0)

[
h

2

(
f(R0)−ϕ0F (R0)−

R0
2
(
f
(0)
R −ϕ0F (0)

R

))
−φF (R0)

]
S2=

∫
d4x

√
g(0)L2,

(4.15)
The information obtained from L1 pertains to the on-shell condition of the field equation,
while L2 provides the analytical expression for the inverse propagator associated with the
Lagrangian density. Once all boundary terms have been removed, the final expression for
L2 can be presented as



1
2
(
f
(0)
RR − ϕ0F

(0)
RR

)
hij∇i∇j∇k∇lh

kl − 1
2
(
f
(0)
R − ϕ0F

(0)
R

)
hij∇i∇kh

k
j

+ hij
[1
4
(
f
(0)
R − ϕ0F

(0)
R

)
□− 1

4 (f(R0)− ϕ0F (R0)) +
R0
12
(
f
(0)
R − ϕ0F

(0)
R

)]
hij

− h

[(
f
(0)
RR − ϕ0F

(0)
RR

)
□+ R0

4
(
f
(0)
RR − ϕ0F

(0)
RR

)
− 1

2
(
f
(0)
R − ϕ0F

(0)
R

)]
∇i∇jhij

+ h

[1
2
(
f
(0)
RR − ϕ0F

(0)
RR

)
□2 +

(
R0
4
(
f
(0)
RR − ϕ0F

(0)
RR

)
− 1

4
(
f
(0)
R − ϕ0F

(0)
R

))
□

+1
8 (f(R0)− ϕ0F (R0))−

R0
12
(
f
(0)
R − ϕ0F

(0)
R

)
+ R2

0
32
(
f
(0)
RR − ϕ0F

(0)
RR

)]
h.

(4.16)

In the context of the de-Sitter background, it is imperative to maintain second-order per-
turbations for the influence of diverse modes on one-loop quantum effects. Consequently,
the decomposition of the perturbation field hij becomes a requisite step. In accordance with
established practice, we perform a decomposition of hij into its irreducible components, as
described in [48]. This decomposition is typically carried out by decomposing hij as follows

hij = ĥij +∇iξj +∇jξi +∇i∇jσ + 1
4gij (h−□σ) , (4.17)
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where h and σ denote the trace and scalar components of tensor, respectively. The vector
and tensor modes ξ and ĥij need to satisfy the transverse traceless condition

∇iξ
i = 0

∇iĥ
ij = 0

ĥi
i = 0.

(4.18)

According to the above decomposition, we substitute (4.17) into (4.16) and finally sim-
plify L2 to

L2 = ĥijO1ĥij + ξiO2ξi + σO3σ + hO4h+ φO5φ+ 2φO6h+ 2φO7σ + 2hO8σ, (4.19)

with

O1 =
1
4
(
f
(0)
R − ϕ0F

(0)
R

)
□(2) −

1
4 (f(R0)− ϕ0F (R0)) +

R0
12
(
f
(0)
R − ϕ0F

(0)
R

)
O2 =

1
4
[
2 (f(R0)− ϕ0F (R0))−R0

(
f
(0)
R − ϕ0F

(0)
R

)](
□(1) +

R0
4

)
O3 =

3
32□(0)

(
□(0) +

R0
3

)[
3
(
f
(0)
RR − ϕ0F

(0)
RR

)
□(0)

(
□(0) +

R0
3

)
− 2 (f(R0)− ϕ0F (R0))

−
(
f
(0)
R − ϕ0F

(0)
R

) (
□(0) −R0

)]
O4 =

1
32

[
9
(
f
(0)
RR − ϕ0F

(0)
RR

)(
□(0) +

R0
3

)2
− 3

(
f
(0)
R − ϕ0F

(0)
R

)(
□(0) +

R0
3

)
−R0

(
f
(0)
R − ϕ0F

(0)
R

)
+ 2 (f(R0)− ϕ0F (R0))

]
O5 =

1
2□(0)

O6 = −1
2

[
F (R0)

2 − R0
4 F

(0)
R − 3F (0)

R

4 □(0)

]

O7 = −3F (0)
R

8 □(0)

[
□(0) +

R0
3

]
O8 =

3
32□(0)

(
□(0) +

R0
3

)[(
f
(0)
R − ϕ0F

(0)
R

)
− 3

(
f
(0)
RR − ϕ0F

(0)
RR

)(
□(0) +

R0
3

)]
,

(4.20)
where □(0), □(1), and □(2) represent the Laplace-Beltrami operators acting on scalars, traceless-
transverse vector fields, and tensor fields, respectively. In the case of a general gravitational
field, the diffeomorphism transformation is analogous to the gauge transformation. A general
gauge theory necessitates both a gauge-fixed term and a compensation term, often referred
to as the ghost term. Therefore, we introduce a gauge condition parameterized by a real
parameter denoted as ρ.

χk = ∇ih
ik − 1 + ρ

4 ∇kh, (4.21)

and gauge fixed term

Lgf = 1
2χiG

ijχj , Gij = αgij , (4.22)
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the harmonic gauge corresponding to the choice ρ = 1. The ghost term depends on χk

can be shown as 
Lgh = BiGij

δχj

δϵk
Ck

δχj

δϵk
= gij□+Rij +

1− ρ

2 ∇i∇j ,

(4.23)

where Ck and Bk are ghost and anti-ghost vector fields respectively. δχk is determined by
infinitesimal gauge transformation. Neglecting total derivatives, one has

Lgh = αBk
(
□(1) +

R0
4

)
Ck. (4.24)

Similarly, we perform irreducible decomposition of ghost and anti-ghost vector fields re-
spectively Bk = B̂k +∇kb, ∇iB̂

i = 0,

Ck = Ĉk +∇kc, ∇iĈ
i = 0,

(4.25)

under this decomposition, the (4.23) and (4.25) can be derived as

Lgh = α

[
B̂i
(
□(1) +

R0
4

)
Ĉi +

ρ− 3
2 b□(0)

(
□0 −

R0
ρ− 3

)
c

]
Lgf = α

2

[
ξi
(
□(1) +

R0
4

)2
ξi +

3ρ
8 h□(0)

(
□(0) +

R0
3

)
σ

−ρ
2

16h□(0)h− 9
16σ□(0)

(
□(0) +

R0
3

)2
σ

]
.

(4.26)

The total Lagrangian density Ltot = L2 + Lgh + Lgf and appears in the scheme of quantum
gravity. We will calculate the one-loop contribution in the following section through functional
integration.

4.2 One-loop quantum corrected nonlocal f(R) gravity

In this section, we aim to expand our investigation by calculating the one-loop effective
action. We consider the determinant within the path integral, which arises from the alteration
of variables during field irreducible decomposition. This procedure can be expressed as
follows [13, 48]

Z(1) = detGij
− 1

2

∫
D[hij ]D[Ck]D[Bk]e−

∫
d4x

√
gLtot

= detGij
− 1

2 det J1−1 det J2
1
2

∫
D[h]D[ĥij ]D[ξ̂j ]D[σ]D[Ĉk]D[B̂k]D[c]D[b]e−

∫
d4x

√
gLtot ,

(4.27)
The origin of detGij from vector field constraint is trivial and doesn’t contribute any dynamical
degrees of freedom. J1 and J2 are caused by variable changes made by ghost and tensor
part [48, 49], which can be derived as

J1 = □(0), J2 =
(
□(1) +

R0
4

)(
□(0) +

R0
3

)
□(0). (4.28)
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In the process of computing the one-loop effective action, we need to take into account all
possible quantum fluctuations of the fields in the theory. In order to correctly compute the
contribution of quantum fluctuations, we need to eliminate these unphysical modes from the
calculation. This is usually done by fixing a gauge, which amounts to choosing a specific way
of describing the theory that eliminates the unphysical modes. Various gauge choices can
result in distinct expressions for the effective action, yet they are expected to yield the same
physical predictions. To obtain the partition function, we now substitute all contributions
into (4.27) in the Landau gauge, ρ = 1, α → ∞.

e−Γ(1)
off−shell = e−SE [ϕcl]Z(1) = e−SE [ϕcl] det

(
−□(1) −

R0
4

) 1
2
det

(
−□(0) −

R0
2

)

det
(
−□(2) −

R0
3 + f(R0)− ϕ0F (R0)

f
(0)
R − ϕ0F

(0)
R

)− 1
2

det
((

−□(0) + s1
) (

−□(0) + s2
) (

−□(0) + s3
) (

−□(0) + s4
))− 1

2 ,

(4.29)

and si (i = 1, 2, 3, 4) is the root of the quartic equation

c1s
4 + c2s

3 + c3s
2 + c4s+ c5 = 0

c1 = −12
(
f
(0)
RR − ϕ0F

(0)
RR

)
c2 = 4

(
f
(0)
R − ϕ0F

(0)
R

)
− 16R0

(
f
(0)
RR − ϕ0F

(0)
RR

)
+ 12(F (0)

R )2

c3 = −4 (f(R0)− ϕ0F (R0)) + 6R0
(
f
(0)
R − ϕ0F

(0)
R

)
− 7R2

0

(
f
(0)
RR − ϕ0F

(0)
RR

)
+ 4F (0)

R (4R0 − 6F (R0))

c4 = −2R0 (f(R0) + ϕ0F (R0)) + 2R2
0

(
f
(0)
R − ϕ0F

(0)
R

)
+ 12(F (R0))2

− 20R0F (R0)F (0)
R + 7R2

0(F
(0)
R )2 −R3

0

(
f
(0)
RR − ϕ0F

(0)
RR

)
c5 = 4R0(F (R0))2 − 4R2

0F (R0)F (0)
R +R3

0(F
(0)
R )2.

(4.30)

The result of the one-loop calculation, as indicated by the formula above, is exceptionally
intricate. Fortunately, when we incorporate the on-shell condition (3.2), the result can
be simplified as

Γ(1)
on−shell =

384π2

R2
0
f(R0) +

1
2 ln det

(
−□(2) +

R0
6

)
− 1

2 ln det
(
−□(1) −

R0
4

)
+ 1

2 ln det
(
−□(0) + s+

)
+ 1

2 ln det
(
−□(0) + s−

)
= 384π2

R2
0
f(R0)−

1
2ζ

′
α2(0|L2) +

1
2ζ

′
α1(0|L1)−

1
2ζ

′
α+(0|L+)−

1
2ζ

′
α−(0|L−),

(4.31)

where 

L2 ≡
(
−□(2) +

R0
6

)
, α2 =

17
4 + q2 =

9
4 , q2 = −2

L1 ≡
(
−□(1) −

R0
4

)
, α1 =

13
4 + q1 =

25
4 , q1 = 3

L± ≡
(
−□(0) + s±

)
, α± = 9

4 + q±, q± = − 12
R0

s±,

(4.32)
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with 

s± = −λ1
2λ3

± 1
2

√(
λ1
λ3

)2
− 4λ2

λ3

λ1 ≡
(
f
(0)
R − ϕ0F

(0)
R

)
+ 3

(
F 0

R

)2
−R0

(
f0RR − ϕ0F

0
RR

)
λ2 ≡ R0(F (0)

R )2

λ3 ≡ −3
(
f
(0)
RR − ϕ0F

(0)
RR

)
.

(4.33)

For details about the generalized zeta-function’s definition and the accurate solution
technique, see appendix A. Within the context of the one-loop effect, the tensor and vector
modes are results of general relativity. It is noteworthy that the eigenvalues of Laplacian
operators acting on S4 have been extensively documented, as evidenced in [18]. Simultaneously,
in subsection 4.4, we further calculate the on-shell and off-shell one-loop divergent term of
nonlocal f(R) gravity in the de-Sitter spacetime. These divergence terms will enhance our
comprehension of the model’s quantum behavior.

4.3 Quantum stability analysis

It is interesting to investigate the region where curvature is small. Furthermore, when
curvature is minimal, one may disregard higher powers of curvature in the one-loop effective
action, assuming that logarithmic terms play a dominant role. We have the Lagrangian’s
one-loop correction with the Coleman-Weinberg quantum correction, namely

L
(1)
eff ≈ R2

(
c1 + c2 ln

R

12

)
(4.34)

where c1 and c2 are constant. We can clearly see from the modified effective Lagrangian
density that the GFC and CSC remain unchanged under quantum correction since the
quantum corrected action resides within the framework of the classical action. However, we
aim to analyze whether the QSC is consistent with the CSC. Equation (4.31) serves as a tool
for examining QSC with respect to arbitrary perturbations. In this scenario, it is necessary for
the operator’s eigenvalue to remain non-negative, thereby imposing constraints on the model
parameters. In the appendix A, we derive the eigenvalues of different fluctuation operators.
Specifically, the minimum eigenvalues of the Laplacian operators −□(0), −□(1), and −□(2),
which correspond to scalar, vector, and tensor fields, are 0, R

4 , and 2R
3 , respectively. Since

the minimum eigenvalues of both tensor and vector operators are non-negative, the focus of
the QSC shifts towards the examination of scalar modes. This is equivalent to demanding
non-negativity of the roots of the scalar operator, which yield

λ1
λ3

< 0(
λ1
λ3

)2
>

4λ2
λ3

> 0.
(4.35)

It can be demonstrated that this condition is not equivalent to f
(0)
RR − ϕ0F

(0)
RR < 0,

which inconsistent with the conclusion presented in the third section. Specifically, when
ϕ0 = F (R0) = 0, this result reverts to the stability condition of the f(R) model.
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4.4 The divergence term and renormalization analysis

The divergence term manifests as quantum fluctuation inducing infinite contributions, then
posing challenge to the theoretical framework. To address this issue, the renormalization
group emerges as a potent tool. It facilitates a systematic analysis and control of divergence
by introducing appropriate counterterm, ensuring the convergence of physical prediction.
In this subsection, we will undertake a comprehensive examination of one-loop divergence
and the renormalizability of the theory. To determine the connection between coupling
constants and energy scale, we shall consider one-loop divergence term using the zeta-function.
From (4.8), it can be concluded that

Γ(div)
off−shell(µ, ϵ) =

1
2ϵ

[
ζα1(0, L1) + 2ζα0(0, L0)− ζᾱ2

(
0, L̄2

)
−

4∑
i=1

ζαsi
(0, Lsi)

]
. (4.36)

Using Vita theorem about the quartic polynomial equation, we reduce the divergence
term, which follows

Γdiv
off−shell =

1
2ϵ

−433
45 −Ntot−

20(f(R0)−ϕ0F (R0))
(
3f(R0)−3ϕ0F (R0)−R0(f (0)R −ϕ0F (0)

R

)
R2

0

(
f
(0)
R −ϕ0F (0)

R

)
2

−
4
(
f
(0)
R +F (0)

R

(
3F (0)

R −ϕ0
))

2

3R2
0

(
f
(0)
RR−ϕ0F (0)

RR

)
2

+
8f(R0)−8F (R0)

(
ϕ0−6F (0)

R

)
+4R0(F (0)

R )2

R2
0

(
f
(0)
RR−ϕ0F (0)

RR

)
 ,

(4.37)
Ntot is the total number of zero-modes. When the on-shell condition (3.2) under the de-Sitter
solution be considered, the divergence term reduces to

Γdiv
on−shell =

1
2ϵ

−658
45 −Ntot+

4
(
f
(0)
R +F (0)

R

(
F

(0)
R −ϕ0

))
R0
(
f
(0)
RR−ϕ0F (0)

RR

) −
4
(
f
(0)
R +F (0)

R

(
3F (0)

R −ϕ0
))2

3R2
0

(
f
(0)
RR−ϕ0F (0)

RR

)2
 .

(4.38)
Not all examples can achieve one-loop renormalizable, and a corresponding one-loop coun-
terterm is required to ensure renormalization. To satisfy the requirement of the de-Sitter
solution, we consider the general form of the solution as F (R) = Q(R)(R−R0) (Q(R0) ̸= 0).
Substituting this into the on-shell condition (3.2), we obtain f(R0) = 1

2R0
(
f
(0)
R − ϕ0Q(R0)

)
.

Unfortunately, we can demonstrate that irrespective of the specific forms of f(R) and Q(R),
the divergence term separated from the classical action could not cancel the divergence term at
the one-loop level. In other words, this model is non-renormalizable in the one-loop calculation.

5 Conclusion and discussion

In this work, based on the background field, the one-loop quantum correction about the
nonlocal f(R) gravity model has been investigated. The de-Sitter solution of the model
was taken into consideration as a classical background. We firstly described the Einstein
framework for nonlocal f(R) gravity and discovered that the model is ghost-free only in
the case of the auxiliary field B > 0. Further, we used the mini-superspace approach to
analyse the classical stability constraint. Finally, we performed the one-loop calculation in the
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Euclidean sector, with the background being S4. The Landau gauge was used by us during
the calculation. Subsequently, we derived the quantum stability condition λ1

λ3
< 0,

(
λ1
λ3

)2
>

4λ2
λ3

> 0. The derived conclusion is that classical stability condition(CSC) and quantum
stability condition(QSC) are inconsistent under the fulfillment of ghost-free condition(GFC).
Moreover, employing Veda’s theorem, we calculate the one-loop divergence term.

In future work, our results can be expanded upon and applied in various contexts. We
will use this scheme to analyze the one-loop action in the cosmology. Subsequently, we will
employ the quantum corrected conclusion to explore the correspondence with the holographic
principle. Furthermore, we will also consider one-loop calculation in a black hole background
to investigate alterations in the geometric properties of black holes.
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A The calculation of functional determinants

In this appendix, we will outline the specific steps for performing one-loop calculation.
Following the approach described in [18], we initially consider the compact D-dimensional
manifold as the operational space for the second-order differential operator. Consequently,
we give the generalized zeta-function (Re s > D

2 ) as follows
ζ̂(s|L) ≡

∑
n

λ̂−s
n

ζα(s|L) ≡
∑

n

λ−s
n =

(
R0
12

)−s∑
n

(
λ̂n − α

)−s
,

(A.1)

The eigenvalue of the zero-modes contribution to the calculation should be eliminated, and
the ζα(s|L̂) function can be expanded as

ζα(s|L) =
(
R0
12

)−s
[
Fα(s) +

∞∑
k=0

αkΓ(s+ k)Ĝ(s+ k)
k!Γ(s)

]
, (A.2)

with 
Fα(s) =

∑
λ̂n<|α|

(
λ̂n − α

)−s
, F̂ (s) =

∑
λ̂n⩽|α|

λ̂−s
n ,

Ĝ(s) =
∑

λ̂n>|α|

λ̂−s
n = ζ̂(s|L)− F̂ (s), Fα(0)− F̂ (0) = N0,

(A.3)

where N0 represents the number of zero-modes. In physics, the zeta-function and its deriva-
tive’s values at zero play a pivotal role. We consider the Laurent expansion at s = 0 for
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this purpose.

Γ(s+ k)ζ̂(s+ k) = b̂k

s
+ âk +O(s),Γ(s+ k)Ĝ(s+ k) = b̂k

s
+ âk +O(s),

b0 = b̂k − ˆF (0), a0 = â0 + γF̂ (0),

bk = b̂k, ak = âk − Γ(k)F̂ (k), 1 ≤ k ≤ 2

bk = b̂k = 0, Ĝ(k) = ζ̂(k|L)− F̂ (k), k ≥ 2

(A.4)

Ultimately, (A.2) can be written as

ζα(s|L) =
(
R0
12

)−s
Fα(s) +

D/2∑
k=0

(
bkα

k

k! + s
(ak + γbk)αk

k!

)
+ s

∑
k>D/2

αkĜ(k)
k

+O(s2)

 ,
(A.5)

and finally
ζα(0|L) =

[
Fα(0) +

2∑
k=0

(
bkα

k

k!

)]

ζ ′α(0|L) = −ζα(0|L) ln
R0
12 +

F ′
α(0) +

D/2∑
k=0

(
(ak + γbk)αk

k!

)
+

∑
k>D/2

αkĜ(k)
k

 . (A.6)

The symbol for the Euler-Mascheroni constant is represented as γ. Imaginary numbers will
appear in the computation results when the model exhibits instability. The eigenvalue λn and
their corresponding degeneracy gn for the scalar-vector and tensor-type fluctuation operators
(Li = −□(i) − R0

12 q) acting on de Sitter backgrounds are



λn = R0
12
(
λ̂n − α

)
, λ̂n = (n+ ν)2, gn = c1(n+ ν) + c3(n+ ν)3

scalar : ν = 3
2 , α = 9

4 + q, c1 = − 1
12 , c3 =

1
3

vector : ν = 5
2 , α = 13

4 + q, c1 = −9
4 , c3 = 1

tensor : ν = 7
2 , α = 17

4 + q, c1 = −125
12 , c3 =

5
3 .

(A.7)

We see that ζ̂(s) is related to well known Hurwitz functions ζH(s, ν) by

ζ̂(s|L) =
∞∑

n=0
gnλ̂

−s
n =

∞∑
n=0

[
c1(n+ ν)−(2s−1) + c3(n+ ν)−(2s−3)

]
,

= c1ζH(2s− 1, ν) + c3ζH(2s− 3, ν),
(A.8)

and
Ĝ(s) = c1ζH(2s− 1, ν) + c3ζH(2s− 3, ν)− F̂ (s)

= c1ζH(2s− 1, ν +m) + c3ζH(2s− 3, ν +m),
(A.9)
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where m is the number of λ̂n ≤ |α|, after a series of complex calculation we can obtain



b̂0 = c1ζH(−1, ν) + c3ζH(−3, ν), b̂1 =
c1
2 , b̂2 =

c3
2

â0 = c1
[
2ζ ′H(−1, ν)− γζH(−1, ν)

]
+ c3

[
2ζ ′H(−3, ν)− γζH(−3, ν)

]
â1 = −c1

[
ψ(ν) + γ

2

]
+ c3ζH(−1, ν)

â2 = c1ζH(3, ν)− c3

[
ψ(ν) + γ − 1

2

]
.

(A.10)

ψ(s) is the logarithmic derivative of Euler’s gamma function. we can derive one-loop’s
calculation by using (A.4), (A.6). There are three modes for the nonlocal f(R) quantum
gravity component of our calculations, which we shall examine each one at later.

A.1 The tensor case

The eigenvalue of L2 is

λn = R0
12

[(
n+ 7

2

)2
− 9

4

]
, n = 0, 1, 2 . . . (A.11)

Here it can be shown that there is no contribution of zero and negative modes, so m = 0,
for k ≥ 3, we have Fα2(s) = 0, F ′

α2(s) = 0, F̂ (s) = 0, and



Ĝ(k) = −125
12 ζH

(
2k − 1, 72

)
+ 5

3ζH

(
2k − 3, 72

)
ζα2(0|L2) =

2∑
k=0

bkα
k
2

k! = 89
18

ζ ′α2(0|L2) = −89
18 ln R0

12 − 125
6 ζ ′H

(
−1, 72

)
+ 10

3 ζ
′
H

(
−3, 72

)
+ α2

[125
12 ψ

(7
2

)
+ 5

3ζH

(
−1, 72

)]
+ α2

2
2

[
−125

12 ζH

(
3, 72

)
− 5

3ψ
(7
2

)
+ 5

6

]
+

∞∑
k=3

Ĝ(k)αk
2

k
≈ 0.79031− 89

18 ln R0
12 .

(A.12)
Similarly, the eigenvalue of L̄2 (The off-shell fluctuation operator given by (4.29)) is


λn = R0

12

[(
n+ 7

2

)2
− ᾱ2

]
, ᾱ2 =

33
4 + Y, n = 0, 1, 2 . . .

Y ≡ −12 (f(R0)− ϕ0F (R0))
R0
(
f
(0)
R − ϕ0F

(0)
R

) ,

(A.13)
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there exist contribution of zero mode and negative mode, depending on the parameter Y , and



Ĝ(k)=−125
12 ζH

(
2k−1, 72

)
+5
3ζH

(
2k−3, 72

)
−F̂ (k)

ζᾱ2(0|L̄2)=Fᾱ2(0)+
2∑

k=0

bkᾱ
k
2

k! =
[
N0+

5
12 ᾱ

2
2−

125
24 ᾱ2+

5
3ζH

(
−3, 72

)
− 125

12 ζH

(
−1, 72

)]
ζ ′

ᾱ2
(0|L̄2)=

[
N0+

8383
576 + 5

12 ᾱ
2
2−

125
24 ᾱ2

]
ln R0

12 − 125
6 ζ ′

H

(
−1, 72

)
+10

3 ζ
′
H

(
−3, 72

)
+F ′

ᾱ2
(0)

+ᾱ2

[
125
12 ψ

(
7
2

)
+5
3ζH

(
−1, 72

)
−F̂ (1)

]
+ ᾱ2

2
2

[
−125

12 ζH

(
3, 72

)
− 5
3ψ
(
7
2

)
+5
6−F̂ (2)

]
+

∞∑
k=3

Ĝ(k)ᾱk
2

k
.

(A.14)

A.2 The vector case

The eigenvalues of L1 is

λn = R0
12

[(
n+ 5

2

)2
− 25

4

]
, n = 0, 1, 2 . . . (A.15)

There is a zero-mode λ̂0 = 25
4 , so m = 1, for k ≥ 3, we have Fα1(s) = 0, F ′

α1(s) = 0,
F̂ (s) = 10

(
25
4

)−s
,N0 = 10, and



Ĝ(k) = −9
4ζH

(
2k − 1, 72

)
+ ζH

(
2k − 3, 72

)
ζα1(0|L1) = Fα1(0) +

2∑
k=0

bkα
k

k! = −191
30

ζ ′α1(0|L1) =
191
30 ln R0

12 − 18
4 ζ

′
H

(
−1, 52

)
+ 2ζ ′H

(
−3, 52

)
+ 25

4

[9
4ψ

(5
2

)
+ ζH

(
−1, 52

)
− 8

5

]
+ 625

32

[
−9
4ζH

(
3, 52

)
− ψ

(5
2

)
+ 61

250

]
+

∞∑
k=3

Ĝ(k)αk
1

k
≈ −18.91 + 191

30 ln R0
12 .

(A.16)

A.3 The scalar case

The eigenvalue of L± is

λn = R0
12

[(
n+ 3

2

)2
− α±

]
, n = 0, 1, 2 . . . , (A.17)
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where α± = 9
4 + q±, q± = − 12

R0
s±. The value of α± depends on the specific choice of the

model. The result may have zero-mode and negative eigenvalue. Finally, we have

Ĝ(k) = − 1
12ζH

(
2k − 1, 32

)
+ 1

3ζH

(
2k − 3, 32

)
− F̂ (k)

ζα(0|L±) = Fα(0) +
2∑

k=0

bkα
k
±

k! =
[
N0 −

1
12ζH

(
−1, 32

)
+ 1

3ζH

(
−3, 32

)
− 1

24α± + 1
12α

2
±

]

ζ ′α(0|L±) = −
(
N0 −

17
2880 − 1

24α± + 1
12α

2
±

)
ln R0

12

+ 1
3

[
3F ′

α(0) + 2ζ ′H
(
−3, 32

)
− 1

2ζ
′
H

(
−1, 32

)]
−
[
72F̂ (1) + 11− 6ψ

(3
2

)]
α±
72

−
[
12F̂ (2) + ζH

(
3, 32

)
+ 4ψ

(3
2

)
− 2

]
α2
±
24

+
∞∑

k=3

Ĝ(k)αk
±

k
.

(A.18)
The eigenvalue of L0 (The off-shell fluctuation operator given by (4.29)) is

λn = R0
12

[(
n+ 3

2

)2
− 33

4

]
, n = 0, 1, 2 . . . (A.19)

Then n = 0 and n = 1 are smaller than α0(m=2), Fα0(s) = (−6)−s + 5(−2)−s, F̂ (s) =(
9
4

)−s
+ 5

(
25
4

)−s
(N0 = 0), and

Ĝ(k) = − 1
12ζH

(
2k − 1, 72

)
+ 1

3ζH

(
2k − 3, 72

)
ζα(0|L0) = Fα(0) +

2∑
k=0

bkα
k
±

k! = 479
90

ζ ′α(0|L0) = −479
90 ln R0

12 + 1
3

[
3F ′

α(0) + 2ζ ′H
(
−3, 32

)
− 1

2ζ
′
H

(
−1, 32

)]
−
[
72F̂ (1) + 11− 6ψ

(3
2

)]
α0
72 −

[
12F̂ (2) + ζH

(
3, 32

)
+ 4ψ

(3
2

)
− 2

]
α2
0

24

+
∞∑

k=3

Ĝ(k)αk
±

k
.

(A.20)
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