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1 Introduction

The understanding of string theory on Anti-de Sitter (AdS) backgrounds is crucial in a
top-down approach to the AdS/CFT correspondence [1, 2]. Of these backgrounds, the three-
dimensional AdS3 spacetime represents a particularly tractable option since string theory on
AdS3 with pure NS-NS flux can be described by a WZW model on the non-compact group
SL(2,R) [3–5]. As such, string theory on AdS3 in the absence of RR flux is largely dictated
by the affine sl(2,R) symmetry on the worldsheet.
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Due to the non-compactness of the group SL(2,R), this WZW model is somewhat more
subtle than those based on compact groups like SU(2). Specifically, the spectrum of the
SL(2,R) WZW model consists of usual highest-weight representations of sl(2,R)k, as well as
novel spectrally-flowed representations. These spectrally-flowed representations are highest-
weight with respect to the worldsheet Virasoro algebra, but are not highest-weight with respect
to the affine sl(2,R)k symmetry. As such, correlation functions of spectrally-flowed states are
notoriously difficult to compute (although there has been great progress in recent years [6–11]).

Spectrally-flowed states are labelled by three quantum numbers: their SL(2,R) spin j,
the eigenvalue h of the cartan J3

0 and the amount of spectral flow w ∈ Z. For holographic
applications, it is desirable to include yet another auxiliary label x, which labels the location
of emission of the string on the boundary of AdS3. A vertex operator labelled by x is
holographically dual to a local operator in the boundary CFT placed at the position x. Thus,
the holographically interesting correlation functions in the SL(2,R) model take the form〈

V w1
m1,j1

(x1, z1) · · ·V wn
mn,jn

(xn, zn)
〉
Σ
, (1.1)

where m = h−kw/2. Correlators of this form turn out to be surprisingly difficult to compute
for two reasons. First, since the states have nonzero spectral flow, they are not primary
with respect to the sl(2,R)k current algebra (specifically they have higher-order poles in
the OPE with J+). Second, since the states are located at nonzero x, they are no longer
eigenstates with respect to the J3

0 Cartan of sl(2,R)k. Both of these effects mean that the
local Ward identities associated to spectrally-flowed correlation functions become rather
complicated, and finding explicit solutions is a very difficult problem. A third difficulty arises
from the fact that, while vertex operators in unflowed sectors admit explicit construction in
terms of fundamental fields (see for example [3, 5, 12–14]), spectrally-flowed operators are
usually specified implicitly by their OPEs with the sl(2,R)k currents, making a path integral
approach somewhat difficult (although not impossible, see for example [15–22]).

While, on the one hand, correlation functions in the SL(2,R) model are hard to compute,
there are hints of a subsector of the theory which radically simplifies. In [5], it was shown
that correlation functions of spectrally-flowed vertex operators diverge when certain linear
relations among the SL(2,R) spins are satisfied. These divergences were interpreted in terms
of strings which can approach the boundary of AdS3 with finite energy cost, causing the path
integral to diverge. Such contributions were dubbed ‘worldsheet instantons’. Geometrically,
these instantons receive contributions from worldsheets which holomorphically cover the
boundary of AdS3, i.e. for which there exists a holomorphic map γ : Σ → ∂AdS3 such that

γ(z) ∼ xi +O((z − zi)wi) . (1.2)

These covering maps represent, in turn, strings which wind the boundary of AdS3 a certain
number of times with specific monodromies around the points xi.

This picture has recently been strengthened by the remarkable series of papers [6–8, 23, 24].
The authors were able to constrain the forms of SL(2,R) correlation functions almost entirely
on the grounds of affine symmetry and holomorphicity. They found that SL(2,R) correlators
contain an infinite series of divergences labeled by positive integers. One such class, and the
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one we will be interested in, occurs when the SL(2,R) spins satisfy the relation
n∑

i=1
ji −

k

2 (n+ 2g − 2) + (n+ 3g − 3) = −k − 2
2 m, (1.3)

for some integer m ≥ 0.1 Viewed as a function of ∑i ji, the SL(2,R) correlation functions have
poles at these values, and the residues of these poles can be computed precisely. They can be
shown to arises at points in the moduli space Mg,n for which a holomorphic covering map of
the form (1.2) exists, and for which there are exactly m extra simple branch points [8, 25].

Recently an exact (perturbative) proposal for the CFT dual of bosonic string theory on
AdS3 ×X at generic level k was proposed [8, 25] which schematically takes the form of a
deformed symmetric orbifold. Explicitly, the proposed dual CFT is2

SymK(X × RQ) + µ

∫
σ2,σ , (1.4)

where RQ is a linear dilaton with slope Q, and σ2,α is a marginal operator in the twist-2
sector of the symmetric orbifold which breaks the orbifold structure. From the point of view
of this duality, the worldsheet instantons of [5] admit a natural interpretation: they are the
poles of correlation functions in the dual CFT which contribute at order µm in conformal
perturbation theory. The role of the covering maps γ then play the role of Feynman diagrams
in the theory [28–30], with the m extra branch points coming from the m insertions of the
twist-2 field. Thus, an understanding of the worldsheet instantons is fundamental to an
understanding of the perturbative structure of the dual CFT.

The goal of the present paper is to shed light on spectrally-flowed correlators in the
SL(2,R) WZW model in the path integral formalism. Our approach is to consider the
worldsheet theory in the limit near the boundary of AdS3, since this is the regime which
contributes to the divergences in SL(2,R) correlation functions. In this limit, we write
down explicit forms of spectrally-flowed vertex operators and compute the schematic form
of correlation functions of these operators. We find that the holomorphic covering maps
are naturally reproduced in the path integral language, and that the j-constraint (1.3)
follows from a straightforward charge-conservation argument of worldsheet correlators (as
was argued in [21, 23]).

Let us now be more specific about the results of this paper. In section 2, we work in the
Wakimoto representation, for which the SL(2,R) sigma model takes the form

S = 1
2π

∫
Σ
d2z

(1
2∂Φ ∂Φ+ β∂γ + β∂γ − 1

k
ββ e−QΦ − Q

4 RΦ
)
, (1.5)

where Φ is a scalar representing the radial coordinate of AdS3, γ, γ̄ are holomorphic coordinates
of the boundary, and β, β̄ are formal Lagrange multipliers which allow us to study the action
in the near boundary (Φ → ∞) limit. In this limit, the above action reduces to that of

1This result was established in [23, 24] for m = 0 at arbitrary genus and number of insertion points. For
m > 0, it has so far only been proven for genus zero correlation functions with n ≤ 4 [6–8].

2This proposal improved on the earlier work of [26, 27], which was based on the symmetric orbifold of
Liouville theory rather than a linear dilaton CFT. From the level of the one-loop long-string spectrum, these
proposals are indistinguishable.
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a free theory, and thus the path integral can be computed exactly. In terms of these free
fields, we find closed-form expressions for spectrally-flowed highest-weight states of sl(2,R)k,
following a recent analysis of spectrally-flowed states in the tensionless worldsheet theory [31],
which can be written compactly in the x-basis:

V w
m,j(x, z) = e(w/Q−Qj)Φ

(
∂w(γ − x)

w!

)−m−j

δw(γ − x) , (1.6)

where δw(γ − x) is a formal delta-function operator which imposes that γ − x has a zero
of order w at the insertion point (see section 2 for a precise definition). Given their simple
form, these states are can be employed in the path integral formalism.

We also argue in section 2 that, in order to study string theory correlators in Euclidean
AdS3, we need to introduce a screening operator of the form3

D = V w=−1
k
2 , k−2

2
= e−2Φ/Q

(∮
γ

)−(k−1)
δ(β) , (1.7)

which effectively compactifies the target of the field γ from C to CP1.4 We also note that
the same screening operator (and its w = 1 analogue) in a different coordinate has already
been introduced in [34] and its role has been studied in the case of 2− and 3-point functions.
This operator D can also be thought of as a screening operator for the field Φ, so that
correlation functions are computed in a Coulomb gas formalism. This operator D is similar
to, yet distinct from, other screening operators which have previously been considered in the
literature [17, 18] and, as we will argue in section 2, plays a natural geometric role in the path
integral computation of correlation functions. Using the explicit forms of spectrally-flowed
vertex operators and the screening operator D, we find a straightforward explanation of
why the worldsheet theory is dominated by holomorphic covering maps, provided that the
constraint (1.3) is satisfied. We also show that these correlation functions schematically
reproduce the perturbative structure of the CFT dual (1.4).

In section 3 we provide a novel interpretation of spectral flow in terms of a nonlocal
operator wrapping an unflowed state. This nonlocal operator is built from a line integral of
sl(2,R)k currents, and we interpret it as the inclusion of a nontrivial background gauge field
in the SL(2,R) WZW model which couples to the worldsheet currents. The inclusion of this
background modifies the classical equations of motion of the WZW model, and solutions to
these equations of motion are given precisely by holomorphic maps γ from the worldsheet
to the AdS3 boundary. In this sense, we can think of the holomorphic covering maps as
instantons of the worldsheet theory in a nontrivial background, thus making concrete in what
sense the worldsheet instantons of [5] are classical saddles of the string path integral.5

A simplification at k = 1

The above discussion admits a drastic simplification in the case of the superstring on
AdS3 × S3 ×T4 with one unit of pure NS-NS flux — known as the so-called ‘minimal tension’

3Near the end stages of writing this paper, we became aware of the work of Hikida and Schomerus [32],
which introduces the same screening operator to study correlation functions in the SL(2,R) WZW model.

4See [33] for an analogous construction in the large-radius limit of the topological A-model.
5A semiclassical justification for these solutions was also given in [23].
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or ‘tensionless’ string. This theory is desribed in the hybrid formalism of Berkovits, Vafa and
Witten [35, 36] in terms of a sigma model on the supergroup PSU(1, 1|2) at level k = 1. An
interesting feature of this sigma model is that the correlation functions analogous to (1.1)
always localise to holomorphic covering maps [37, 38], and the j-constraint (1.3) for m = 0
is always satisfied. The path integral of this theory can be shown to localise completely
onto holomorphic covering maps whose only critical points are at z = zi, and one has the
exact duality [11, 14, 21, 31, 37–44]

IIB strings on AdS3 × S3 × T4 with minimal (k = 1) units of NS-NS flux
⇐⇒

the symmetric orbifold (T4)K/SK at large K
(1.8)

with no perturbation away from the orbifold point.
In section 4, we specialise the technology developed in sections 2 and 3 to this tensionless

AdS3 × S3 × T4 theory.6 The worldsheet theory of this background admits a free field
realisation which is exact. This free field realisation has been used recently to show that
the correlation functions of spectrally-flowed vertex operators localise onto holomorphic
covering maps [37, 38]. In the case of the k = 1 theory, we again find compact expressions
for spectrally-flowed vertex operators, and show that the localisation property is a direct
consequence of the forms of these operators in the path integral formalism. We also show
in this section how the idea of inducing a background gauge field works in this particular
model, and that the localised solutions can be directly read off from the zero-modes of the
twisted kinetic operator ∂ + A acting on a particular holomorphic vector bundle.

As was noted in [37], the tensionless superstring on AdS3×S3×T4 is conceptually similar
to the Berkovits twistor string [45]. In section 5, we sharpen this analogy and interpret the
vertex operators found in section 4 as natural objects in twistor space. We briefly introduce
the relevant twistor space and explain why the S2 twistor incidence relation appears in the
model. In the SL(2) invariant notation which we introduce, we find that the vertex operators
are related to S2 twistor elementary states, a basis for meromorphic twistor functions [46].
Finally, we collect various technical results and discussions in appendices A and B.

2 Bosonic strings on AdS3

2.1 The worldsheet theory

String theory on AdS3 can be described in terms of a Wess-Zumino-Witten (WZW) model
on the universal cover of SL(2,R) [3–5]. The fundamental fields are maps g : Σ → SL(2,R)
governed by the classical action

SWZW = k

4π

∫
Σ

Tr[g−1dg ∧ g−1dg] + k

2πi

∫
B

Tr[g−1dg ∧ g−1dg ∧ g−1dg] . (2.1)

Here, B is any 3-manifold with boundary ∂B = Σ. We note that since SL(2,R) is non-compact,
the level k does not need to be integer in order to produce a well-defined path integral.7

6A similar analysis was also considered recently in a Wakimoto-like representation [31].
7Concretely, since H3(SL(2,R),Z) = 0, the Wess-Zumino term is independent of the choice of the bulk

manifold B [47, 48].
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The above action admits holomorphic and anti-holomorphic conserved currents

J = k g−1∂g , J̄ = k ∂g g−1 . (2.2)

Given generators ta of sl(2,R), we can define

Ja = 1
k

Tr[taJ ] , (2.3)

and similarly for J̄ . The currents Ja satisfy the algebra sl(2,R)k. Specifically, in a convenient
basis, we have

J3(z)J3(w) ∼ − k/2
(z − w)2 , J3(z)J±(w) ∼ ±J

±(w)
z − w

,

J+(z)J−(w) ∼ k

(z − w)2 − 2J3(w)
z − w

.

(2.4)

The Wakimoto representation

To study the SL(2,R) theory more explicitly, it is convenient to choose an explicit set
of coordinates on AdS3. A particularly convenient description is that of global AdS3 in
Poincaré coordinates:

ds2 = dr2 + dγ dγ
(r/L)2 , (2.5)

where r ∈ (0,∞) is the radial coordinate, (γ, γ) are complex coordinates of the boundary
sphere, and L is the AdS radius.8 The AdS3 boundary is identified with the limit r → 0.
In order for a string in this background to be anomaly-free, it must be supported by a
Kalb-Ramond B-field9

B = −
(
L2

r2

)
dγ ∧ dγ . (2.6)

The above metric and B-field give rise to the Polyakov action10

S = 1
2πα′

∫
Σ
d2z

(
Gµν(X)∂Xµ∂Xν +Bµν(X)∂Xµ∂Xν

)
= L2

2πα′

∫
Σ
d2z

( 1
r2
∂r∂r + 1

r2
∂γ ∂γ

)
= k

4π

∫
Σ
d2z

(
2∂Φ∂Φ+ 2e2Φ∂γ ∂γ

)
,

(2.7)

where k = L2/α′ measures the AdS radius in string units and we have defined r = e−Φ, so
that the boundary of AdS3 lies at Φ → ∞. The above action can equivalently be recovered
from the SL(2,R) model by the identification

g =
(
eΦ eΦγ

eΦγ eΦγγ + e−Φ

)
. (2.8)

8In Euclidean signature, γ, γ are complex conjugates of one another, while in Lorenzian signature they are
independent and real.

9Of course, we must also introduce compact directions X such that c(AdS3) + c(X) = 26.
10We use the conventions of Polchinski [49] for complex coordinates, namely z = x + iy, z = x − iy,

∂ = (∂x − i∂y)/2, and ∂ = (∂x + i∂y)/2.
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The constant k reproduces the level of the WZW model, and the path integral measure
is taken to be [50]

DΦD
(
eΦγ

)
D
(
eΦγ

)
, (2.9)

which reproduces the Haar measure on SL(2,R).
In order to study strings near the boundary of AdS3, we pass to a first-order formulation.

We introduce a worldsheet (1, 0)-form β and an analogous (0, 1) form β and consider the action

S = 1
4π

∫
Σ
d2z

(
2(k − 2)∂Φ∂Φ+ 2β∂γ + 2β∂γ − 2

k
ββe−2Φ −RΦ

)
. (2.10)

The equations of motion for β (resp. β) fix β = ke2Φ∂γ (resp. β = ke2Φ∂γ). The shift in
the coefficient of the kinetic term for Φ, as well as the linear dilaton term −RΦ, come from
the change in the path integral measure upon integrating out β [12, 13, 51]. We should
emphasise that the equivalence of the first- and second-order actions is only valid if the
path integral is dominated by large values of Φ [12]. For later convenience, we rescale the
radial field Φ and define

Φ′ =
√
2(k − 2)Φ (2.11)

so that the action becomes

S = 1
2π

∫
Σ
d2z

(1
2∂Φ

′ ∂Φ′ + β∂γ + β∂γ − 1
k
ββ e−QΦ′ − Q

4 RΦ
′
)
, (2.12)

where we have defined the background charge Q =
√
2/(k − 2). From now on, we will drop

the ′ and simply refer to Φ′ as Φ.
It should be noted that the Wakimoto representation of the AdS3 worldsheet theory

described above is only a good approximation to the physics in the limit Φ → ∞, i.e. near
the boundary of AdS3 [13, 51]. However, since in this work we are only interested in the
near-boundary behaviour of the theory, this point will not be important.

Quantisation and OPEs

In the limit of large Φ, we can treat the worldsheet theory as a free field theory consisting of
a chiral and anti-chiral βγ system and a linear dilaton Φ. These fields satisfy the OPEs11

β(z)γ(w) ∼ − 1
z − w

, Φ(z)Φ(w) ∼ − log |z − w|2 . (2.13)

These free fields give rise to the so-called Wakimoto representation of sl(2,R)k [52]:

J+ = β , J3 = − 1
Q
∂Φ+ (βγ) , J− = − 2

Q
(∂Φ γ) + (β(γγ))− k∂γ , (2.14)

where parentheses denote normal-ordering. Indeed, it is readily checked that the above
currents satisfy the current algebra sl(2,R)k.

11Throughout this paper we will focus exclusively on the left-moving sector of the worldsheet theory. All
formulae will have completely analogous forms in the right-moving sector.
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Finally, we note that the stress tensor of the theory is given by

T = −1
2(∂Φ)

2 − Q

2 ∂
2Φ− (β∂γ) , (2.15)

which can be shown to coincide with the Sugawara stress tensor of sl(2,R)k. Specifically,
the central charge of the theory is

c = c(β, γ) + c(Φ) = 2 + 1 + 3Q2 = 3k
k − 2 , (2.16)

which is the central charge of the SL(2,R) WZW model at level k.

2.2 Spectrally-flowed vertex operators

Highest-weight representations of sl(2,R)k fall into several categories. In this paper, we will
be focused on the so-called continuous representations Cλ

j [3]. The highest-weight states of
such representations consist of states of the form |m, j⟩ with m ∈ Z+ λ and j = 1

2 + is, s ∈ R.
The action of the zero-mode algebra on these states is taken to be

J3
0 |m, j⟩ = m |m, j⟩ , J±

0 |m, j⟩ = (m± j) |m± 1, j⟩ . (2.17)

In terms of the Wakimoto fields, we equivalently have

β0 |m, j⟩ = (m+ j) |m+ 1, j⟩ , γ0 |m, j⟩ = |m− 1, j⟩ ,
(∂Φ)0 |m, j⟩ = Qj |m, j⟩ .

(2.18)

The worldsheet conformal dimension of the state |m, j⟩ is read off from the stress tensor (2.15)
and is given by

L0 |m, j⟩ =
j(1− j)
k − 2 . (2.19)

The current algebra sl(2,R)k admits a nontrivial automorphism known as spectral flow,
which acts on the current algebra as

σw(J±
n ) = J±

n∓w , σw(J3
n) = J3

n + kw

2 δn,0 . (2.20)

The spectral flow operation σw is defined for any integer w. As shown in [3], the spectrum of
AdS3 string theory consists of highest-weight representations of sl(2,R)k, as well as so-called
spectrally-flowed representations, obtained by composing highest-weight representations with
σw. In terms of the Wakimoto variables, spectral flow can be realised by the automorphism

σw(βn) = βn−w , σw(γn) = γn+w , σw((∂Φ)n) = (∂Φ)n − w

Q
δn,0 (2.21)

of the free field OPE algebra (2.13).
Let |m, j⟩(w) denote the spectrally-flowed image of |m, j⟩. This state satisfies

J3
0 |m, j⟩

(w) =
(
m+ kw

2

)
|m, j⟩(w) ,

J±
n |m, j⟩(w) = 0 , n > ±w .

(2.22)
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Since, holographically, J3
0 is identified with LCFT

0 in the spacetime CFT dual, the spacetime
dimension of a state will be its eigenvalue under J3

0 . Thus, the conformal dimension of
|m, j⟩(w) is

h = m+ kw

2 . (2.23)

The worldsheet conformal dimension of |m, j⟩(w) reads

L0 |m, j⟩(w) =
(
j(1− j)
k − 2 − hw + kw2

4

)
|m, j⟩(w) , (2.24)

which again can either be read off from the Sugawara stress tensor of sl(2,R)k or from the
free field stress tensor (2.15).

Unflowed vertex operators

We want to write down expressions for the vertex operators of spectrally-flowed states. In
order to do this, let us first consider unflowed states. These are highest-weight with respect
to the free field algebra (2.13). We write V 0

m,j for the vertex operator associated to |m, j⟩.
The zero-mode actions (2.18) then become the OPEs

β(z)V 0
m,j(w) ∼

m+ j

z − w
V 0

m+1,j(w) , γ(z)V 0
m,j(0) ∼ V 0

m−1,j(w)

∂Φ(z)V 0
m,j(w) ∼

Qj

z − w
V 0

m,j(w) .
(2.25)

A vertex operator satisfying these OPEs can easily be written down, and takes the form

V 0
m,j = e−QjΦγ−m−j . (2.26)

Indeed, these vertex operators have J3
0 eigenvalue m and worldsheet conformal dimension12

−Q
2j(j − 1)

2 = j(1− j)
k − 2 (2.27)

in agreement with (2.19). These vertex operators are not new, and have appeared in previous
literature (see specifically [13, 51]).

Flowed vertex operators

Now that we have expressions for unflowed vertex operators in the Wakimoto representation,
let us derive expressions for spectrally-flowed operators. We follow the strategy of [31].

Spectral flow acts on the Wakimoto free fields as (2.21). In the case of the βγ system, this
means that spectrally-flowed vertex operators corresponding to |m, j⟩(w) must satisfy the OPEs

β(z)V w
m,j(y) ∼

m+ j

(z − y)w+1V
w

m+1,j + · · · ,

γ(z)V w
m,j(y) ∼ (z − y)wV w

m−1,j(y) + · · · .
(2.28)

12The conformal dimension of eαΦ is given by −α(α + Q)/2.
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In order to construct such states, we first ‘bosonise’ the βγ system in terms of free chiral
scalars ϕ, κ:

β = eϕ+iκ∂(iκ) , γ = e−ϕ−iκ . (2.29)

The current (βγ) is nothing more than −∂ϕ. The scalars ϕ, κ are taken to satisfy the OPEs

ϕ(z)ϕ(w) ∼ − log(z − w) , κ(z)κ(w) ∼ − log(z − w) . (2.30)

Furthermore, ϕ and κ have background charges Qϕ = Qκ = 1. In terms of the scalars ϕ,
κ, we can construct the state

e(w+m+j)ϕ+i(m+j)κ (2.31)

which satisfies the OPEs (2.28). Demanding in addition that the eigenvalue of (∂Φ)0 is
Qj − w/Q (as required by (2.18) and (2.21)), we arrive at the expression [18, 53]

V w
m,j(y) = e(w/Q−Qj)Φe(w+m+j)ϕ+i(m+j)κ(y) . (2.32)

Indeed, this state has J3
0 eigenvalue

h = − 1
Q

(
Qj − w

Q

)
+ w +m+ j = m+ kw

2 (2.33)

and worldsheet conformal dimension13

∆ = j(1− j)
k − 2 − hw + kw2

4 , (2.34)

in agreement with eq. (2.24).

The x-basis

In Lorenzian signature, the vertex operators V w
m,j correspond to the emission of a string

produced from the asymptotic past of AdS3. In Euclidean signature, the asymptotic past
corresponds to the south pole of the boundary sphere of Euclidean AdS3, which we take to
be the point x = 0.14 In general, we want to consider vertex operators emitted at arbitrary
points on the AdS3 boundary in order to compare to correlation functions in the dual CFT.
This can be achieved by noting that, via the holographic dictionary, J+

0 = LCFT
−1 is the

translation operator in the spacetime CFT. Thus, we can use J+
0 to bring vertex operators

into the so-called x-basis via the similarity transformation

V w
m,j(x, z) = exJ+

0 V w
m,j(z)e−xJ+

0 . (2.35)
13The worldsheet conformal dimension of eαϕ+iβκ is

∆ = −α(α − 1)
2 + β(β − 1)

2 .

14As is standard in the literature, we will use z for worldsheet coordinates and x for spacetime coordinates
whenever possible.
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In the bosonised form (2.32), explicitly constructing vertex operators in the x-basis is
rather subtle, since the action of J+

0 on ϕ, κ is not local. However, there is an alternative
representation of (2.32) which lends itself extremely well to being written in the x-basis.
Following the analysis of [31], we can write

e(w+m+j)ϕ+i(m+j)κ =
(
∂wγ

w!

)−m−j

δw(γ) , (2.36)

where δw(γ) is a formal delta function operator defined as

δw(γ(z)) =
w−1∏
i=0

δ(∂iγ(z)) . (2.37)

One should think of δw(γ(z)) as an operator which, in the path integral, demands that γ is
taken to have a zero of order w at z. The conformal weight of the delta-function operator
can also be read off by the inverse of the classical scaling dimensions of its arguments, i.e.

∆(δw(γ)) = −
w−1∑
i=0

i = −w(w − 1)
2 . (2.38)

In terms of delta function operators, we can write the spectrally-flowed vertex operators
in a compact form as

V w
m,j = e(w/Q−Qj)Φ

(
∂wγ

w!

)−m−j

δw(γ) . (2.39)

Now, using the OPEs (2.13), one can show that the Wakimoto fields obey the transfor-
mation rules

exβ0Φe−xβ0 = Φ , exβ0γe−xβ0 = γ − x , (2.40)

and thus, we can immediately read off15

V w
m,j(x, z) = e−(Qj−w/Q)Φ(z)

(
∂w(γ(z)− x)

w!

)−m−j

δw(γ(z)− x) . (2.41)

The intuition of this vertex operator is that, in the path integral formalism, the delta function
restricts us to configurations of γ such that

γ(y) ∼ x+O((y − z)w) . (2.42)

This meshes well with the geometric understanding of a spectrally-flowed state as describing
a string which winds around x with winding number w near the boundary of AdS3.

15Since all factors in this expression have regular OPEs among each other, we do not need to be careful
about normal ordering.

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
3

2.3 The ‘secret’ representation

In the above, we have treated the Wakimoto field γ as a free scalar, i.e. a complex-valued field
on the worldsheet. However, as was pointed out in [31] (see also [54] for related discussions),
this description of the worldsheet theory is not complete. Specifically, in the Poincaré metric,
the pair (γ, γ) is meant to describe a set of complex coordinates on the boundary. In Euclidean
signature, the asymptotic boundary of AdS3 is the Riemann sphere CP1, which does not
admit a global set of coordinates. Specifically, for any continuous map γ : Σ → CP1, there
will generically be points on the worldsheet for which γ diverges. In the treatment of γ as
a free field, however, γ cannot have a pole unless it has a nontrivial OPE with a vertex
operator at some point on Σ.

In [31] (following the treatment of [33]), it was suggested that a natural way to implement
the compactification of the target space of γ, γ is to deform the worldsheet theory by
adding a term

p

∫
Σ
DD (2.43)

to the action. Here, D is an operator satisfying the properties

• D lives in the w = −1 spectrally-flowed sector.

• D has trivial OPEs with Ja(z), up to a total derivative. Specifically, h(D) = 0.

• D has worldsheet conformal dimension ∆(D) = 1, so that it is classically marginal.

A natural candidate for such a field is the combination16

D = e−2Φ/Qe(k−2)ϕ+i(k−1)κ

= e−2Φ/Q
(∮

γ

)−(k−1)
δ(β) .

(2.44)

Here, the contour integral is taken around the insertion point of D. This state D is a singlet
with respect to sl(2,R)k up to a total derivative and has a simple pole with respect to γ,
so that inserting several copies of D into a correlation function allows γ to have poles. We
should note that, while D is not exactly an sl(2,R)k singlet, it effectively is since

J3(z)D(w) ∼ J+(z)D(w) ∼ regular , J−(z)D(w) ∼ ∂w

(
[J−

1 , D](w)
(z − w)

)
. (2.45)

In conformal perturbation theory, this deformation requires us to consider correlators

⟨O1 · · · On⟩p =
∞∑

N=0

pN

N !

N∏
a=1

∫
d2λa

〈
O1 · · · On

N∏
a=1

(DD)(λa)
〉
. (2.46)

This effectively requires us to consider, in the path integral, field configurations for which γ

is allowed to have an arbitrary number of poles, labeled by the positions λa. In the language
16The contour integral (

∮
γ)−(k−1) can be interpreted as the action of the mode (γ1)1−k on the state

associated to δ(β).
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of [33], the introduction of this deformation effectively acts to compactify the target space
from C to CP1. The addition of

∫
DD̄ is similar to the addition of screening fields in the

Coulomb gas formalism of AdS3 string theory [17]. Specifically, the operator S− of [17, 18]
shares many similarities to our deformation, but is not equivalent.

In [21, 23, 55], a similar idea was presented, for which a field (which they called the ‘secret
representation’) was considered. This field is meant to have worldsheet conformal weight ∆ = 0
and be a true singlet with respect to sl(2,R)k, but be non-trivial with respect to the Wakimoto
representation. Specifically, their state was identified with the lift of the sl(2,R)k state

|φ⟩ =
∣∣∣∣k2 , k2

〉(−1)
(2.47)

to a state in the Wakimoto representation. The state |φ⟩ is indeed the vacuum with respect
to sl(2,R)k, but is nontrivial with respect to the Wakimoto fields (specifically, γ1 does not
annihilate it). Our state, on the other hand, is

|D⟩ =
∣∣∣∣k2 , k − 2

2

〉(−1)
. (2.48)

While |D⟩ shares many properties with |φ⟩ (it has spacetime conformal dimension h = 0
and has a pole with γ), they are crucially different in that L0 |D⟩ = |D⟩ while L0 |φ⟩ =
0. This difference is due to the fact that |D⟩ should be integrated over the worldsheet,
while |φ⟩ was proposed in [23] to be inserted by hand at specific points where γ has poles.
Despite the difference between |D⟩ and |φ⟩, we will continue to refer to |D⟩ as the ‘secret
representation’ field.17

2.4 Correlators and covering maps

We can now finally turn to the main problem of this section: the computation of correlation
functions of spectrally-flowed vertex operators. We consider the correlator〈

n∏
i=1

V wi
mi,ji

(xi, zi)
〉

p

, (2.49)

where, as discussed above, we have included the deformation by the secret representation
field D in the definition of the action. In conformal perturbation theory, we have

∞∑
N=0

pN

N !

(
N∏

a=1

∫
d2λa

)〈
N∏

a=1
(DD)(λa)

n∏
i=1

V wi
mi,ji

(xi, zi)
〉
. (2.50)

Note, however, since any correlation function which does not satisfy the (anomalous) con-
servation of −∂Φ must vanish, we do not need to consider all values of N , only the one
which satisfies the conservation law

2N
Q

+
n∑

i=1

(
Qji −

wi

Q

)
= Q(1− g) . (2.51)

17As noted in the introduction, this screening operator was independently discovered by Hikida and
Schomerus in their recent work [32].
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We will find it useful in the following to rewrite this conservation law as

N = 1− g +
n∑

i=1

wi − 1
2 − Q2

2

(
n∑

i=1
ji −

k

2 (n+ 2g − 2) + (n+ 3g − 3)
)
, (2.52)

where we recall that Q2 = 2/(k − 2).
Let us now consider the path integral of this correlator. As mentioned above, by the

anomalous charge conservation of ∂Φ, we can restrict N to be given by (2.52). Let us also for
the moment ignore the factor of pN/N ! and the integration over the points λa’s. Since all of
the vertex operators factor into operators depending on Φ and operators depending on βγ, we
can factorise the correlator into a Φ correlator and a βγ correlator. The Φ correlator is simply〈

N∏
a=1

e−2Φ/Q(λa)
n∏

i=1
e(wi/Q−Qji)Φ(zi)

〉
, (2.53)

which can be computed by Wick contractions. This correlator will be proportional to an
overall momentum-conserving delta-function:

δ

(
2N
Q

+
n∑

i=1

(
Qji −

wi

Q

)
−Q(1− g)

)
, (2.54)

such that when the conservation law (2.52) is satisfied, the correlation functions of the
near-boundary theory will diverge. Fundamentally, this divergence comes from the integral
over the zero mode of Φ, and explains the divergences in the correlators SL(2,R) WZW
model for certain values of the spins ji.

In addition to the Φ correlator, the (chiral half of the) βγ correlator is given by∫
D(β, γ) e−S[β,γ]

N∏
a=1

(∮
λa

γ

)−(k−1)
δ(β(λa))

n∏
i=1

(
∂wi(γ(zi)− xi)

wi!

)−mi−ji

δwi(γ(zi)− xi) .

(2.55)
We can rewrite the delta functions of β using the formal identity

δ(β(λa)) =
∫ dξa

2π e
iβ(λa)ξa . (2.56)

This amounts to modifying the action of the βγ system to be

S[β, γ] → 1
2π

∫
Σ
β

(
∂γ −

∑
a

2πiξaδ
(2)(z, λa)

)
(2.57)

and integrating over the points ξa’s. Integrating out β then effectively amounts to imposing
the constraint that γ is holomorphic with poles of residue ξa at λa. Integrating over λa

then amounts to restricting γ to the space

FN = {γ meromorphic with N poles} . (2.58)

This is a space of complex dimension dim(FN ) = 2N + 1− g. Since the poles are taken to be
unordered, we can remove the 1/N ! in the path integral, and we are left with
(
p

2π

)N ∫
FN

dγ
(

N∏
a=1

Res
z=λa

(γ)
)−(k−1) n∏

i=1

(
∂wi(γ(zi)− xi)

wi!

)−mi−ji

δwi(γ(zi)− xi) . (2.59)
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Note that since FN is a finite-dimensional space, we can actually define a measure dγ in
the path integral.18

The delta functions in the integral over FN restrict us further to the subspace GN of
maps in FN satisfying

γ(z) ∼ xi +O((z − zi)wi) , z → zi . (2.60)

This is a space of dimension

dim(GN ) = 2N + 1− g −
n∑

i=1
wi

= −Q2
(

n∑
i=1

ji −
k

2 (n+ 2g − 2) + (n+ 3g − 3)
)
− (n+ 3g − 3) ,

(2.61)

where we have used the conservation law (2.52). Thus, the path integral reduces to

∫
GN

dγ
(

N∏
a=1

Res
z=λa

(γ)
)−(k−1) n∏

i=1

(
∂wi(γ(zi)− xi)

wi!

)−mi−ji

. (2.62)

Note that we have dropped the factor of (p/2π)N . Again, we have not been careful about the
measure of GN , which will contain nontrivial Jacobian factors coming from the integration
of the delta functions.

In full string theory, we will want to multiply the above integral by the Φ correlator and
integrate over the moduli space Mg,n of curves. For a fixed surface Σ, we can think of the
space GN (Σ) as defining the fibre of a bundle HN → Mg,n whose total space is

HN =
{
(γ,Σ) | γ : Σ → CP1 holomorphic, degree N , with γ(z) ∼ xi +O((z − zi)wi)

}
.

(2.63)

The total space HN has dimension

dim(HN ) = dim(GN ) + dim(Mg,n)

= −Q2
(

n∑
i=1

ji −
k

2 (n+ 2g − 2) + (n+ 3g − 3)
)
,

(2.64)

and the string amplitudes will schematically be given as an integral over HN :

∫
HN

dµ f(Σ, γ)
(

N∏
a=1

Res
z=λa

(γ)
)−(k−1) n∏

i=1

(
∂wi(γ(zi)− xi)

wi!

)−mi−ji

. (2.65)

Here, f(Σ, γ) is some function on HN which will come from the Φ correlator as well as
any Jacobians we have ignored.

18There is a natural measure on FN induced from the measures on Σ and CP1 [56, 57]. However, one
has to be careful about the Jacobian factors taken from integrating out β in the path integral to define the
measure dγ.
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As a consequence, we see that if the SL(2,R) spins are chosen such that

n∑
i=1

ji =
k

2 (n+ 2g − 2)− (n+ 3g − 3) , (2.66)

the dimension of HN vanishes, and the integral (2.65) becomes a discrete sum, that is, a
zero dimensional integral. This discrete sum is precisely over the set of branched covering
maps Γ → CP1 which are branched over xi with order wi, and with no other ramification
points. Let us denote the local behaviour of such maps as

Γ(z) ∼ xi + aΓi (z − zi)wi + · · · . (2.67)

Furthermore, let us write ξΓa as the residues of Γ at λa. Then the worldsheet correlation
function becomes

∑
Γ
f(Σ,Γ)

N∏
a=1

(ξΓa )−(k−1)
n∏

i=1
(aΓi )−mi−ji , (2.68)

where, again, f(Σ,Γ) is some function depending on the covering map data which we have
not determined.

The above form of the string correlation functions was found in [23] as a consistent
solution to the Ward identities of the SL(2,R) WZW model. Specifically, they were able to
show that the worldsheet correlator can only localise to holomorphic covering maps when
the constraint (2.66) was satisfied. Furthermore, when the correlators do localise, it was
found in [23] that the correlators depend on mi via the combination ∏n

i=1(aΓi )−mi . The above
discussion then should be taken as an independent path integral derivation of the results
of [23] in the Wakimoto representation.

Note that while we have not fixed the overall function f(Σ,Γ), it should in principle
be possible to do so (see the discussion in section 6).19

2.5 Reading off the dual CFT

What happens when the constraint (2.66) is not satisfied?
The moduli space HN is the moduli space of all holomorphic covering maps with a

fixed degree N and which branch over xi with degree wi. If m := dimHN is positive, then
generically there will exist m points ξa on CP1 such that γ has a simple branch point over
ξa, i.e. such that

γ(z) ∼ ξi +O((z − ζi)2) (2.69)

near some point ζi on Σg. The degree of the covering map will be

N = 1− g +
n∑

i=1

wi − 1
2 + m

2 , (2.70)

19One such method of computing these Jacobians was found in [32], based on the computational techniques
of [19–21] We thank the Volker Schomerus and Yasuaki Hikida for pointing this out to us.
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and for each fixed choice of ξi, the number of such covering maps is finite. Thus, we can
locally parametrise the space HN by the locations ξi of the m ‘extra’ branch points. This
implies the following schematic form for the correlation function of spectrally-flowed states∫ m∏

i=1
d2ξi O(x1, . . . , xn, ξ1, . . . , ξr)

× δ

(
m+Q2

(
n∑

i=1
ji −

k

2 (n+ 2g − 2) + (n+ 3g − 3)
))

,

(2.71)

where O is a function on HN which depends on the insertion points xi, ξi on CP1, as well as
some data of the covering maps γ. Here, we have introduced the delta-function imposing
the ∂Φ conservation law, which we have previously ignored.

In [25], a perturbative CFT dual to bosonic string theory on AdS3 ×X was proposed.
This CFT is given by the symmetric product orbifold, which is then perturbed by a certain
twist-2 operator:

SymK(X × RQ) + µ

∫
σ2,α . (2.72)

Here, RQ denotes a linear dilaton CFT with action

S = 1
2π

∫ (1
2∂φ∂φ− Q

4 Rφ
)
. (2.73)

The deformation operator σ2,α is defined in the twist-2 twisted sector of the symmetric
orbifold,20 and has linear dilaton momentum

α = 1
Q

=
√
k − 2
2 . (2.74)

In this CFT, we can compute correlation functions of the form〈
n∏

i=1
Owi,αi(xi)

〉
µ

, (2.75)

where Owi,αi lives in the wi-twisted sector of the symmetric orbifold theory and has φ-
momentum αi. In naive perturbation theory, one drops down m copies of the perturbing
field σ2,α and computes integrals of the form∫ m∏

i=1

(−µ)m

m!

〈
n∏

i=1
Owi,αi(xi)

m∏
i=1

σ2,αi(ξi)
〉

µ=0
(2.76)

computed in the undeformed symmetric orbifold. As is standard in symmetric orbifold
theories [28, 29], in order to compute the above correlation function, one sums over all
branched covering maps satisfying

Γ(z) ∼ xi +O((z − zi)wi) , z → zi ,

Γ(z) ∼ ξi +O((z − ζi)2) , z → ζi ,
(2.77)

20See [58] for a pedagogical introduction to symmetric orbifolds and their twist fields.
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for points zi, ζi on some auxiliary covering surface Σ. The number m of perturbing fields is
found by demanding that, upon lifting to the covering surface, the linear dilaton momenta
αi satisfy the charge conservation law

n∑
i=1

αi +mα = Q(g − 1) , (2.78)

where g is the genus of the covering surface. Amazingly, if one solves for m, the result is
given precisely by (2.64) if we identify the linear dilaton momenta to the SL(2,R) spins via

αi = Qji −
1
Q
, (2.79)

and with Q =
√
2(k− 3)/

√
k − 2. This is in fact precisely the dictionary proposed by [25, 26]

for relating linear dilaton momenta to SL(2,R) spins, and so m indeed is the dimension of
the worldsheet path integral, if one assumes this dictionary. We shall note here that our
linear dilaton conventions differ from those of [25, 26].21

We thus conclude, since the number of extra branch points ξi in both the worldsheet
computation (2.71) and the dual CFT computation (2.76) are the same, that the worldsheet
path integral naturally reproduces the naive perturbative structure of the dual CFT of
Eberhardt.22 Of course, an exact matching of both sides would require a careful study
of the various Jacobians arising in the worldsheet path integral. We will return to this
point in section 6.

3 Spectral flow as a background gauge field

In this section, we will explore spectral flow from a different perspective to that considered in
the previous section. We will argue that spectral flow can be thought of as the result of the
insertion of a non-local operator wrapping unflowed vertex operators on the worldsheet. As
we will explain, this non-local operator can be thought of as a constant background gauge
field in the SL(2,R) WZW model whose curvature is concentrated at the insertion points
of the spectrally-flowed vertex operators. This background gauge field couples to the sl(2)
currents and is a constant nondynamical (0, 1)-form partial connection on the worldsheet,
whose form is wholly determined by the spectrally-flowed vertex operator insertions. The
introduction of this gauge field modifies the equations of motion in the worldsheet sigma
model, and we show that the solutions to these equations of motion naturally reproduce
holomorphic covering maps from the worldsheet to the boundary of AdS3.

21Specifically, the two conventions of linear dilaton charges and momenta are related by Qtheirs = Qours/
√

2
and αtheirs = (αours + Qours)/

√
2, the latter difference being a combination of reflection symmetry j → 1 − j

and a minus sign.
22Strictly speaking, the naive perturbative answer (2.76) is not correct, but rather reads off the residues of

poles in the configuration space of the momenta αi. This is similar to the case of Liouville theory [59, 60].
One would expect that a careful treatment of AdS3 string theory would find that, as one moves away from the
boundary, the delta functions of (2.71) would be smoothed out into poles. This is indeed the result of the
Ward identity analysis of [6–8].
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y
P

y
P 0

P 1

Figure 1. The keyhole contour P is contracted to a circular contour P 0 and a contour P 1 along the
branch cut.

3.1 Spectral flow as a non-local operator

Consider an operator O which lives in the unflowed sector of the SL(2,R) model. Now,
assume that this operator is placed at the location y on the worldsheet. We can consider a
keyhole contour P wrapping around O(y), whose shape is chosen to skirt around the branch
cut of the function log(z − y), see figure 1. Let us define the operator

O(w)(y) = exp
(
w

∫
P

dz
2πi log(z − y)J3(z)

)
O(y) . (3.1)

We claim that O(w) lives in the wth spectrally-flowed sector.
This definition is justified as follows. Let us consider the OPE between, say, J+ and

O(w). In order to find the short-distance behaviour, we need to ‘push’ the insertion point
of J+ through the contour P . As shown in figure 2, the result is that the OPE between
J+(ζ) and O(w)(y) is given by

exp
(
w

∫
P

dz
2πi log(z − y)J3(z)

)(
e
−w
∮

ζ
dz
2πi

log(z−y)J3(z)
J+(ζ)O(y)

)
, (3.2)

where the integral around ζ is taken to lie entirely inside the contour P and runs counter-
clockwise. We can evaluate the given expression (recall the JJ OPEs given in (2.4)) and we find

exp
(
−w

∮
ζ

dz
2πi log(z − y)J3(z)

)
J+(ζ) = (ζ − y)−wJ+(ζ) , (3.3)

so that

J+(ζ)O(w)(y) ∼ (ζ − y)−w exp
(
w

∫
P

dz
2πi log(z − y)J3(z)

)(
J+(ζ)O(y)

)
. (3.4)

If we write the OPE between J+ and O as

J+(ζ)O(y) =
∑

n

(J+
n O)(y)

(ζ − y)n+1 , (3.5)

then we can read off

J+(ζ)O(w)(y) =
∑

n

(J+
n O)(w)(y)

(ζ − y)n+w+1 =
∑

n

(J+
n−wO)(w)(y)
(ζ − y)n+1 . (3.6)

Thus, we see that J+ acts on O(w) in the same way as it would act on the spectrally-flowed
image of O. A completely analogous argument shows

J−(ζ)O(w)(y) =
∑

n

(J−
n+wO)(w)(y)
(ζ − y)n+1 , J3(ζ)O(w)(y) =

∑
n

((
J3

n + kw
2 δn,0

)
O
)(w)

(y)
(ζ − y)n+1 .

(3.7)
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Figure 2. Pushing an operator located at ζ through the integration contour P . The result is that
the operator located at ζ is wrapped by a closed contour upon being pushed through.

Thus, we can identify O(w) as the spectrally-flowed image of O. We emphasise that this
contour prescription for spectral flow is purely based on the existence of an sl(2,R)k affine
symmetry, and thus does not rely on taking the near-boundary limit as in section 2.

Now, we can deform the contour P by bringing its tails infinitesimally close to the branch
cut of the logarithm. Let P+ and P− represent the parts of the contour directly above and
below the branch cut. Since the logarithm jumps by a factor of 2πi above and below a
branch cut, the contributions of P+, P− to the contour integral limit onto the following
integral along the branch cut

w

(∫
P+

dz
2πi −

∫
P−

dz
2πi

)
log(z − y)J3(z) = −w

∫
P 1

dz J3(z) , (3.8)

where P 1 is the contour shown on the right of figure 1. Thus, we have

w

∫
P

dz
2πi log(z − y)J3(z) = w

∮
P 0

dz
2πi log(z − y)J3(z)− w

∫
P 1

dz J3(z) , (3.9)

where P 0 is a closed contour which wraps around y, as shown in figure 1. Now, we note that

e−w
∫

P 1 dz J3(z) = exp
(
w

∫
P 1

dz
(
∂Φ
Q

− βγ

))
= ewΦ(y′)/Qδw(γ(y′)) , (3.10)

where y′ is the position where P 0 and P 1 meet. Hence, we can write the spectrally-flowed
operator O(w) in the form

O(w)(y) = ewΦ(y′)/Qδw(γ(y′)) exp
(
w

∮
P 0

dz
2πi log(z − y)J3(z)

)
O(y) . (3.11)

As an example, if we take O = V 0
m,j = e−QjΦγ−m−j , we have

O(w)(y) = ewΦ(y′)/Qδw(γ(y′)) exp
(
w

∮
P 0

dz
2πi log(z − y)J3(z)

)
O(y) , (3.12)

The OPE between J3 and V 0
m,j is J3(z)V 0

m,j(y) = mV 0
m,j(y)/(z − y). The contour integral

around P 0 then gives

exp
(
w

∮
P 0

dz
2πi log(z − y)J3(z)

)
V 0

m,j(y) ∼ exp
(
wm

∮
y

dz

2πi
log(z − y)
z − y

)
V 0

m,j(y),

∼ exp(wm log(ϵ))V = ϵwmV 0
m,j(y) ,

(3.13)
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where ϵ = |y − y′| is the radius of the contour P 0. This approximation holds in the limit of
small ϵ. Collecting everything, we can plug in the expression (2.26), and we get

O(w)(y) ∼ ϵwmewΦ(y′)/Qδw(γ(y′))e−QjΦ(y)γ(y)−m−j . (3.14)

In the end, we would like to shrink the contour around y. To do this, we need to know
the various short-distance behaviours of our fields in the limit y → y′. This can be read
off by the OPEs

ewΦ(y′)/Qe−QjΦ(y) ∼ ϵwje(w/Q−jQ)Φ(y)

δw(γ(y′))γ(y)−m−j ∼ ϵ−wm−wj
(
∂wγ(y)
w!

)−m−j

δw(γ(y)) .
(3.15)

Thus, upon taking ϵ → 0 (i.e. y → y′) the operator Ow becomes

O(w)(y) = e(w/Q−wj)Φ(y)
(
∂wγ(y)
w!

)−m−j

δw(γ(y)) , (3.16)

which coincides with the result (2.39) for the spectrally-flowed vertex operator in the Wakimoto
representation.

The above discussion tells us that we can view spectral flow as the inclusion of a non-local
operator on the worldsheet. For holographic applications, however, we would like to consider
vertex operators in the x-basis. As discussed in section 2, such operators are defined by

O(w)(x, y) = exJ+
0 O(w)(y)e−xJ+

0 . (3.17)

Using the relation

exJ+
0 J3(z)e−xJ+

0 = J3(z)− xJ+(z) , (3.18)

we have

O(w)(x, y) = exJ+
0 exp

(
w

∫
P

dz
2πi log(z − y)J3(z)

)
e−xJ+

0 exJ+
0 O(y)e−xJ+

0

= exp
(
w

∫
P

dz
2πi log(z − y)(J3(z)− xJ+(z))

)
O(y, x) .

(3.19)

That is, we can obtain spectrally-flowed vertex operators in the x-basis by wrapping the
unflowed operator O(y, x) with the non-local operator constructed using J3−xJ+ as opposed
to simply J3.

For completeness, we also include the expression for the secret representation operator D.
As we mentioned in section 2.3, the operator D can be obtained from the state

∣∣∣k2 , k−2
2

〉(−1)
,

i.e. as a state in the w = −1 spectrally-flowed sector. Thus, we can write it as

D(y) = exp
(
−
∫

P

dz
2πi log(z − y)J3(z)

)
e−Φ(y)/Qγ(y)−k+1

= exp
(∫

P 1
dz J3(z)

)
exp

(
−
∮

P 0

dz
2πi log(z − y)J3(z)

)
e−Φ(y)/Qγ(y)−k+1 .

(3.20)
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Analogously to the above calculations, we have

exp
(
−
∮

P 0

dz
2πi log(z − y)J3(z)

)
e−Φ(y)/Qγ(y)−(k−1) ∼ ϵ−k/2e−Φ(y)/Qγ(y)−(k−1) ,

exp
(∫

P 1
dz J3(z)

)
= e−Φ(y′)/Qδ(β(y′)) ,

(3.21)

where again we have taken P 1 to end at y′. Using the OPEs

e−Φ(y′)/Qe−Φ(y)/Q ∼ ϵ−(k−2)/2e−2Φ(y)/Q ,

δ(β(y′))γ(y)−(k−1) ∼ ϵk−1
(∮

y
γ

)−(k−1)
δ(β(y)) ,

(3.22)

we find

D = e−2Φ/Q
(∮

γ

)−(k−1)
δ(β) . (3.23)

This agrees precisely with the form (2.44), as expected.

Locality

The non-local behaviour of the spectrally-flowed states constructed in this fashion is somewhat
surprising from the worldsheet perspective. Let us expand on this a bit. Let us consider an
operator V in the SL(2,R) model. If we consider the OPE of V with the spectrally-flowed
operator O(w), we will find that this OPE has a branch cut. Specifically,

V (e2πiz)O(w)(0) = e−2πiwh V (z)O(w)(0) , (3.24)

where h is the J3
0 charge of V . The phase comes from pushing V through P1.

In a full non-chiral analysis, the spectrally-flowed state O(w) will be defined with respect
to both J3

0 and J̄3
0 , and the analogous statement will be

V (e2πiz)O(w)(0) = e−2πiw(h−h̄) V (z)O(w)(0) , (3.25)

where h̄ is the J̄3
0 eigenvalue of V . This relation suggests that states in the SL(2,R) WZW

model which have local OPEs with spectrally-flowed states must obey the relation

h− h̄ ∈ Z/w . (3.26)

Indeed, this will be the case for all states we will consider. Specifically, we will always take
the left- and right-moving components of vertex operators in the SL(2,R) model to lie in
the same representation of sl(2,R)k. Specifically, this means that h and h̄ will have the
same fractional part, and so in particular23

h− h̄ ∈ Z . (3.27)

Thus, all states we will consider will have a local OPE with O(w), and all correlators we
consider will be free of branch cuts.

23More precisely, we consider the charge conjugation modular invariant spectrum, and thus j = j̄ for the
discrete representations Dj ⊗ D̄j̄ and α = ᾱ for the continuous representations Cα

j ⊗ C̄ᾱ
j . In both cases the J3

0

and J̄3
0 eigenvalues therefore differ by an integer.
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3.2 Interpretation of the non-local term

The above discussion suggests that we can consider the correlation function of spectrally-
flowed states in the SL(2,R) WZW model in terms of unflowed states in the presence of
the extended operator

N∏
a=1

exp
(
−
∫

Pa

dz
2πi log(z − λa)J3(z)

)

×
n∏

i=1
exp

(
wi

∫
Pi

dz
2πi log(z − zi)(J3(z)− xiJ

+(z))
)
,

(3.28)

where Pa and Pi are keyhole contours like those in figure 1 which wrap around λa and zi,
respectively, while avoiding the branch cuts of the logarithms.

Now, we can deform the various contours in the above operator as follows. First, we pick
a point p on the worldsheet where all of the branch cuts are chosen to meet. We then deform
the contours Pi and Pa as in the right side of figure 1, so that we are left with circular contours
wrapping zi and λa, as well as operators localised on the branch cuts of the logarithms.

The spectrally-flowed correlator can now be written in the form〈
N∏

a=1
e
−
∮

λa

dz
2πi

log(z−λa)J3(z)
V 0

k
2 , k−2

2
(λa)

n∏
i=1

e
wi

∮
zi

dz
2πi

log(z−zi)(J3(z)−xiJ
+(z))

V 0
m,j(zi, xi)

〉′

,

(3.29)
where prime indicates that we evaluate the above correlator with the inclusion of the operator

exp
(

N∑
a=1

∫ λa

p
J3 −

n∑
i=1

wi

∫ zi

p
(J3 − xiJ

+)
)
, (3.30)

represented by the ‘tails’ of the contours. Here, p is some basepoint where we have chosen to
end the contour integrals. For the sphere, it is convenient to pick the branch cuts to end at
the north pole, i.e. at p = ∞ as in figure 3. However, in the following, we will be agnostic
about the basepoint p, since we are mainly interested in the local behaviour near z = zi and
z = λa. We also recall that the number N of secret representation fields D is dictated by
the SL(2,R) spins via ∂Φ charge conservation as in equation (2.52).

We can understand this operator as a kind of modification of the action of the worldsheet
theory. Indeed, one can equivalently view the insertion of this operator as a deformation
of the action of the WZW model:

S′ = S −
N∑

a=1

∫ λa

p
J3 +

n∑
i=1

wi

∫ zi

p
(J3 − xiJ

+) . (3.31)

We can now trade the integration over the various contours for an integration over the full
worldsheet by introducing a (0, 1)-form valued distribution ∆(x→ y) which has support on
a curve connecting the points x to y. Its defining property is∫

Σ
ω ∧∆(x→ y) =

∫ y

x
ω (3.32)
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λ1

z1

z2

z3

λ2

∞

Figure 3. The support of the gauge field A(0,1) is localised to paths connecting the insertion points
zi and λa to a base point p, taken to be the north pole of the Riemann sphere.

for any (1, 0)-form ω. In terms of this distribution, we have

S′ = S +
∫
Σ

(
n∑

i=1
wi(J3 − xiJ

+) ∧∆(p→ zi)−
N∑

a=1
J3 ∧∆(p→ λa)

)
. (3.33)

So far, we have simply defined a modified action with which spectrally-flowed correlation
functions are to be computed. We can now give this action a nice physical interpretation.
Let us write

S′ = S + 1
2π

∫
Σ

Tr[J ∧A(0,1)] . (3.34)

Here, A(0,1) is the sl(2,R)-valued (0, 1)-form distribution

A(0,1) = 2π
n∑

i=1
wi(t3 − xit

+)∆(p→ zi)− 2π
N∑

a=1
t3∆(p→ λa) , (3.35)

where ta are the generators of sl(2,R) and we have defined J so that

Ja = Tr[J ta] . (3.36)

Choosing the basis

t3 =
(
1/2 0
0 −1/2

)
, t+ =

(
0 1
0 0

)
, t− =

(
0 0
−1 0

)
, (3.37)

we can write A(0,1) in the form

A(0,1) = 2π
n∑

i=1

(
wi/2 −wixi

0 −wi/2

)
∆(p→ zi)− 2π

N∑
a=1

(
1/2 0
0 −1/2

)
∆(p→ λa) . (3.38)

In this notation, the action (3.34) has the form of a WZW model with background gauge
field A(0,1). Thus, we propose that:
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the computation of a spectrally-flowed correlation function in the SL(2,R) WZW
model can be rewritten as the computation of an unflowed correlation function in
a background gauge field A(0,1).

We should note that the notion of spectral flow as a background gauge field is not a new one
(see [61, 62]). However, as far as we know, this is the first time the idea has been used in the
AdS3 literature. As we will see below, this background gauge field modifies the equations of
motion of the Wakimoto fields such that the solutions to the classical equations of motion
impose γ to be a holomorphic covering map branched at zi with poles at λa.

3.3 Equations of motion and covering maps

Given a function f on the worldsheet, we have∫
Σ
∂f ∧∆(x→ y) =

∫ y

x
∂f = f(y)− f(x) . (3.39)

Integrating the first integral by parts, we see that the distribution ∆(x → y) must satisfy
the differential equation

∂∆(x→ y) = −δ(2)(z, y) + δ(2)(z, x) . (3.40)

On the sphere, the solution to this equation is simply24

∆(p→ y) = − 1
2π ∂ (log(z − y)− log(z − p)) . (3.41)

If we specify the basepoint to be p = ∞, then we simply have

∆(∞ → y) = − 1
2π∂ log(z − y) . (3.42)

Thus, picking p = ∞, we can write the deformed action of the sl(2,R)k WZW model as

S′ = S − 1
2π

∫
d2z

(
n∑

i=1
wi(J3(z)− xiJ

+(z))∂ log(z − zi)−
N∑

a=1
J3(z) ∂ log(z − λa)

)
.

(3.43)

Now, let us consider the Wakimoto representation (2.12) in the near-boundary limit
Φ → ∞. The modified worldsheet action has the form

S′ = 1
2π

∫ (1
2∂Φ ∂Φ+

n∑
i=1

wi

Q
∂Φ ∂ log(z − zi)−

N∑
a=1

1
Q
∂Φ ∂ log(z − λa)

)

+ 1
2π

∫ (
β∂γ −

n∑
i=1

wiβ (γ − xi) ∂ log(z − zi) +
N∑

a=1
β γ ∂ log(z − λa)

)
.

(3.44)

24The complex function ∂ log(z) does not vanish everywhere, but rather has a delta-function singularity
along the branch cut of the logarithm.
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The top integral can be computed via integration by parts, and has the effect of introducing
the operator

n∏
i=1

e−wiΦ/Q(zi)
N∏

a=1
eΦ/Q(λa) . (3.45)

into the path integral. Meanwhile, the bottom line of (3.44) has the effect of changing the
equations of motion for γ. Specifically, integrating out β restricts the path integral to an
integral over fields γ satisfying

∂γ(z) =
n∑

i=1
wi(γ(z)− xi) ∂ log(z − zi)−

N∑
a=1

γ(z) ∂ log(z − λa) . (3.46)

The solutions to this differential equation are precisely those for which γ has the local behavior

γ(z) ∼ xi +O((z − zi)wi) , z → zi ,

γ(z) ∼ O
( 1
z − λa

)
, z → λa .

(3.47)

As noted in section 2, the number N of poles is determined uniquely by the SL(2,R)
spins ji by (2.52). If the value of N determined by (2.52) is an integer, then the unique
solutions to the equations of motion for γ are branched covering maps with branch points
at z = zi, as well as m extra branch points, where25

m = −Q2
(

n∑
i=1

ji −
k

2 (n+ 2g − 2) + (n+ 3g − 3)
)
. (3.48)

Thus, we see from another perspective the conclusion of section 2 — if the above constraint
on ji is chosen, then the correlation functions of the near-boundary (Φ → ∞) sector of the
sl(2,R)k WZW model localise to holomorphic covering maps.

4 The k = 1 string on AdS3 ××× S3 ×××TTT4

We begin this section with an overview of the k = 1 string theory on AdS3 × S4 ×T4, written
in the hybrid formalism. The string theory can be described using the level k = 1 current
algebra psu(1, 1|2)1. At this level, the current algebra admits a free field realisation and
we use essentially the same free field realisation as in [36, 37] but with a slightly different
notation which hopefully will make the connection to twistor variables more apparent as
we will discuss in the next section. We will again focus mainly on the AdS3 part of the
string theory as we did in the previous section. This amounts to focusing on the sl(2,R)1
subalgebra of the psu(1, 1|2)1 superalgebra. A good set of references for the interested reader
includes, but is not restricted to, [3, 35–37, 39, 40]. We then write down an explicit form of
the spectrally-flowed vertex operators. We will give multiple forms of the vertex operators,
each will have its own advantages that will be discussed in this section.

25Strictly speaking, our analysis in this section has only been for genus g = 0. However, since the
conditions (3.47) are entirely local, it is natural to assume that this analysis will extend to higher-genus
surfaces as well.
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4.1 Review of the k = 1 theory

Strings propagating in AdS3 × S3 × T4 background with one unit of NS-NS flux and zero
units of RR flux can be conveniently described by the hybrid formalism. In this formalism,
the worldsheet theory is described by a WZW model of the supergroup PSU(1, 1|2) and a
topologically twisted T4 [35]. The level k, which also represents the amount of NS-NS flux, in
the WZW action is chosen to be 1. Additionally, as is usual in the superstring, the worldsheet
theory has ghosts which in this case are bosonised and are denoted by ρ, σ.26 Furthermore,
the level one algebra possesses a free field description in terms of two pairs of symplectic
bosons (µ, π), (λ, ω),27 as well as two pairs of complex fermions (ψi, ηi), with i = 1, 2 [36, 37].
For reasons that will become clear in the next section, we will package the free fields as follows

ZA =
(
ZA

ZI

)
=


µ

λ

ψ1

ψ2

 , YA = (YA, YI) = (π, ω, η1, η2), (4.1)

where A = (A|I) and A, I = 0, 1. The worldsheet action is then a sum of three indepen-
dent parts

S = Smatter[ZA, YB] + Sghosts[ρ, σ] + ST4 . (4.2)

For the purposes of this paper, the (ρ, σ) ghosts and the T4 can be neglected since they
decouple from all computations. Indeed, the usual ansatz [63] for a full vertex operator reads

Vfull = V (ZA, Y A)V (ZI , Y I)e2ρ+iσVT4 . (4.3)

Since the vertex operators and the action functional factorise, computations of any corre-
lators will also factorise into uncoupled pieces and one can focus on each of the factors
in equation (4.3).

The ‘matter’ fields YA, ZA are taken to satisfy the free field OPEs

YB(z)ZA(w) ∼ − δ A
B

z − w
(4.4)

and have worldsheet conformal dimension ∆(YA) = ∆(ZA) = 1
2 . Note that the order of

the indices matters, i.e.

δ A
B = diag(1, 1, 1, 1) ,
δAB = diag(1, 1,−1,−1)

(4.5)

26The σ ghost is the bosonising field of the b, c ghost, however, the definition of ρ is more complicated,
see [35].

27The symplectic bosons notation used in [11, 36, 37] is related to our notation here by the identification

λ ∼ ξ+, ω ∼ η−

µ ∼ −ξ−, π ∼ η+.
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because of the Grassmann statistics of the complex fermions. Bilinears in these fields have
conformal weight ∆ = 1, and thus define worldsheet currents. The algebra generated by these
currents is gl(2|2)1. In order to restrict to psu(1, 1|2), we gauge the current

Z = 1
2YAZ

A , (4.6)

which generates simultaneous scalings Y → αY , Z → α−1Z. See [37] and [36] for more details.
The matter action is a first-order action in the fields YA and ZA, namely

Smatter =
1
2π

∫
Σ
YA(∂ + a)ZA . (4.7)

Here, we are only considering the chiral half of the theory, although everything we discuss
will extend to the full non-chiral theory. Here, a is (0, 1)-form which acts as a u(1) connection
gauging the symmetry Z. In the path integral of the theory, we will be instructed to integrate
over all such connections, parametrised by the Jacobian Jac(Σ). For the moment, however,
we will consider the theory with the gauge fixing a = 0 (such a choice is always possible on
the sphere), and return to the discussion of nonzero a in section 4.6.

From the free fields above, we can write down the sl(2,R)1 currents as bilinears of such
fields. Writing again ZA, YA as the bosonic parts of ZA, YA, we can write the sl(2,R)1
currents as

Ja = Tr[Y taZ] , (4.8)

where ta are the sl(2,R) generators given in eq. (3.37). Explicitly, this reads

J3 = 1
2 (πµ− ωλ)

J+ = λπ

J− = −µω .

(4.9)

One can check that they satisfy the correct OPEs for the current algebra sl(2,R)1, namely,

J3(z)J3(w) ∼ −1
2

1
(z − w)2

J3(z)J±(w) ∼ ± J±

z − w

J+(z)J−(w) ∼ −2J3(w)
z − w

+ 1
(z − w)2 .

(4.10)

Furthermore, the current Z can be written as U + V with

U = 1
2(ωλ+ πµ) , V = 1

2(η1ψ
1 + η2ψ

2) . (4.11)

Highest-weight states in the sl(2,R)1 model are obtained from highest-weight Ramond-
sector states in the free field algebra. Specifically, we can introduce a basis of quantum
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numbers m, j and define the Ramond-sector highest-weight representation via the actions

µ0 |m, j⟩ =
∣∣∣∣m+ 1

2 , j −
1
2

〉
λ0 |m, j⟩ =

∣∣∣∣m− 1
2 , j −

1
2

〉
π0 |m, j⟩ = (j −m)

∣∣∣∣m− 1
2 , j +

1
2

〉
ω0 |m, j⟩ = (j +m)

∣∣∣∣m+ 1
2 , j +

1
2

〉
.

(4.12)

Note that the above definition of ground states induces exactly the same action of sl(2,R) zero
modes as in equation (2.17). Indeed, using the definitions of Ja in terms of µ, λ, π, ω, we find

J3
0 |m, j⟩ = m |m, j⟩ , J±

0 |m, j⟩ = (m± j) |m± 1, j⟩ . (4.13)

Note furthermore that

U0 |m, j⟩ =
(
j − 1

2

)
|m, j⟩ , V0 |m, j⟩ = 0 , (4.14)

so that the Z0 = 0 constraint enforces j = 1/2 for these states.

4.2 Spectral flow

Spectral flow in the sl(2,R)1 theory can be similarly defined as in section 2, that is, as an
automorphism of the mode algebra of the worldsheet free fields. Specifically, it acts on the
bosonic fields ZA, YA as [37, 40]

σw(λr) = λr−w
2
, σw(πr) = πr−w

2
,

σw(µr) = µr+w
2
, σw(ωr) = ωr+w

2
.

(4.15)

One can check easily that this definition reproduces equation (2.20) when k = 1. Furthermore,
this action also preserves the commutation relations between the symplectic bosons and
hence, is indeed an automorphism at the level of symplectic bosons. The action of spectral
flow on the modes then induces the action on the states. Let us again denote by |m, j⟩(w)

the image of a state |m, j⟩ under the action of spectral flow σw. These states must satisfy
the following property

Am |m, j⟩(w) =(σw(Am) |m, j⟩)(w) , (4.16)

where Am is the mth mode of an operator A(z). Applying eq. (4.16) to the modes of
symplectic bosons, we deduce that

Am |m, j⟩(w) = 0, m >
w

2
Bm |m, j⟩(w) = 0, m > −w2 ,

(4.17)

where A ∈ {λ, π} and B ∈ {µ, ω}.
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4.3 Bosonisation

Shortly, we will write down an explicit form of spectrally-flowed vertex operators. It turns
out that the crucial ingredient in doing so is the bosonisation of the symplectic bosons. Note
that a pair of symplectic bosons has exactly the same OPE as a βγ system. Since the βγ
system admits a bosonisation, so do the symplectic bosons. Let

ϕi(z)ϕj(w) ∼ −δij ln(z − w) ∼ κi(z)κj(w) (4.18)

where i = 1, 2. The bosonisation of the symplectic bosons reads

λ = e−ϕ2−iκ2 , ω = eϕ2+iκ2∂iκ2,

µ = e−ϕ1−iκ1 , π = eϕ1+iκ1∂iκ1 .
(4.19)

In this bosonisation, the sl(2,R)1 currents become

J3 = −1
2∂(ϕ1 − ϕ2)

J+ = eϕ1+iκ1−ϕ2−iκ2∂iκ1

J− = −eϕ2+iκ2−ϕ1−iκ1∂iκ2 .

(4.20)

To facilitate interchanging between the bosonised and the rebosonised forms, we include here
some identities of the exponentials of the bosonising fields [64]

e(l+w)ϕ1+ilκ1 =
(
∂wµ

w!

)−l

δw(µ), e(l+w)ϕ2+ilκ2 =
(
∂wλ

w!

)−l

δw(λ) ,

e(l−w)ϕ1+ilκ1 = R

(∂wµ−1

w!

)l

δw(π)

 , e(l−w)ϕ2+ilκ2 = R

(∂wλ−1

w!

)l

δw(ω)

 , (4.21)

where w is a positive integer and l is a real number. The notation δw(f) is the same as
defined in section 2. Finally, we put the radial ordering symbol R[· · · ] in the second line of
equation (4.21) to emphasise that the last line is really a radial ordering between the two
terms. However, in the following we will largely ignore this subtlety since we are going to
work with path integrals and radial ordering becomes a normal product.

4.4 Spectrally-flowed vertex operators

Our goal in this section is to find closed-form expressions for spectrally-flowed vertex operators,
but now in the free field realisation of the psu(1, 1|2)1 theory. We will make use of the idea of
wrapping a non-local operator to create spectrally-flowed vertex operators. Firstly, observe
that the operator

µ−j−m(z)λ−j+m(z) (4.22)

satisfies the OPE version of eq. (4.13). However, this vertex operator is in the NS sector
but the vertex operator we want is in the R sector. In order to obtain the R sector vertex
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operator, we wrap it with a non-local operator constructed by using the current −1
2Y · Z.28

The R sector vertex operator is

V 0
m,j(y, x = 0) = exp

(
−1
2

∫
P

dz
2πi(Z · Y )(z) log(z − y)

)
µ−j−m(y)λ−j+m(y). (4.23)

Using the bosonisation we introduced and repeating the manipulation in section 3.1, this
operator can be written as

V 0
m,j(y, x = 0) = exp

((
j +m− 1

2

)
ϕ1(y) + (j +m)iκ1(y)

+
(
j −m− 1

2

)
ϕ2(y) + (j −m)iκ2(y)

)
. (4.24)

To obtain a w spectrally-flowed vertex operator, we then wrap by the non-local operator (3.1)
around the vertex operator in eq. (4.24). The final result reads29

V w
m,j = exp

((
j +m+ w − 1

2

)
ϕ1 + (j +m)iκ1

+
(
j −m− w + 1

2

)
ϕ2 + (j −m)iκ2

)
.

(4.25)

This expression holds for generic w. In the case in which w is odd, using eq. (4.21) we can
rebosonise the vertex operator (4.25) and write it in terms of the free fields as

V w
m,j =

 ∂
w−1

2 µ(
w−1
2

)
!

−j−m

δw−1
2

(µ)×

∂ w+1
2 λ−1(

w+1
2

)
!

j−m

δw+1
2
(ω) . (4.26)

Note that this vertex operator bears a strong resemblance to the Wakimoto vertex operators
in section 2.

There is another form of eqs. (4.25) and (4.26) that will be useful later when considering
the localisation property. Substituting the relations ∂ϕ1 = −µπ, ∂ϕ2 = −ωλ into eq. (4.26),
we have

V w
m,j(z) =

∂ w−1
2 µ(z)(
w−1
2

)
!

−j−m

exp
(
−w − 1

2

∫ z

µπ

)

×

∂ w+1
2 λ(z)−1(

w+1
2

)
!

j−m

exp
(
w + 1
2

∫ z

ωλ

)
.

(4.27)

The x basis

Just as in the case of general k, we are ultimately interested in computing correlation
functions of the form 〈

n∏
i=1

V wi
mi,ji

(xi, zi)
〉
, (4.28)

28Note that this current has a trivial OPEs with respect to the sl(2,R)1 currents and hence, does not change
the sl(2,R)1 zero mode action in (2.17).

29This is the same as equation (2.16) of [14], with the identification ϕ2,here = −ϕ2,there and κ2,here = −κ2,there

and with ϕ1, κ1 unchanged.
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where xi are coordinates on the boundary sphere. As described in section 2, we define
the coordinate dependence of x by taking a vertex operator V and conjugating it with the
boundary translation operator exJ+

0 . Specifically, we define

exJ+
0 V (z)e−xJ+

0 = V (x, z) . (4.29)

Since we can write J+ in terms of the symplectic bosons as J+ = πλ, we can compute
the effect of x-translation on the free fields very easily. Specifically, we have

exJ+
0 λe−xJ+

0 = λ, exJ+
0 πe−xJ+

0 = π ,

exJ+
0 µe−xJ+

0 = µ− xλ, exJ+
0 ωe−xJ+

0 = ω + xπ .
(4.30)

From these relations, we can immediately read off the form of the vertex operator V w
m,j in

the x-basis. Specifically, equations (4.26), (4.27) become

V w
m,j(x, z) =

∂ w−1
2 (µ− xλ)(

w−1
2

)
!

−j−m

δw−1
2

(µ− xλ)

×

∂ w+1
2 λ−1(

w+1
2

)
!

j−m

δw+1
2
(ω + xπ) ,

=

∂ w−1
2 (µ− xλ)(

w−1
2

)
!

−j−m

exp
(
−w − 1

2

∫ z

(µ− xλ)π
)

×

∂ w+1
2 λ−1(

w+1
2

)
!

j−m

exp
(
w + 1
2

∫ z

(ω + xπ)λ
)
.

(4.31)

Let us briefly comment on the form of these vertex operators. First, the first line is only
valid for w odd. For w even, the vertex operators live in the Ramond sector and need to be
treated somewhat more carefully. Second, the above vertex operators, when inserted into the
path integral at zi, restrict the integration to field configurations which satisfy

µ(z)− xλ(z) ∼ O
(
(z − zi)

w−1
2
)
, ω(z) + xπ(z) ∼ O

(
(z − zi)

w+1
2
)
. (4.32)

This tells us that spectrally-flowed vertex operators in the k = 1 theory are to be interpreted as
operators which apply constraints on the space of allowed field configurations of fundamental
fields, analogously to the condition that spectral flow places on the Wakimoto fields for
sl(2,R)k discussed in section 2.

The W field

In order to calculate correlators of spectrally-flowed states, there is one more subtlety that
needs to be addressed in k = 1 theory. In the hybrid formalism, one must dress n+ 2g − 2
of the fields in any correlation function with operators Q−1 analogous to picture-changing
operators in the RNS formalism. However, as pointed out in [37], the effect of introducing
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these operators is to lower the value of ji by one unit. Thus, the overall sum of the charges
ji is modified to

n∑
i=1

(
ji −

1
2

)
→

n∑
i=1

(
ji −

1
2

)
− (n+ 2g − 2) . (4.33)

However, the physical state conditions in the symplectic boson theory restricts states to have
sl(2,R) spin j = 1/2, see section 4.1. Thus, after acting with the n+ 2g − 2 copies of Q−1,
the total sum on the right-hand side of (4.33) becomes −(n + 2g − 2).

However, such a correlator must vanish identically, since ji − 1/2 is the eigenvalue of
the current

U = 1
2(ωλ+ πµ) , (4.34)

and therefore the sum of ji − 1/2 must vanish in any nonvanishing correlator by charge
conservation of U0.

The resolution, as was explained in [37] is to insert a certain number (n + 2g − 2) of
so-called ‘W fields’. These fields live in the vacuum representation with respect to sl(2,R)1,
but are non-trivial with respect to the free fields. In order to account for the nonvanishing
U0 charge, W must satisfy [U0,W ] = 1. One can construct W as the unique state satisfying

π(z)W (y) ∼ O
( 1
z − y

)
, µ(z)W (y) ∼ O (z − y) ,

λ(z)W (y) ∼ O (z − y) , ω(z)W (y) ∼ O
( 1
z − y

)
,

(4.35)

with [J3
0 ,W ] = 0. This identifies W with

W = eϕ1+ϕ2 = δ(µ)δ(λ) . (4.36)

in the bosonised language. Equivalently, we can write

W = exp
(
−
∫
(ωλ+ πµ)

)
. (4.37)

Therefore, as was proposed in [37], the correct correlators to calculate take the form〈n+2g−2∏
α=1

W (uα)
n∏

i=1
V wi

mi,ji
(xi, zi)

〉
, (4.38)

where the locations uα of the W fields are taken to be arbitrary, and should drop out of
any final calculation.

Readers may notice a parallel between the W field of [37] discussed in this section and
the ‘secret’ representation D of [23] discussed in section 2. Both are singlets with respect
to sl(2,R)1 but nontrivial with respect to the free field algebras which generate sl(2,R)1,
and both are required to define nonvanishing correlation functions. However, both operators
should be thought of as signalling a quirk in their respective free field theories. In the
Wakimoto construction of section 2, the D field signals the need to compactify the target
space of γ from C to CP1, while in the symplectic boson realisation of this section, the
W field is an artifact of the gauging from gl(2|2)1 to psu(1, 1|2)1, for which W signals a
nontrivial gauge field configuration around some point. As far as we know, there are no
further similarities between these two ‘auxilliary’ fields.
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4.5 Localisation of correlation functions

Just as correlators of the sl(2,R)k WZW model localise onto holomorphic covering maps
provided that the j-constraint eq. (2.66) is satisfied, the psu(1, 1|2)1 WZW model also admits
such a localisation property. In fact, all correlation functions in the psu(1, 1|2)1 localise as was
shown in [37, 38]. Here we will explain how this localisation property arises in the path integral.

The localising correlators in the psu(1, 1|2)1 model are described by holomorphic covering
maps Γ which satisfy the local behaviour

Γ(z) ∼ xi + ai(z − zi)wi + · · · , z → zi , (4.39)

where zi is the insertion point of a spectrally-flowed operator on the worldsheet, and xi is
its location on the boundary sphere. In [37, 38], this localisation property was shown via
a Ward identity analysis on the worldsheet. Let us briefly describe how this works in the
path integral prescription we have developed.

As mentioned above, spectrally-flowed vertex operators in the k = 1 theory take the
form (4.31)

V w
m,j(x, z) = Ow

m,j(x, z)δw−1
2

(µ− xλ)δw+1
2
(ω + xπ) . (4.40)

where we have defined the operator

Ow
m,j(x, z) =

∂ w−1
2 (µ− xλ)(

w−1
2

)
!

−j−m∂ w+1
2 λ−1(

w+1
2

)
!

j−m

(4.41)

for notational convenience. The correlation function we want to consider is eq. (4.38), which
in this notation takes the form〈n+2g−2∏

α=1
δ(µ(uα))δ(λ(uα))

n∏
i=1

Owi
mi,ji

(xi, zi)δwi−1
2

(µ(zi)− xiλ(zi))δwi+1
2

(ω(zi) + xiπ(zi))
〉
.

(4.42)

Now, considering this correlator in the path integral, we would like to integrate out the fields
π, ω. This can be done by using the formal delta-function identity

δwi+1
2

(ω(zi) + xiπ(zi)) =
∫

dζi
0 . . . dζi

wi−1
2

exp

i
wi−1

2∑
ℓi=0

(−1)ℓζi
ℓi
∂ℓi(ω(zi) + xiπ(zi))

 .

(4.43)

Inserting this identity into the above correlation function has the effect of shifting the free
action (4.7) to30

1
2π

∫
Σ

π
∂µ− 2πi

n∑
i=1

wi−1
2∑

ℓi=0
ζi

ℓi
xi∂

ℓiδ(z, zi)

+ ω

∂λ− 2πi
n∑

i=1

wi−1
2∑

ℓi=0
ζi

ℓi
∂ℓiδ(z, zi)


 .

(4.44)
30Relative to (4.7), we have set a = 0 for simplicity. We will see below how this argument is modified

if a ̸= 0.
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Integrating out ω, π then imposes the equations of motion

∂µ = 2πi
n∑

i=1

wi−1
2∑

ℓi=0
ζi

ℓi
xi∂

ℓiδ(z, zi) ,

∂λ = 2πi
n∑

i=1

wi−1
2∑

ℓi=0
ζi

ℓi
∂ℓiδ(z, zi) .

(4.45)

That is to say, the path integral is taken to be over meromorphic µ, λ which have poles of order
wi+1
2 , and no other poles. Furthermore, the coefficients of the poles are precisely chosen so that

µ(z)− xiλ(z) ∼ O((z − zi)0) , (4.46)

i.e. so that µ(z)− xiλ(z) has no pole near zi. Let F be the space of all such pairs, i.e.

F :=
{
(µ, λ)

∣∣∣∣µ, λ ∼ O
(
(z − zi)−

wi+1
2

)
, µ(z)− xiλ(z) ∼ O((z − zi)0) near zi

}
.

(4.47)

This space has complex dimension31

dim(F) =
n∑

i=1

wi + 1
2 , (4.48)

and is parametrised by the Lagrange multipliers ζi
ℓi

. Ignoring Jacobian factors, integrating
out π, ω effectively reduces the path integral to

∫
F
D(λ, µ)

n+2g−2∏
α=1

δ(µ(uα))δ(λ(uα))
n∏

i=1
Owi

mi,ji
(xi, zi)δwi−1

2
(µ(zi)− xiλ(zi)) . (4.49)

The delta functions in the path integral demand that the first wi−1
2 derivatives of µ− xiλ

vanish near z = zi, and furthermore that µ, λ both have simple zeroes near z = uα. This
reduces the above integral to a space of (virtual) dimension

dim(F)− 2(n+ 2g − 2)−
n∑

i=1

wi − 1
2 = −(n+ 4g − 4) . (4.50)

Thus, a generic correlator in the k = 1 worldsheet theory will vanish, unless n+ 4g − 4 of
the parameters in the theory are fine-tuned. Of these, n+ 3g − 3 are taken care of by the

31This can be computed from the Riemann-Roch theorem as follows. Let L be the holomorphic line bundle
defined by spinors with poles of order wi+1

2 at z = zi. This bundle has degree deg(L ) = g − 1 +
∑

i
wi+1

2 ,
and so by Riemann-Roch (assuming no correction term), the space H0(L , Σ) of holomorphic sections of L

has dimension
dim H0(L , Σ) = 1 − g + deg(L ) =

∑
i

wi + 1
2 .

Now, F is the set of all pairs of sections of L such that µ−xiλ has no pole at z = zi. This space has dimension
2 dim H0(L , Σ)−

∑
i

wi+1
2 =

∑
i

wi+1
2 , as claimed. If there is a nonzero correction term in the Riemann-Roch

theorem, then nontrivial π, ω zero-modes must be included in the path integral for a non-vanishing result.
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moduli space Mg,n which we will integrate over in the path integral. We will comment in
the next section on the role of the other g − 1 moduli.

The localised values of the worldsheet fields will be pairs (µ, λ) satisfying all of the
above constraints. Consider the ratio

Γ(z) = µ(z)
λ(z) , (4.51)

where we understand this ratio to be evaluated on the solution to the above constraints. Since
λ, µ are chiral fields of conformal dimension ∆ = 1/2, Γ is a meromorphic function. Since λ,
µ share all of the same poles and n+ 2g − 2 of the same zeroes, the poles of Γ are given by
the zeroes of λ which are not located at z = uα. The number of such zeroes is found to be

Z(λ)− (n+ 2g − 2) = P (λ) + g − 1− (n+ 2g − 2)

= 1− g +
n∑

i=1

wi − 1
2 ,

(4.52)

where Z(λ), P (λ) are the total number of zeroes and poles of λ, respectively, and we used the
fact that spinors satisfy Z(λ)−P (λ) = g− 1. Thus, as a meromorphic function, Γ has degree

deg(Γ) = 1− g +
n∑

i=1

wi − 1
2 . (4.53)

Next, near z = zi, we have

Γ(z)− xi =
µ(z)− xiλ(z)

λ(z) ∼ O((z − zi)wi) . (4.54)

Hence, viewed as a topological map Γ : Σ → CP1, Γ has a branch point at z = zi. Therefore,
Γ satisfies all of the properties of a holomorphic covering map from the worldsheet to the
boundary of AdS3. The fact that the degree of Γ is given by the Riemann-Hurwitz formula
eq. (4.53) implies that Γ has no other such branch points. This reproduces the result of [37, 38]
that the correlator of k = 1 theory localises onto holomorphic covering maps.

In the next section we will interpret this localisation property in terms of the set of zero
modes of a certain kinetic operator, and we will explicitly calculate the result of the path
integral, up to an overall Jacobian coming from the delta functions.

4.6 Localisation as a zero-mode condition

To get another perspective on localisation in the k = 1 worldsheet theory, we can use the idea
of section 3 and re-express spectral flow as a background gauge field in the path integral.

As discussed above, we can write a state in the spectrally-flowed sector of the k = 1
theory in the form (4.31)

V w
m,j(x, y) =

∂ w−1
2 (µ− xλ)(

w−1
2

)
!

−j−m∂ w+1
2 λ−1(

w+1
2

)
!

j−m

× exp
(∫ y ((w + 1

2

)
(ω + xπ)λ−

(
w − 1
2

)
(µ− xλ)π

))
.

(4.55)
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The factors in the top line are simply local functions of the symplectic bosons, while the
bottom line is a non-local factor which is responsible for the localisation property. Note
that we can write the bottom line as

exp
(∫ y (

−w(J3 − xJ+) + U
))

. (4.56)

Up to the factor of the current U (which appears as a consequence of gauging gl(2) to sl(2,R)),
this is precisely the nonlocal tail of vertex operators explored in section 3.

Alternatively, we can write this nonlocal tail as

exp

− ∫ y

Y

w−1
2 −wx
0 −w+1

2

Z
 = exp

− ∫ y (
π ω

)w−1
2 −wx
0 −w+1

2

(µ
λ

) , (4.57)

where we are focusing only on the bosonic components of Y and Z. Now, this integral is
formally defined by integrating along a path on the worldsheet Σ which ends at y. Up to
a choice of basepoint, we can use the arguments in section 3 to replace this integral with
an integral over the full worldsheet weighted against a distribution which has support only
on that path. We thus write

∫ z

Y

w−1
2 −wx
0 −w+1

2

Z = 1
2π

∫
Σ
Y Aw(x, y)Z , (4.58)

where Aw(x, z) is some appropriate distribution. On the sphere we can explicitly write

Aw(x, y) = −

w−1
2 −wx
0 −w+1

2

 ∂ log(z − y) , (4.59)

such that the support of Aw(x, y) is precisely the branch cut of the logarithm.32

In order to compute correlation functions, we will also need an expression for the W
field. This can be written as

W (y) = exp
(
−
∫ y

Y · Z
)
= exp

( 1
2π

∫
Σ
Y · Z ∂ log(z − y)

)
. (4.60)

Now, let us now consider a full spectrally-flowed correlator〈n+2g−2∏
α=1

W (uα)
n∏

i=1
V wi

mi,ji
(xi, zi)

〉
. (4.61)

In the path integral, we can write this correlator as∫
D(Y,Z) e−S[Y,Z]

n∏
i=1

Owi
mi,ji

(xi, zi) , (4.62)

where the action is

S[Y,Z] = 1
2π

∫
Σ
Y (∂ + a)Z + 1

2π

∫
Σ
Y AZ , (4.63)

32Again, we are ignoring the contribution from the basepoint of the integral.
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and Ow
m,j(x, z) is defined in (4.41). Here, a is a flat u(1) connection (see the discussion

around equation (4.7)), and A is given by

A = −
n∑

i=1
Awi(xi, zi)−

n+2g−2∑
α=1

(
1 0
0 1

)
∂ log(z − uα)

= −
n∑

i=1

wi−1
2 −wixi

0 −wi+1
2

 ∂ log(z − zi)−
n+2g−2∑

α=1

(
1 0
0 1

)
∂ log(z − uα) .

(4.64)

Thus, we see again that the computation of spectrally-flowed correlation functions can be
recast into the problem of computing correlators of local operators in the presence of a
background gauge field a + A.

Since the worldsheet theory is Gaussian in the k = 1 case, we can compute the path
integral using the saddle-point approximation. Specifically, we can integrate out Y in the
path integral, and we are left with the delta functional

∫
DZ δ

(
(∂ + a+A)Z

) n∏
i=1

Owi
mi,ji

(xi, zi) , (4.65)

where Ow
m,j(x, z) was defined in eq. (4.41). We can compute this path integral by (1) finding

the set of solutions to the delta function, (2) inserting those solutions into the integrand,
weighted by an appropriate Jacobian and (3) sum/integrate over the space of all such solutions.

Algebraically, the solutions to the delta function are given by the set of zero modes of
the elliptic operator ∂ + a+A acting on the bundle S ⊕ S, where S is the spinor bundle of Σ.
Assuming that this operator has trivial cokernel, the dimension of its kernel can be worked
out by the Hirzebruch-Riemann-Roch theorem. First, we can think of ∂ + a+A acting on
S ⊕ S as the operator ∂ acting on a rank-2 bundle E with curvature

F = FS⊕S + ∂A+ ∂a

= FS⊕S − 2πi
n∑

i=1

wi−1
2 −wixi

0 −wi+1
2

 δ(2)(z − zi)− 2πi
n+2g−2∑

α=1

(
1 0
0 1

)
δ(2)(z − uα) ,

(4.66)

where FS⊕S is the curvature of S ⊕ S. The virtual dimension of the space of holomorphic
sections of this bundle is then given by the index33

vdim H0(E,Σ) =
∫
Σ

ch(E) td(TΣ) . (4.67)

The Chern character and Todd class are given by

ch(E) = 2 + c1(F ) , td(TΣ) = 1 + 1
2c1(TΣ) . (4.68)

33Here, the term ‘virtual dimension’ is meant in the usual sense of the number of degrees of freedom minus
the number of constraints, and can therefore be negative. More precisely, it is given by the combination
dim H0(E, Σ) − dim H1(E, Σ). Alternatively, by Serre duality, one can think of the index as computing the
number of Z zero modes minus the number of Y zero modes.
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The number of zero modes is therefore

vdim H0(E,Σ) =
∫
Σ
(c1(TΣ) + c1(F )) = −(n+ 4g − 4) , (4.69)

where we have used ∫
Σ
c1(TΣ) = 2− 2g ,

∫
Σ
c1(FS⊕S) = 2g − 2 . (4.70)

Thus, the integral (4.65) localises to a space of zero modes with virtual dimension
−(n+ 4g − 4). However, in the full string theory calculation, we will need to integrate over
the moduli space Mg,n of complex structures as well as the moduli space Jac(Σ) of flat u(1)
connections a (the Jacobian of Σ). Thus, the total dimension of the path integral increases to

−(n+ 4g − 4) + dim(Mg,n) + Jac(Σ) = 1 . (4.71)

In appendix A, we explicitly compute this zero mode, and find that it takes the form

Z = ω√
∂Γ

(
Γ
1

)
, (4.72)

where Γ is a holomorphic covering map and ω is a particular (1, 0)-form with simple poles
at z = zi and simple zeroes at z = uα. These are precisely the localising solutions found
in [65], and only exist for a discrete set of worldsheet moduli and u(1) connections a. Note
that on these localising solutions we have

∂
wi−1

2 (µ(zi)− xiλ(zi))(
wi−1
2

)
!

=
(
Res
z=zi

ω

)(
aΓi
wi

)1/2

,

∂
wi+1

2 λ(zi)−1(
wi+1
2

)
!

=
(
Res
z=zi

ω

)−1
(wia

Γ
i )1/2 .

(4.73)

Thus, we can compute the integrand of (4.65) and we find

n∏
i=1

Owi
mi,ji

(xi, zi) =
n∏

i=1

(
w

−1/2
i Res

z=zi
ω

)−2ji

(aΓi )−mi . (4.74)

The mi dependence reproduces exactly that of the dual symmetric orbifold CFT [29, 58],
and agrees with the Ward identity analyses of [23, 24, 37, 38]. While the above analysis was
only done for the bosonic half of the psu(1, 1|2)1 WZW model, we expect this strategy to
be easily generalisable to include the worldsheet fermions as well.

5 Relationship to twistor theory

The relationship (4.51) between the worldsheet free fields and covering map Γ has a natural
geometric interpretation. We can think of [µ : λ] has homogeneous coordinates in CP1 and
Γ as a local coordinate on the same manifold. Equation (4.51) then tells us that these
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two coordinates must coincide. This relation was first found in [37], where the authors
noticed that the equation

µ(z)− Γ(z)λ(z) = 0 (5.1)

holds inside of every correlation function. Due to the similarity of this relation with the
‘incidence’ relation of twistor theory, it was suggested by the authors of [37] that the k = 1
worldsheet theory on AdS3 × S3 × T4 may share a close relation with a 2-dimensional version
of the Berkovits-Witten twistor string [45, 66].

In this section, we collect the features of the k = 1 string model that have an immediate
twistorial interpretation and discuss their relation to twistor theory. We introduce the salient
features of the twistor space for S2. Then we discuss how the target space and the functional
form of the vertex operators relate to known twistor spaces and twistor objects, and discuss
the appearance of the incidence relation.

This twistorial interpretation was a motivation for the proposal [67, 68] in the setting of
AdS5/CFT4, in which they obtain a candidate for the string theory dual to free 4d N = 4
super Yang-Mills. The correspondence between these free field models and the twistor string
promises to be fruitful, and more work is needed to better understand the precise connection.

5.1 Twistors for S2

Consider the embedding of S2 as the celestial sphere, the projectivised null cone of the
origin of R3,1:

Xµ := (t, x,X1, . . . , X2) ∈ R1,1 × R2 ,

ds2 = ηµνdXµdXν = −dt2 + dx2 + (dXi)2 ,

S2 ∼=
{X2 = 0} \ {the origin}
Xµ ∼ rXµ, r ∈ R∗ .

(5.2)

In words, this means that each null generator through the origin corresponds to a point on
S2. In order to identify a particular locus in R3,1 as the S2, we must gauge fix the scaling
redundancy by picking one point on each null generator. This is often done by choosing a
Cauchy slice and taking its intersection with the null cone. The resulting space is conformal
to S2. Although the action of SO(3, 1) on points on the R3,1 embedding space is linear,
the realisation of SO(3, 1) as the (double cover of the global) conformal group acting on
points in S2 is nonlinear. In this context, this can be read off from the fact that Lorentz
transformations will in general move points away from the slice that supplies our gauge
fixing condition, and the scaling transformation required to move them back onto the slice,
resulting in the nonlinearity.

In contrast, spinors for R3,1 will of course transform linearly under the (global part of
the) 2 dimensional conformal group. The spinor for the 2 dimension higher embedding space
is called a twistor34 for S2. The embedding space Lorentz group is SO(1, 3) ∼= SL(2,C)/Z2

34There is a pedagogical introduction to the twistor space for S2 in the appendix of [69] for the inter-
ested reader.
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whose Weyl spinors are 2 component objects transforming in the fundamental of SL(2,C).
These 2 component objects are the twistors for S2

ZA = (Z0, Z1) ∈ C2 . (5.3)

A twistor is related to the 2d spacetime via the incidence relation

Z0 = xZ1, x ∈ C ∼= R2 ⊂ S2 . (5.4)

Since the zero twistor has no physical information and the scale of the twistor compo-
nents is irrelevant in the relation to spacetime, we frequently work with projective twistor
space PT := CP1

PT := {ZA ∈ C2 \ {0}}/{ZA ∼ rZA, r ∈ C∗} . (5.5)

There is a global description of the S2 spacetime as a CP1 via Bloch sphere coordinates
(see eq. (B.6)) that is more convenient to work with. Define homogenous coordinates
xA := (x0, x1) ∈ CP1. Indices can be raised and lowered by the SL(2) invariant two-index
Levi-Civita symbol, with the “upper left-lower right” index raising and lowering convention

1 = ϵ01 = ϵ10, xA = ϵABxB . (5.6)

We define the SL(2) invariant contraction in the usual way as

⟨xy⟩ := ϵABxByA = xAyA = −xBy
B = ϵBCx

CyB . (5.7)

The incidence relation can be written in the following SL(2) covariant way

⟨xZ⟩ = 0 . (5.8)

We see that the previous given form of the incidence relation is equivalent on the patch of
CP1 on which x1 ̸= 0 and under the identification x0/x1 =: x ∈ C ∼= R2, the local coordinate
on the patch. Explicitly, we have that

⟨xZ⟩ = 0 ⇐⇒ x1Z0 − x0Z1 = 0 ⇐⇒ Z0 = x0

x1
Z1, x1 ̸= 0 . (5.9)

The patch of CP1 in which x1 ̸= 0 precisely misses the point (x0, 0) ∼ (1, 0) ∈ CP1, which
is the point at ∞ in the C ∼= R2 patch of S2 coordinatised by x. On the other canonical
patch x0 ̸= 0, the incidence relation reads ⟨xZ⟩ = 0 ⇐⇒ x1

x0Z
0 = Z1, with local coordinate

x′ := x1/x0. The transition function between the patches under x′ = 1/x, the inversion
map, is holomorphic away from the points x1 = 0 and x0 = 0. It is a straightforward
exercise to check that under this identification, the action of the global conformal group
on the local coordinate x can be realised by the natural action of SL(2,C) acting on the
homogenous coordinate xA.

It is a striking feature of twistors in (conformally flat) 2d that the twistor space and the
real Euclidean spacetime are equivalent (see the appendix of [69]). The incidence relation
defines a bijection between the spaces. Given a twistor ZA, the locus of the incidence relation
is the unique point in xA ∈ CP1 given by xA ∼ ZA. Similarly, given a spacetime point xA,
the locus of the incidence relation is the unique twistor ZA given by ZA ∼ xA. Once we add
supersymmetry, it is no longer true that the incidence relation defines a bijection. Rather,
the locus of the incidence relation is a 0|N -dimensional space.
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5.2 Target space interpretation

The matter action we are considering in eq. (4.7) bears a striking resemblance to the Berkovits-
Witten twistor string [45] (for N = 4 in 4d), and in fact admits an interpretation as a twistor
string for N = 2 in 2d [37].

Analogously to the bosonic case, the N = 2 supertwistors are projectivised spinors for the
complexified global N = 2 superconformal group (transform in the fundamental of SLC(2|2)),
which means that the N = 2 2d supertwistor space is PT := CP1|2. Our ZA variables
can therefore be interpreted as homogenous coordinates on PT, i.e. whose components are
sections of the C∗ line bundle O(1) over CP1|2. YA can therefore be interpreted as a dual
supertwistor, whose components are sections of O(−1) over CP1|2. In each case, the rescaling
weight 1, −1 can be read off from the charge under the gauged symmetry current Z · Y ,
which identifies Z ∼ rZ, Y ∼ 1

rY .
However ZA(z), YB(z) are sections of K1/2

Σ and therefore transform nontrivially under
worldsheet conformal transformations. The worldsheet Weyl rescaling (that rescales them
paralelly) and the Z ·Y rescaling (that rescales them oppositely) together amount to allowing
ZA, YB to scale independently. The argument can therefore be made that ZA, YB should be
thought of as homogenous coordinates on CP1|2×CP1|2. Together with interpreting the gauge
field a as a Lagrange multiplier enforcing Z ·Y = 0, the target space can be interpreted as the
quadric Z · Y = 0 inside CP1|2 × CP1|2. This is the real Euclidean ambitwistor space of the
boundary S2, which is also the (complex codimension 1) boundary of the AdS3 minitwistor
space [70], and probably has holographic implications that await further investigation.

Note that this observed ambiguity in the target space interpretation is also present in
the Berkovits-Witten twistor string. In their analysis, they work with gauge fixings that
trivialise a (gauge fixing a to a flat connection) and subscribe to the former interpretation,
and we will follow suit.

5.3 Vertex operator interpretation

At zero units of spectral flow, the bosonic part of vertex operators have an interpretation in
terms of meromorphic twistor functions called elementary states [46]. Consider homogenous
coordinates xA := (x0, x1) ∈ CP1, which is to be interpreted as the real boundary 2-sphere
(see eq. (B.6)). The antipodal map on CP1 is denoted by xA → x̂A

x̂A =
(
−x̄1
x̄0

)
, ⟨xx̂⟩ = |x0|2 + |x1|2 ≥ 0 . (5.10)

Here, the bar ·̄ denotes the usual complex conjugate. We may define the origin to be the
point oA := (o0, o1) = (0, 1) and the point at infinity as ιA := −ôA = (1, 0), where the
names are with respect to the local coordinate x := x0/x1 on the patch x1 ̸= 0. We can
therefore rewrite the equation (4.22) as

V 0
(NS)m,j(z, 0) = (Z0(z))−j−m(Z1(z))−j+m

= ⟨oZ(z)⟩−j−m⟨ôZ(z)⟩−j+m(−1)−j+m .
(5.11)

The map between V 0
(NS)m,j and the Ramond sector vertex operators V 0

m,j that we use to
compute correlators is given in eq. (4.23). The advantage of working in this manifestly SL(2)
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covariant formalism is that we can trade off SL(2) rotations between Z, x:

⟨Mx,Z⟩ =MA
B x

BϵACZ
C = xBϵBDM

ADϵACZ
C

= xBϵBD(MT )D
CZ

C = ⟨x,MTZ⟩ ,
(5.12)

for M ∈ SL(2). For instance, consider a bilinear corresponding to the action of some
(traceless) tAB ∈ sl(2) generator

−tABZ
BYA(z)ZC(w) ∼ tCDZ

D(w)
z − w

. (5.13)

The exponentiated relation on M(αa) = eαata ∈ SL(2), αa ∈ C3 (where a is the adjoint
index) reads

exp
(
−αa

∮
w
(ta)A

BZ
BYA

)
ZC(w) =MC

D (αa)ZD(w) . (5.14)

To go to the x-basis vertex operators located at points xi on the S2, we will consider the
action of the SL(2,C) generator that corresponds to the translation generator of the global
part of the boundary 2D conformal group. This is

tAB =
(
0 1
0 0

)
→ (tABZ

BYA) = Y0Z
1 = J+ , (5.15)

which acts as

(ex
∮

J+)ZA =
(
Z0 − xZ1

Z1

)
=
(
1 −x
0 1

)(
Z0

Z1

)
=
(
exp

(
−x

(
0 1
0 0

)))
ZA . (5.16)

Acting on our vertex operators with all free indices tied up with o, ô, it can be traded for
the action of the transpose on oA, ôA ∝ ιA. This leaves ιA invariant, as it should intuitively,
because translations do not move the point at infinity. It sends oA = (0, 1) → (x, 1) =: xA.
Therefore we have

ex
∮

J+
(
⟨oZ⟩
⟨ôZ⟩

)
=
(
⟨xZ⟩
⟨ôZ⟩

)
. (5.17)

The action of the translation generator on the vertex operator can be traded for the action
of the translation generator on the external data

ex
∮

J+
⟨oZ(z)⟩−j−m⟨ôZ(z)⟩−j+m(−1)−j+m

= ⟨xZ(z)⟩−j−m⟨ôZ(z)⟩−j+m(−1)−j+m =: V 0
(NS)m,j(z, x) .

(5.18)

In this way, the action of the abstract SL(2,C) on the twistor variables is realised as the
action of the global conformal transformations on the boundary 2-sphere coordinatised by xA

and vice-versa. These vertex operators are built of meromorphic twistor functions known
as elementary states

1
⟨xZ⟩j+m⟨ôZ⟩j−m

, (5.19)
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which appeared in the context of 4d twistor theory [46] as Čech cohomology representatives
that Penrose transform to a useful basis for massless on-shell wavefunctions. For us, they
arise because they are the natural building block for conformally covariant n-point functions.
Consider for example the following contour integral (in which the contour below separates
the two poles35) that reproduces the 2 point function at m = j = 1

2∮
⟨ZdZ⟩

( 1
⟨x1Z⟩

1
⟨x2Z⟩

)
= 1

⟨x1x2⟩
. (5.20)

Integrands made of elementary states give conformally covariant functions because everything
other than the elementary state insertions (which are covariant) are SL(2) invariant. As a
suggestive aside, integral formulae that reproduce conformally covariant functions often arise
from integrating over several twistors ZA

i (see e.g. [45]),

∮ n+1∧
i=1

⟨ZidZi⟩ (· · · ) . (5.21)

These integral formulae naturally appear as the result of holomorphic localisation in a twistor
string (i.e. ∂̄ZA = 0 for ZA ∈ O(n)) and having to do a finite dimensional set of integrals
over the zero modes of ZA (being the moduli space of holomorphic maps of degree n), which
can be specified by the values that ZA

i := ZA(zi) that the map ZA takes at n+ 1 points on
the worldsheet. In our context, the localisation is to a zero dimensional set of covering maps
rather than a n + 1 dimensional space of curves, but the role of the elementary states as
conformally covariant building blocks is the same. The antichiral part of the correlator is
supplied by the decoupled antichiral sector, which has vertex operators that depend on x̂i.

In the special case in which p := −j − m ∈ Z+, q := −j + m ∈ Z+, the NS sector
vertex operator has an interpretation in terms of spin-weighted spherical harmonics mY−j,l

on CP1
x, which are known to be a basis for smooth data on S2 [71], see appendix B for a

short introduction. Consider the twistor function y

yp,q(x, Z) := ⟨xZ⟩p⟨x̂Z⟩q ∈ H0,0(CP1
Z ,O(p+ q)⊗ Γ(CP1

x,O(p)⊗ Ō(q))) . (5.22)

The Z dependence can be removed by integrating over the CP1
Z . There are p+q+1 independent

choices of {Ai}, corresponding to the order of the spin weighted spherical harmonic (which
can be mapped into each other by rotating the coordinate frame)∫

⟨ZdZ⟩ ∧ ⟨ẐdẐ⟩y(x, Z) Ẑ
A1 · · · ẐAp+q

⟨ZẐ⟩p+q+2

∝ x(A1 · · ·xAp x̂Ap+1 · · · x̂Ap+q) = mY−j, 1
2
∑

Ai
(x) .

(5.23)

We see that the vertex operator at x = 0 has the same form as the twistor function encoding
a spin weighted spherical harmonic

⟨oZ(z)⟩p⟨ôZ(z)⟩q = yp,q(o, Z(z)) . (5.24)
35Note that the integration variable is understood to be the local coordinate Z0/Z1 and not the homogeneous

coordinates.

– 44 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
3

Note that after acting with the translation generator, the resulting expression no longer
encodes a spin-weighted spherical harmonic Y , but is generically a sum over a series in which
each term individually transforms to give a spin-weighted spherical harmonic

ôA = xA⟨x̂o⟩ − x̂A⟨xô⟩
⟨xx̂⟩

, (5.25)

=⇒ ⟨xZ(z)⟩p⟨ôZ(z)⟩q = ⟨xZ(z)⟩p+q⟨x̂o⟩q

⟨xx̂⟩q

(
1− ⟨x̂Z(z)⟩⟨xô⟩

⟨xZ(z)⟩⟨x̂o⟩

)q

. (5.26)

This is because the spin-weighted spherical harmonics were eigenfunctions of the gl(2)
Cartans J3 = diag(1/2,−1/2) and of ∆ = diag(1/2, 1/2), and were not eigenfunctions of
the translation generator ( 0 1

0 0 ).

5.4 Appearances of the incidence relation

It was shown in [37] that the incidence relation holds as an operator identity inside correlators:〈
(Z0(z)− Γ(z)Z1(z)) · · ·

〉
= ⟨(µ(z)− Γ(z)λ(z)) · · · ⟩ = 0 . (5.27)

We find that the incidence relation also appears in the vertex operators (4.31). Of course,
the appearance of the incidence relations in these two contexts is related. The form of the
vertex operator (4.31) enforces the vanishing of the incidence relation with a high order zero
at the worldsheet insertion point zi. Following the discussion in section 4.6, this is a key
ingredient of the localisation of the path integral specifically to maps ZA(z) that satisfy the
incidence relation with the covering map Γ(z).

6 Discussion and future directions

Discussion

Let us summarise the main ideas of our paper. In section 2, we studied AdS3 string theory in
detail near the boundary. Firstly, we wrote down a compact form of the vertex operators
for spectrally-flowed ground states in the x-basis. Secondly, we use this form of the vertex
operators to show, at least schematically, that when the j-constraint (1.3) is satisfied, the
worldsheet correlator localises onto holomorphic covering maps. This localised correlator
agrees structurally with the dual CFT correlators. Hence, this provides a strong piece of
evidence for the duality between bosonic string in AdS3 in the near boundary limit and a
specific symmetric product orbifold theory proposed in [25]. It is important to note that,
even though the dual CFT [25] is defined via a twist-2 perturbation of a symmetric orbifold,
we do not turn on any worldsheet perturbation when the dual CFT is perturbed. This is
crucially different from the point of view taken in [11] and the consequence of this deserves
further consideration.

In section 3, we proposed a new way of generating the action of spectral flow which is by
wrapping a non-local operator around the vertex operator of an unflowed state. Thinking of
the spectral flow in this way allows us to rewrite a correlator with spectrally-flowed operators
inserted into the one with only unflowed operators inserted but in the presence of a nontrivial
background SL(2,R) connection.
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In sections 4, we also applied our findings in generic k to the k = 1 tensionless theory on
AdS3×S3×T4. Here, the near-boundary limit is exact, and all of the statements which apply
to the near-boundary limit of bosonic strings in section 2 are made sharp. Specifically, we
found a new path integral derivation of the localisation property of the k = 1 string using the
technology of sections 2 and 3. Finally, we commented on the relationships between the vertex
operators derived in section 4 and natural objects in two-dimensional twistor space, sharpening
the claim made in [37] that the k = 1 theory may have an interpretation as a twistor string.

Directions for future work

Reading off the CFT dual: as mentioned in the introduction and in section 2, a
(perturbative) CFT dual has recently been proposed for bosonic string theory on AdS3×X at
generic string tension [25]. This CFT is defined as the large-N limit of the symmetric product

SymN (RQ ×X) (6.1)

deformed by a marginal operator in the w = 2 twisted sector of the orbifold theory. Nontrivial
evidence for this duality comes from a computationally-intensive Ward-identity analysis of
correlation functions of spectrally-flowed vertex operators in the SL(2,R) WZW model [6–8].
In section 2, we found that one can at least reproduce the schematic perturbative structure
of this duality from nothing more than a dimension-counting argument of the near-boundary
worldsheet path integral. However, this is not enough to claim the duality, as one also needs
to be able to compute the various Jacobians which arise from integrating over delta-functions.

Recently, a path integral analysis of a similar style has been used in a Wakimoto-like
representation of the k = 1 string [31]. There, the various Jacobians were computed (at genus
zero) by comparison to the expected answer from a topological string. It would then be fruitful
to attempt to use this technology to compute the various Jacobians appearing in section 2,
and attempt to match them with the analytic structure of the dual CFT perturbation series.
Independent of that, it would be good to find a method of calculating the Jacobians in the
βγ system directly from the path integral, which does not require appealing to topological
string theory arguments. Indeed, this is currently under investigation [72].

Comparison to Dei-Eberhardt: in section 3, we found a relationship between correlators
of spectrally-flowed states in the SL(2,R) WZW model and unflowed states computed in the
presence of a nontrivial sl(2,R) connection. In [7], a remarkable formula relating spectrally-
flowed four-point functions to their unflowed counterparts was proposed, and experimentally
verified for spectral flows up to w ≤ 10. It would be interesting to explore whether there is a
relation between these two results, and whether it would be possible to use the techniques
of section 3 to prove the conjecture of [7].

Generalisation to other spacetimes: the technology of sections 2 and 3 demonstrated a
natural mechanism whereby the divergences of SL(2,R) WZW model correlators are encoded
in holomorphic maps to its boundary. One might ask whether there are other non-compact
spacetimes which exhibit this property, i.e. spacetimes M which admit worldsheet instantons
given by holomorphic maps γ : Σ → ∂M. For example, are correlators of the SU(1, 2) WZW
model divergent when the worldsheet maps holomorphically to the boundary, the Hermitian
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symmetric space SU(1, 2)/(S(U(1)×U(2)))?36 One might also try to generalise the technology
developed here to symmetric spaces like O(2, d−1)/O(1, d−1), which parametrise AdSd. In all
of these cases, the free field realisations of WZW models outlined in [73] are likely to be useful.

Relation to twistor theory and application to AdS5/CFT4: despite the fact that
more relations between the k = 1 string and twistor theory have been investigated in this
paper, there are many gaps to fill in to complete the whole picture. Firstly, there have been
no twistor theoretic investigations into what the 2d N = 2 version of the Berkovits-Witten
twistor string computes. In 4d, it is known to compute amplitudes in N = 4 Super Yang-Mills
(by adding in additional matter that behaves like a current algebra for the gauge group)
coupled to conformal supergravity. Naively, we would therefore expect that the 2d N = 2
version does the same. More work should be done to reconcile this expectation with the fact
that the k = 1 string computes very stringy processes in the AdS3 bulk. A hint towards this
direction is the fact that the target space in fact admits a description as the minitwistor
space of AdS3 [70]. We would therefore expect to be able to construct vertex operators that
correspond to twistor wavefunctions for bulk-to-boundary propagators in AdS3. It would be
instructive to do so and compare them with the results in this paper and those available
in the tensionless string literature.

Given the central role twistor theory plays in the proposal of Gaberdiel and Gopakumar
in [67, 68], it is likely that a deeper understanding of the link between the free field models
inspired by the k = 1 string and twistor theory will further shed some light on their proposal
in the setting of AdS5/CFT4. In their proposal, a worldsheet theory for strings in AdS5 × S5
background is conjectured to be dual to large N , free N = 4 SYM in 4d. It would be very
interesting to construct vertex operators for this model and compare them to the known forms
for the Yang-Mills and conformal gravity vertex operators present in the Berkovits-Witten
twistor string.

Furthermore, it is known that the target space for the Berkovits-Witten twistor string
admits a description as the (super)minitwistor space for AdS5 chiral superspace.37 In this
interpretation, a natural class of vertex operator to study are the twistor wavefunctions
encoding bulk-to-boundary propagators. It would be interesting to compare these to the
vertex operators for the Gaberdiel-Gopakumar model, if we are able to construct them. It
is worth mentioning that there is a worldline model [74] describing a massless superparticle
propagating on AdS5 × S5 superspace, in which the worldline fields are a 2|2 multiplet of
4|4 component supertwistors. The relation between this model or a worldsheet version of
it to the other AdS5 × S5 models has not been investigated.

Although there are many strong similarities between the k = 1 free field models and the
Berkovits-Witten twistor string, there are objects in the k = 1 string that have an obscure
twistor interpretation. Inherited from the hybrid formalism [35], there is a spin-3 current
written in free fields as Q = ⟨Z∂Z⟩η1η2 [36, 37]. The current has been interpreted in [54] as
the holomorphic projective measure on CP1|2, and imposes a constraint that has not yet been
fully explored as a twistorial statement on the form of the allowed twistor wavefunctions.
Another object that has not yet had a twistorial interpretation is the spectral flow procedure

36See also the discussion of [24].
37Ongoing work with David Skinner and Lionel Mason.
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that was central to analysis of strings in AdS3. Spectral flow of the vertex operators imposes
conditions on the map from the worldsheet into twistor space, which should have a twistorial
interpretation. For instance, in the 4d Berkovits-Witten twistor string with SYM vertex
operators, at tree-level the holomorphic degree d curves in twistor space that the worldsheet
fields localise to have an interpretation in terms of the Nd−1MHV amplitudes in the twistor
MHV diagram formalism. One expects that there should be a similar story in 2d.
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A Computing the zero modes at k = 1

In the main text, we claimed that the differential equation

(∂ + a+A)Z = 0 (A.1)

admits at most one zero mode, and that nontrivial zero modes only exist for certain discrete
values of the moduli space Mg,n and for certain discrete choices of flat u(1) connection
a ∈ Jac(Σ). We also claimed that when such a zero mode exists, it is given by

Z = ω√
∂Γ

(
Γ
1

)
, (A.2)

where Γ : Σ → CP1 is a branched holomorphic covering map branched over xi and ω is a
particular meromorphic one-form whose properties we will compute momentarily. In this
appendix, we will prove this claim. We will work at generic genus.

Note that a is a flat antiholomorphic u(1) connection and A is a ‘background’ gl(2,C)
gauge field given by

A = −
n∑

i=1

wi−1
2 −wixi

0 −wi+1
2

 ∂ logE(z, zi)−
n+2g−2∑

α=1

(
1 0
0 1

)
∂ logE(z, uα) , (A.3)

where E is the prime form on Σ.38 Now, since Z is a meromorphic section of S ⊕ S, where
S = K1/2 is the spin bundle on Σ, we can always decompose it into a meromorphic one-form

38See [75] for a good introduction to complex analysis on compact Riemann surfaces.
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ω and a meromorphic function f as

Z = ω√
∂f

(
f

1

)
. (A.4)

Such a decomposition is always possible, and the square root
√
∂f is defined with respect to

the chosen spin structure. As in the main text, we denote by µ and λ the top and bottom
components of Z, respectively. The differential equations we must solve then take the form

(∂ + a)µ =
n∑

i=1

(
wi − 1

2 µ− wixiλ

)
∂ logE(z, zi) +

n+2g−2∑
α=1

µ∂ logE(z, uα)

(∂ + a)λ = −
n∑

i=1

wi + 1
2 λ ∂ logE(z, zi) +

n+2g−2∑
α=1

λ ∂ logE(z, uα) .

(A.5)

Now, let us take an ansatz for ω which solves the equation

(∂ + a)ω =

n+2g−2∑
α=1

∂ logE(z, uα)−
n∑

i=1
∂ logE(z, zi)

ω . (A.6)

For uα, zi fixed, this equation admits a solution for a discrete set of flat connections a.39

Plugging this ansatz into the differential equations for µ, λ gives

∂

(
f√
∂f

)
= 1√

∂f

n∑
i=1

(
wi + 1

2 f − wixi

)
∂ logE(z, zi)

∂

( 1√
∂f

)
= − 1√

∂f

n∑
i=1

wi − 1
2 ∂ logE(z, zi) .

(A.7)

The bottom equation tells us that ∂f has zeroes of order wi − 1 at z = zi, and that these
are the only zeroes of ∂f . That is,

f ∼ ai +O((z − zi)wi) , z → zi , (A.8)

for some constant ai. Multiplying the bottom line of equation (A.7) by f and subtracting
it from the top line gives

∂f√
∂f

= 1√
∂f

n∑
i=1

wi(f − xi)∂ logE(z, zi) . (A.9)

This can only be satisfied if f(zi) = xi. Thus, f is a function with critical points of order wi

at z = zi, such that f(zi) = xi, and is therefore a holomorphic covering map.

B Spin-weighted spherical harmonics

Spherical harmonics on S2 are eigenfunctions of selected isometry generators that form a
convenient basis for smooth functions. Spin-weighted spherical harmonics on CP1 should

39If a = 0, this equation simply tells us that ω has simple zeroes at uα and simple poles at z = zi.
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be thought of as a generalisation of these, a convenient basis for Γ(CP1,O(n)) (the space
of smooth sections of scaling weight line bundles on CP1) and eigenfunctions of selected
generators of the natural SL(2,C) action on CP1. They agree with the spherical harmonics
in the n = 0 case, subject to the usual identification of CP1 and S2 (see eq. (B.6)). Consider
homogenous coordinates xA := (x0, x1) ∈ CP1. Indices can be raised and lowered by the
SL(2) invariant two-index Levi-Civita symbol, with the “upper left-lower right” index raising
and lowering convention

1 = ϵ01 = ϵ10, xA = ϵABxB. (B.1)

We define the SL(2) invariant contraction in the usual way as

⟨xy⟩ := ϵABxByA = xAyA = −xBy
B = ϵBCx

CyB. (B.2)

Then we define the spin-weighted spherical harmonic sYl,m(xA) [71]:

m−n
2
Ym+n

2 ,
∑

A+
∑

B(x
A) := JA1...Bm

n,m := x(A1 · · ·xAn x̂B1 · · · x̂Bm)

⟨xx̂⟩m
∈ Ω0,0(CP1,O(n−m)) .

(B.3)
The factors of ⟨xx̂⟩ to map between O(p)×Ō(q) and O(p−q) are a matter of convention. Due
to the symmetrisation over the 2-component indices Ai, Bj , there are n+m+ 1 independent
components of JC1...C2n

n,n , classified by ∑iCi:

J (00...0)
n,m (xA), J (00...1)

n,m (xA), . . . , J (11...1)
n,m (xA) . (B.4)

Each of which corresponds to a particular order of spin-weighted spherical harmonic. At
n = m, they agree with the standard spherical harmonics Yl,m:

0Yn,
∑

C(xA) = JC1...C2n
n,n (xA) = Yn,

∑
i

Ci

(
xA
)
. (B.5)

In order to recover the standard expressions for Yl,m in terms of polar angles, we substitute
in the usual identification of CP1 homogenous coordinates and the S2 polar angles:

xA =
(
eiϕ cos θ/2
sin θ/2

)
. (B.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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