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1 Introduction

The dipole picture [1–4] of Deep Inelastic Scattering (DIS) of electron off protons or large
nuclei has emerged as a natural framework to study the high energy or Regge limit [5] of
this process where the Bjorken variable xBj ∼ Q2/s goes to 0, for fixed Q2 and large squared
center-of-mass energies s. In this regime, the fast increase in the number of gluons populating
the proton or nucleus incoming wave-function is tamed by non-linear recombination effects,
a phenomenon known as gluon saturation [6, 7]. This phenomenon is characterized by an
emergent semi-hard transverse momentum scale, the saturation scale Qs, which grows with
energy [8–10] and the nucleus mass number [11–13]. Unraveling the impact of gluon saturation
in high energy DIS is one of the primary objectives of the future Electron-Ion Collider [14, 15].
In the color dipole picture at leading order in perturbative QCD (pQCD), the “incoming”
virtual photon splits into a quark-antiquark pair which subsequently probes the dense gluon
system of the nucleus, which is effectively treated as a highly occupied classical gluon field
generated by the large x valence partons.

Advancing the understanding of the dipole picture of DIS in the high energy limit has
been the subject of intense investigations over the past several years. These developments have
followed multiple directions, with a special emphasis on the calculation of higher order quantum
corrections for several DIS processes such as the total cross-section (structure functions [16–
23], including the diffractive ones [24]), exclusive vector meson production [25–27], exclusive
dijet/dihadron production [28, 29], inclusive dijet plus photon production [30, 31], inclusive
quarkonium plus gluon production [32], and the inclusive dijet/dihadron cross-section [33–37].
The seminal work in [38] established the connection between the dipole picture and transverse
momentum-dependent factorization framework, which has resulted in several ongoing efforts
to elucidate further this correspondence [39–54].

In this paper, we compute the next-to-leading order (NLO) corrections to the semi-
inclusive single-jet production cross-section (SIDIS) in the high energy limit of DIS.1 We
perform the calculation in the color dipole picture and within the Color Glass Condensate
effective field theory (CGC EFT) [55–59]. Our starting point for the calculation of the
NLO corrections to semi-inclusive single-jet production in DIS is the analytic expressions for
inclusive dijet production in DIS obtained in [33]. At NLO, the quark-antiquark dipole is
accompanied by either a real or virtual gluon. To obtain the SIDIS cross-section, one must
integrate over the unmeasured partons in the final state. After integration, the resulting
expression for a given NLO diagram may display new ultraviolet divergences in coordinate
space. One of the main objectives of this work is to show that these divergences cancel out
amongst each other and to provide analytic expressions for the NLO impact factor. We have
computed the cross-section differential in jet transverse momentum k⊥ and jet rapidity η,
and for the cross-section differential in η only. The latter also involves the appearance of
new UV divergences that emerge after integration over k⊥, which must be treated with care
to demonstrate the finiteness of the cross-section.

1Although the single-jet cross-section computed in this paper is inclusive over the final state particles,
occasionally this process is referred to in the literature as “semi-inclusive”. We shall use inclusive and
semi-inclusive interchangeably.
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Our work has been motivated on several fronts. The first one is related to the connection
with TMD factorization. The SIDIS process computed at leading order in the dipole picture is
known to admit a factorization in terms of the quark TMD distribution at small x [13, 60, 61]
in the regime Q2 ≫ k2

⊥. Remarkably, this factorization holds both in the dilute regime where
k2
⊥ ≫ Q2

s and in the non-linear regime with k2
⊥ ∼ Q2

s [62, 63]. This factorization framework
has been recently employed in phenomenological studies of lepton-jet correlations [64, 65]
and transverse energy-energy correlators [66]. To elucidate these studies one must determine
if TMD factorization persists at NLO. The first step to address this question is to perform
the full NLO computation in the CGC EFT, and then examine the TMD limit k2

⊥, Q2
s ≪ Q2.

Another motivation is to assess the sensitivity of this process to gluon saturation effects.
Recently, it has been shown in [67] that the very forward jet regime has great potential to
reveal saturation effects at large Q2 where non-perturbative contamination is expected to be
suppressed. Let us briefly review the physical explanation behind this enhanced sensitivity in
the forward regime. The transverse size of the quark-antiquark pair is determined by the scale
1/Q̄, with Q̄2 = z(1 − z)Q2 and z = k−/q− the relative light-cone longitudinal momentum of
the jet with respect to that of the virtual photon. Thus, even at large Q2, the size of the
dipole can be comparable to 1/Qs if z is sufficiently close to 1. For 1 − z ≲ Q2

s/Q2 ≪ 1, the
dipole undergoes strong scattering and therefore probes the gluon-saturated wave-function
of the nucleus. In terms of concrete observables, the onset of saturation and high energy
evolution is signaled by the disappearance of the Cronin-like peak [68, 69] and the suppression
in the nuclear modification factor for the SIDIS cross-section differential in k⊥ for fixed
Q̄2 ≪ Q2 as xBj gets smaller (or as the energy of the collision increases) [67]. The nuclear
modification factor for the k⊥-integrated SIDIS cross-section differential in z also undergoes
a strong suppression for z close to 1 [67].

Based on these promising phenomenological results at leading order in the dipole picture,
we would like to address the impact of QCD radiative corrections. Owing to our analytic
expressions for the NLO corrections to SIDIS, we find large double and single logarithms of
1 − z in the forward rapidity regime, even in the case of a jet measurement, contrary to what
is claimed in [67]. The origin of these large logarithms is clear, as also stated in [67]: they
arise from the mismatch between real and virtual soft gluon corrections when reaching the
edge of the real emission phase space. We shall call these logarithms “threshold logarithms”
as they come from soft gluons which are strongly suppressed near the kinematic threshold
z = 1. This is in direct analogy with the large logarithms which arise in very forward hadron
production in pA collisions [70–74] when the longitudinal momentum fraction of the produced
parton with respect to the incoming one approaches unity.

The coefficients of the double and single logarithms are computed explicitly. In particular,
the dominant double logarithmic correction −αsCF /(2π) ln2(1−z) is negative, which results in
the suppression of the cross-section in the forward rapidity regime, similar to the suppression
induced by gluon saturation. This is reminiscent of the competing effect between saturation
and Sudakov suppression for inclusive back-to-back dijet production in DIS [36, 39, 40, 49].
Yet, soft gluon radiation for SIDIS at very forward rapidities should be less unfavorable than
for inclusive back-to-back dijet in regards to distinguishing it from saturation effects. Indeed,
by exponentiating the threshold double logarithms, one realizes that the Sudakov suppression
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for z close to one completely factorizes and is independent of the nuclear target (contrary
to Sudakov suppression for back-to-back dijet which is a convolution in coordinate space).
Consequently, we expect the exact cancellation (at least to double logarithmic accuracy)
of the Sudakov suppression in a nuclear modification factor, leaving only the imprint of
saturation in such a ratio.

The NLO corrections to semi-inclusive single hadron production cross-section at small
x have been computed in [75], while the NLO impact factor for diffractive single hadron
production is computed in [76]. Our present work differs from these studies in several aspects.
First, we consider single jet production instead of single hadron production. While jet
measurements will be challenging at the EIC [77–82], jet cross-sections are theoretically more
robust as they do not suffer from the uncertainties introduced by fragmentation functions.
Unlike [75], we explicitly regulate and isolate divergences in the transverse space using
dimensional regularization. This method also allows us to calculate explicitly the NLO impact
for both photon polarizations (longitudinal and transverse). Furthermore, we work at finite
Nc and include the contributions where the tagged jet is sourced by a gluon. Hence, most of
the results presented in this paper are new. One of the surprises lies in the 1/N2

c suppressed
corrections to the NLO impact factor: we find that they depend on the quadrupole CGC
correlator (CGC average of a trace of four Wilson lines). This dependence is caused by the
color exchange in real and virtual final state gluon emissions between the quark and the
antiquark and is not present in the diffractive case [76]. It would have not been possible to
anticipate the appearance of the quadrupole in the NLO impact factor based on the high-
energy evolution of the LO cross-section alone, as the latter only involves dipole correlators.

By integrating the real and virtual cross-section for inclusive dijet production over the
full phase space (3-body phase space in the case of the real cross-section), we recover the
NLO corrections to the total DIS cross-section at small x previously obtained in [16, 19, 20]
using the optical theorem. We observe subtle cancellations among diagrams in covariant
perturbation theory that are necessary to obtain the expressions in [20]. These cancellations
rely on properly identifying the physical impact parameter vector of the virtual photon in the
dipole frame. These results are important consistency checks of our formulae in this paper and
the results in [33] and of the validity of the dipole picture of DIS within the CGC EFT at NLO.

Our paper is divided as follows. In section 2, we define the semi-inclusive single-jet
cross-section and review the calculation of this process in the dipole picture at leading order,
starting from the inclusive dijet case in the CGC EFT. Section 3 details the calculation
of the NLO diagrams contributing to the SIDIS cross-section. We further show that the
cross-section is finite and that its high energy evolution is given by the BK-JIMWLK equation.
Our final results for the NLO impact factor are presented in subsection 3.6. We demonstrate
the emergence of large threshold logs in the very forward jet limit in section 4. We present
the results for rapidity-only differential jet cross-section in section 5. Finally, we recover
the fully inclusive DIS cross-section in section 6.

The paper is supplemented by four appendices. Appendix A gathers the analytic formula
for the SIDIS cross-section for transversely polarized virtual photons. In appendix B, we
provide explicit expressions for the single threshold logarithms. Appendix C includes useful
mathematical identities in distribution theory. Finally, appendix D presents a short proof of
the cancellation of the final state gluon emissions in fully inclusive DIS.
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2 Review of the SIDIS cross-section at leading order

This first section is a brief derivation of the semi-inclusive single-jet cross-section at leading
order in the dipole picture, starting from the LO expression for inclusive dijet production in
the CGC. We fix our notations and properly define the semi-inclusive single-jet cross-section.

2.1 Dijet cross-section at leading order

The calculation of the inclusive dijet cross-section in DIS at leading order in pQCD is now a
textbook exercise [38, 80, 83]. For a detailed derivation within the CGC effective field theory
and in standard covariant perturbation theory, we refer the reader to [33]. In the dipole frame,
the virtual photon with polarization λ has a four-momentum qµ = (−Q2/(2q−), q−, 0⊥) in
light cone coordinates, with Q2 = −q2 the spacelike virtuality of the photon. The nucleus
or proton target has instead only a large P + component, such that its four-momentum
reads P µ = (P +, 0, 0⊥), where we neglected the nucleus mass. We denote k1⊥ and k2⊥
as the transverse momenta of the quark and antiquark jets j1 and j2, and η1, η2 are their
rapidities, which are related to the longitudinal momentum fraction zi = k−

i /q− with respect
to the virtual photon as

ηi = ln
(√

2ziq
−/ki⊥

)
, i = 1, 2 . (2.1)

With these notations, the hadronic component of the inclusive dijet cross-section at leading
order in αs reads

dσγ⋆
λ+A→j1j2+X

d2k1⊥d2k2⊥dη1dη2

∣∣∣∣∣
LO
=

αeme2
f Nc

(2π)6 δ(1 − z1 − z2)

×
∫

d2x⊥d2y⊥d2x′
⊥d2y′

⊥ e−ik1⊥·rxx′e−ik2⊥·ryy′Rλ
LO(rxy, rx′y′)

×
〈
1 − Dxy − Dy′x′ + Qxy;y′x′

〉
. (2.2)

In this equation, αem refers to the fine structure constant, e2
f is the sum of the squares of the

fractional electric charge of the light quarks, and the perturbative factor R, associated with
the decay of the virtual photon into the quark-antiquark pair, is defined to be

RL
LO(rxy, rx′y′) = 8z3

1z3
2Q2K0 (

√
z1z2Qrxy) K0

(√
z1z2Qrx′y′

)
, (2.3)

RT
LO(rxy, rx′y′) = 2z2

1z2
2

[
z2

1 + z2
2

] rxy · rx′y′

rxyrx′y′
Q2K1 (

√
z1z2Qrxy) K1

(√
z1z2Qrx′y′

)
. (2.4)

Throughout this paper, we shall use the following notation for the difference of any transverse
vectors a⊥ and b⊥:

rab ≡ a⊥ − b⊥ . (2.5)

The CGC color correlator in the last line of eq. (2.2) encodes the interaction of the color
dipole with the CGC “shockwave”, where the average ⟨. . .⟩ over stochastic large x color
sources ρ with weight functional WY [ρ] is taken at some rapidity scale Y which is arbitrary
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at this perturbative order. It depends both on the dipole and on the quadrupole, defined
as the trace of the product of two and four Wilson lines:

Dxy ≡ 1
Nc

Tr
(
V (x⊥)V †(y⊥)

)
, (2.6)

Qxyy′x′ ≡ 1
Nc

Tr
(
V (x⊥)V †(y⊥)V (y′

⊥)V †(x′
⊥)
)

. (2.7)

2.2 Semi-inclusive single-jet cross-section at LO

We define the semi-inclusive single-jet cross-section in terms of the inclusive cross-section
for producing N jets

dσγ⋆
λ+A→j1j2,...,jN +X , (2.8)

as

dσγ⋆
λ+A→j+X

d2k⊥dη
=

∞∑
N=2

∫
d2k1⊥ . . . d2kN⊥

∫
dη1 . . . dηN dσγ⋆

λ+A→j1,...,jN +X

× FN [k⊥, η; k1⊥, . . . , kN⊥, η1, . . . , ηN ] , (2.9)

where FN is a measurement function whose standard definition reads

FN [k⊥, η; k1⊥, . . . , k⊥,N , η1, . . . , ηN ] =
N∑

i=1
δ(2)(k⊥ − ki⊥)δ(η − ηi) . (2.10)

With this definition, each jet in the final state is accounted for in the semi-inclusive single-jet
cross-section. Note that this definition violates unitarity, namely the integral over k⊥ and η

of the single-jet semi-inclusive cross-section does not yield the total inclusive cross-section
since a given event may be counted multiple times. For alternative choices of measurement
functions FN which satisfy unitarity, see [84].

At leading order, only the N = 2 term contributes to the semi-inclusive single-jet
cross-section. Throughout the paper, we use kµ

1 and kµ
2 for the 4-vectors of the quark and

antiquark jet respectively, and we reserve the notation kµ for the 4-vector of the tagged
jet (which can either be the quark, antiquark or gluon jet at NLO). Integrating over the
“antiquark-jet” j2 four-momentum yields a Dirac delta which fixes y⊥ = y′

⊥, so that the
resulting y′

⊥ integral is straightforward:

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
LO

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′Hλ
LO(z1, Q2, rxy, rx′y)

× ΞLO(x⊥, y⊥, x′
⊥) . (2.11)

The SIDIS hard factors in coordinate space are given by

HL
LO(z, Q2, rxy, rx′y) = 8z3(1 − z)2Q2K0(Q̄rxy)K0(Q̄rx′y) , (2.12)

HT
LO(z, Q2, rxy, rx′y) = 2z

[
z2 + (1 − z)2

] rxy · rx′y

rxyrx′y
Q̄2K1(Q̄rxy)K1(Q̄rx′y) , (2.13)

– 6 –
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for a longitudinally and transversely polarized photon respectively. We define Q̄2 = z(1−z)Q2.
The color structure is much simpler, as only dipole operators are involved when y⊥ = y′

⊥,

ΞLO(x⊥, y⊥, x′
⊥) =

〈
Dxx′ − Dxy − Dyx′ + 1

〉
. (2.14)

To get the contribution where the measured jet is j2, one notices that it is sufficient to
make the following change

ΞLO(x⊥, y⊥, x′
⊥) → Ξ∗

LO(x⊥, y⊥, x′
⊥) , (2.15)

in the previous expression. This property also holds for the NLO corrections: the contribution
where the anti-quark jet is measured can be obtained from the contribution where the quark
jet is measured by taking the complex conjugate of the color structure in the formula. As
expected, the SIDIS jet cross-section is not sensitive to the imaginary part of the dipole
scattering amplitude (usually named C-odd component or “odderon” [85–87]). In the end,
the semi-inclusive single-jet cross-section at leading order is given by

dσγ⋆
λ+A→j+X

d2k⊥dη

∣∣∣∣∣
LO

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′Hλ
LO(z, Q2, rxy, rx′y)

× 2Re
〈
Dxx′ − Dxy − Dyx′ + 1

〉
. (2.16)

Since we will also consider the transverse momentum integrated cross-section, we quote here
the leading order result for the η-differential cross-section:

dσγ⋆
λ+A→j+X

dη

∣∣∣∣∣
LO

=
αeme2

f Nc

(2π)2

∫
d2x⊥d2y⊥Hλ

LO(z,Q2,rxy,rxy)×4Re⟨1−Dxy⟩ , (2.17)

which is a particularly simple result. If one further integrates over η, one gets twice the
fully inclusive DIS cross-section at small x at leading order. As previously mentioned, this
is because each dijet event is counted twice due to our particular definition of the inclusive
single-jet cross-section.

3 Calculation of the double differential SIDIS cross-section at NLO

Our starting point is the inclusive dijet cross-section computed at NLO in [33]. The Feynman
diagrams that contribute to the cross-section are displayed in figure 1. In this figure, the
diagrams in which the quark and antiquark are interchanged are not shown. Throughout this
paper, they will be noted with an additional line over the label of the graph, e.g. V1 → V1.
We shall also adopt the following notation. The contribution from two given Feynman
graphs G1 and G2 to the SIDIS cross-section is noted dσG1×G2∗ , where the graph G1 is
in the amplitude and G2 is in the complex conjugate amplitude. For instance, the vertex
correction with gluon crossing the shock-wave V1 (see figure 1) gives two terms to the SIDIS
cross-section, dσV1×LO∗ and dσLO×V1∗ .

We will detail the interesting features of the calculation for the simpler case of a
longitudinally polarized virtual photon but when possible we will show results that are
applicable for both polarizations. The results for the SIDIS cross-section for transversely
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�⇤

R1

�⇤

R2

�⇤

SE1

�⇤

SE2

�⇤

SE3

�⇤

V1

�⇤

V2

�⇤

V3

Figure 1. Feynman diagrams contributing to the NLO cross-section. The quark-antiquark exchanged
diagrams, named with an additional line over the diagram’s label, are not shown. Also not shown
is the diagram where the virtual photon creates a qq̄ loop annihilating into a gluon, which finally
generates a qq̄ pair. This diagram vanishes when summing over light quark charges [36].

polarized virtual photons are given in the appendix A. For the reader who is not interested
in the derivation of the cross-section but only in the final result, we refer to section 3.6 where
only the expressions for the NLO SIDIS cross-section are provided in their final form.

From the expressions obtained in [33] for the inclusive dijet cross-section, it is relatively
easy to get the semi-inclusive single-jet cross-section. The main difficulty comes from the
emergence of new divergences when one of the final state parton is integrated out. In
the virtual cross-section, there are only two jets in the final state. Consequently, we will
simply integrate over the anti-quark jet phase space. As discussed in the previous section,
the contribution where the antiquark jet is tagged can be obtained by taking the complex
conjugate of the color structure in the final result, leaving invariant the rest of the expression.
For the real cross-section, we will have to consider two cases: either the fermionic jet or the
gluonic jet is tagged. This will be done in subsection 3.3.

Like in the calculation of inclusive dijet production in the CGC [33], we employ dimen-
sional regularization in the transverse plane to isolate the UV and collinear divergences of a
given diagram. To regulate the light cone divergences as the longitudinal momentum fraction
of the gluon zg = k−

g /q− goes to zero, we use a cut-off regulator Λ− ≡ z0q−.

3.1 Cancellations between virtual and real diagrams

Before computing explicitly these phase-space integrals, we point out, following [75], some
nice cancellations between virtual and real diagrams that share the same topology at the
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cross-section level. In particular, we note that

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE1×LO∗

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

= 0 , (3.1)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V1×LO∗

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

= 0 , (3.2)

and likewise for their complex conjugate. We have explicitly checked that these identities
are true for both photon polarizations λ = L, T. Although the real terms R1 × R2∗ and
R1 × R2∗ do not need to be calculated when the fermionic jet is tagged, they will contribute
when the gluon jet is measured in the final state.

In addition to the cancellations above, our particular choice of the dimensional regular-
ization scheme for the transverse UV and IR divergences implies that

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE3×LO∗

= 0 , (3.3)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE3×LO∗

= 0 , (3.4)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗

= 0 , (3.5)

in contrast to the results in [75] obtained without using dimensional regularization.

3.2 Virtual diagrams

In this subsection, we discuss the virtual diagrams that contribute to the NLO SIDIS cross-
section. In the end, thanks to the results of the previous subsection, we only have to compute
the contributions from diagrams SE1, SE2, SE2, V1, V2 and V3.

3.2.1 Vertex and self-energy corrections with gluon crossing the shock-wave

Diagrams V1 × LO∗ and SE1 × LO∗ have been computed in [33] (see also eqs. (3.17) in [49]).
In particular, the contribution from SE1×LO∗ has a UV divergence in coordinate space which
is regularized by adding a suitable counter-term. The UV counter-term is then computed
in dimensional regularization and added to the other UV divergent contributions such as
V2 × LO∗, SE2 × LO∗ and SE2 × LO∗. Those diagrams, including the UV counter-term of
SE1 × LO∗, will be discussed in the next paragraph. Integrating over the anti-quark phase
space the inclusive dijet cross-section coming from V1 × LO∗ yields

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V1×LO∗

= −
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′8z3
1(1 − z1)2Q2K0(Q̄rx′y)

× αs

π

∫ z1

z0

dzg

zg

(
1 − zg

z1

)(
1 + zg

1 − z1

)(
1 − zg

2z1
− zg

2(1 − z1 + zg)

)

×
∫ d2z⊥

π

rzx · rzy

r2
zxr2

zy

e
−i

zg
z1

k1⊥·rzxK0(QXV)ΞNLO,1(x⊥, y⊥, z⊥, x′
⊥) ,

(3.6)
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with

X2
V = (1 − z1)(z1 − zg)r2

xy + zg(z1 − zg)r2
zx + (1 − z1)zgr2

zy , (3.7)

ΞNLO,1 = Nc

2
〈
1 − Dyx′ − DxzDzy + Dzx′Dxz

〉
− 1

2Nc

〈
1 − Dxy − Dyx′ + Dxx′

〉
. (3.8)

The color structure ΞNLO1 only involves dipole correlators. Similarly, the UV regular part
of SE1 × LO∗ is given by

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE1×LO∗,reg

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′8z3
1(1−z1)2Q2K0(Q̄rx′y)

×αs

π

∫ z1

z0

dzg

zg

(
1− zg

z1
+

z2
g

2z2
1

)∫ d2z⊥
π

1
r2

zx

[
e
−i

zg
z1

k1⊥·rzxK0(QXV )ΞNLO,1(x⊥,y⊥,z⊥,x′
⊥)

−e
− r2

zx
eγE r2

xy K0(Q̄rxy)CF ΞLO(x⊥,y⊥,x′
⊥)
]

, (3.9)

where the last line in the above expression corresponds to the UV counter-term such that
the z⊥ integral is well-defined as rzx = z⊥ − x⊥ → 0. Indeed, in this limit, the expression
in the square bracket vanishes like O(rzx).

3.2.2 The pole term

We define the pole term of the virtual cross-section as the sum of diagrams V2 × LO∗,
SE2 × LO∗, SE2 × LO∗ and the UV singular part of SE1 × LO∗:

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
UV

≡ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V2×LO∗

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE2×LO∗

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE2×LO∗

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE1×LO∗,UV

. (3.10)

Using eqs. (5.37), (5.40) and (5.78) from [33] and integrating over the anti-quark phase
space, we get

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣
UV

= αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′Hλ=L
LO (rxy,rx′y)ΞLO(x⊥,y⊥,x′

⊥)

× αsCF

2π

{(
ln
(

z1

z0

)
−ln

(
z2

z0

))(2
ε

+ln(eγE πµ2r2
xy)
)

+ 1
2 ln2

(
z2

z1

)
− π2

6 + 5
2

}
.

(3.11)

In dimensional regularization, finite terms may arise from the product between the UV pole
in 1/ε and O(ε) terms from the Dirac traces appearing in the numerator of the Feynman
amplitude. These finite pieces have been explicitly computed in [33]. For the specific
combination given by eq. (3.10), these finite terms cancel among each other.
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3.2.3 Explicit calculation of the final state vertex correction

The final state vertex correction corresponding to diagram V3 needs more work. This is
because in [33], we were not able to find a closed analytic expression for this diagram.
Fortunately, the integration over the anti-quark phase space allows many simplifications.

The formula obtained in [33] for the contribution of V3 × LO∗ to the inclusive dijet
cross-section is

dσγ⋆
L+A→qq̄+X

d2k1⊥dη1d2k2⊥dη2

∣∣∣∣∣
V3×LO∗

=

αeme2
f Nc

(2π)6 δ(1−z1−z2)
∫

d2x⊥d2x′
⊥d2y⊥d2y′

⊥8z3
1z3

2Q2

×e−ik1⊥·rxx′−ik2⊥·ryy′K0(Q̄rx′y′)αs

π

∫ z1

z0

dzg

zg
K0(Q̄V3rxy)

{(
1− zg

z1

)2(
1+ zg

z2

)
(1+zg)

×ei(P⊥+zgq⊥)·rxy K0(−i∆V3rxy)−
(

1− zg

z1

)(
1+ zg

z2

)(
1− zg

2z1
+ zg

2z2
−

z2
g

2z1z2

)

×e
i

zg
z1

k1⊥·rxyJ⊙

(
rxy,

(
1− zg

z1

)
P⊥,∆V3

)}
ΞNLO,3(x⊥,y⊥;x′

⊥,y′
⊥)+(1↔ 2) , (3.12)

where the (1 ↔ 2) notation corresponds to quark-antiquark interchange. The kinematic
variables in this formula are defined by P⊥ = z2k1⊥ − z1k2⊥, q⊥ = k1⊥ + k2⊥, Q̄2

V3 = (z1 −
zg)(z2 +zg)Q2 and ∆2

V3 =
(
1 − zg

z1

) (
1 + zg

z2

)
P 2

⊥. The CGC color correlator of this diagram is

ΞNLO,3 = Nc

2
〈
1 − Dxy − Dy′x′ + DxyDy′x′

〉
− 1

2Nc

〈
1 − Dxy − Dy′x′ + Qxy;y′x′

〉
, (3.13)

and depends on the quadrupole in the 1/N2
c suppressed term. The function J⊙ defined by

J⊙(r⊥, K⊥, ∆) ≡
∫ d2l⊥

(2π)
2l⊥ · K⊥eil⊥·r⊥

l2
⊥ [(l⊥ − K⊥)2 − ∆2 − iϵ]

, (3.14)

is not known analytically. However, another expression for this function in terms of a single
scalar integral over a Feynman parameter u was found in [33]. This expression turns out
to be key to simplifying eq. (3.12) once one integrates over the antiquark phase space. As
shown in appendix F.1 of [33], we have indeed

J⊙(r⊥, K⊥, ∆) = ir⊥ · K⊥

∫ 1

0
du eiuK⊥·r⊥K0 (−iδV3r⊥)

+ K2
⊥

∫ 1

0
du eiuK⊥·r⊥

ur⊥K1 (−iδV3r⊥)
(−iδV3) , (3.15)

with δV3 =
√
|u(1 − u)K2

⊥ − u∆2|. Using this representation of the J⊙ function and after
integration over the anti-quark phase space, one can perform the integration over the remaining
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Feynman parameter u analytically. The final result for the diagram V3 × LO∗ reads

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V3×LO∗

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥e

−ik1⊥·
(

rxx′+ z2
z1

ryy′

)

× 8z3
1z2

2Q2K0(Q̄rx′y′) αs

2π2

∫ 1

z0

dzg

zg

K0(Q̄V3rxy)

(
1 − zg

z1

)2 (
1 + zg

z2

)
e

i
zg
z1

k1⊥·rxy Θ(z1 − zg)

r2
yy′

[
r2

yy′ + (z1 − zg)
(
2ryy′ · rxy − zg

z2
r2

xy

)]
[
(1 + zg)r2

yy′ + 2z1

(
1 − zg

2z1
+ zg

2z2
−

z2
g

2z1z2

)
rxy · ryy′

]

+ K0(Q̄R2rxy)

(
1 − zg

z2

)2 (
1 + zg

z1

)
e
−i

zg
z1

k1⊥·rxy Θ(1 − z1 − zg)(
ryy′ + zg

z2
rxy

)2 [
r2

yy′ + (z1 + zg)
(
2ryy′ · rxy + zg

z2
r2

xy

)]
[
(1 + zg)

(
ryy′ + zg

z2
rxy

)2
+ 2z1

(
1 − zg

2z2
+ zg

2z1
−

z2
g

2z1z2

)(
rxy · ryy′ + zg

z2
r2

xy

)]
×
[

Nc

2
〈
1 − Dxy − Dy′x′ + DxyDy′x′

〉
− 1

2Nc

〈
1 − Dxy − Dy′x′ + Qxyy′x′

〉]
, (3.16)

with z2 = 1 − z1 and Q̄2
R2 = (1 − z1 − zg)(z1 + zg)Q2. Although this expression has still four

integrals over 2-dimensional transverse coordinates and one integral over the longitudinal
momentum fraction zg of the gluon, it is a much simpler formula than eq. (3.12) because the
integrant has an explicit analytic expression. This concludes our calculation of the virtual
corrections to the semi-inclusive single-jet cross-section in DIS in the saturation formalism.

3.3 Real diagrams

For the real diagrams, the implementation of the jet definition is more complicated than for
the virtual diagrams, as two partons can be clustered together to form a single jet. Also, in
the case of a three-jet event, each jet can be tagged, in particular the one created by the
additional gluon. We will first consider the case where the measured jet is fermionic, including
the case where the gluon and the fermion are clustered together. In the last paragraph of this
subsection, we will compute the semi-inclusive single-gluon production cross-section, excluding
the cases where the gluon lies in the same jet as the quark or the antiquark. The use of the
small-R or narrow jet approximation simplifies the treatment of overlapping contributions: if
the diagram does not have a collinear singularity, the phase space where the gluon and the
fermion or the two fermions are clustered together in the same jet is systematically power
of R2 suppressed [88]. For these diagrams, one can simply integrate over the two untagged
partons to get the single-jet semi-inclusive cross-section.

Jets are defined from the partonic final state using a procedure common to all clustering
algorithms within the generalized kt family [89, 90], including the famous anti-kt [91] or
Cambridge-Aachen [92] algorithms. The condition for any pair of partons labeled i and k to
be clustered together within the same jet with transverse momentum k⊥ and longitudinal
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momentum fraction z reads, up to power of R4 corrections,

C2
ik ≤ R2k2

⊥
z2

i z2
k

z4 , Cik = zi

z
k⊥,k − zk

z
k⊥,i , (3.17)

with Cik the collinearity vector between the two partons (which goes to 0 as the two partons
become collinear). If they are clustered together, the four momentum of the jet is simply
the sum of the four momenta of the two partons i and k. In particular k⊥ = k⊥,i + k⊥,k

and z = zi + zk.
We shall divide the discussion of the real cross-section depending on whether the measured

jet is fermionic (by that, we mean that it contains at least a quark or an anti-quark) or gluonic.

3.3.1 Fermion-jet contributions with collinear divergence

We start with the diagram R2 × R2∗ which is the only diagram with a collinear divergence
when the gluon and the quark become collinear to each other. By quark-antiquark symmetry,
the diagram R2 × R2∗ is also collinearly divergent when the gluon and the anti-quark are
collinear. However, if the quark jet is measured, then this contribution to the real NLO
single-jet semi-inclusive cross-section is identically zero in dimension regularization according
to eq. (3.5). If the antiquark jet is measured, one can simply relate via complex conjugation
of the CGC color correlator the contribution of diagram R2 × R2∗ with that of diagram
R2 × R2∗ when the quark jet is measured.

The implementation of the jet definition gives two terms from R2 × R2∗. The first one,
labeled “in”, corresponds to the case where the gluon and the quark are clustered within
the same jet. For jets defined with generalized kt algorithms in the small R approximation,
one imposes the condition

C2
qg ≤ R2k2

⊥
z2

1z2
g

z4 , (3.18)

on the phase-space integration, with k⊥ = k1⊥ + kg⊥ and z = z1 + zg. Then the quark-jet
is measured and the anti-quark jet is integrated over. This contribution is computed in
dimensional regularization to regulate the collinear singularity. We have

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,in

=

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
LO

×αsCF

π

{(3
4−ln

(
z1
z0

)) 2
ε

+ln2(z1)

− ln2(z0)+
(

ln
(

z1
z0

)
− 3

4

)
ln
(

R2k1⊥
2

µ̃2z2
1

)
−π2

2 + 3
2 (1−ln(2z1))+3+ 1

4 +O(R2)
}

, (3.19)

with the MS µ̃2 = 4πe−γE µ2. In this expression, the +1/4 finite term comes from the product
between the 1/ε collinear pole and the O(ε) term in the ε-expansion of the Dirac trace in
4 − ε dimension of diagram R2 × R2∗.

The second term comes from three-jet configurations, with the quark, the gluon, and
the anti-quark forming three well-separated jets. The gluon and anti-quark jet are then
integrated over. The case where the gluon is measured and the other two jets are integrated
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will be considered in section 3.3.4. Further, it is convenient to decompose this contribution
into two terms, labeled “soft” and “reg”, by isolating the soft divergent contribution as
zg → 0. We have then

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,soft

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′Hλ
LO(z1, Q2, rxy, rx′y)

×ΞLO(x⊥, y⊥, x′
⊥) × αsCF

π

{
ln2
(

z1
z0

)
− ln2

(
z1

1 − z1

)
− ln

(1 − z1
z0

)
ln
(

k1⊥
2r2

xx′R2

c2
0

)}
,

(3.20)
dσγ⋆

L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,reg

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′ΞLO(x⊥, y⊥, x′
⊥)

× (−αs)CF

π

∫ 1−z1

0

dzg

zg
8z3

1(1 − z1)2Q2K0(Q̄R2rx′y) ln
(

k1⊥
2r2

xx′R2z2
g

c2
0z2

1

)

×
{

e
−i

zg
z1

k1⊥rxx′
(

1 − zg

1 − z1

)2 (
1 + zg

z1

)2
(

1 + zg

z1
+

z2
g

2z2
1

)
K0(Q̄R2rxy) − K0(Q̄rxy)

}
.

(3.21)

One can already notice that the double logarithmic term in ln2(z0) cancels between the “soft”
and the “in” term, as observed in the inclusive dijet calculation [36, 49].

3.3.2 Fermion-jet contributions with UV divergence

An interesting feature of the single-jet semi-inclusive calculation with respect to the inclusive
dijet case is that some diagrams that are regular in the latter case become singular in the
former. It is the case of the real correction associated with R1 × R1∗ once one integrates
over the antiquark and gluon phase space. By symmetry, the same divergence occurs for
diagram R1 × R1∗ if only the antiquark jet is measured. Integrating over the anti-quark and
gluon 4-momenta in the qq̄g cross-section obtained in [33], we get

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′
∫ 1−z1

z0

dzg

zg
8z3

1(1 − z1)2Q2

× αs

π

(
1 − zg

1 − z1

)2
(

1 + zg

1 − z1 − zg
+

z2
g

2(1 − z1 − zg)2

)∫ d2z⊥
π

1
r2

zy

K0(QXR)K0(QX ′
R)

× ΞNLO,4(x⊥, y⊥, z⊥, x′
⊥) , (3.22)

with

ΞNLO,4(x⊥, y⊥, z⊥, x′
⊥) ≡ Nc

2 ⟨Dxx′ − DxzDzy − DyzDzx′ + 1⟩

− 1
2Nc

〈
Dxx′ − Dxy − Dyx′ + 1

〉
, (3.23)
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and the transverse coordinates

X2
R = z1(1 − z1 − zg)r2

xy + z1zgr2
zx + (1 − z1 − zg)zgr2

zy , (3.24)

X ′2
R = z1(1 − z1 − zg)r2

x′y + z1zgr2
zx′ + (1 − z1 − zg)zgr2

zy . (3.25)

This expression is UV divergent because of the rzy → 0 singularity in the z⊥ integral.
To extract this divergence and provide an expression for R1 × R1∗ which is suitable for
numerical evaluation, we follow the same strategy as for the treatment of the UV divergence
in coordinate space of diagram SE1 × LO∗. In concrete terms, we write

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

= dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

− dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV︸ ︷︷ ︸

≡R1×R1∗,reg

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV

, (3.26)

with the UV subtraction term defined by

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV

≡

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′
∫ 1−z1

z0

dzg

zg
8z3

1(1−z1)2Q2

×αs

π

(
1− zg

1−z1

)2
(

1+ zg

1−z1−zg
+

z2
g

2(1−z1−zg)2

)∫ d2z⊥
π

e
−

r2
zy
2ξ

r2
zy

K0(Q̄rxy)K0(Q̄rx′y)

×
〈
Dxx′−Dxy−Dyx′ +1

〉
, (3.27)

which allows for the cancellation of the UV divergence, without introducing any further IR
divergence as rzy → ∞ thanks to the exponential exp(−r2

zy/(2ξ)) suppression at large rzy.
In this exponential, ξ is an arbitrary transverse scale squared, which will be fixed at the end
of our calculation to simplify the extraction of the BK-JIMWLK evolution of the CGC dipole
operators. Thanks to its simple form, the UV counter-term can be computed analytically
in dimensional regularization d2z⊥ → d2+εz⊥, such that:

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′Hλ
LO(z1, Q2, rxy, rx′y)

× ΞLO(x⊥, y⊥, x′
⊥) × αsCF

π

{(
ln
(

z2
z0

)
− 3

4

)(2
ε

+ ln(2πµ2ξ)
)
− 1

4

}
, (3.28)

where the last −1/4 term comes again from the product between the UV pole and the O(ε)
term in the Dirac trace of R1 × R1∗.
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The regular term reads:

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,reg

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′
∫ 1−z1

z0

dzg

zg
8z3

1(1 − z1)2Q2

× αs

π

(
1 − zg

1 − z1

)2
(

1 + zg

1 − z1 − zg
+

z2
g

2(1 − z1 − zg)2

)∫ d2z⊥
π

K0(QXR)K0(QX ′
R)

r2
zy

×
[
ΞNLO,4(x⊥, y⊥, z⊥, x′

⊥) − e
−

r2
zy
2ξ

K0(Q̄rxy)K0(Q̄rx′y)
K0(QXR)K0(QX ′

R)CF ΞLO(x⊥, y⊥, x′
⊥)
]

. (3.29)

3.3.3 Regular fermion-jet contributions

We finally gather here all the other real corrections with the quark-jet tagged which are
neither collinear nor UV divergent in coordinate space. As mentioned at the beginning of
section 3.3, for these diagrams, one can freely integrate over the antiquark and gluon phase
space without being worried about configurations where the gluon and the quark, the gluon
and the antiquark or the two fermions lie in the same jet as such configurations are power
of R2 suppressed in the narrow jet limit.

The first regular diagram is R2 × R2∗ (and its complex conjugate). We obtain, after
a straightforward integration of eq. (B.11) in [49], the following result:

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗

=

αeme2
f Nc

(2π)4

∫
d8X⊥e−ik1⊥·rxx′8(1 − z1)2z3

1Q2K0(Q̄rx′y′)

× (−αs)
π2

∫ 1−z1

z0

dzg

zg
e
−ik1⊥·

(
zg
z1

rxy′+
1−z1−zg

z1
ryy′

) (
1 − zg

1 − z1

)(
1 + zg

z1

)
K0(Q̄R2rxy)

×
[
1 + zg

2z1
+ zg

2(1 − z1 − zg)

] (
ryy′ + zg

1−z1−zg
rxy′

)
· ryy′(

ryy′ + zg

1−z1−zg
rxy′

)2
r2

yy′

ΞNLO,3(x⊥, y⊥; x′
⊥, y′

⊥) (3.30)

with Q̄2
R2 = (1 − z1 − zg)(z1 + zg)Q2. The color correlator ΞNLO,3 is identical to the one

appearing in the final state vertex correction V3×LO∗ (see eq. (3.16)). It will be very natural
to combine these two diagrams together in our final result.

The contribution from diagrams R1 × R2∗ and R1 × R2∗ read respectively

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

=

−
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′8z3
1(1−z1)2Q2

×αs

π

∫ 1−z1

z0

dzg

zg

(
1− zg

1−z1

)2(
1+ zg

z1

)(
1+ zg

z1
+

z2
g

2z2
1

)

×
∫ d2z⊥

π
e
−i

zg
z1

k1⊥·rzx′
K0(Q̄R2rx′y)rzx ·rzx′

r2
zxr2

zx′
K0(QXR)ΞNLO,1(x⊥,y⊥,z⊥,x′

⊥) , (3.31)
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dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′8z3
1(1−z1)2Q2

×αs

π

∫ 1−z1

z0

dzg

zg

(
1− zg

1−z1

)2(
1+ zg

z1

)(
1+ zg

2z1
+ zg

2(1−z1−zg)

)

×
∫ d2z⊥

π
e
−i

zg
z1

k1⊥·rzx′
K0(Q̄R2rx′y)rzy ·rzx′

r2
zyr2

zx′
K0(QXR)ΞNLO,1(x⊥,y⊥,z⊥,x′

⊥) . (3.32)

Finally, the two remaining regular real corrections come from diagrams R1 × R1∗ and
R1 × R1∗, which respectively read

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′8z3
1(1 − z1)2Q2

× αs

π

∫ 1−z1

z0

dzg

zg

(
1 − zg

1 − z1

)2
(

1 + zg

z1
+

z2
g

2z2
1

)

×
∫ d2z⊥

π

rzx · rzx′

r2
zxr2

zx′
K0(QXR)K0(QX ′

R)ΞNLO,4(x⊥, y⊥, z⊥, x′
⊥) ,

(3.33)
and

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

= −
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik1⊥·rxx′8z3
1(1 − z1)2Q2

× αs

π

∫ 1−z1

z0

dzg

zg

(
1 − zg

1 − z1

)2
(

1 + zg

2z1
+ zg

2(1 − z1 − zg)

)

×
∫ d2z⊥

π

rzy · rzx′

r2
zyr2

zx′
K0(QXR)K0(QX ′

R)ΞNLO,4(x⊥, y⊥, z⊥, x′
⊥) .

(3.34)
3.3.4 Gluon-jet contributions

We collect here the real corrections to the NLO semi-inclusive single-jet production cross-
section where the measured jet is sourced by the final state gluon. We notice that the
quark-antiquark symmetric diagrams give the same expression modulo the replacement
Ξ → Ξ∗ in the CGC color correlator. Therefore, we will give the result for the sum of a
given diagram plus its qq̄ exchanged counterpart.2

We first consider diagrams R2 × R2∗ and R2 × R2∗ which have a collinear singularity.
Since we do not want to double count the collinear phase space where the gluon and the quark
(respectively, the antiquark) belong to the same jet (already accounted for by eq. (3.19)) we
explicitly exclude this phase space when integrating out the two fermions via the constraint

C2
gi ≥ R2kg⊥

2 z2
i

z2
g

, (3.35)

2We also neglect the diagram where, at amplitude level, the photon splits into quark-antiquark pair that
interacts with the shock-wave and later recombines to a final state gluon. This diagram vanishes when summing
over the light quark charges.
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with i = 1, 2 for R2 × R2∗ and R2 × R2∗ respectively. This yields

dσγ∗
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R2×R2∗+R2×R2∗

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ikg⊥·rxx′2Re
[
ΞLO(x⊥,y⊥,x′

⊥)
]

× (−αs)CF

π

∫ 1−zg

0

dz1
z2

g

e
−i

z1
zg

kg⊥rxx′ (1−z1−zg)2 (z1+zg)2
(
2z1(z1+zg)+z2

g

)
×4Q2K0(Q̄R2rx′y)K0(Q̄R2rxy) ln

(
kg⊥

2r2
xx′R2z2

1
c2

0z2
g

)
, (3.36)

up to power of R2 corrections. For the other diagrams, we rely on the small R approximation
and integrate over the full phase space of the two fermions, as the phase space where one of the
fermion and the gluon are clustered together is power of R2 suppressed when the diagram has
no collinear divergence. For the cross-diagram R2 × R2∗, a straightforward integration gives

dσγ∗
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R2×R2∗+R2×R2∗

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2y⊥d2x′

⊥d2y′
⊥e−ikg⊥·rxy

ryy′ ·rxx′

r2
yy′r2

xx′

×αs

π2

∫ 1−zg

0

dz1
z2

g

e
−i

kg⊥
zg

·((1−z1)ryy′+z1rxx′) (1−z1−zg)(2z1(1−z1−zg)+zg(1−zg))

×4z1(1−z1)(z1+zg)Q2K0(Q̄rxy)K0(Q̄R2rx′y′)2Re
[
ΞNLO,3(x⊥,y⊥;x′

⊥,y′
⊥)
]

. (3.37)

The diagrams where the tagged gluon crosses the shock-wave either in the amplitude or
in the complex conjugate amplitude give

dσγ⋆
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R1×R2∗+R1×R2∗

=

−
αeme2

f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2y⊥e−ikg⊥·rzz′

×αs

π

∫ 1−zg

0
dz1 8z2

1(1−z1)2Q2
(

1− zg

1−z1

)2(
1+ z1

zg

)(
1+ zg

z1
+

z2
g

2z2
1

)

×
∫ d2x⊥

π
e

i
z1
zg

kg⊥·rz′xK0(Q̄R2rz′y)rzx ·rz′x

r2
zxr2

z′x

K0(QXR)2Re [ΞNLO,1(x⊥,y⊥,z⊥,z′
⊥)] , (3.38)

dσγ⋆
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R1×R2∗+R1×R2∗

=

αeme2
f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2y⊥e−ikg⊥·rzz′

×αs

π

∫ 1−zg

0
dz1 8z2

1(1−z1)2Q2
(

1− zg

1−z1

)2(
1+ z1

zg

)(
1+ zg

2z1
+ zg

2(1−z1−zg)

)
×
∫ d2x⊥

π
e

i
z1
zg

kg⊥·rzx′
K0(Q̄R2rz′y)rzy ·rz′x

r2
zyr2

z′x

K0(QXR)2Re [ΞNLO,1(x⊥,y⊥,z⊥,z′
⊥)] . (3.39)
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Finally, the formula for the gluon-tagged single-jet semi-inclusive cross-section coming from
diagrams where the gluon interacts with the shock-wave both in the amplitude and in the
complex conjugate amplitude are

dσγ⋆
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R1×R1∗+R1×R1∗

=

αeme2
f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2y⊥e−ikg⊥·rzz′

× αs

π

∫ 1−zg

0
dz18z2

1(1 − z1)2Q2
(

1 − zg

1 − z1

)2
(

1 + zg

z1
+

z2
g

2z2
1

)

×
∫ d2x⊥

π

rzx · rz′x

r2
zxr2

z′x

K0(QXR)K0(QX ′
R)2Re

[
ΞNLO,4g(x⊥, y⊥, z⊥, z′

⊥)
]

, (3.40)

dσγ⋆
L+A→g+X

d2kg⊥dηg

∣∣∣∣∣
R1×R1∗+R1×R1∗

=

−
αeme2

f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2y⊥e−ikg⊥·rzz′

× αs

π

∫ 1−z1

0
dz1 8z2

1(1 − z1)2Q2
(

1 − zg

1 − z1

)2
(

1 + zg

2z1
+ zg

2(1 − z1 − zg)

)

×
∫ d2x⊥

π

rzy · rz′x

r2
zyr2

z′x

K0(QXR)K0(QX ′
R)2Re

[
ΞNLO,4g(x⊥, y⊥, z⊥, z′

⊥)
]

, (3.41)

with the CGC color correlator

ΞNLO,4g(x⊥, y⊥, z⊥, z′
⊥) = Nc

2 ⟨1 − DxzDzy − DyzDzx + Dz′zDzz′⟩ −
1

2Nc
⟨2 − Dxy − Dyx⟩ ,

which only appears in the gluon-tagged jet cross-section.

3.4 Cancellation of UV, collinear and soft divergences

In this subsection, we discuss the cancellation of the various divergences in the real and
virtual diagrams. First, the gluon-jet real contributions that we have just computed are finite:
they do not possess any divergence neither in the transverse coordinate integration nor in
the longitudinal momentum integration over z1. Hence, we shall focus on the cancellation of
divergences between the virtual diagrams and the real fermion-jet corrections.

The 1/ε poles. First, we show that the 1/ε pole in transverse dimensional regularization
cancels between the real and virtual cross-section (see eqs. (3.11), (3.19) and (3.28)), as
expected in the calculation of a collinear safe observable. In dimensional regularization with
the convention that scaleless integrals vanish (see eq. (3.5)), we do not distinguish infrared
from UV poles. Therefore, we combine the UV poles from both virtual and real diagrams
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with the infrared pole coming from the collinear singularity of the real cross-section:(
dσγ⋆

λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
UV

+ c.c.

)
+ dσγ⋆

λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,in

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV

= αsCF

π

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
LO

× 2
ε

{(
ln
(

z1
z0

)
− ln

(
z2
z0

))
+
(3

4 − ln
(

z1
z0

))
+
(

ln
(

z2
z0

)
− 3

4

)
+ O(ε)

}
. (3.42)

The 1/ε pole cancels at the cross-section level for the single-jet semi-inclusive cross-section.
One notices that this cancellation separately works for the longitudinal dσγ⋆

L+A→q+X and
transverse dσγ⋆

T+A→q̄+X cross-sections.

Soft divergences. The second kind of divergences are soft divergences which appear in
our regularization scheme as double logarithms of the cut-off Λ− = z0q− in longitudinal
momentum. Unlike other regularization schemes, such as dimensional regularization in four
dimensions, these divergences cancel out separately among virtual and real corrections [36, 49].
As seen by inspection of eq. (3.11), the sum of diagrams V2 × LO∗, SE2 × LO∗, SE2 × LO∗

does not have a double logarithmic divergence in z0. Similarly, one observes that

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,in

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗,soft

=

αsCF

π

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
LO

×
{
− ln2(z0) + ln2

(
z1
z0

)
+ O(ln(z0)) + O(1)

}
, (3.43)

so that the double logarithmic divergence in z0 cancels between the term where the gluon
and quark are clustered within the same jet and the term where the gluon forms its own
jet but is soft.

3.5 Rapidity divergences: BK-JIMWLK factorization

Last, but not least, we have to address how the single logarithmic divergence in z0 cancels
in our calculation. We do not expect complete cancellation of the z0 dependence, as this
dependence provides the high energy or rapidity evolution of the dipole operators in the
LO cross-section. However, we notice interesting grouping between diagrams, where the z0
dependence cancels. We define the following sum

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,0

≡
(

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
UV

+ c.c.

)
+ dσγ⋆

λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,UV

, (3.44)

where R2 × R2∗ is itself the sum of three terms, labeled, “in”, “soft” and “reg” given in
eqs. (3.19), (3.20) and (3.21) respectively. This “NLO,0” term gathers all NLO corrections
which share the same color correlator ΞLO as the LO cross-section. Anticipating our discussion
of the rapidity divergence of the NLO contribution associated with the CGC correlator ΞNLO,4
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which imposes ξ = eγE r2
xx′/2 in the UV regulator of R1 × R1∗, the calculation of the above

term yields

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,0

=

αeme2
f Nc

(2π)4

[
8z3

1(1−z1)2Q2
]∫

d6X⊥e−ik1⊥·rxx′K0(Q̄rxy)K0(Q̄rx′y)

×αsCF

π

{
ln
(

z1
1−z1

)
ln
(

k1⊥
2rxyrx′yR2

c2
0

)
− 1

2 ln2
(

z1
1−z1

)
− 3

4 ln
(

4k1⊥
2r2

xx′R2

c2
0

)
+7− 2π2

3

−
∫ 1−z1

0

dzg

zg
ln
(

k1⊥
2r2

xx′R2z2
g

c2
0z2

1

)

×
[
e
−i

zg
z1

k1⊥rxx′
(

1− zg

1−z1

)2(
1+ zg

z1

)2
(

1+ zg

z1
+

z2
g

2z2
1

)
K0(Q̄R2rxy)K0(Q̄R2rx′y)

K0(Q̄rxy)K0(Q̄rx′y)
−1
]}

×
〈
Dxx′−Dxy−Dyx′ +1

〉
, (3.45)

which is free of any divergence as zg → 0. Unlike the inclusive dijet case [33], the NLO
corrections proportional to ΞLO do not contribute to the high energy evolution of ΞLO.

The same observation can be made for the NLO contributions proportional to ΞNLO,3.
This color structure appears in final state gluon exchange such as V3×LO∗ and R2×R2∗. A
close inspection of the zg → 0 behaviour of the zg integrand in eqs. (3.16) and (3.30) shows that

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V3×LO∗

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥e

−ik1⊥·
(

rxx′+ 1−z1
z1

ryy′

)

×Hλ=L
LO (z, Q2, rxy, rx′y′)ΞNLO,3(x⊥, y⊥, x′

⊥)

× αs

π2

∫
z0

dzg

zg

{
1

r2
yy′

+ O(zg)
}

, (3.46)

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗

= −
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥e

−ik1⊥·
(

rxx′+ 1−z1
z1

ryy′

)

×Hλ=L
LO (z, Q2, rxy, rx′y′)ΞNLO,3(x⊥, y⊥, x′

⊥)

× αs

π2

∫
z0

dzg

zg

{
1

r2
yy′

+ O(zg)
}

. (3.47)

Consequently, the logarithmic divergence in z0 cancels between V3 × LO∗ and R2 × R2∗, and
likewise for their complex conjugate counterpart. One can also notice that the UV divergence
as ryy′ → 0 arising in the “slow” gluon limit cancels as well. It is then natural to group all
these terms together, in a contribution that we call NLO, 3 in reference to the label of the
CGC color correlator ΞNLO,3 which is common to all these diagrams:

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,3

≡ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V3×LO∗

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R2×R2∗

+ c.c. . (3.48)
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The analytic expression for this term is provided in the next subsection, which gathers our
final result in the most compact way.

In the end, only the contributions proportional to the CGC correlators ΞNLO,1 and ΞNLO,4
have an intrinsic ln(z0) divergence which does not cancel between diagrams. Let us define

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,1

≡ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
SE1×LO∗,reg

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
V1×LO∗

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R2∗

+ c.c. , (3.49)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,4

≡ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗,reg

+ dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

+
(

dσγ⋆
L+A→q+X

d2k1⊥dη1

∣∣∣∣∣
R1×R1∗

+ c.c.

)
. (3.50)

Their complete analytic expressions are provided in the next subsection. To properly isolate
the leading logarithmic divergence as z0 → 0, we introduce an arbitrary rapidity factorization
scale zf = k−

f /q− for the upper bound of the singular zg integral. Isolating the leading
logarithmic zg → 0 divergence in the integrals over zg defining these two terms, we get

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,1

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′H(z1,Q,rxy,rx′y)

×αs

π

∫ zf

z0

dzg

zg

∫ d2z⊥
π

{[
−rzx ·rzy

r2
zxr2

zy

+ 1
r2

zx

− rzx ·rzx′

r2
zxr2

zx′
+ rzy ·rzx′

r2
zyr2

zx′

]
ΞNLO,1(x⊥,y⊥,z⊥,x′

⊥)

− 1
r2

zx

exp
(
− r2

zx

eγE r2
xy

)
CF ΞLO(x⊥,y⊥,x′

⊥)
}

+c.c. , (3.51)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,4

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′H(z1,Q,rxy,rx′y)

×αs

π

∫ zf

z0

dzg

zg

∫ d2z⊥
π

{[
1

r2
zy

+ rzx ·rzx′

r2
zxr2

zx′
− rzy ·rzx′

r2
zyr2

zx′
− rzy ·rzx

r2
zyr2

zx

]
ΞNLO,4(x⊥,y⊥,z⊥,x′

⊥)

− 1
r2

zy

exp
(
−

r2
zy

2ξ

)
CF ΞLO(x⊥,y⊥,x′

⊥)
}

. (3.52)

We remind that the transverse coordinate scale squared ξ is arbitrary since the ξ-dependent
term is added and subtracted to the total cross-section. After some straightforward algebra,
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making use of the identity

rzx · rzy

r2
zxr2

zy

= 1
2

[
−

r2
xy

r2
zxr2

zy

+ 1
r2

zx

+ 1
r2

zy

]
, (3.53)

the two previous equations simplify to

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,1

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′H(z1, Q, rxy, rx′y)

× αs

π

∫ zf

z0

dzg

zg

∫ d2z⊥
π

{[
r2

xy

r2
zxr2

zy

+ r2
xx′

r2
zxr2

zx′
−

r2
yx′

r2
zyr2

zx′

]
ΞNLO,1(x⊥, y⊥, z⊥, x′

⊥)

− 1
r2

zx

exp
(
− r2

zx

eγE r2
xy

)
CF ΞLO(x⊥, y⊥, x′

⊥)
}

+ c.c. , (3.54)

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,4

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′H(z1, Q, rxy, rx′y)

× αs

π

∫ zf

z0

dzg

zg

∫ d2z⊥
π

{[
r2

xy

r2
zxr2

zy

− r2
xx′

r2
zxr2

zx′
+

r2
yx′

r2
zyr2

zx′

]
ΞNLO,4(x⊥, y⊥, z⊥, x′

⊥)

− 1
r2

zy

exp
(
−

r2
zy

2ξ

)
CF ΞLO(x⊥, y⊥, x′

⊥)
}

. (3.55)

Then we find that the sum of these two contributions is

dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,1

+ dσγ⋆
λ+A→q+X

d2k1⊥dη1

∣∣∣∣∣
NLO,4

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥ e−ik1⊥·rxx′H(z1,Q,rxy,rx′y) ln
(

zf

z0

)
αsNc

2π

∫ d2z⊥
π

×
[

r2
xx′

r2
zx′r2

zx

⟨DzxDzx′−Dxx′⟩−
r2

xy

r2
zxr2

zy

⟨DzxDzy−Dxy⟩−
r2

x′y

r2
zx′r2

zy

〈
DzyDzx′−Dyx′

〉

+CF

Nc
ΞLO

 r2
xx′

r2
zx′r2

zx

+
r2

xy

r2
zxr2

zy

+
r2

x′y

r2
zx′r2

zy

− 2e
− r2

zx
eγE r2

xy

r2
zx

− 2e
−

r2
zx′

eγE r2
x′y

r2
zx′

− 2e
−

r2
zy
2ξ

r2
zy


 . (3.56)

In the first three terms inside the square bracket, one recognizes the BK kernel applied
to the dipoles Dxx′ , −Dxy and −Dyx′ . For the particular choice ξ = eγE r2

xx′/2 one can
rely on the identity

∫
d2z⊥

 r2
xx′

r2
zx′r2

zx

+
r2

xy

r2
zxr2

zy

+
r2

x′y

r2
zx′r2

zy

− 2e
− r2

zx
eγE r2

xy

r2
zx

− 2e
−

r2
zx′

eγE r2
x′y

r2
zx′

− 2e
−

r2
zy

eγE r2
xx′

r2
zy

 = 0 ,

(3.57)

– 23 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
0

to cancel the last term which would not be naturally associated with the small-x evolution
of the leading order cross-section. The latter identity can be proven using dimensional
regularization along the lines of appendices E in [20, 33].

In the end, we find, to leading logarithmic accuracy,
dσγ⋆

λ+A→j+X

d2k⊥dη

∣∣∣∣∣
NLO

= ln
(

zf

z0

)
KJIMWLK ⊗ dσγ⋆

λ+A→j+X

d2k⊥dη

∣∣∣∣∣
LO

+ O(αs) , (3.58)

where the action of the JIMWLK Hamiltonian on the dipole correlator is given by

KJIMWLK ⊗ ⟨Dxy⟩ ≡
αsNc

2π2

∫
d2z⊥

r2
xy

r2
zxr2

zy

⟨DzxDzy − Dxy⟩ . (3.59)

The dependence on the arbitrary cut-off z0 is then interpreted following a renormalization
group approach. The CGC dipole operator in the LO cross-section is regarded as a bare
dipole operator ⟨D0

xy⟩ and the rapidity divergence z0 → 0 is absorbed into this bare operator.
We then define the renormalized CGC dipole operator at the rapidity factorization scale
Yf = ln(zf ) such that

⟨Dxy⟩Yf
= ⟨D0

xy⟩ + αsNc

2π2 ln
(

zf

z0

)∫
d2z⊥

r2
xy

r2
zxr2

zy

〈
D0

zxD0
zy − D0

xy

〉
+ O(α2

s) (3.60)

and we re-express the SIDIS cross-section in terms of this renormalized CGC dipole operator.
The zf or Yf independence of the cross-section translates into the following renormalization
group equation

∂⟨Dxy⟩Yf

∂Yf
= αsNc

2π2

∫
d2z⊥

r2
xy

r2
zxr2

zy

⟨DzxDzy − Dxy⟩Yf
(3.61)

which is nothing but the first equation of the Balitsky-JIMWLK [93–97] hierarchy. It reduces
to the well-known BK equation [93, 98] in the mean-field or large Nc approximations where
⟨DzxDzy⟩Yf

≈ ⟨Dzx⟩Yf
⟨Dzy⟩Yf

.

3.6 NLO impact factor for the double differential cross-section

This section summarizes our analytic expressions for the SIDIS NLO impact factor in the
small R approximation, in the case of a longitudinally polarized photon. The expressions for
transversely polarized photons are given in appendix A. We write our final result as

dσγ⋆
λ+A→j+X

d2k⊥dη
= dσγ⋆

λ+A→j+X

d2k⊥dη

∣∣∣∣∣
LO

+ dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO

+ dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO

. (3.62)

The first NLO contribution labeled dσγ⋆
λ+A→jf +X |NLO comes from quark/antiquark-tagged

jets. With respect to the formulae shown in the previous section, we include the contribution
dσγ⋆

λ+A→q̄+X where the antiquark jet is measured, which amounts to replacing Ξ by 2ReΞ
as we discussed in the text near eq. (2.16). We further decompose the fermion-tagged NLO
contribution according to the CGC correlator upon which they depend:

dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO

= dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,0

+ dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,3

+ dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,1

+ dσγ⋆
λ+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,4

. (3.63)
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ΞLO(x⊥, y⊥, x′
⊥)

〈
Dxx′ − Dxy − Dyx′ + 1

〉
ΞNLO,1(x⊥, y⊥, z⊥, x′

⊥)
Nc
2
〈
1 − Dyx′ − DxzDzy + Dzx′Dxz

〉
− 1

2Nc

〈
1 − Dxy − Dyx′ + Dxx′

〉
ΞNLO,3(x⊥, y⊥, x′

⊥, y′
⊥)

Nc
2
〈
1 − Dxy − Dy′x′ + DxyDy′x′

〉
− 1

2Nc

〈
1 − Dxy − Dy′x′ + Qxy;y′x′

〉
ΞNLO,4(x⊥, y⊥, z⊥, x′

⊥)
Nc
2 ⟨Dxx′ − DxzDzy − DyzDzx′ + 1⟩
− 1

2Nc

〈
Dxx′ − Dxy − Dyx′ + 1

〉
ΞNLO,4g(x⊥, y⊥, z⊥, z′

⊥)
Nc
2 ⟨1 − DxzDzy − DyzDzx + Dz′zDzz′⟩

− 1
2Nc

⟨2 − Dxy − Dyx⟩

Table 1. Color correlators contributing to the next-to-leading order SIDIS cross-section. 1/N2
c sup-

pressed corrections are displayed in the second line of each row.

To aid the reader, the CGC color correlators that appear in these terms are summarized
in table 1. Note that contrary to the inclusive dijet cross-section [33], the CGC correlator
ΞNLO,2 does not contribute (explaining why there is no “NLO,2” term in eq. (3.63)) thanks to
the cancellations discussed in section 3.1. Implicit in our notations, these CGC correlators are
evaluated at the factorization scale Yf . Indeed, small x kinematics imply that αs ln(zf /z0) ∼ 1
in eq. (3.60); hence, the Yf dependence of the CGC correlators in the LO and NLO impact
factors are respectively O(1) and O(αs) corrections which must be taken into account in a
complete NLO calculation in the Regge limit.3 We also systematically set the longitudinal
momentum cut-off Λ− = z0q− to 0 when the integral over the longitudinal momentum fraction
of the gluon zg is convergent as zg → 0. This amounts to neglect O(αsz0) corrections which
are power suppressed at small x since z0 is physically of order of xBj [33].

Let us quote now our relatively compact expressions for these various terms:

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,0

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′8z3(1−z)2Q2K0(Q̄rxy)

×K0(Q̄rx′y)2Re
[
ΞLO(x⊥,y⊥,x′

⊥)
]
×αsCF

π

{
−1

2 ln2
(

z

1−z

)
+7− 2π2

3

+ln
(

z

1−z

)
ln
(

k2
⊥rxyrx′yR2

c2
0

)
− 3

4 ln
(

4k2
⊥r2

xx′R2

c2
0

)
−
∫ 1−z

0

dzg

zg
ln
(

k2
⊥r2

xx′R2z2
g

c2
0z2

)

×
[
e−i

zg
z

k⊥·rxx′
(1−z−zg)2(z+zg)2(2z(z+zg)+z2

g)
2z4(1−z)2

K0(Q̄R2rxy)K0(Q̄R2rx′y)
K0(Q̄rxy)K0(Q̄rx′y)

−1
]}

,

(3.64)

which is valid up to power of the jet radius αsR2 corrections. We recall that c0 = 2e−γE .
At small R, the leading O(αs) corrections come from the ln(R) terms. One recognizes in

3Based on the same power counting argument, the Yf dependence of the LO impact factor must be
computed using the NLO BK-JIMWLK equation [16, 99–103] in a NLO small-x calculation.
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the coefficient of the αs ln(R) term a soft logarithm ln(z/(1 − z)) (which will be further
discussed in the next section) and the finite part −3/2 of the quark DGLAP splitting function
associated with hard but collinear gluon emissions. In the last term, the zg integral has no
rapidity divergence since the square bracket vanishes when zg → 0 by construction.

For NLO, 3 we obtain after adding eq. (3.16) and eq. (3.30):

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,3

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥e−ik⊥·(rxx′+ 1−z

z
ryy′)4z(1 − z)Q2

× 2Re
[
ΞNLO,3(x⊥, y⊥, x′

⊥, y′
⊥)
] αs

π2

∫ z

z−1

dzg

zg
(1 − z + zg)(z − zg)2K0(Q̄rx′y′)K0(Q̄V3rxy)

× ei
zg
z

k⊥·rxy
(1 − z)(1 + zg)r2

yy′ + rxy · ryy′(2z(1 − z + zg) − zg(1 + zg))

r2
yy′

[
(1 − z)r2

yy′ + 2(1 − z)(z − zg)ryy′ · rxy − zg(z − zg)r2
xy

] + c.c. . (3.65)

The analytic expression eq. (3.65) is one of our new results, which is remarkably simple given
that it gathers the sum of the diagrams V3×LO∗ and R2×R2∗ plus their complex conjugate.
The integrals in the two previous equations are convergent, both in longitudinal momentum
space as zg → 0 and in transverse coordinate space. On the contrary, the terms NLO, 1
and NLO, 4 have a zg → 0 singularity, which is cured by BK-JIMWLK evolution [93–97] as
discussed in the previous section. We thus define the shorthand notation∫ a

0

dzg

zg
{f(zg)}zf

≡
∫ a

0

dzg

zg
[f(zg) − Θ(zf − zg)f(0)] , (3.66)

for any function f(zg) which has a well-defined limit as zg → 0.
NLO,1 is obtained by adding eqs. (3.6), (3.9), (3.31),(3.32) and their complex conju-

gates, we find

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,1

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2z⊥e−ik⊥·rxx′8z3(1−z)2Q2

×αs

π2

∫ 1

0

dzg

zg

{[
K0(Q̄rx′y)K0(QXV )e−i

zg
z

k⊥·rzxΘ(z−zg)
(
−rzx ·rzy

r2
zxr2

zy

(
1+ zg

1−z

)

×
(

1− zg

z

)(
1− zg

2z
− zg

2(1−z+zg)

)
+ 1

r2
zx

(
1− zg

z
+

z2
g

2z2

))
+K0(Q̄R2rx′y)K0(QXR)

×e−i
zg
z

k⊥·rzx′Θ(1−z−zg)
(

1− zg

1−z

)2(
1+ zg

z

)(
rzy ·rzx′

r2
zyr2

zx′

(
1+ zg

2z
+ zg

2(1−z−zg)

)

−rzx ·rzx′

r2
zxr2

zx′

(
1+ zg

z
+

z2
g

2z2

))]
×2Re

[
ΞNLO,1(x⊥,y⊥,z⊥,x′

⊥)
]
−K0(Q̄rx′y)K0(Q̄rxy)

×Θ(z−zg)e−r2
zx/(r2

xyeγE )
r2

zx

(
1− zg

z
+

z2
g

2z2

)
2Re

[
CF ΞLO(x⊥,y⊥,x′

⊥)
]}

zf

+c.c. , (3.67)
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Q̄2 z(1 − z)Q2

Q̄2
R2 (1 − z − zg)(z + zg)Q2

Q̄2
V3 (1 − z + zg)(z − zg)Q2

X2
V (1 − z)(z − zg)r2

xy + zg(z − zg)r2
zx + (1 − z)zgr2

zy

X2
R z(1 − z − zg)r2

xy + zzgr2
zx + (1 − z − zg)zgr2

zy

X ′2
R z(1 − z − zg)r2

x′y + zzgr2
zx′ + (1 − z − zg)zgr2

zy

Table 2. Summary of our notations for the kinematic variables appearing in the NLO SIDIS cross-
section in coordinate space.

and NLO,4 is obtained by adding eqs. (3.33), (3.34) (and complex conjugate), and (3.29),
we find

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,4

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2z⊥e−ik⊥·rxx′8z3(1 − z)2Q2

× αs

2π2

∫ 1−z

0

dzg

zg

{(
1 − zg

1 − z

)2
K0(QXR)K0(QX ′

R)
[

rzx · rzx′

r2
zxr2

zx′

(
1 + zg

z
+

z2
g

2z2

)

+ 1
r2

zy

(
1 + zg

1 − z − zg
+

z2
g

2(1 − z − zg)2

)
− 2rzy · rzx′

r2
zyr2

zx′

(
1 + zg

2z
+ zg

2(1 − z − zg)

)]

× 2Re
[
ΞNLO,4(x⊥, y⊥, z⊥, x′

⊥)
]
− K0(Q̄rxy)K0(Q̄rx′y)

(
1 − zg

1 − z

)2 e−r2
zy/(r2

xx′e
γE )

r2
zy

×
(

1 + zg

1 − z − zg
+

z2
g

2(1 − z − zg)2

)
2Re

[
CF ΞLO(x⊥, y⊥, x′

⊥)
]}

zf

+ c.c. . (3.68)

The table 2 gathers our shorthand notations for the effective virtualities and dipole sizes
at NLO.

Finally, the gluon-tagged SIDIS cross-section is also decomposed as

dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO

= dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,0

+ dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,3

+ dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,1

+ dσγ⋆
λ+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,4g

, (3.69)

with NLO, 0 given by eq. (3.36), NLO, 3 given by eq. (3.37), NLO, 1 given by the sum of
eqs. (3.38)–(3.39) plus their complex conjugate and NLO, 4g given by the sum of eqs. (3.40)–
(3.41). For the sake of self-containment of this summary section, we quote below the
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expressions of these four terms. The NLO,0 term reads

dσγ∗
L+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,0

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′ 2Re [ΞLO(x⊥,y⊥,x′
⊥)]

× (−αs)CF

π

∫ 1−z

0

dz1

z2 e−i
z1
z kg⊥·rxx′ (1−z1−z)2 (z1+z)2 (2z1(z1+z)+z2)

×4Q2K0(Q̄R2rx′y)K0(Q̄R2rxy) ln
(

k2
⊥r2

xx′R2z2
1

c2
0z2

)
, (3.70)

where, obviously, Q̄2
R2 = (1 − z1 − z)(z1 + z)Q2 since zg = z here. The NLO,3 term reads

dσγ∗
L+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,3

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2y⊥d2x′

⊥d2y′
⊥e−ik⊥·rxy

ryy′ · rxx′

r2
yy′r2

xx′

× αs

π2

∫ 1−z

0

dz1
z2 e−i

k⊥
z

·((1−z1)ryy′+z1rxx′) (1 − z1 − z)(2z1(1 − z1 − z) + z(1 − z))

× 4z1(1 − z1)(z1 + z)Q2K0(Q̄rxy)K0(Q̄R2rx′y′)2Re
[
ΞNLO,3(x⊥, y⊥; x′

⊥, y′
⊥)
]

, (3.71)

with the effective virtuality Q̄2 = z1(1 − z1)Q2 depending on z1 which is integrated over.
The NLO,1 term is given by

dσγ⋆
L+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,1

=

αeme2
f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2x⊥d2y⊥e−ik⊥·rzz′
αs

π2

∫ 1−z

0
dz1 ei

z1
z

k⊥·rz′x

× 8z2
1Q2 (1 − z1 − z)2

(
1 + z1

z

)
K0(Q̄R2rz′y)K0(QXR)2Re

[
ΞNLO,1(x⊥, y⊥, z⊥, z′

⊥)
]

×
[(

1 + z

2z1
+ z

2(1 − z1 − z)

)
rzy · rz′x

r2
zyr2

z′x

−
(

1 + z

z1
+ z2

2z2
1

)
rzx · rz′x

r2
zxr2

z′x

]
+ c.c. . (3.72)

Finally, the formula for the NLO,4g term is

dσγ⋆
L+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,4g

=

αeme2
f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2x⊥d2y⊥ e−ik⊥·rzz′

× αs

π2

∫ 1−z

0
dz1 8z2

1Q2 (1 − z1 − z)2 K0(QXR)K0(QX ′
R)2Re

[
ΞNLO,4g(x⊥, y⊥, z⊥, z′

⊥)
]

×
[(

1 + z

z1
+ z2

2z2
1

)
rzx · rz′x

r2
zxr2

z′x

−
(

1 + z

2z1
+ z

2(1 − z1 − z)

)
rzy · rz′x

r2
zyr2

z′x

]
. (3.73)

We emphasize that our expressions are all UV and IR finite, and therefore suitable for
numerical evaluation. Nevertheless, the number of integrals to perform (4 transverse integrals
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and one longitudinal integral at most) and the presence of phases like e−ik⊥·rxx′ makes the
numerical task very challenging. In section 5, we will provide results for the k⊥-integrated
cross-section which partially overcomes these difficulties.

Quadrupole dependence of the NLO SIDIS impact factor. To close this section, we
would like to briefly comment on the contribution labeled NLO, 3 which physically comes from
final state (real or virtual) gluon exchanged between the quark and the antiquark. Because
of the non-trivial exchange of color after the interaction of the quark-antiquark dipole with
the shock-wave, this term exhibits a dependence on a higher point correlator, the quadrupole
Qxyy′x′ . This was not expected given that the leading order cross-section only depends on
the dipole operator. Note also that in the case of inclusive dijet production, the NLO impact
factor does not involve higher point correlators than those appearing at leading order [33]
(for instance, the NLO impact factor for inclusive dijet does not depend on the sextupole).

It is important to emphasize that this dependence does not affect the leading ln(zf /z0) ∼
ln(1/xBj) term in the NLO result, as final state gluon radiations do not contribute to the
rapidity evolution of the color dipoles. Otherwise, the universality of JIMWLK factorization
would have been broken. The dependence on the quadrupole appears then only in the NLO
impact factor. We nevertheless expect a rather small contribution from this correlator as
it is 1/N2

c suppressed relatively to the dipole operators.
The NLO impact factor for the fully inclusive DIS cross-section does not depend on

the quadrupole operator though. Therefore, this dependence must cancel when integrating
eq. (3.65) over the transverse momentum and the rapidity of the jet. We will explain how
this cancellation occurs in the last section of this paper.

The appearance of the quadrupole in the NLO impact factor is troublesome from a
numerical point of view. Indeed, evaluating the quadrupole at a given rapidity scale Yf is
a difficult task as it requires solving the JIMWLK equation. Several approximations are
possible. One can rely on the Gaussian approximation [104–108] to express the quadrupole
in terms of the dipole, and use the BK equation to evolve the dipole in rapidity. One can
also simply ignore this term by relying on the large Nc approximation, in line with the use
of the closed form of the BK equation.

4 The very forward rapidity regime

As mentioned in the introduction, the very forward rapidity regime of the SIDIS process
has recently been shown to be strongly sensitive to saturation in the regime Q2 ≫ Q2

s

but Q̄2 ∼ Q2
s [67]. This kinematic domain is interesting because it is perturbative — the

virtuality Q of the photon playing the role of the hard scale is much larger than ΛQCD — but
nevertheless sensitive to the saturation scale. This regime corresponds to z close to one, since

1 − z ∼ Q2
s

Q2 ≪ 1 . (4.1)

The study in [67] makes use of the LO result for the SIDIS cross-section at small x. In this
section, we analyze the impact of QCD radiative corrections on the very forward jet rapidity
regime z → 1. We therefore assume 1 − z ≪ 1 without any specific hierarchy between Q, k⊥
and Qs. In particular, our calculation also holds in the regime Q2 ≫ Q2

s.
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A first look at eq. (3.64) reveals the presence of double and single logarithmic NLO
corrections of the form

αs ln2(1 − z) , αs ln(1 − z) , (4.2)

which are therefore large in the very forward rapidity regime 1 − z ≪ 1. Physically, these
large logarithms, dubbed “threshold logarithms”, come from the incomplete cancellation
between real and virtual soft gluon corrections when the constraint 1 − z ≪ 1 is imposed on
the final state. While a virtual gluon is only constrained by the condition zg ≤ z, a real one
must satisfy zg ≤ 1 − z due to longitudinal momentum conservation. A back of the envelop
calculation similar to the one done in [67] is actually sufficient to get the double logarithm in
1 − z for single-jet production. To double logarithmic accuracy as z goes to 1, the dominant
real contribution comes from diagrams with a collinear singularity as the gluon becomes
collinear to one of the two fermions (diagrams R2 × R2∗ and R2 × R2∗). Such real diagrams
have an overall prefactor αsCF /π and are parametrically of order

αsCF

π

∫ 1−z

0

dzg

zg

∫ zgk2
⊥

z2
gk2

⊥R2

dC2
qg

C2
qg

, (4.3)

where Cqg ≈ kg⊥ − zgk⊥ is the collinearity vector between the gluon and the quark or
antiquark (see eq. (3.17)). The lower bound of the C2

qg integration comes from imposing the
gluon to be outside the fermion jet. The upper bound is a consequence of the gluon formation
time 1/k+

g = 2zgq−/kg⊥
2 ∼ 2zgq−/C2

qg being larger than the quark or antiquark formation
time 1/k+ = 2zq−/k2

⊥ ∼ 2q−/k2
⊥. On the other hand, the leading virtual correction in

the z → 1 limit is of order

−αsCF

π

∫ z

0

dzg

zg

∫ zgk2
⊥

z2
gk2

⊥R2

dC2
qg

C2
qg

, (4.4)

where the Cqg boundaries are identical to the real case, since the phase-space C2
qg < z2

gk2
⊥R2

in the virtual term exactly cancels with the real in-cone phase space as demonstrated in
section 3.2.2. This leads to the following mismatch

αsCF

π

∫ 1−z

z

dzg

zg

∫ zgk2
⊥

z2
gk2

⊥R2

dC2
qg

C2
qg

≈ −αsCF

2π
ln2
( 1

(1 − z)R2

)
, (4.5)

which exhibits the double logarithmic enhancement in the threshold limit. Note also the
R-dependent single logarithm in 1 − z.

We now want to validate this back of the envelop calculation and compute the single
logarithmic corrections by explicitly extracting the logarithmically enhanced terms in the
NLO corrections which factorize from the LO cross-section. These logarithms only come from
NLO terms which depend on the LO CGC operator, that is the NLO coefficient labeled NLO, 0
in our final result and given by eq. (3.64). There could be “hidden” single logarithms in 1− z

in the NLO,1 and NLO,3 terms as they are also combinations of real and virtual diagrams.4

4We do not expect factorization breaking single logarithms from the NLO,4 term as this contribution
contains only real emissions.
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If so, these single logs would break the factorization in terms of the LO cross-section, at
least in the deep saturation regime Q ∼ k⊥ ∼ Qs where the color structure ΞNLO,1 and
ΞNLO,3 cannot be further simplified. We leave for the future the analysis of these possible
contributions, in particular in the TMD limit Q ≫ k⊥, Qs.

In the NLO, 0 contribution given by eq. (3.64), some terms are already explicitly loga-
rithmic as z gets closer to one, such as the double logarithm −αsCF /(2π) ln2(1 − z) which
is exactly the double log computed in eq. (4.5). It is interesting to notice that our back of
the envelop calculation above is not in one to one correspondance with the real and virtual
terms which are combined in the NLO,0 contribution given by eq. (3.64). For instance, the
virtual piece of eq. (3.64) coming from the free self-energies and vertex corrections before
the shock-wave (see eq. (3.11)) already contains a double logarithm in 1 − z with a positive
sign. It is only after combining virtual and real diagrams together within eq. (3.64) that
the resulting double log becomes in agreement with eq. (4.5). This is a specificity of the
dipole picture, in which the emergence of double logarithms from phase space constraints on
soft gluons often comes from subtle combinations of diagrams, as also noticed for Sudakov
double logarithmic suppression in back-to-back dijet production in DIS [36, 49, 51]. We have
also checked that the final result for the double logarithm in 1 − z is universal with respect
to the virtual photon polarization (see eq. (A.13) in the appendix), but interestingly, the
coefficient of the single threshold log is polarization dependent.

This double logarithm is also in agreement with the calculation in appendix F of [67],
however, contrary to our observation, the authors argue there that this double logarithm
should cancel in the case of a jet measurement. The reason behind this disagreement lies in
the definition of the final state. While we define jets using jet clustering algorithms such as
anti-kt with a free jet radius R, the jet in appendix F of [67] is “dynamically” defined event
by event, with an effective radius R ∼ k⊥/((1 − z)q−) set by the angular separation between
the qq̄ pair in the dipole frame. When z goes to 1, this effective radius diverges and violates
our small R ≪ 1 assumption. In practice, using very large jet radii comes with additional
difficulties, both on the experimental side (contamination from the background, effect of
the kinematic coverage of the detectors, etc) and on the theory side (for instance, mono-jet
configurations with qq̄g configurations lying inside the same jet contribute). We therefore
believe that one cannot avoid these threshold logarithms in realistic SIDIS measurements
at very forward rapidities.

In addition to the explicit double and single logarithmic terms in eq. (3.64), we need
to estimate the limiting behavior as z → 1 of the following integral, which may hide single
logarithms of 1 − z,

∫ 1−z

0

dzg

zg

[
(1 − z − zg)2(z + zg)2(2z(z + zg) + z2

g)
2z4(1 − z)2

×e−i
zg
z

k⊥·rxx′ K0(Q̄R2rxy)K0(Q̄R2rx′y)
K0(Q̄rxy)K0(Q̄rx′y)

− 1
]

ln
(

k2
⊥r2

xx′R2z2
g

c2
0z2

)
. (4.6)

Since the quantity inside the square bracket vanishes as zg → 0, a logarithmic behaviour
in 1 − z can only arise from the ln(z2

g) dependence in the overall factor. Expanding the
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integrant for z ∼ 1 and subsequently for zg → 0, one gets∫ 1−z

0

dzg

zg

[
z2

g

(1 − z)2 − 2zg

1 − z
+ . . .

]
ln
(
z2

g

)
= 3 ln

( 1
1 − z

)
+ O(1) , (4.7)

where we omit the finite terms as z → 1 in this result. In the end, we have

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣
NLO,0

= αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′2Re
[
ΞLO(x⊥,y⊥,x′

⊥)
]

×8z3(1−z)2Q2K0(Q̄rxy)K0(Q̄rx′y)

× αsCF

π

{
−1

2 ln2
( 1

1−z

)
+
[
ln
(

k2
⊥rxyrx′yR2

c2
0

)
−3
]

ln
( 1

1−z

)
+O(1)

}
,

(4.8)

where the O(1) term gathers all contributions in NLO, 0 which are not enhanced by logarithms
of 1 − z. The first term in the square bracket is the double logarithm, while the second
term is the single logarithm in 1 − z. In appendix B, we show that the NLO contribution
proportional to

αsCF

π
ln
(

k2
⊥rxyrx′y

c2
0

)
ln
( 1

1 − z

)
, (4.9)

is indeed a single threshold log correction and we compute this term more explicitly in
terms of the dipole operator and a single transverse coordinate integration. In the end, we
find that for a longitudinally polarized photon, this single log coefficient can effectively be
replaced by −2αsCF /π up to powers of (1− z) corrections, while it vanishes for a transversely
polarized photon.

The single threshold log also depends on the jet radius, via the ln(R2) term associated
with soft gluon emissions close to the jet boundary. Last the −3 piece also depends on the
photon polarization; we find that it is not present for a transversely polarized virtual photon
using eq. (A.13) and following the same mathematical steps as the ones used to derive eq. (4.7).

As such, any numerical attempt to evaluate the NLO SIDIS cross-section in the forward
rapidity regime would lead to unphysical results such as a negative cross-section caused by the
presence of the large negative NLO corrections associated with these threshold logarithms in
1 − z. However, these leading logarithms do factorize from the LO cross-section. This points
towards the possibility of performing simultaneously small-x and threshold resummation
at leading log in x and single logarithmic accuracy in 1 − z, via a simple exponentiation
of the logarithmically enhanced corrections:

dσγ⋆
λ+A→j+X

d2k⊥dη

∣∣∣∣∣
resum

=
αeme2

f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′2Re
〈
Dxx′ − Dxy − Dyx′ + 1

〉
Yf

×Hλ
LO(z, Q2, rxy, rx′y)Sλ

thr.(1 − z) , (4.10)

with the “Sudakov” for threshold resummation in very forward SIDIS at small-x given by

Sλ
thr.(1 − z) ≡ exp

{
−αsCF

π

[1
2 ln2 (1 − z) +

(
ln(R2) + cλ

)
ln (1 − z)

]}
, (4.11)

with the coefficient cλ equal to cλ=L = −5 for a longitudinally polarized photon and cλ=T = 0
for a transversely polarized photon. Although we include here the resummation of threshold
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logarithms in the SIDIS cross-section for longitudinally polarized photons, one should note
that the λ = L LO SIDIS cross-section is power suppressed in the z → 1 limit as compared
to the transversely polarized photon case (see eqs. (2.12)–(2.13)). Hence, the very forward
jet limit is dominated by the λ = T component and only Sλ=T

thr. truly matters. One notices
that in the end, the single logarithm in 1 − z for λ = T is just −αsCF /π ln(R2) ln(1 − z) in
agreement with our estimation in eq. (4.5) and eq. (F.4) in [67] provided one chooses the
quark mass m cutting the collinear singularity as m/Q = R in this expression. Finally, it
is relatively straightforward to include running coupling effects in Sλ

thr.(1 − z) writing the
argument of the exponential in eq. (4.11) as

ln
(
Sλ

thr.(1 − z)
)

= −CF

π

∫ 1

1−z

dzg

zg

[∫ zgk2
⊥

z2
gk2

⊥

dµ2

µ2 αs(µ2) − (ln(R2) + cλ)αs(zgk2
⊥)
]

, (4.12)

according to the standard resummation procedure for threshold logarithms [109, 110].
In eq. (4.10), the small-x resummation is performed within the LO cross-section via

BK-JIMWLK evolution of the dipole operators (Yf dependence), while the αs ln2(1 − z)
and αs ln(1 − z) are resummed in the exponential factor. Although the exponentiation of
soft gluons effects is a general property of pQCD [111, 112], a formal all-order proof of
this result at small-x is beyond the scope of the present paper. In this paper, we propose
this exponentiation as a natural procedure to cure the instability of the fixed order NLO
calculation as z gets close to 1. The other NLO corrections which are not logarithmically
enhanced in the z → 1 limit can simply be added to eq. (4.10). Unlike threshold resummation
in forward hadron production in pA [70, 71] or for SIDIS in the collinear framework [113–117],
we do not need to go to Mellin space in order to exponentiate the threshold logarithms, as
z is the measured longitudinal momentum fraction of the jet which does not appear in a
convolution neither with a parton distribution function nor a fragmentation function.

Eq. (4.10) tells us that soft radiative corrections suppress the SIDIS cross-section in the
very forward rapidity regime. Therefore, radiative effects effectively mimic the signal of gluon
saturation in this kinematic domain, since gluon saturation also leads to a suppression of the
cross-section for producing very forward jets [67]. In spirit, one recovers the competing effect
between saturation and soft gluon radiations (via Sudakov suppression) which is also at play
for inclusive back-to-back dijet production, another “golden channel” for gluon saturation
searches at the EIC. There is yet a crucial difference between the Sudakov suppression for
back-to-back dijets and the suppression in eq. (4.10). While the former is a convolution in
transverse coordinate space, the latter completely factorizes, at least to double logarithmic
accuracy, from the LO cross-section:

dσγ⋆
λ+A→j+X

d2k⊥dη

∣∣∣∣∣
resum.

= dσγ⋆
λ+A→j+X

d2k⊥dη

∣∣∣∣∣
LO

× e−
αsCF

2π
ln2(1−z) [1 + O(αs ln(1 − z))] . (4.13)

Since the exponential factor does not depend on the nuclear target, one expects complete
cancellation of soft gluon effects (up to potential single log in 1 − z corrections arising from
the NLO, 1 and NLO, 3 terms) when performing the ratio of the SIDIS cross-section between
two different nuclear species. This is another advantage of single-jet measurement over single
hadron production, as we expect the threshold logarithms to appear inside a convolution
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between the fragmentation function and the LO cross-section. In such convolutions, there is
no guarantee of cancellation of the threshold logarithm effects in nuclear modification factors.

5 The transverse momentum integrated SIDIS cross-section at NLO

The analytic expressions for the double differential SIDIS cross-section at NLO provided in
section 3.6 remain challenging to evaluate because of the exponential phase and the large
number of integrals. In order to decrease the complexity of future evaluations of the SIDIS
cross-section in the forward limit which is relevant for gluon saturation, one may wish to
integrate over the transverse momentum of the measured jet. The k⊥-integrated single-jet
semi-inclusive cross-section has one transverse integral less and no phases anymore.

The k⊥ integration of the double differential distribution leads to new UV divergences
term by term in the decomposition eq. (3.63) of our final result. These new divergences
arise from real graphs where the Weizsäcker-Williams kernel rzx · rzx′/(r2

zxr2
zx′) becomes

logarithmically divergent 1/r2
zx as the transverse coordinate of the quark in the amplitude

x⊥ is identified to the one in the complex conjugate amplitude x′
⊥. Some additional work is

required to show that these new divergences cancel among the four terms and to reorganize
the calculation in a way that is suitable for numerical evaluation.

5.1 UV divergences in the k⊥ integrated NLO,4 and NLO,1 terms

In the NLO,4 term for fermionic jets, given by eq. (3.68), the tranvserse momentum k⊥ of the
jet only appears inside the phase e−ik⊥·rxx′ . The integral over k⊥ then yields a (2π)2δ(2)(rxx′)
function which fixes x⊥ = x′

⊥. Consequently, two UV divergences arise in the resulting
expression: (i) one from the term proportional to rzx · rzx′/(r2

zxr2
zx′) which becomes 1/r2

zx

after k⊥ integration, (ii) one from the term proportional to 1/r2
zy because the UV regulator

of the divergence as z⊥ → y⊥, proportional to exp(−r2
zy/(eγE r2

xx′)), vanishes when x⊥ = x′
⊥.

One ends up with the following expression, which is not anymore mathematically well-defined:

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,4

=

αeme2
f Nc

(2π)2 8z3(1−z)2Q2 αs

π2

∫
d2x⊥d2y⊥d2z⊥

∫ 1−z

0

dzg

zg

×
{(

1− zg

1−z

)2
K2

0 (QXR)
[

1
r2

zy

(
1+ zg

1−z−zg
+

z2
g

2(1−z−zg)2

)
−2rzy ·rzx

r2
zyr2

zx

×
(

1+ zg

2z
+ zg

2(1−z−zg)

)
+ 1

r2
zx

(
1+ zg

z
+

z2
g

2z2

)]
2Re[ΞNLO,4(x⊥,y⊥,z⊥,x⊥)]

}
zf

. (5.1)

Similarly, the integral over k⊥ of the NLO,1 term given in eq. (3.67) yields

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,1

=

αeme2
f Nc

(2π)2 16z3(1 − z)2Q2
∫

d2x⊥d2y⊥d2z⊥
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× αs

π2

∫ 1

0

dzg

zg

{[
K0(Q̄rwvy)K0(QXV )Θ(z − zg)

(
−rzx · rzy

r2
zxr2

zy

(
1 + zg

1 − z

)(
1 − zg

z

)

×
(

1 − zg

2z
− zg

2(1 − z + zg)

)
+ 1

r2
zx

(
1 − zg

z
+

z2
g

2z2

))
× 2Re [ΞNLO,1(x⊥, y⊥, z⊥, w⊥,v)]

+ K0(Q̄R2rwry)K0(QXR)Θ(1 − z − zg)
(

1 − zg

1 − z

)2
(

rzy · rzx

r2
zyr2

zx

(
1 + zg

2z
+ zg

2(1 − z − zg)

)

− 1
r2

zx

(
1 + zg

z
+

z2
g

2z2

))]
× 2Re [ΞNLO,1(x⊥, y⊥, z⊥, w⊥,r)]

−K2
0 (Q̄rxy)Θ(z − zg)e−r2

zx/(r2
xyeγE )

r2
zx

(
1 − zg

z
+

z2
g

2z2

)
2Re[ΞLO(x⊥, y⊥, x⊥)]

}
zf

, (5.2)

with

w⊥,v = x⊥ + zg

z
rzx , (5.3)

w⊥,r = x⊥ + zg

z + zg
rzx . (5.4)

In this expression, one recognizes two UV divergent kernels proportional to 1/r2
zx. The

first one, in the third line of eq. (5.2) is regulated by the UV counter-term in the last line,
proportional to exp

(
−r2

zx/(eγE r2
xy)
)
. However, the other 1/r2

zx kernel, coming from the
integration of the real diagram R1 × R2∗ is not canceled by any other term in eq. (5.2).
As it is, eq. (5.2) is then also ill-defined.

The pieces of NLO, 4 and NLO, 1 that contain the UV singularities are

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,4,UV

=
αeme2

f Nc

(2π)2 8z3(1−z)2Q2
∫

d2x⊥d2y⊥d2z⊥
αs

π2

∫ 1−z

0

dzg

zg

×
{(

1− zg

1−z

)2
K2

0 (QXR)
[

1
r2

zy

(
1+ zg

1−z−zg
+

z2
g

2(1−z−zg)2

)

+ 1
r2

zx

(
1+ zg

z
+

z2
g

2z2

)]
2Re[ΞNLO,4(x⊥,y⊥,z⊥,x⊥)]

}
zf

, (5.5)

and

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,1,UV

= −
αeme2

f Nc

(2π)2 16z3(1 − z)2Q2
∫

d2x⊥d2y⊥d2z⊥
αs

π2

∫ 1−z

0

dzg

zg

×
{(

1 − zg

1 − z

)2 1
r2

zx

(
1 + zg

z
+

z2
g

2z2

)
K0(Q̄R2rwry)K0(QXR)

× 2Re [ΞNLO,1(x⊥, y⊥, z⊥, w⊥,r)]
}

zf

. (5.6)

We now demonstrate that these new UV divergences as z⊥ → x⊥, y⊥ in the integrals eqs. (5.1)–
(5.2) are canceled by divergences arising from the transverse momentum integration of the
NLO,0 term.
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5.2 UV divergences in the k⊥ integrated NLO,0 term

The k⊥ dependence of the NLO,0 term, given by eq. (3.64) is slightly more complicated
as k⊥ appears both inside the phase e−ik⊥·rxx′ and in the argument of logarithms such as
ln(k2

⊥rxyrx′y). To perform the k⊥ integral, we rely on the identities in appendix C for the
Fourier transform of the logarithm. These identities will allows us to deal with logarithmic
singularities by expressing it in a form that will simplify its combination with the logarithmic
singularities in eqs. (5.1)–(5.2).

Owing to these identities (eqs. (C.1) and (C.2)), we can integrate the NLO,0 contribution
over k⊥:

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,0

=

αeme2
f Nc

(2π)2

∫
d2x⊥d2y⊥8z3(1 − z)2Q2K2

0 (Q̄rxy)

× αsCF

π

{
−1

2 ln2
(

z

1 − z

)
+ ln

(
z

1 − z

)
ln
(
R2
)
− 3

2 ln (2R) + 7 − 2π2

3

−
∫ 1−z

0

dzg

zg
ln
(

R2z2
g

z2

)[(
1 − zg

1 − z

)2
(

1 + zg

z
+

z2
g

2z2

)
K2

0 (Q̄R2rxy)
K2

0 (Q̄rxy)
− 1

]

+2
∫ 1−z

0

dzg

zg
ln
(

1 + zg

z

)(
1 − zg

1 − z

)2
(

1 + zg

z
+

z2
g

2z2

)
K2

0 (Q̄R2rxy)
K2

0 (Q̄rxy)

}

× 4Re ⟨1 − Dxy⟩Yf
−

αeme2
f Nc

(2π)2

[
8z3(1 − z)2Q2

]
× αsCF

π2 ln
(

z

1 − z

)
×
∫

d2x⊥d2y⊥Prxy

(
1

r2
xx′

)[
K0(Q̄rxy)K0(Q̄rx′y)2Re

〈
Dxx′ − Dxy − Dyx′ + 1

〉
Yf

]
+ dσγ⋆

L+A→jf +X

dη

∣∣∣∣∣
NLO,0,UV

. (5.7)

We have used the natural choice u⊥ = rxy in the definition of the distribution Pu⊥ :

Pu⊥

(
1

r2
⊥

)
[f ] ≡

∫
d2r⊥

[
f(r⊥) − f(0)Θ(u2

⊥ − r2
⊥)

r2
⊥

]
, (5.8)

which simplifies the form of the finite terms. The UV divergent contribution formally reads

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,0,UV

=

αeme2
f Nc

(2π)2

∫
d2x⊥d2y⊥

d2x′
⊥

r2
xx′

8z3(1 − z)2Q2K0(Q̄rxy)K0(Q̄rx′y)

× αsCF

π2

{
3
4 +

∫ 1−z

0

dzg

zg

[(
1 − zg

1 − z

)2
(

1 + zg

z
+

z2
g

2z2

)
K0(Q̄R2rxy)K0(Q̄R2rx′y)

K0(Q̄rxy)K0(Q̄rx′y)
− 1

]}
× 2Re

〈
Dxx′ − Dxy − Dyx′ + 1

〉
Yf

. (5.9)
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To more easily identify the cancellation of UV divergences, it is convenient to re-write the
3/4 term using the following identity:∫ 1−z

0

dzg

zg

[(
1 − zg

1 − z

)2
(

1 + zg

1 − z − zg
+

z2
g

2(1 − z − zg)2

)
− 1

]
= −3

4 , (5.10)

which help us express eq. (5.9) as

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,0,UV

=

−
αeme2

f Nc

(2π)2

∫
d2x⊥d2y⊥

d2x′
⊥

r2
xx′

8z3(1 − z)2Q2K0(Q̄rxy)K0(Q̄rx′y)

× αsCF

π2

∫ 1−z

0

dzg

zg

(
1 − zg

1 − z

)2
(

1 + zg

1 − z − zg
+

z2
g

2(1 − z − zg)2

)
2ReΞLO(x⊥, y⊥, x′

⊥)

+
αeme2

f Nc

(2π)2

∫
d2x⊥d2y⊥

d2x′
⊥

r2
xx′

8z3(1 − z)2Q2 αsCF

π2

∫ 1−z

0

dzg

zg
K0(Q̄R2rxy)K0(Q̄R2rx′y)

×
(

1 − zg

1 − z

)2
(

1 + zg

z
+

z2
g

2z2

)
2ReΞLO(x⊥, y⊥, x′

⊥) . (5.11)

The first term in the above expression must be combined with the 1/r2
zy divergent term of

NLO,4, while the second term must be combined with the 1/r2
zx divergent terms in NLO,1

and NLO,4. One should note that although the zg integral in each term of eq. (5.11) is
logarithmically singular near zg = 0, the divergence exactly cancels between the two terms
since eq. (5.9) has no rapidity divergence in the first place. The result of the sum of these
terms will be presented in the next subsection.

Finally, the integration of the NLO,3 term does not yield any particular difficulty and
the outcome is presented in the following summary subsection.

5.3 NLO impact factor for the single differential cross-section

Instead of dividing the η-differential cross-section in terms of color structure, as we did for
the double differential cross-section, we decompose it into 4 terms which should be computed
independently in numerical evaluations in order to avoid convergence issues:

dσγ⋆
L+A→jf +X

dη
= dσγ⋆

L+A→jf +X

dη

∣∣∣∣∣
LO

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−a

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−b

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−c

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
UV−reg

. (5.12)

Combining eqs. (5.5), (5.6) and (5.11) in

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
UV−reg

≡ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,0,UV

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,4,UV

+ dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO,1,UV

, (5.13)
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the resulting integral is UV convergent, and given by

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
UV−reg

=

αeme2
f Nc

(2π)2
αs

π2

∫
d2x⊥d2y⊥d2z⊥ 16z3(1 − z)2Q2

×Re

∫ 1−z

0

dzg

zg

{
1

r2
zy

(
1 − zg

1 − z

)2
(

1 + zg

1 − z − zg
+

z2
g

2(1 − z − zg)2

)

×
[
K2

0 (QXR)ΞNLO,4(x⊥, y⊥, z⊥, x⊥) − K0(Q̄rxy)K0
(
Q̄|rzy − rxy|

)
CF ΞLO(y⊥, x⊥, z⊥)

]
+ 1

r2
zx

(
1 − zg

1 − z

)2
(

1 + zg

z
+

z2
g

2z2

)[
K2

0 (QXR)ΞNLO,4(x⊥, y⊥, z⊥, x⊥)

− 2K0(QXR)K0

(
Q̄R2

∣∣∣∣∣rxy + zg

z + zg
rzx

∣∣∣∣∣
)

ΞNLO,1(x⊥, y⊥, z⊥, w⊥,r)

+ K0(Q̄R2rxy)K0
(
Q̄R2 |rxy + rzx|

)
CF ΞLO(x⊥, y⊥, z⊥)

]}
zf

. (5.14)

To get this expression, we have renamed x′
⊥ = z⊥ in eq. (5.11) and swapped (x⊥ ↔ y⊥) in

the first term of eq. (5.11) in order to factor out the 1/r2
zx and 1/r2

zy kernels. Although it is
not obvious at first sight, this expression is UV finite as all z⊥ → x⊥, y⊥ singularities are
canceled by subtraction inside each square bracket multiplying the UV divergent Weizsäcker-
Williams kernels.

The (a) term is the finite piece of the integral over k⊥ of dσγ⋆
L+A→jf +X |NLO,0:

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−a

=

αeme2
f Nc

(2π)2

∫
d2b⊥d2rxy8z3(1−z)2Q2K2

0 (Q̄rxy)4Re⟨1−Dxy⟩Yf

×αsCF

π

{
−1

2 ln2
(

z

1−z

)
+ln

(
z

1−z

)
ln
(
R2
)
− 3

2 ln(2R)+7− 2π2

3

−
∫ 1−z

0

dzg

zg
ln
(

R2z2
g

z2

)[(
1− zg

1−z

)2
(

1+ zg

z
+

z2
g

2z2

)
K2

0 (Q̄R2rxy)
K2

0 (Q̄rxy)
−1
]

+2
∫ 1−z

0

dzg

zg
ln
(

1+ zg

z

)(
1− zg

1−z

)2
(

1+ zg

z
+

z2
g

2z2

)
K2

0 (Q̄R2rxy)
K2

0 (Q̄rxy)

}

−
αeme2

f Nc

(2π)2

[
8z3(1−z)2Q2

]
×αsCF

π2 ln
(

z

1−z

)
×
∫

d2b⊥d2rxyPrxy

(
1

r2
xx′

)[
K0(Q̄rxy)K0(Q̄rx′y)2Re

〈
Dxx′−Dxy−Dyx′ +1

〉
Yf

]
. (5.15)

In writing eq. (5.15), we have implicitly performed the change of variable b⊥ = zx⊥+(1−z)y⊥,
rxy = x⊥ − y⊥, with b⊥ the impact parameter. The transverse coordinates x⊥ and y⊥ in
the CGC correlators should then be expressed in terms of b⊥ and rxy.
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The (b) term is simply the integral over k⊥ of the NLO,3 term given by eq. (3.65).
Importantly, the impact parameter in this diagram is given by

b⊥ = (z − zg)x⊥ + (1 − z + zg)y⊥ , (5.16)

because of the transverse recoil caused by the gluon emission. Using the proper definition
of b⊥ will be crucial when checking that the NLO correction depending on the NLO, 3
CGC correlator vanishes after integrating over the rapidity of the jet η (or its longitudinal
momentum fraction z). After some algebra, we end up with

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−b

=

αeme2
f Nc

(2π)2

∫ d2b⊥
2π

d2rxx′
d2ryy′

r2
yy′

8z3(1−z)Q2

×αs

π

∫ z

z−1

dzg

zg
K0
(
Q̄
∣∣(z−zg)rxx′ +(1−z+zg)ryy′

∣∣)K0
(
Q̄V3

∣∣zrxx′ +(1−z)ryy′
∣∣)

×(1−z+zg)(z−zg)2
[
1+ ((1−z)ryy′ +(z−zg)rxx′)·(zrxx′ +(1−z+zg)ryy′)

(1−z)(1−z+zg)r2
yy′−z(z−zg)r2

xx′

]

×4Re

[
Nc

2
〈
1−Dxy−Dy′x′ +DxyDy′x′

〉
Yf
− 1

2Nc

〈
1−Dxy−Dy′x′ +Qxyy′x′

〉
Yf

]
, (5.17)

where the transverse coordinates in the NLO, 3 correlator must be expressed in terms of
b⊥, rxx′ and ryy′ as5

x⊥ = b⊥ + (1 − z + zg)[zrxx′ + (1 − z)ryy′ ] ,

y⊥ = b⊥ − (z − zg)[zrxx′ + (1 − z)ryy′ ] ,

x′
⊥ = b⊥ + (1 − z)[(z − zg)rxx′ + (1 − z + zg)ryy′ ] ,

y′
⊥ = b⊥ − z[(z − zg)rxx′ + (1 − z + zg)ryy′ ] . (5.18)

Finally, the (c) term gathers the pieces from the NLO,1 and NLO,4 which do not introduce
any further UV divergences once integrated over k⊥:

dσγ⋆
L+A→jf +X

dη

∣∣∣∣∣
NLO−c

=

αeme2
f Nc

(2π)2 16z3(1 − z)2Q2 × 2αs

π2 Re

∫
d2x⊥d2y⊥d2z⊥

∫ 1

0

dzg

zg

×

− rzx · rzy

r2
zxr2

zy

(
1 − zg

z

)(
1 + zg

1 − z

)(
1 − zg

2z
− zg

2(1 − z + zg)

)
K0

(
Q̄

∣∣∣∣rxy + zg

z
rzx

∣∣∣∣)

× K0(QXV )Θ(z − zg)ΞNLO,1(x⊥, y⊥, z⊥, w⊥,v) + rzx · rzy

r2
zxr2

zy

(
1 − zg

1 − z

)2

×
(

1 + zg

2z
+ zg

2(1 − z − zg)

)
K0

(
Q̄R2

∣∣∣∣∣rxy + zg

z + zg
rzx

∣∣∣∣∣
)

K0(QXR)Θ(1 − z − zg)

5For this contribution, we have also re-scaled the variables rxx′ → zgrxx′ and ryy′ → zgryy′ .
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ΞLO(x⊥, y⊥, x⊥) 2Re ⟨1 − Dxy⟩
ΞNLO,4(x⊥, y⊥, z⊥, x⊥) Nc

2 2Re ⟨1 − DxzDzy⟩ − 1
2Nc

2Re ⟨1 − Dxy⟩

Table 3. Color correlators contributing to the next-to-leading order k⊥ integrated SIDIS cross-section
(in addition to those already gathered in table 1).

× ΞNLO,1(x⊥, y⊥, z⊥, w⊥,r) − rzx · rzy

r2
zxr2

zy

(
1 − zg

1 − z

)2
(

1 + zg

2z
+ zg

2(1 − z − zg)

)

× K2
0 (QXR)Θ(1 − z − zg) [ΞNLO,4(x⊥, y⊥, z⊥, x⊥)] + Θ(z − zg)

r2
zx

×
(

1 − zg

z
+

z2
g

2z2

)K0

(
Q̄

∣∣∣∣rxy + zg

z
rzx

∣∣∣∣)K0(QXV )ΞNLO,1(x⊥, y⊥, z⊥, w⊥,v)

−e
− r2

zx
r2

xyeγE K2
0 (Q̄rxy)CF ΞLO(x⊥, y⊥, x⊥)


zf

. (5.19)

For completeness of this section, the simplified CGC color correlators necessary for the
evaluation of the η-differential SIDIS cross-section are provided in table 3. Similar results
can be obtained for the gluon-tagged jets.

6 Recovering the NLO fully inclusive DIS cross-section at small x

In this last section, we demonstrate that by integrating over the two-body phase space in the
virtual NLO corrections to inclusive dijet production and the three-body phase space in the
real NLO corrections, one recovers known results for the total DIS cross-section at small-x in
the dipole picture [18–20]. As mentioned in the introduction of this paper, this section is an
independent derivation of the NLO DIS structure functions at small x as we rely neither on the
optical theorem nor on light-cone perturbation theory, contrary to the aforementioned papers.
Without loss of generality, we will focus on the case where the virtual photon is longitudinally
polarized. The same calculations can be performed for the transversely polarized case.

6.1 Cancellations between real and virtual diagrams

As in the SIDIS case (see section 3.1), after integrating over the anti-quark phase space we have

σγ⋆
L+A→X

∣∣∣
SE3×LO∗

= σγ⋆
L+A→X

∣∣∣
SE3×LO∗

= σγ⋆
L+A→X

∣∣∣
R2×R2∗

= 0 , (6.1)

and

σγ⋆
L+A→X

∣∣∣
R1×R2∗

= − σγ⋆
L+A→X

∣∣∣
SE1×LO∗

, (6.2)

σγ⋆
L+A→X

∣∣∣
R1×R2∗

= − σγ⋆
L+A→X

∣∣∣
V1×LO∗

. (6.3)

Since we have derived the single-jet semi-inclusive cross-section in the small-R approximation
(neglecting powers of R2 terms), the integration of the η-differential single-jet semi-inclusive
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cross-section over η does not exactly yield the total cross-section. It is easier to do a brute force
integration over k1⊥, k2⊥, z1 and z2 without introducing any jet clustering at intermediate
steps. The benefit of such a brute-forte integration is that new cancellations between diagrams
arise. In particular, one gets that diagrams R2 × R2∗ and R2 × R2∗ vanish in dimensional
regularization. This simple result would have been more complicated to obtain by integrating
diagram R2 × R2∗ after implementation of the jet clustering algorithm, as the jet radius
introduces a scale that formally breaks the dimensional regularization argument. We have then

σγ⋆
L+A→X

∣∣∣
R2×R2∗

= 0 . (6.4)

Let us now consider the diagrams where the gluon interacts only once with the shock-wave,
either in the amplitude or in the complex conjugate amplitude. After integration over the
full three-body phase space of R1 × R2∗, and the following change of variable z1 → z1 + zg,
one finds that

σγ⋆
L+A→X

∣∣∣
R1×R2∗

= − σγ⋆
L+A→X

∣∣∣
SE1×LO∗

. (6.5)

Likewise, a similar manipulation gives

σγ⋆
L+A→X

∣∣∣
R1×R2∗

= − σγ⋆
L+A→X

∣∣∣
V1×LO∗

. (6.6)

Particularly important diagrams are the final state gluon emission R2×R2∗ and V3×LO∗

and their complex conjugate. It is crucial that the sum of these diagrams cancels, since they
give a contribution proportional to the quadrupole Qxyy′x′ which is not present in the total
cross-section at NLO [18–20]. Indeed, we prove in appendix D that final state emissions
cancel among virtual and real contributions:

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c. = −
(

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c.

)
. (6.7)

We also prove in appendix D that this identity holds for the cross-section differential with
respect to the virtual photon impact parameter dσγ⋆

L+A→X/d2b⊥ provided b⊥ is defined by
eq. (5.16) for these particulars diagrams.

In the end, the only diagrams which contribute to the fully inclusive DIS cross-section
are (i) the real diagrams where the gluon is emitted and absorbed after before the shock-wave:
R1 × R1∗, R1 × R1∗, R1 × R1∗ and R1 × R1∗, and (ii) the virtual diagrams with gluon
exchanged before the shock-wave, namely SE2 × LO∗, SE2 × LO∗ and V2 × LO∗ plus their
complex conjugate.

6.2 Real diagrams

We start by discussing the real emissions where the gluon is emitted and absorbed before the
shock-wave. We will integrate over the quark phase space in eqs. (3.33), (3.34) and (3.22).
These contributions are in one-to-one correspondence with the qq̄g contributions to the
NLO light-cone wave-function of the virtual photon in light cone perturbation theory. The
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contribution of diagram R1 × R1∗ to the total cross-section is given by

σγ⋆
L+A→X

∣∣∣
R1×R1∗

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥8z2

1(1−z1)2Q2

×αs

π

∫ 1−z1

0

dzg

zg

(
1− zg

1−z1

)2
(

1+ zg

z1
+

z2
g

2z2
1

)

×
∫ d2z⊥

π

1
r2

zx

K2
0 (QXR)Nc

2

〈
2−DxzDzy−DyzDzx−

1
N2

c

(2−Dxy−Dyx)
〉

.

(6.8)

Similarly, the contribution of diagram R1 × R1 reads

σγ⋆
L+A→X

∣∣∣
R1×R1∗ =

αeme2
f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥8z2

1(1−z1)2Q2

×αs

π2

∫ 1−z1

0

dzg

zg

(
1− zg

1−z1

)2
(

1+ zg

1−z1−zg
+

z2
g

2(1−z1−zg)2

)

×
∫

d2z⊥
1

r2
zy

K2
0 (QXR)Nc

2

〈
2−DxzDzy−DyzDzx−

1
N2

c

(2−Dxy−Dyx)
〉

. (6.9)

Finally, the cross diagram R1 × R1 reads

σγ⋆
L+A→X

∣∣∣
R1×R1∗

=

−
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥8z3

1(1 − z1)2Q2

× αs

π

∫ 1−z1

0

dzg

zg

(
1 − zg

1 − z1

)2
(

1 + zg

2z1
+ zg

2(1 − z1 − zg)

)

×
∫ d2z⊥

π

rzy · rzx

r2
zyr2

zx

K2
0 (QXR)Nc

2

〈
2 − DxzDzy − DyzDzx − 1

N2
c

(2 − Dxy − Dyx)
〉

. (6.10)

The terms R1 × R1∗ and R1 × R1∗ are UV divergent and must be regulated. As in
section 3.3.2, we use the following two regulators that we add and subtract to the cross-
section:

σγ⋆
L+A→X

∣∣∣
R1×R1∗,UV

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥ 8z2

1(1−z1−zg)2Q2

× αs

π

∫ 1−z1

0

dzg

zg

(
1+ zg

z1
+ z2

g

2z2
1

)∫
d2z⊥

π

e
−

r2
zx

2ξ1

r2
zx

K2
0 (Q̄R2rxy)CF 2Re⟨1−Dxy⟩

(6.11)

σγ⋆
L+A→X

∣∣∣
R1×R1,UV

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫ 1−z1

0

dzg

zg
8z2

1(1−z1−zg)2Q2
∫

d2x⊥d2y⊥

× αs

π2

(
1+ zg

1−z1−zg
+ z2

g

2(1−z1−zg)2

)∫
d2z⊥

−
r2

zy

2ξ2

r2
zy

K2
0 (Q̄rxy)CF 2Re⟨1−Dxy⟩ .

(6.12)
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In the first UV counter-term, we perform the change of variable

ζ1 = z1 + zg ,

ζg = zg , (6.13)

and we get

σγ⋆
L+A→X

∣∣∣
R1×R1∗,UV

=
αeme2

f Nc

(2π)2

∫ 1

0
dζ1

∫
d2x⊥d2y⊥ 8ζ2

1 (1−ζ1)2Q2

×αs

π

∫ ζ1

0

dζg

ζg

(
1− ζg

ζ1
+

ζ2
g

2ζ2
1

)∫ d2z⊥

π

e−
r2

zx
2ξ1

r2
zx

K2
0 (Q̄rxy)CF 2Re⟨1−Dxy⟩ .

(6.14)

The computation of these integrals in dimension regularization d2z⊥ → d2+εz⊥ leads to

σγ⋆
L+A→X

∣∣∣
R1×R1∗,UV

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥ 8z2

1(1 − z1)2Q2K2
0 (Q̄rxy)

× αsCF

π

[
ln
(

z1
z0

)
− 3

4

](2
ε

+ ln(2πµ2ξ1)
)

2Re ⟨1 − Dxy⟩

(6.15)

σγ⋆
L+A→X

∣∣∣
R1×R1∗,UV

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥ 8z2

1(1 − z1)2Q2K2
0 (Q̄rxy)

× αsCF

π

[
ln
(1 − z1

z0

)
− 3

4

](2
ε

+ ln(2πµ2ξ2)
)

2Re ⟨1 − Dxy⟩ ,

(6.16)

where potential finite pieces from the O(ε) terms in Dirac structure have been omitted. These
poles will cancel against diagrams V2 and diagrams SE2 that we now discuss.

6.3 Virtual diagrams

The qq̄ phase space integral of the diagrams V2 and SE2 is straightforward from the expressions
obtained in [33] (see eqs. (5.40)-(5.78) therein). Adding together the three virtual diagrams
with gluon exchange before the shock-wave and their complex conjugate defined as:

σγ⋆
L+A→X

∣∣∣
init.

≡ σγ⋆
L+A→X

∣∣∣
SE2×LO

+ σγ⋆
L+A→X

∣∣∣
SE2×LO

+ σγ⋆
L+A→X

∣∣∣
V2×LO

+ c.c. , (6.17)

we get

σγ⋆
L+A→X

∣∣∣
init.

=
αeme2

f Nc

(2π)2
αsCF

π

∫ 1

0
dz1

∫
d2x⊥d2y⊥8z2

1(1−z1)2Q2K2
0 (Q̄rxy)2Re⟨1−Dxy⟩

×
[(2

ε
+ln(πµ2eγE r2

xy)
)(3

2−ln
(

z1
z0

)
−ln

(
z2
z0

))
+ 1

2 ln2
(1−z1

z1

)
+ 5

2−
π2

6

]
.

(6.18)

In this expression, we have removed the finite pieces from the O(ε) terms in the Dirac
structure, in agreement with our convention for the expression of the UV divergent pieces
eqs. (6.15)–(6.16) from diagrams R1 × R1 and R1 × R1.
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6.4 Final result

We readily observe the cancellation of UV divergences between eqs. (6.15), (6.16) and (6.18),
we thus define the qq̄ contribution to the inclusive DIS cross-section as

σγ⋆
L+A→X

∣∣∣
qq̄

≡ σγ⋆
L+A→X

∣∣∣
init.

+ σγ⋆
L+A→X

∣∣∣
R1×R1,UV

+ σγ⋆
L+A→X

∣∣∣
R1×R1,UV

. (6.19)

For the choice of regulator:

ξ1 = ξ2 =
eγE r2

xy

2 , (6.20)

we have

σγ⋆
L+A→X

∣∣∣
qq̄

=
αeme2

f Nc

(2π)2

∫ 1

0
dz1

∫
d2x⊥d2y⊥ 8z2

1(1 − z1)2Q2K2
0 (Q̄rxy)2Re⟨1 − Dxy⟩

× αsCF

π

[
1
2 ln2

(1 − z1
z1

)
+ 5

2 − π2

6

]
. (6.21)

The above result agrees with eq. (176) in [20].
With these choices, the qq̄g contribution defined as the sum of R1 × R1, R1 × R1,

R1 × R1 and R1 × R1 reads

σγ⋆
L+A→X

∣∣∣
qq̄g

≡ σγ⋆
L+A→X

∣∣∣
R1×R1

+ σγ⋆
L+A→X

∣∣∣
R1×R1

+ σγ⋆
L+A→X

∣∣∣
R1×R1

+ σγ⋆
L+A→X

∣∣∣
R1×R1

, (6.22)

with

σγ⋆
L+A→X

∣∣∣
qq̄g

=
αeme2

f Nc

(2π)2
αsCF

π
2Re

∫ 1

0
dz1

∫ 1−z1

0

dzg

zg

∫
d2x⊥d2y⊥

∫ d2z⊥
π

8z2
1z2

2Q2

(
1+ zg

z1
+

z2
g

2z2
1

)
1

r2
zx

K2
0 (QXR)

〈
1− Nc

2CF
DxzDzy + 1

2NcCF
Dxy

〉

−K2
0 (Q̄R2rxy)e

− r2
zx

eγE r2
xy ⟨1−Dxy⟩


+
(

1+ zg

z2
+

z2
g

2z2
2

)
1

r2
zy

K2
0 (QXR)

〈
1− Nc

2CF
DxzDzy + 1

2NcCF
Dxy

〉

−K2
0 (Q̄rxy)e

−
r2

zy

eγE r2
xy ⟨1−Dxy⟩


−2
(

1+ zg

2z1
+ zg

2z2

)
rzx ·rzy

r2
zxr2

zy

K2
0 (QXR)

〈
1− Nc

2CF
DxzDzy + 1

2NcCF
Dxy

〉
,

(6.23)

which exactly agrees with eq. (177) in [20]. We have noted z2 = 1 − z1 − zg for compactness.
The fully inclusive DIS cross-section at NLO is given by the sum of the LO, qq̄ and qq̄g

contributions:

σγ⋆
L+A→X = σγ⋆

L+A→X
∣∣∣
LO

+ σγ⋆
L+A→X

∣∣∣
qq̄

+ σγ⋆
L+A→X

∣∣∣
qq̄g

. (6.24)
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7 Summary and outlook

In this paper, we computed for the first time the NLO semi-inclusive single jet production
cross-section in DIS at small x, working in the dipole picture of DIS and using the Color Glass
Condensate effective field theory. Our results follow from the analytic expressions obtained
in [33] for the inclusive dijet cross-section by integrating out the phase space of one of the jets.
These integrations yield new ultra-violet divergences in the transverse coordinate integrals
which cancel at the cross-section level for our infrared and collinear safe jet cross-section. The
rapidity divergences in the NLO correction, associated with gluons with k−

g ≪ q−, are cured
using a renormalization group approach. The bare dipole operator in the LO cross-section,
defined at some initial rapidity scale z0 = Λ−/q− is replaced by a renormalized one at some
rapidity factorization scale zf = k−

f /q−, and we explicitly demonstrate that the resulting
Yf = ln(zf ) dependence of the dipole correlator ⟨Dxy⟩Yf

satisfies the BK-JIMWLK equation.
We provide analytic expressions for the NLO impact factor for both the double differential

(transverse momentum and rapidity) cross-section and the single differential cross-section
(rapidity only) in sections 3.6 and 5.3 respectively (see also appendix A). These results are
complementary to those obtained in [75] which focuses on single hadron production in DIS at
small x. While some contributions are identical, such as the UV and IR regular virtual or real
corrections (diagrams V1×LO∗, R1×R2∗, R1×R2∗, R1×R1∗ and R1×R1∗ in our notations),
our different definition of the final state (in terms of jets) lead to different expressions, in
particular for the real corrections with a collinear singularity or the virtual diagrams with
a UV pole in dimensional regularization. We also provide the analytic expressions for the
transversely polarized virtual photon case in appendix A and we compute the subleading
Nc corrections in the NLO impact factor.

Thanks to our explicit analytic expressions, we were able to identify the leading NLO
corrections in the very forward rapidity regime, which is the most interesting one in the
search for saturation signal in our process [67]. We find that the leading NLO corrections
for very forward jets come from the incomplete cancellation between real and virtual soft
gluon emissions and are thus double logarithmically enhanced. They can give a negative
cross-section at any fixed order, spoiling the predictive power of perturbative calculations in
this corner of the phase space. As usual in pQCD, the solution we propose to restore the
convergence of the perturbative series is to resum to all orders the logarithmic terms via
exponentiation. Using the BK-JIMWLK evolved dipole operator in the LO cross-section and
the exponentiation of the αs ln2(1− z), αs ln(1− z) corrections enables one to simultaneously
resum the αs ln(zf /z0) ∼ αs ln(1/x) and threshold logarithms to all orders. A formal proof of
the exponentiation at small x is left for future studies, it may require a two-loop computation.
Nevertheless, assuming exponentiation holds, the effect of soft gluons in the very forward jet
regime is to suppress the cross-section, thereby mimicking the signal of saturation. While
this may potentially complicate the extraction of saturation from SIDIS at very forward
rapidity, the universality of the double logarithms in 1 − z with respect to the nuclear target
suggests that the nuclear modification factor for the SIDIS cross-section could be a promising
observable given that the suppression caused by soft gluons exactly cancel in the ratio. We
point out that this exact cancellation occurs for single-jet production, but not for single-hadron
production, which is another benefit of using jets in SIDIS measurements at small x.
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The next step of this project will be to numerically evaluate the NLO SIDIS cross-section
at small x based on the formulae derived in this paper, including the resummation of the
aforementioned threshold logarithms. We forecast two main difficulties with the numerical
evaluation. First, the NLO impact factor depends on the quadrupole correlator, because of
the final state gluon emission diagrams and it is challenging to solve the JIMWLK equation
for the quadrupole correlator. Our plan is to provide a numerical estimation of the quadrupole
by relying on the Gaussian approximation [104–108]. Since the quadrupole dependence is
1/N2

c suppressed in the NLO impact factor, this should be a good approximation to the exact
result. The second difficulty is related to our treatment of rapidity factorization, with an
implicit ordering in minus longitudinal momentum k−

g . It is now well documented that this
naive factorization scheme leads to unphysical NLO results, as the rapidity logarithms are
oversubtracted [49, 118–120]. The proper way to resum the high energy logarithms is to use
an ordering along the target rapidity variable k+

g , which requires implementing a kinematic
constraint when subtracting the rapidity divergence in our calculation [118, 121–130]. The
implementation of this kinematic constraint (maybe along the lines of [131]) and how it
affects the NLO impact factor is left for an upcoming paper.

In addition to the numerical evaluation of SIDIS at general small-x kinematics, we
envision several applications of our results in this manuscript that we leave for future work.
For example, replacing the jet clustering algorithm with a measurement function for the
energy deposition of the final state, our results for the SIDIS cross-section at NLO can be
utilized to promote the calculation of the novel nucleon energy correlators for the CGC [132]
to higher precision. Furthermore, one can use the single jet production in conjunction with
the dijet observable in [51] to define a dijet correlation function normalized by the trigger
jet [133]. In addition, it would be interesting to test if the correspondence between the dipole
picture within the CGC EFT and TMD factorization framework holds at NLO in the regime
k⊥, Qs ≪ Q. Lastly, by taking the photo-production limit our results could be easily adapted
to the inclusive production of jets in ultra-peripheral collisions.

In the last section 6 of this paper, we provide the first independent cross-check of the
NLO corrections to the DIS structure functions obtained in [18–20] thanks to the optical
theorem. Our initial formula for inclusive dijet (or qq̄ production) cross-section [33] have
indeed been obtained in covariant perturbation theory, contrary to the calculations in [18–20]
done in light-cone perturbation theory. By integrating the NLO corrections to inclusive qq̄

production over the full phase space of the out-going partons, we recover the results of [20],
meaning that the optical theorem, a fundamental consequence of unitarity, is valid at NLO
in the dipole picture. While this is of course a minimal requirement for the dipole picture to
be a consistent framework beyond leading order, we emphasize that checking the validity of
the optical theorem, both for the DIS structure functions and the DIS structure functions
differential with the impact parameter, rely on subtle cancellations between NLO Feynman
diagrams and the use of the physical impact parameter of the virtual photon. Hence, this is
also an important crosscheck of the formulae derived in [33] and in this paper.
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A NLO impact factor for transversely polarized virtual photon

This appendix gathers our final expressions for the NLO semi-inclusive single-jet production
in DIS at small x, following the notations and conventions detailed in the main text.

A.1 Spin and polarization sums for the real inclusive dijet cross-section

In this subsection, we first provide the spin and polarization sums that have not been
performed in the original paper [33]. These sums are associated with diagrams R1 × R2∗,
R1 × R2∗„ R1 × R1∗ and R1 × R1∗. Let us quote here the results, following the notations of
appendix B in [33]. In particular, we recall here the definition of the transverse vectors

RR = rxy + zg

z1 + zg
rzx , (A.1)

RR = −rxy + zg

z2 + zg
rzy , (A.2)

w⊥ = z1x⊥ + zgz⊥
z1 + zg

, (A.3)

w̄⊥ = z2y⊥ + zgz⊥
z2 + zg

. (A.4)

The vector R′
R, R

′
R, w′

⊥ and w̄′
⊥ are defined similarly, with the transverse coordinates replaced

by the prime ones. Throughout this appendix, cross product between two 2-dimensional
transverse vectors is defined by a⊥ × b⊥ = ϵijaibj .

The spin and polarization sum for diagram R1 × R2∗ is

S1 ≡
∑

λ,λ̄,σ,σ′

N λλ̄σσ′
R1 (rxy, rzx)N λλ̄σσ′,†

R2 (rw′y′ , rz′x′) (A.5)

= (−8αs)
π

z1z2
2

(1 − z2)
QQ̄R2K1(QXR)K1(Q̄R2rw′y′)

XRrw′y′

×
{[

z2
1 + (1 − z2)2

] [
z2

2 + (1 − z2)2
] rzx · rz′x′

r2
zxr2

z′x′
RR · rw′y′

+zg(1 + z1 − z2)(1 − 2z2)rzx × rz′x′

r2
zxr2

z′x′
RR × rw′y′ − z2

1z2zg

(1 − z2)
rz′x′ · rw′y′

r2
z′x′

}
. (A.6)
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For the diagram R1×R2∗, one can use the quark-antiquark symmetry to relate the perturbative
factor for R1 to that of diagram R1

S2 ≡
∑

λ,λ̄,σ,σ′

N λλ̄σσ′

R1 (rxy, rzy)N λλ̄σσ′,†
R2 (rw′y′ , rz′x′) (A.7)

= −8αs

π

z2
1z2

(1 − z2)
QQ̄R2K1(QXR)K1(Q̄R2rw′y′)

XRrw′y′

×
{

[z1(1 − z1) + z2(1 − z2)] [z1(1 − z2) + z2(1 − z1)] rzy · rz′x′

r2
zyr2

z′x′
RR · rw′y′

−zg(z1 − z2)2 rzy × rz′x′

r2
zyr2

z′x′
RR × rw′y′ − z2zg(1 − z2)2

1 − z1

rz′x′ · rw′y′

r2
z′x′

}
. (A.8)

The spin and polarization sum of diagram R1 × R1∗ reads

S3 ≡
∑

λ,λ̄,σ,σ′

N λλ̄σσ′
R1 (rxy, rzx)N λλ̄σσ′,†

R1 (rx′y′ , rz′x′) (A.9)

= 8αs

π
z1z3

2
Q2K1(QXR)K1(QX ′

R)
XRX ′

R

{[
z2

1 + (1 − z2)2
] [

z2
2 + (1 − z2)2

] rzx · rz′x′

r2
zxr2

z′x′
RR · R′

R

+ zg(1 + z1 − z2)(1 − 2z2)rzx × rz′x′

r2
zxr2

z′x′
RR × R′

R − z2
1z2zg

1 − z2

[
rzx · RR

r2
zx

+ rz′x′ · R′
R

r2
z′x′

]

+
z2

1z2
g

(1 − z2)2

}
. (A.10)

Finally, the spin-polarization sum of diagram R1 × R1∗ is given by

S4 ≡
∑

λ,λ̄,σ,σ′

N λλ̄σσ′
R1 (rxy,rzx)N λλ̄σσ′,†

R1 (rx′y′ ,rz′y′) (A.11)

= 8αs

π
z2

1z2
2

Q2K1(QXR)K1(QX ′
R)

XRX ′
R

×
{

[z1(1−z1)+z2(1−z2)] [z1(1−z2)+z2(1−z1)] rzx ·rz′y′

r2
zxr2

z′y′
RR ·R′

R

−zg(z1−z2)2 rzx×rz′y′

r2
zxr2

z′y′
RR×R

′
R−zg

[
z1(1−z1)2

1−z2

rz′y′ ·R′
R

r2
z′y′

+ z2(1−z2)2

1−z1

rzx ·RR
r2

zx

]}
.

(A.12)

A.2 NLO impact factor for the double differential cross-section

Following the decomposition we used for the longitudinally polarized case, we write the full
NLO SIDIS cross-section for transversely polarized photon as eqs. (3.62)–(3.63) with the
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corresponding terms with fermion-tagged jets given by
dσγ⋆

T+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,0

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′2z(z2 + (1 − z)2)rxy · rx′y

rxyrx′y

× Q̄2K1(Q̄rx′y)K1(Q̄rx′y)2Re
[
ΞLO(x⊥, y⊥, x′

⊥)
]
× αsCF

π

{
−1

2 ln2
(

z

1 − z

)
+ 7 − 2π2

3

+ ln
(

z

1 − z

)
ln
(

k2
⊥rxyrx′yR2

c2
0

)
− 3

4 ln
(

4k2
⊥r2

xx′R2

c2
0

)
−
∫ 1−z

0

dzg

zg
ln
(

k2
⊥r2

xx′R2z2
g

c2
0z2

)

×
[
e−i

zg
z

k⊥·rxx′
(1 − z − zg)(z + zg)((1 − z − zg)2 + (z + zg)2)(2z(z + zg) + z2

g)
2z3(1 − z)(z2 + (1 − z)2)

×
K1(Q̄R2rxy)K1(Q̄R2rx′y)

K1(Q̄rxy)K1(Q̄rx′y)
− 1

]}
, (A.13)

for the term proportional to the LO SIDIS CGC color correlator ΞLO. Here, c0 = 2e−γE with
γE the Euler-Mascheroni constant. The term proportional to ΞNLO,3 reads

dσγ⋆
T+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,3

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥ e−ik⊥·(rxx′+ 1−z

z
ryy′) rxy ·rx′y′

rx′y′rxy

×αs

π2

∫ z

z−1

dzg

zg

ei
zg
z

k⊥·rxy [2ReΞNLO,3(x⊥,y⊥,x′
⊥,y′

⊥)]Q̄Q̄V3K1(Q̄rx′y′)K1(Q̄V3rxy)
r2

yy′

[
(1−z)r2

yy′ +2(1−z)(z−zg)ryy′ ·rxy−zg(z−zg)r2
xy

]
×
{

[z(z−zg)+(1−z)(1−z+zg)] (z−zg)
[
rxy ·ryy′(2z(1−z+zg)−zg(1+zg))

+(1−z)(1+zg)r2
yy′

]
+zg(zg +1−2z)2(z−zg)(rxy×rx′y′)(rxy×ryy′)

rxy ·rx′y′

}
+c.c. , (A.14)

where we recall that Q̄2
V3 = (1 − z + zg)(z − zg)Q2. The NLO,1 term is given by

dσγ⋆
T+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,1

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2z⊥e−ik⊥·rxx′ αs

π2 Q

∫ 1

0

dzg

zg

×
{

2Re[ΞNLO,1(x⊥, y⊥, z⊥, x′
⊥)] ×

[
2z2(1 − z)Q̄K1(Q̄rx′y)

rx′y

K1(QXV )
XV

×
(

(z2 + (1 − z)2)
(

1 − zg

z
+

z2
g

2z2

)
RSE1 · rx′y

r2
zx

− zg(z − zg)
2

[
1

1 − z + zg
+ (1 − z)(z − zg)

z3

]
rzx · rx′y

r2
zx

− zg(z − zg)(1 + zg − 2z)2

2z2(1 − z)

×
(RV × rx′y)(rzx × rzy)

r2
zxr2

zy

− [z(z − zg) + (1 − z)(1 − z + zg)]
(

1 − zg

z

)(
1 + zg

1 − z

)
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z̄ 1 − z − zg

Q̄2 z(1 − z)Q2

Q̄2
R2 z̄(z + zg)Q2

Q̄2
V3 (1 − z + zg)(z − zg)Q2

X2
V (1 − z)(z − zg)r2

xy + zg(z − zg)r2
zx + (1 − z)zgr2

zy

X2
R zz̄r2

xy + zzgr2
zx + z̄zgr2

zy

X ′2
R zz̄r2

x′y + zzgr2
zx′ + z̄zgr2

zy

RSE1 rxy + zg

z rzx

RV rxy + zg

1−z+zg
rzy

RR rxy + zg

z+zg
rzx

RR −rxy + zg

1−z rzy

Table 4. Summary of our notations for the NLO impact factor of the SIDIS jet cross-section for
transversely polarized virtual photons.

×
(

1 − zg

2z
− zg

2(1 − z + zg)

)
(RV · rx′y)(rzx · rzy)

r2
zxr2

zy

)
e−i

zg
z

k⊥·rzxΘ(z − zg)

+ Q̄R2
K1(Q̄R2rx′y)

rx′y

K1(QXR)
XR

(
−z̄(z̄2 + (1 − z̄)2)(z2 + (z + zg)2)(RR · rx′y)(rzx · rzx′)

r2
zxr2

zx′

+ z(z(1 − z) + z̄(1 − z̄))(z(1 − z̄) + z̄(1 − z))(RR · rx′y)(rzy · rzx′)
r2

zyr2
zx′

+ zg z̄(2z + zg)(1 − 2z̄)(RR × rx′y)(rzx × rzx′)
r2

zxr2
zx′

+ zzg(z̄ − z)2 (RR × rx′y)(rzy × rzx′)
r2

zyr2
zx′

+zzg z̄(z(1 − z)z̄ + (z + zg)3)
(z + zg)(1 − z)

rzx′ · rx′y

r2
zx′

)
e−i

zg
z

k⊥·rzx′Θ(1 − z − zg)
]

− Θ(z − zg)2z2(1 − z)(z2 + (1 − z)2)
(

1 − zg

z
+

z2
g

2z2

)
QK1(Q̄rxy)K1(Q̄rx′y)

×
rxy · rx′y

rxyrx′y

e
− r2

zx
r2

xyeγE

r2
zx

2Re[CF ΞLO(x⊥, y⊥, x′
⊥)]
}

zf

+ c.c. , (A.15)

where the shorthand variables in this expression are summarized in table 4.
The NLO contribution proportional to ΞNLO,4 is given by

dσγ⋆
T+A→jf +X

d2k⊥dη

∣∣∣∣∣
NLO,4

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2z⊥e−ik⊥·rxx′Q2
∫ 1−z

0

dzg

zg

× αs

2π2
K1(QXR)K1(QX ′

R)
XRX ′

R

{[
zz̄2(z2 + (1 − z̄)2)

(
z̄2 + (1 − z̄)2

) rzx · rzx′

r2
zxr2

zx′
RR · R′

R
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+ zz̄2zg(1 + z − z̄)(1 − 2z̄)rzx × rzx′

r2
zxr2

zx′
RR × R′

R − z3z̄3zg

z + zg

[
rzx · RR

r2
zx

+ rzx′ · R′
R

r2
zx′

]

+
z3z̄2z2

g

(z + zg)2 +
z̄2z3z2

g

(1 − z)2 + z3(z̄2 + (1 − z)2)
(
z2 + (1 − z)2

) RR · R
′
R

r2
zy

− z̄2z4zg

1 − z

rzy · (RR + R
′
R)

r2
zy

+ 2z2z̄(z(1 − z) + z̄(1 − z̄))(z(1 − z̄) + z̄(1 − z))rzx · rzy

r2
zxr2

zy

RR · R
′
R

− 2z2z̄zg(z − z̄)2 rzx × rzy

r2
zxr2

zy

RR × R
′
R

−2z2z̄zg

(
z(1 − z)2

1 − z̄

rzy · R
′
R

r2
zy

+ z̄(1 − z̄)2

1 − z

rzx · RR
r2

zx

)]
2Re

[
ΞNLO,4(x⊥, y⊥, z⊥, x′

⊥)
]

− z3(z̄2 + (1 − z)2)
(
z2 + (1 − z)2)

) rxy · rx′y

r2
zy

e
−

r2
zy

r2
xx′eγE K1(Q̄rxy)K1(Q̄rx′y)XRX ′

R

K1(QXR)K1(QX ′
R)rxyrx′y

× 2CFRe
[
ΞLO(x⊥, y⊥, x′

⊥)
]}

zf

+ c.c. , (A.16)

with R′
R = rx′y + zg

z+zg
rzx′ , R

′
R = −rx′y + zg

1−z rzy and X ′2
R = zz̄r2

x′y + zzgr2
zx′ + z̄zgr2

zy.
Following the decomposition in eq. (3.69), the gluon-tagged jet contributions are also

reported here:

dσγ∗
T+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,0

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′2Re
[
ΞLO(x⊥, y⊥, x′

⊥)
]

× (−αs)CF

π

∫ 1−z

0

dz1
z2 e−i

z1
z

k⊥·rxx′ [(1 − z1 − z)2 + (z1 + z)2]
(
2z1(z1 + z) + z2

g

)
× Q̄2

R2
rxy · rx′y

rxyrx′y
K1(Q̄R2rxy)K1(Q̄R2rx′y) ln

(
k2
⊥r2

xx′R2z2
1

c2
0z2

)
, (A.17)

dσγ∗
T+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,3

=

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥d2y′
⊥e−ik⊥·rxy

× αs

π2

∫ 1−z

0

dz1
z2

[
(2z1(1 − z1 − z) + z(1 − z))(1 − z − 2z1(1 − z1 − z))rxy · rx′y′

rxyrx′y′

rxx′ · ryy′

r2
xx′r2

yy′

−z(1 − 2z1 − z)2 rxy × rx′y′

rxyrx′y′

rxx′ × ryy′

r2
xx′r2

yy′

]
2Re

[
ΞNLO,3(x⊥, y⊥, x′

⊥, y′
⊥)
]

× e−i
k⊥
z

·(z1rxx′+(1−z1)ryy′)Q̄R2Q̄R2′K1(Q̄R2rxy)K1(Q̄R2′rx′y′) , (A.18)
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where for these terms, Q̄2
R2 = (1− z − z1)(z1 + z)Q2 and Q̄2

R2′ = z1(1− z1)Q2 in the integrals
over z1. For the two remaining terms, we have

dσγ∗
T+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,1

=

−
αeme2

f Nc

(2π)4

∫
d2x⊥d2y⊥d2z⊥d2z′

⊥e−ik⊥·rzz′2Re
[
ΞNLO,1(x⊥,y⊥,z⊥;z′

⊥)
]

× 2αs

π2

∫ 1−z

0

dz1
z

ei
z1
z

k⊥·rz′x
QK1(QXR)

XR

Q̄R2K1(Q̄R2 rz′y)
rz′y

z2
1(1−z1−z)

×
{[(

(1−z1−z)2+(z1+z)2
)(

1+ z

z1
+ z2

2z2
1

)
(rzx ·rz′x)

r2
zxr2

z′x

(RR ·rz′y)

+ (z1(z1+z)+(1−z1−z)(1−z1))
(

1+ z

2z1
+ z

2(1−z1−z)

) (rzy ·rz′x)
r2

zyr2
z′x

(RR ·rz′y)
]

+ z

2z1

[
(2z1+2z−1)(2z1+z)

z1

(rzx×rz′x)
r2

zxr2
z′x

(RR×rz′y)− (2z1+z−1)2

(1−z1−z)
(rzy×rz′x)

r2
zyr2

z′x

(RR×rz′y)
]

− z

2z1

[
z1(1−z1−z)

(z1+z) + (z1+z)2

(1−z1)

]
(rz′x ·rz′y)

r2
z′x

}
(A.19)

and

dσγ∗
T+A→jg+X

d2k⊥dη

∣∣∣∣∣
NLO,4g

=

αeme2
f Nc

(2π)4

∫
d2z⊥d2z′

⊥d2x⊥d2y⊥e−ik⊥·rzz′2Re[ΞNLO,4g(x⊥,y⊥,z⊥,z′
⊥)]

×αs

π2

∫ 1−z

0
dz1

Q2K1(QXR)K1(QX ′
R)

XRX ′
R

{
(1−z1−z)2

[
z2

1 +(z1+z)2
]

×(1−2(1−z1−z)(z1+z)) rzx ·rz′x

r2
zxr2

z′x

RR ·R′
R+z(1−z1−z)2(2z1+z)

×(1−2(1−z1−z))rzx×rz′x

r2
zxr2

z′x

RR×R′
R− z2

1(1−z1−z)3z

z1+z

[
rzx ·RR

r2
zx

+ rz′x ·R′
R

r2
z′x

]

+ z2
1(1−z1−z)2z2

(z1+z)2 +z1(1−z1−z)(z1(1−z1)+(1−z1−z)(z1+z))

×(1−z−2z1(1−z1−z))rzx ·rz′y

r2
zxr2

z′y

RR ·R′
R−zz1(1−z1−z)(1−2z1−z)2 rzx×rz′y

r2
zxr2

z′y

RR×R
′
R

−zz1(1−z1−z)
[

z1(1−z1)2

z1+z

rz′y ·R
′
R

r2
z′y

+ (1−z1−z)(z1+z)2

1−z1

rzx ·RR
r2

zx

]}
. (A.20)

Implicit in our notations, the transverse sizes XR, X ′
R are evaluated with zg set to z, since

zg is the longitudinal momentum fraction of the tagged jet. Likewise, the vectors R′
R and

R
′
R should be replaced by their expressions provided in table 4 with the prime index on

the z⊥ transverse coordinate only.

– 52 –



J
H
E
P
0
5
(
2
0
2
4
)
1
1
0

A.3 NLO impact factor for the single differential cross-section

Finally, we quote in this subsection the formulae for the k⊥-integrated semi-inclusive single-jet
cross-section. We again rely on the results established in section 5 for a longitudinally polarized
virtual photon, and in particular on the decomposition in eq. (5.12) of the NLO cross-section.

dσγ⋆
T+A→jf +X

dη

∣∣∣∣∣
NLO−a

=

αeme2
f Nc

(2π)2

∫
d2b⊥d2rxy2z(z2+(1−z)2)Q̄2K2

1 (Q̄rxy)4Re⟨1−Dxy⟩Yf

×αsCF

π

{
−1

2 ln2
(

z

1−z

)
+ln

(
z

1−z

)
ln
(
R2
)
− 3

2 ln(2R)+7− 2π2

3

−
∫ 1−z

0

dzg

zg
ln
(

R2z2
g

z2

)[
(1−z−zg)((1−z−zg)2+(z+zg)2)(2z(z+zg)+z2

g)
2z(1−z)(z+zg)(z2+(1−z)2)

K2
1 (Q̄R2rxy)

K2
1 (Q̄rxy)

−1
]

+2
∫ 1−z

0

dzg

zg
ln
(

1+ zg

z

) (1−z−zg)((1−z−zg)2+(z+zg)2)(2z(z+zg)+z2
g)

2z(1−z)(z+zg)(z2+(1−z)2)
K2

1 (Q̄R2rxy)
K2

1 (Q̄rxy)

}

−
αeme2

f Nc

(2π)2

[
2z(z2+(1−z)2)Q̄2

]
×αsCF

π2 ln
(

z

1−z

)
×
∫

d2b⊥d2rxyPrxy

(
1

r2
xx′

)[
K1(Q̄rxy)K1(Q̄rx′y)rxy ·rx′y

rxyrx′y
2Re

〈
Dxx′−Dxy−Dyx′ +1

〉
Yf

]
.

(A.21)

dσγ⋆
T+A→jf +X

dη

∣∣∣∣∣
NLO−b

=

αeme2
f Nc

(2π)2

∫ d2b⊥
(2π) d2rxx′

d2ryy′

r2
yy′

αs

π

∫ z

z−1

dzg

zg
(z−zg)2z2Q̄Q̄V3

×
K1(Q̄|(z−zg)rxx′ +(1−z+zg)ryy′ |)

|(z−zg)rxx′ +(1−z+zg)ryy′ |
K1(Q̄V3|zrxx′ +(1−z)ryy′ |)

|zrxx′ +(1−z)ryy′ |

×
{

[z(z−zg)+(1−z)(1−z+zg)](zrxx′ +(1−z)ryy′)·((z−zg)rxx′ +(1−z+zg)ryy′)

×
[
1+ ((1−z)ryy′ +(z−zg)rxx′)·(zrxx′ +(1−z+zg)ryy′)

(1−z)(1−z+zg)r2
yy′−z(z−zg)r2

xx′

]

+
z2

g(zg +1−2z)2(rxx′×ryy′)2[
(1−z)(1−z+zg)r2

yy′−z(z−zg)r2
xx′

]}4Re[ΞNLO,3(x⊥,y⊥,x′
⊥,y′

⊥)] . (A.22)

This expression may be further simplified using

(rxx′ × ryy′)2 = r2
xx′r2

yy′ − (rxx′ · ryy′)2 . (A.23)
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In eq. (A.22), the transverse coordinates x⊥, y⊥, x′
⊥ and y′

⊥ in the NLO,3 CGC correlator
depend on b⊥, rxx′ and ryy′ according to eqs. (5.18). The UV regular term is given by

dσγ⋆
T+A→jf +X

dη

∣∣∣∣∣
UV−reg

=

αeme2
f Nc

(2π)2

∫
d2x⊥d2y⊥d2z⊥

αs

π2 Q2
∫ 1

0

dzg

zg

{
Θ(1−z−zg)

r2
zy

× z2(z̄2+(1−z)2)(1−2z(1−z))
1−z

[
K2

1 (QXR)z(1−z)R2
R

X2
R

2ReΞNLO,4(x⊥,y⊥,z⊥,x⊥)

−K1(Q̄rxy)K1
(
Q̄|rxy−rzy|

) rxy ·(rxy−rzy)
rxy|rxy−rzy|

2ReCF ΞLO(y⊥,x⊥,z⊥)
]
+ Θ(1−z−zg)

r2
zx

× zz̄(z2+(z+zg)2)(1−2z̄(z+zg))
z+zg

[
K2

1 (QXR) z̄(1−z̄)R2
R

X2
R

2ReΞNLO,4(x⊥,y⊥,z⊥,x⊥)

−K1(QXR)K1
(
Q̄R2 |RR|

) √z̄(1−z̄)|RR|
XR

4ReΞNLO,1(x⊥,y⊥,z⊥,w⊥,r)

+K1(Q̄R2rxy)K1
(
Q̄R2 |rxy +rzx|

) rxy ·(rxy +rzx)
rxy|rxy +rzx|

2ReCF ΞLO(x⊥,y⊥,z⊥)
]}

zf

. (A.24)

Last,

dσγ⋆
T+A→jf +X

dη

∣∣∣∣∣
NLO−c

=

αeme2
f Nc

(2π)2

∫
d2x⊥d2y⊥d2z⊥

2αs

π2 2Re

∫ 1

0

dzg

zg

{
2z2(1 − z)Θ(z − zg)

× Q̄Q
K1(Q̄|RSE1|)

|RSE1|
K1(QXV )

XV

(
−zg(z − zg)

2

[
1

1 − z + zg
+ (1 − z)(z − zg)

z3

]
rzx · RSE1

r2
zx

− zg(z − zg)(1 + zg − 2z)2

2z2(1 − z)
(RV × RSE1)(rzx × rzy)

r2
zxr2

zy

− [z(z − zg) + (1 − z)(1 − z + zg)]

×
(

1 − zg

z

)(
1 + zg

1 − z

)(
1 − zg

2z
− zg

2(1 − z + zg)

)
(RV · RSE1)(rzx · rzy)

r2
zxr2

zy

)

× ΞNLO,1(x⊥, y⊥, z⊥, w⊥,v) + Θ(1 − z − zg)QQ̄R2
K1(Q̄R2|RR|)

|RR|
K1(QXR)

XR

×
(

z(z(1 − z) + z̄(1 − z̄))(z(1 − z̄) + z̄(1 − z))(RR · RR)(rzy · (rzy − RR))
r2

zy(rzy − RR)2

+zzg(z̄ − z)2 (RR × RR)(RR × rzy)
r2

zy(rzy − RR)2 + zzg z̄(z(1 − z)z̄ + (z + zg)3)
(z + zg)(1 − z)

(rzy − RR) · RR
(rzy − RR)2

)

× ΞNLO,1(x⊥, y⊥, z⊥, w⊥,r) + Θ(1 − z − zg)Q2 K2
1 (QXR)

X2
R

(
−z3z̄3zg

z + zg

rzx · RR
r2

zx

+
z3z̄2z2

g

2(z + zg)2

+
z̄2z3z2

g

2(1 − z)2 − z̄2z4zg

1 − z

rzy · RR
r2

zy

+ z2z̄(z(1 − z) + z̄(1 − z̄))(z + z̄ − 2zz̄)rzx · rzy

r2
zxr2

zy

RR · RR
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− z2z̄zg(z − z̄)2 rzx × rzy

r2
zxr2

zy

RR × RR −z2z̄zg

(
z(1 − z)2

1 − z̄

rzy · RR
r2

zy

+ z̄(1 − z̄)2

1 − z

rzx · RR
r2

zx

))

× ΞNLO,4(x⊥, y⊥, z⊥, x⊥) + Θ(z − zg)
r2

zx

(1 − z)(z2 + (1 − z)2)
(
2z(z − zg) + z2

g

)
×
[
K1

(
Q̄ |RSE1|

)
K1(QXV )

√
z(1 − z)|RSE1|

XV
4ReΞNLO,1(x⊥, y⊥, z⊥, w⊥,v)

−e
− r2

zx
r2

xyeγE K2
0 (Q̄rxy)4ReCF ΞLO(x⊥, y⊥, x⊥)

}
zf

. (A.25)

B Calculation of the k⊥-dependent single threshold logarithm

In this appendix, we explicitly compute the contribution to the NLO semi-inclusive single-
jet production cross-section enhanced by a single logarithm of 1 − z, where z denotes the
longitudinal momentum fraction of the jet relative to that of the virtual photon. We detail
the calculation for a longitudinally polarized photon but the rationale is identical in the
transversely polarized case. Our starting point is eq. (4.8) and more precisely the term
proportional to ln(k2

⊥rxyrx′y/c2
0), which we label here as “sl”:

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
sl
≡

αeme2
f Nc

(2π)4

∫
d2x⊥d2x′

⊥d2y⊥e−ik⊥·rxx′2Re
[
ΞLO(x⊥,y⊥,x′

⊥)
]

×8z3(1−z)2Q2K0(Q̄rxy)K0(Q̄rx′y)αsCF

π
ln
(

k2
⊥rxyrx′y

c2
0

)
ln
( 1

1−z

)
,

(B.1)

and we aim to demonstrate that this term is truly single logarithmic in 1 − z (it does not
contain “hidden” double log in 1 − z). This is a priori not obvious as one could argue
that the K0 Bessel functions parametrically enforce rxy ∼ rx′y ∼ 1/Q̄ so that the apparent
single log coefficient could behave like ln(k2

⊥/Q̄2). Since Q̄2 ∼ (1 − z)Q2 for z close to 1,
one sees that this naive estimation would make the contribution given by eq. (B.1) double
logarithmic in 1 − z.

To do so, we reduce the number of transverse coordinate integrals following appendix A
of [67]. Assuming translational invariance in transverse space, and after the change of
variables r⊥ = rxy, r′

⊥ = rx′y, b⊥ = zx⊥ + (1 − z)y⊥, we first rewrite the LO semi-inclusive
single-jet cross-section as

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
LO

= αeme2
f Nc16z(1 − z)Re

∫ d2b⊥
(2π)2

∫ d2r⊥
(2π)

d2r′
⊥

(2π) e−ik⊥·(r⊥−r′
⊥)

× Q̄2K0(Q̄r⊥)K0(Q̄r′)
[
TYf

(r⊥) + TYf
(−r′

⊥) − TYf
(r⊥ − r′

⊥)
]

, (B.2)

with TYf
(r⊥) = 1− 1

Nc
⟨Tr[V (0⊥)V †(r⊥)]⟩Yf

. As shown in [67], this expression can be further
simplified into

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
LO

= αeme2
f Nc16z(1 − z)Re

∫ d2b⊥
(2π)2

∫ d2r⊥
(2π) e−ik⊥·r⊥TYf

(r⊥)

×
[

2Q̄2

k2
⊥ + Q̄2 K0(Q̄r⊥) − Q̄r⊥

2 K1(Q̄r⊥)
]

. (B.3)
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We wish to repeat this calculation with the additional ln(k2
⊥rxyrx′y/c2

0) present in eq. (B.1).
The terms depending on T (r⊥) and T (−r′

⊥) = T (r′
⊥)∗ contribute equally and can be

computed as follows. Considering the T (r⊥) term alone, one needs the integral∫ d2r′
⊥

(2π) eik⊥·r′
⊥K0(Q̄r′⊥) ln

(
k⊥r′

c0

)
= 1

k2
⊥ + Q̄2 ln

(
k⊥Q̄

k2
⊥ + Q̄2

)
, (B.4)

which has been derived in appendix (A1) of [50]. Therefore, the T (r⊥) + T (−r′
⊥) terms give

αeme2
f Nc16z(1 − z)Re

αsCF

π

∫ d2b⊥
(2π)2

∫ d2r⊥
(2π) e−ik⊥·r⊥TYf

(r⊥)

× 2Q̄2

k2
⊥ + Q̄2 K0(Q̄r⊥) ln

(
k2
⊥Q̄r⊥

c0(k2
⊥ + Q̄2)

)
. (B.5)

The term proportional to T (r⊥ − r′
⊥) is more complicated, but can be computed in a

similar fashion:∫ d2r⊥
(2π)

d2r′
⊥

(2π) e−ik⊥·(r⊥−r′
⊥)TYf

(r⊥ − r′
⊥)Q̄2K0(Q̄r⊥)K0(Q̄r′⊥) ln

(
k2
⊥r⊥r′⊥

c2
0

)
=

∫ d2r⊥
(2π) e−ik⊥·r⊥TYf

(r⊥)
∫ d2l⊥

(2π)
e−il⊥·r⊥

[l2
⊥ + Q̄2]2

ln
(

l2
⊥Q̄2

[l2
⊥ + Q̄2]2

)
. (B.6)

We now define the following function

κL(x) ≡ 2
xK1(x)

∫ ∞

0
dℓ

ℓJ0(ℓx)
(ℓ2 + 1)2 ln

(
ℓ2

(ℓ2 + 1)2

)
, (B.7)

where x = Q̄r⊥ in terms of physical variables. Without the logarithm inside the integral
over ℓ, one would simply get κL(x) = 1. When x goes to 0 (meaning Q̄r⊥ ∼

√
1 − zQr⊥ → 0

when z → 1), the function κL(x) has a finite limit

lim
x→0

κL(x) = −2 . (B.8)

This function helps us to write our final exact expression for eq. (B.1) as

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
sl

= αeme2
f Nc16z(1−z)Re ln

( 1
1−z

)∫ d2b⊥
(2π)2

∫ d2r⊥
(2π) e−ik⊥·r⊥TYf

(r⊥)

×αsCF

π

[
2Q̄2

k2
⊥+Q̄2 K0(Q̄r⊥) ln

(
k2
⊥Q̄r⊥

c0(k2
⊥+Q̄2)

)
− Q̄r⊥

2 K1(Q̄r⊥)κL

(
Q̄r⊥

)]
.

(B.9)

Comparing eq. (B.3) with eq. (B.9), it is clear that the integral over r⊥ does not yield an
additional ln(1 − z) dependence when z → 1 so that the single log contribution eq. (B.1) is
indeed single logarithmic in the threshold limit. In fact, thanks to eq. (B.8), one has

dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
sl

∼
z→1

(−2)αsCF

π
ln
( 1

1 − z

) dσγ⋆
L+A→jf +X

d2k⊥dη

∣∣∣∣∣
LO

, (B.10)
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which implies that the k⊥-dependent single log coefficient can effectively by replaced by
−2αsCF /π up to power suppressed terms as z goes to 1.

Likewise, the LO SIDIS cross-section for transversely polarized virtual photons can be
expressed in terms of TYf

(r⊥) as

dσγ⋆
T+A→jf +X

d2k⊥dη

∣∣∣∣∣
LO

= αeme2
f Nc4z(z2+(1−z)2)Re

∫ d2b⊥
(2π)2

∫ d2r⊥
(2π) e−ik⊥·r⊥TYf

(r⊥)

×
[

ik⊥ ·r⊥

Q̄r⊥

2Q̄2

k2
⊥+Q̄2 K1(Q̄r⊥)−K0(Q̄r⊥)+ Q̄r⊥

2 K1(Q̄r⊥)
]

, (B.11)

while the k⊥-dependent single log coefficient reads

dσγ⋆
T+A→jf +X

d2k⊥dη

∣∣∣∣∣
sl

=

αeme2
f Nc4z(z2 + (1 − z)2)Re

αsCF

π
ln
( 1

1 − z

)∫ d2b⊥
(2π)2

×
∫ d2r⊥

(2π) e−ik⊥·r⊥TYf
(r⊥)

[
ik⊥ · r⊥

Q̄r⊥

2Q̄2

k2
⊥ + Q̄2 K1(Q̄r⊥)

(
ln
(

k⊥r⊥
c0

)
− 1

2 ln
(

k2
⊥ + Q̄2

k2
⊥

)

+1
2

Q̄2

k2
⊥

ln
(

1 + k2
⊥

Q̄2

))
−
(

K0(Q̄r⊥) − Q̄r⊥
2 K1(Q̄r⊥)

)
κT

(
Q̄r⊥)

)]
, (B.12)

with the function κT (x) defined by

κT (x) ≡ 2
2K0(x) − xK1(x)

∫ ∞

0
dℓ

ℓ3J0(ℓx)
(ℓ2 + 1)2

[1
ℓ

ln(1 + ℓ) − ln
(

1 + 1
ℓ

)]
. (B.13)

The function κT (x) goes to 0 as x → 0, which implies that the k⊥-dependent coefficient of
the single threshold logarithm vanishes in the z → 1 limit.

C The Fourier transform of the logarithm as a distribution

The following identities will be useful for the computations in section (5.2):∫
d2r⊥f(r⊥)

∫
d2k⊥e−ik⊥·r⊥ ln

(
u2
⊥k2

⊥
c2

0

)
= −(4π)Pu⊥

(
1

r2
⊥

)
[f ] , (C.1)

∫
d2r⊥f(r⊥)

∫
d2k⊥e−ik⊥·r⊥ ln

(
r2
⊥k2

⊥
c2

0

)
= −4π

∫
d2r⊥

f(r⊥)
r2
⊥

, (C.2)

where we defined

Pu⊥

(
1

r2
⊥

)
[f ] ≡

∫
d2r⊥

[
f(r⊥) − f(0)Θ(u2

⊥ − r2
⊥)

r2
⊥

]
. (C.3)

We begin with the proof of eq. (C.1) following section (2.9) in [134]:

Pu⊥

(
1

r2
⊥

)
[f ] =

∫
d2r⊥

∫ d2k⊥
(2π)2 f̃(k⊥)

[
eik⊥·r⊥ − Θ(u2

⊥ − r2
⊥)

r2
⊥

]
, (C.4)
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where we used the definition of Pu⊥ and we traded the function f(r⊥) by its Fourier
transform f̃(k⊥) defined as

f̃(k⊥) =
∫

d2r⊥e−ik⊥·r⊥f(r⊥) . (C.5)

Now one can easily perform the integration over r⊥

∫ d2r⊥
2π

[
eik⊥·r⊥ − Θ(u2

⊥ − r2
⊥)

r2
⊥

]
=
∫ d2r⊥

2π

[
eik⊥·r⊥ − Θ(u2

⊥ − r2
⊥)

r2
⊥

]

=
∫ ∞

0

dr⊥
r⊥

[J0(k⊥r⊥) − Θ(u⊥ − r⊥)]

= −1
2 ln

(
u2
⊥k2

⊥
c2

0

)
, (C.6)

where in the last equality we used
∫∞

0
dz
z [J0(z) − Θ(1 − z)] = ln(c0) with c0 = 2 exp(−γE).

Combining the results in eqs. (C.4) and (C.6), we find

Pu⊥

(
1

r2
⊥

)
[f ] = − 1

4π

∫
d2k⊥f̃(k⊥) ln

(
u2
⊥k2

⊥
c2

0

)
. (C.7)

Eq. (C.1) is readily obtained by inserting eq. (C.5) into eq. (C.6).
Next we prove the identity in eq. (C.2). We re-express the identity in eq. (C.1) by

rewriting the logarithm in the integrand:

− (4π)Pu⊥

(
1

r2
⊥

)
[f ]

=
∫

d2r⊥f(r⊥)
∫

d2k⊥e−ik⊥·r⊥

[
ln
(

(u2
⊥ + r2

⊥)k2
⊥

c2
0

)
+ ln

(
u2
⊥

(u2
⊥ + r2

⊥)

)]
. (C.8)

One then observes that the second term does not contribute as the integral over k⊥ results
in a delta function δ(2)(r⊥) and then this term is proportional to ln(u2

⊥/u2
⊥) = 0. Thus,

we arrive at an alternative form of eq. (C.1):

−(4π)Pu⊥

(
1

r2
⊥

)
[f ] =

∫
d2r⊥f(r⊥)

∫
d2k⊥e−ik⊥·r⊥ ln

(
(u2

⊥ + r2
⊥)k2

⊥
c2

0

)
. (C.9)

The result in eq. (C.2) is obtained by letting u⊥ → 0 in the equation above.

D Cancellation of final state interferences in fully inclusive DIS

For longitudinal photon, the total cross-section from these diagrams can be obtained by
integrating over η the expression given by eq. (5.17) (modulo a factor of 1/2 since eq. (5.17)
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accounts for both quark and antiquark tagged jets)

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c. =

αeme2
f Nc

(2π)2

∫ 1

0
dz

[
8z2(1 − z)Q2

] ∫ d2b⊥
2π

d2rxx′
d2ryy′

r2
yy′

× αs

π

∫ z

z−1

dzg

zg
K0

(
Q̄
∣∣(z − zg)rxx′ + (1 − z + zg)ryy′

∣∣)K0
(
Q̄V3

∣∣zrxx′ + (1 − z)ryy′
∣∣)

× (1 − z + zg)(z − zg)2
[
1 + ((1 − z)ryy′ + (z − zg)rxx′) · (zrxx′ + (1 − z + zg)ryy′)

(1 − z)(1 − z + zg)r2
yy′ − z(z − zg)r2

xx′

]
× 2Re

[
ΞNLO(x⊥, y⊥, x′

⊥, y′
⊥)
]

, (D.1)

where the transverse coordinates in the color structure are evaluated at the coordinates
x⊥, y⊥, x′

⊥, y′
⊥ are given by eqs. (5.18) in terms of the impact parameter b⊥ and the transverse

vectors rxx′ , ryy′ . In eq. (D.1), we now perform the change of variable

ζ = z − zg , (D.2)
ζg = −zg . (D.3)

We have then∫ 1

0
dz

∫ 1

−1
dzgΘ(z − zg)Θ(zg + 1 − z) =

∫ 1

0
dζ

∫ 1

−1
dζgΘ(ζ − ζg)Θ(ζg + 1 − ζ) , (D.4)

which shows that the longitudinal phase space integrals remains the same. After this change
of variable, eq. (D.1) reads

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c. =

αeme2
f Nc

(2π)2

∫ 1

0
dζ

[
8ζ2(1 − ζ)Q2

] ∫ d2b⊥
2π

d2rxx′
d2ryy′

r2
yy′

× αs

π

∫ ζ

ζ−1

dζg

(−ζg)K0
(
Q̄
∣∣(ζ − ζg)rxx′ + (1 − ζ + ζg)ryy′

∣∣)K0
(
Q̄V3

∣∣ζrxx′ + (1 − ζ)ryy′
∣∣)

× (1 − ζ + ζg)(ζ − ζg)2
[
1 + ((1 − ζ)ryy′ + (ζ − ζg)rxx′) · (ζrxx′ + (1 − ζ + ζg)ryy′)

(1 − ζ)(1 − ζ + ζg)r2
yy′ − ζ(ζ − ζg)r2

xx′

]
× 2Re

[
ΞNLO,3(x̃⊥, ỹ⊥, x̃⊥

′, ỹ⊥
′)
]

, (D.5)

with obviously, Q̄2 = ζ(1 − ζ)Q2 and Q̄2
V3 = (ζ − ζg)(1 − ζ + ζg)Q2. Note the important

minus sign in the denominator dζg/(−ζg). The CGC correlator is evaluated at the transverse
coordinate x̃⊥, ỹ⊥, x̃⊥

′, ỹ⊥
′, which are functions of the new variables ζ, ζg:

x̃⊥ = b⊥ + (1 − ζ)[(ζ − ζg)rxx′ + (1 − ζ + ζg)ryy′ ] ,

ỹ⊥ = b⊥ − ζ[(ζ − ζg)rxx′ + (1 − ζ + ζg)ryy′ ] ,

x̃⊥
′ = b⊥ + (1 − ζ + ζg)[ζrxx′ + (1 − ζ)ryy′ ] ,

ỹ⊥
′ = b⊥ − (ζ − ζg)[ζrxx′ + (1 − ζ)ryy′ ] . (D.6)
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It is clear that the transverse coordinates x̃⊥, ỹ⊥, x̃⊥
′ and ỹ⊥

′ are nothing but x′
⊥, y′

⊥, x⊥
and y⊥ expressed in terms of ζ and ζg. Further, the color structure satisfies the identity

2Re
[
ΞNLO,3(x⊥, y⊥, x′

⊥, y′
⊥)
]

= 2Re
[
ΞNLO,3(x′

⊥, y′
⊥, x⊥, y⊥)

]
, (D.7)

which follows from ΞNLO,3(x′
⊥, y′

⊥, x⊥, y⊥) = Ξ∗
NLO,3(x⊥, y⊥, x′

⊥, y′
⊥). Hence, one gets

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c. = −
(

σγ⋆
L+A→X

∣∣∣
V3×LO∗+R2×R2∗

+ c.c.

)
, (D.8)

which implies that the sum of the total cross-section associated with diagrams V3 × LO∗,
R2 × R2∗ and their complex conjugate is exactly zero.

We emphasize that it is crucial to use the proper definition of the impact parameter
b⊥ = (z−zg)x⊥+(1−z +zg)y⊥ for diagrams V3×LO∗ and R2×R2∗ to have the cancellation
of these diagrams also differentially in impact parameter space, namely

dσγ⋆
L+A→X

d2b⊥

∣∣∣∣∣
V3×LO∗+R2×R2∗

+ dσγ⋆
L+A→X

d2b⊥

∣∣∣∣∣
LO×V3∗+R2×R2∗

= 0 . (D.9)

This cancellation is a requirement for the optical theorem to work differentially with the
impact parameter b⊥ (as it should), since a contribution coming from V3×LO∗ and R2×R2∗

would contradict the results obtained in [18–20] (indeed, these results do not depend on
the quadrupole correlator for instance)
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