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1 Introduction

Integrable σ-models form an important class of two-dimensional field theories, whose highly-
symmetric nature allows for the development of various exact methods in the computation
of their physical observables. They find applications in high-energy physics, string theory
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and condensed matter and as toy models for deepening our understanding of field theories.
The construction and study of these models have been a growing topic of research for now
more than 40 years. More recently, two unifying approaches of this domain have been
developed, based on the formalisms of affine Gaudin models [3–6] and the semi-holomorphic
4-dimensional Chern-Simons theory [7]. These frameworks, deeply related to one another [8, 9],
have been shown to encompass most known classical integrable σ-models and also allowed
the systematic construction of many new examples (see for instance the reviews [10, 11]
and the references therein).

Beyond the organising principles that they offer at the classical level, a natural question
is whether these frameworks also provide new interesting insights on the quantum properties
of integrable σ-models, for instance their renormalisation. It is a long-standing conjecture
(see e.g. [12–14]) that the large amount of symmetries characterising these models also ensures
their renormalisability, at least at 1-loop. In that case, the continuous parameters entering the
action start depending on the renormalisation energy scale µ. This dependence is described by
the Renormalisation Group (RG) flow, in the form of a differential equation with respect to µ.
In the case of integrable σ-models coming from the 4D Chern-Simons theory or affine Gaudin
models, two conjectures have been put forward in [1, 2] (and partially proven in [15, 16]),
proposing an explicit and universal formulation of the 1-loop RG-flow. The main goal of this
paper is to review and, when needed, extend these conjectures, show that they are equivalent
and check their veracity on a recently constructed novel example [17] (namely an elliptic
integrable deformation of the Principal Chiral Model on SLR(N)).

Let us now describe the main topics and results of the paper in a bit more detail.
The classical integrability of σ-models is most often established using the notion of a Lax
connection. This is a connection on the 2-dimensional worldsheet of the model, whose light-
cone components are denoted L±(z), valued in a complexified Lie algebra gC and depending
meromorphically on an auxiliary complex variable z called the spectral parameter. The
Lax-connection is built from the fields of the σ-model in such a way that the equations
of motion of these fields are equivalent to the flatness of L±(z), for all values of z. This
property ensures the existence of an infinite number of conserved quantities, which is a key
feature of integrable field theories.

The formalisms of affine Gaudin models and 4-dimensional Chern-Simons theory allow
for the systematic construction of a large class of σ-models whose equations of motion
automatically admit a Lax representation. These integrable σ-models are built from certain
defining ingredients. The first one is simply the choice of the Lie algebra g in which the
Lax connection L±(z) is valued (or more precisely its complexification). The next three
ingredients (C, ω, Ẑ±) form what we will call the geometric data: they will play a crucial role
in this paper and are deeply related to the analytic structure of L±(z) as a function of the
spectral parameter z. The first element in this data is the choice of a compact Riemann
surface C, which prescribes the space in which z is valued. In this article, this surface will
either be the Riemann sphere CP1 = C⊔ {∞} (of genus 0), in which case the Lax connection
L±(z) is a rational function of z; or a torus (of genus 1), in which case L±(z) is an elliptic
function of z. The corresponding integrable σ-models will be respectively called rational
and elliptic, according to this distinction.
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The second component of the geometric data is a meromorphic 1-form ω = φ(z) dz on
C, which we will call the twist 1-form and which we suppose has en even number 2M of
zeroes, all simple. Finally, the last component is a splitting of these zeroes into two equal-size
subsets Ẑ± = {ẑ ±

1 , . . . , ẑ ±
M}. The points Ẑ± ⊂ C exactly correspond to the poles of the

light-cone component L±(z) of the Lax connection and are thus quite natural characteristics
of the integrable structure of the model. To summarise the results of the formalisms, the
choice of the geometric data (C, ω, Ẑ±) completely fixes the form of L±(z) as a meromorphic
function of z. As an illustration, let us consider the rational setup C = CP1: in this case,
the Lax connection is given by

L±(z) =
M∑

r=1

U±,r

z − ẑ ±
r

+ U±,0 , (1.1)

for some Lie algebra-valued currents U±,r (r = 0, . . . , M). When C is a torus, a similar
expression holds, with the simple fractions 1/(z − ẑ ±

r ) replaced by appropriately chosen
elliptic functions (see section 2 of the main text for details).

Besides its zeroes, whose interpretation we just described, the poles of the twist 1-form
ω also play a natural role in the construction of the integrable theory: the fundamental
fields of the σ-model are canonically associated with the poles of ω. The last steps in the
construction are then to relate these fundamental fields with the currents U±,r appearing in
the Lax connection (1.1) and to specify the action of the σ-model in terms of these fields, in
such a way that the induced equations of motion can be recast as the flatness of this Lax
connection. The concrete way these various points are implemented will essentially not play
any role in this article and will thus be only briefly glimpsed upon in the main text.

All of the above discussion was at the classical level: we now turn to quantum aspects.
For a general σ-model, it is well known that the 1-loop renormalisation takes the form of a
generalised Ricci flow of the metric and B-field [18–21]. For the integrable models introduced
above, the metric and the B-field depend on a finite number of continuous parameters,
essentially encoded in the geometric data (C, ω, Ẑ±),1 e.g. the positions of the poles and
zeroes of ω and the periods of the torus C in the elliptic case. The 1-loop renormalisability of
these models is then equivalent to saying that the Ricci flow can be reabsorbed as a running
of these parameters with respect to the renormalisation scale µ. It was conjectured that
this is always the case and two explicit formulations of the 1-loop RG-flow of the geometric
data (C, ω, Ẑ±) were proposed in [1, 2].

The proposal of [1] directly describes the flow of the twist 1-form ω = φ(z) dz and
takes the form

d
dtω = ∂zΨ(z) dz , (1.2)

where t = 1
4π log(µ) and Ψ(z) is a specific meromorphic function of the spectral parameter,

which is explicitly built from the geometric data (C, ω, Ẑ±) — see section 3 of the main text
1In addition to the ones encoded in (C, ω, Ẑ±), the models can also depend on some additional parameters

which appear in the construction of the fundamental fields and their relation to the Lax connection. These
aspects were skipped in the summary of the classical above and they will not play any role in our discussion of
the 1-loop renormalisation. Essentially, the corresponding additional parameters completely decouple from
the RG-flow and stay independent of the renormalisation scale µ. Thus, we will focus here on the geometric
data (C, ω, Ẑ±).
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for details. We will refer to this formula as the ∂Ψ-conjecture. It was first put forward in [1]
for certain rational models (i.e. with C = CP1), whose twist 1-form ω has a double pole
at infinity: in that case, it was recently proven in the works [15, 16]. The extension to an
arbitrary pole structure at infinity was proposed in [22] and checked in various examples,
although a proof of this general case is not available at the moment. Its generalisation to
elliptic models (for which C is a torus) has not been studied yet in the literature and will be
the first new result of the present paper. We conjecture that in the elliptic case, the flow
takes the exact same form (1.2) as in the rational setup, but with a different definition of
the function Ψ(z), now involving certain Weierstrass quasi-elliptic functions.

The main interest of the ∂Ψ-conjecture (1.2) is that it gives an explicit and direct formula
for the RG-flow of the twist 1-form ω. Moreover, as we will explain in the main text, its
structure makes it easy to extract the corresponding RG-flow of various natural parameters
encoded in ω, for example its poles and zeroes. However, its main disadvantage is that
this RG-flow generally takes a rather complicated form as a system of coupled non-linear
differential equations. In particular, this formulation does not make it apparent how to
solve the renormalization flow.

This is in contrast with the second conjecture that we will discuss in this paper, which
was proposed by Costello and reported in the work [2] of Derryberry. It is formulated in
terms of the periods of ω, i.e. its integrals over well-chosen paths in C. Explicitly, it reads

d
dt

[ ∮
ω

]
= 0 ,

d
dt

[ ∫ ẑ±s

ẑ±r

ω

]
= 0 ,

d
dt

[ ∫ ẑ−s

ẑ+
r

ω

]
= 2ℏ cg , (1.3)

with cg the dual Coxeter number of the Lie algebra g and where we recall that the points
ẑ ±

r are the zeroes of ω, which are split into the two subsets Ẑ± = {ẑ ±
r }M

r=1. We will call
this formula the period-conjecture. The paths of integration considered in the first equation
of (1.3) are closed contours in C: the corresponding integrals are called the absolute periods of
ω and are then RG-invariants according to the conjecture. Typical examples of such absolute
periods are the residues of ω at its poles, obtained by taking the contours as small circles
encircling these points. These residues form all the absolute periods in the rational case,
while they have to be supplemented with two additional quantities in the elliptic case, namely
the integrals of ω over the A- and B-cycles of the torus. The second and third equations of
the flow (1.3) concern the so-called relative periods, which are integrals of ω between two of
its zeroes. The conjecture states that such a relative period is an RG-invariant if the zeroes
belong to the same subset Ẑ+ or Ẑ−, while it grows linearly with the RG-parameter t when the
zeroes belong to different subsets. The data of the absolute and relative periods is essentially
equivalent to that of (C, ω): the formula (1.3) thus completely encodes the RG-flow of the
twist 1-form, albeit in a more implicit way than the ∂Ψ-conjecture (1.2). The main interest
of the period-formulation is that, contrarily to the ∂Ψ-conjecture and quite remarkably, the
resulting RG-flow is trivially solved. In particular, this shows that the periods of ω are quite
natural objects to discuss some of the quantum properties of integrable σ-models. The second
main result of the present paper is the proof that the two conjectures (1.2) and (1.3) are
equivalent to one another. This was suggested in [2] for a specific class of models and will be
shown in full generality here, relying on some of the special properties of the function Ψ(z).
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Finally, to see an explicit example of these conjectures in action, we will prove the
1-loop renormalisability of a specific elliptic integrable σ-model introduced recently in [17],
which corresponds to the simplest choice of twist 1-form ω on the torus, with one double
pole and two simple zeroes, and which takes the form of a deformation of the Principal
Chiral Model on SLR(N). In particular, we will derive the explicit 1-loop RG-flow of this
model using Ricci-techniques and will use this result to check the validity of the ∂Ψ- and
period-conjectures for this example (hence providing their first test in the elliptic setup).

The plan of the paper is as follows. In section 2 we will review the class of integrable
σ-models arising from 4D Chern-Simons theory and affine Gaudin models, although we will
not explain their origin explicitly. We will put a special emphasis on the geometric data
(C, ω, Ẑ±) appearing in their definition. The 1-loop RG-flow of this data will be the subject
of section 3: in particular, we will discuss in detail the ∂Ψ- and period-conjectures and will
prove their equivalence. Section 4 will be devoted to the explicit 1-loop RG-flow of the elliptic
integrable deformed Principal Chiral Model and the check of the conjectures in this example.
Finally, we will conclude and discuss various perspectives in section 5. Some technical
computations as well as various reviews and reminders will be gathered in appendices A to D.

2 Integrable σ-models with twist 1-form

In this section, we review the properties of a large family of classical integrable σ-models which
will be the main subjects of interest of this article. These theories are naturally described
in terms of some geometrical data related to their spectral parameter, including the choice
of what we will call the twist 1-form, which will play a crucial role throughout the paper.
We will be interested in two variants of these theories, which we will refer to as rational
and elliptic models, respectively. We will treat these two cases in parallel. In addition to
summarising the main characteristics of these models, we will sketch the interpretation of
the twist 1-form in their Hamiltonian formulation and will briefly explain their origin from
semi-holomorphic 4D Chern-Simons (4D-CS) theory in the accompanying appendix C. We
start by reviewing some basic facts about integrable σ-models.

2.1 The basics of integrable σ-models

Worldsheet and target space. A σ-model is a 2-dimensional field theory defined on a
space-time manifold Σ, which we call the worldsheet and which we describe in terms of two
coordinates (t, x). We choose Σ to be either the plane, in which case the spatial coordinate x

is on the real line R, or a cylinder, in which case x is subject to the periodicity condition
x ∼ x+2π. In this article, we will consider only relativistic σ-models, for which Σ is equipped
with a flat Lorentzian metric. In particular, it will be convenient to work with light-cone
coordinates and their derivatives:

x± = t ± x and ∂± = 1
2(∂t ± ∂x) . (2.1)

The fundamental dynamical degree of freedom of the σ-model is a field

ϕ : Σ −→ T , (2.2)

valued in a (pseudo)-Riemannian manifold T , which we call the target space. This space is
equipped with a metric G, i.e. a symmetric non-degenerate 2-tensor on T , and a B-field B, i.e. a
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skew-symmetric 2-form on T . We will denote by d = dim T its dimension. The data (T , G, B),
which defines the geometry of the target space, completely characterises the σ-model.

Action and equations of motion. To describe this model more explicitly, let us consider
a set of (local) coordinates on the target space T . In this chart, the T -valued field ϕ(x+, x−)
can equivalently be seen as a collection of d scalar fields {ϕ i(x+, x−)}d

i=1, while the metric
and B-field can be seen as symmetric and skew-symmetric tensors Gij(ϕ) = Gji(ϕ) and
Bij(ϕ) = −Bji(ϕ) respectively. The σ-model is then defined by the action

S[ϕ] =
∫∫

Σ
dx+ dx− (Gij(ϕ) + Bij(ϕ)

)
∂+ϕ i ∂−ϕ j . (2.3)

The dynamic of the theory is governed by the equations of motion derived from varying
this action. These equations take the form

∂+∂−ϕ i + (Γi
jk − H i

jk

)
∂+ϕ j ∂−ϕk = 0 , (2.4)

where Γi
jk are the Christoffel symbols of the metric Gij and H = dB is the torsion 3-form

associated with the B-field.

Lax connection and R-matrix. In this paper, we will focus on integrable σ-models, which
correspond to very particular choices of target space (T , G, B), for which the dynamic (2.4)
admits an infinite number of symmetries / conserved quantities. This property of integrability
is often defined through the existence of a so-called Lax connection. The latter is formed by
two light-cone components L±(z ;x+, x−), which are matrices valued in a complexified Lie
algebra gC, built from the fields ϕ i(x+, x−) and depending meromorphically on an auxiliary
complex parameter z, which we call the spectral parameter. The definition of this connection
in terms of the fields ϕ i(x+, x−) should be such that the equations of motion (2.4) are
equivalent to the flatness condition

∂+L−(z)− ∂−L+(z) +
[
L+(z),L−(z)

]
= 0 , ∀ z . (2.5)

This property ensures the existence of an infinite number of conserved charges, built from the
monodromy of the Lax matrix Lx(z) = L+(z)− L−(z). Indeed, the trace of this monodromy
is conserved along the time evolution ∂t = ∂+ +∂− due to the flatness condition (2.5) on L(z).
Moreover, since the latter holds for all values of the spectral parameter z, one can extract an
infinite number of conserved charges from this construction, for instance by considering a
power series expansion in z. This illustrates the crucial role played by the spectral parameter
in the integrable structure of the theory.

The integrability of the model also requires these conserved quantities to be pairwise
Poisson-commuting in the Hamiltonian formulation. This question is ultimately related to the
Poisson algebra obeyed by the various components of two Lax matrices Lx(z1) and Lx(z2),
evaluated at different values z1, z2 of the spectral parameter. In [23, 24], Maillet proposed
a sufficient condition on this Poisson algebra which ensures the Poisson-commutation of
the monodromy charges and thus that the model is integrable in the Hamiltonian sense.
For brevity, we will not exhibit the explicit form of this Maillet bracket here and refer for
instance to [17, section 2.1] for a detailed review. The main new ingredient appearing in
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this bracket is the so-called R-matrix, which is an element R(z1, z2) of the tensor product
gC ⊗ gC, depending meromorphically on the two spectral parameters z1, z2 and satisfying the
classical Yang-Baxter equation. This R-matrix depends on the model under consideration
and characterises its Hamiltonian integrable structure.

Form of the Lax connection. Let us now discuss in more detail the form of the Lax
connection L±(z). We introduce a basis {Tα} of the Lie algebra gC. As mentioned above,
L±(z) is valued in this algebra and is built from the fields ϕ i(x+, x−). In all the known
examples of integrable σ-models, it is more precisely linear in the derivatives ∂±ϕ i of these
fields and take the form

L±(z) = Λα
(±), i (z, ϕ) ∂±ϕ i Tα , (2.6)

where a summation over the repeated indices i, α is implicitly assumed. Here, the coefficients
Λα

(±), i (z, ϕ) are meromorphic functions of the spectral parameter z which also depend on the
fields ϕ i, but not their derivatives. This dependence can generally be quite complicated and
reflects the non-linearity of the σ-model dynamics (2.4), as encoded in the flatness of L±(z).

Of particular interest for our discussion will be the analytic structure of L±(z) — or
equivalently Λα

(±), i (z, ϕ) — as a function of the spectral parameter. For instance, we will
consider two main classes of integrable σ-models, depending on the nature of this z-dependence:
the rational ones, for which L±(z) is a rational function of z, and the elliptic ones, for which
L±(z) is an elliptic function of z (which can be seen as a doubly-periodic function on the
complex plane).

Another key characteristic of the analytic structure of L±(z) is the data of its poles
and of their multiplicities: in this article, we will focus on the case of first-order poles for
simplicity and will denote by Ẑ± = {ẑ ±

1 , . . . , ẑ ±
M} their positions.2 In the models that we will

consider, the poles Ẑ+ of L+(z) will always be pairwise distinct from the ones Ẑ− of L−(z).3

2.2 Towards a general construction

In the previous subsection, we reviewed the basics of integrable σ-models. We note that
the condition for integrability, namely the existence of a Lax connection L±(z) satisfying
a Maillet bracket, is very constraining and thus requires an extremely fine-tuned choice of
target space (T , G, B). In other words, integrable σ-models are very rare occurrences in the
space of all σ-models. It is thus natural to ask the following questions:

• Is there a systematic way to find such integrable σ-models?

• What are the natural parameters entering the definition of their target spaces (T , G, B)?
2In the rational case, there are by definition finitely many such poles. In the elliptic one, there is technically

an infinite 2d-lattice of poles due to the periodicity properties of L±(z): schematically, Ẑ± is then defined as a
set of independent representatives in this lattice and is therefore finite (we refer to subsection 2.4 for a more
precise statement, where we will see that we need to take into account a finer property of quasi-periodicity
of L±(z)). Note that we expect Ẑ+ and Ẑ− to be of the same size, which we call M , due to the symmetric
treatment of the two light-cone directions in relativistic σ-models.

3This can be justified heuristically as follows: the existence of a common pole in L+(z) and L−(z) would
generally create a second order singularity in the last term of the flatness equation (2.5), which cannot be
cancelled by the first two terms using only the equations of motion (2.4).
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In recent years, our understanding of these questions have improved greatly by realising the
integrable σ-models using two formalisms, called the affine Gaudin models (AGMs) [3–6]
and the 4-dimensional Chern-Simons (4D-CS) theory [7], which are deeply related to one
another [8, 9]. The rest of this section is devoted to reviewing the integrable σ-models
obtained through these unifying frameworks.

As a motivation, let us first come back to the second question asked above, namely how
to describe the parameters that define an integrable σ-model. As we saw earlier, integrability
is related to the existence of a Lax connection L(z). We will initially focus on the dependence
of this connection on the spectral parameter z and the geometric structure underlying it. For
instance, recall that we distinguished the classes of rational and elliptic models, depending
on the nature of L±(z) as a function of z. This information (including the value of the
periods of L±(z) in the elliptic case) is part of the geometric data defining the model and
will formally be encoded in the choice of a Riemann surface C, of genus 0 or 1. Other
natural parameters are the poles Ẑ± of the Lax connection L±(z): by construction, they
appear in the equations of motion of the theory and thus should enter the choice of the
target space in some way. Geometrically, they form two sets Ẑ± of marked points in the
Riemann surface C. As we will see in the rest of this section, these points appear as part
of a richer geometric structure in the AGMs/4d-CS framework, which we will call the twist
1-form ω. Namely, ω will be a meromorphic 1-form on C with zeroes exactly at the points
Ẑ±. The other parameters encoded in ω, for instance its poles, will also play an important
role in the definition of the model and its integrable structure. The goal of subsection 2.3 is
to define precisely and in detail this geometric data, which will then serve as the starting
point for the rest of the construction. Moreover, this will introduce the main notions and
terminologies needed to formulate the results of section 3.

Beyond the geometry of the spectral parameter, the σ-model will also depend on some
algebraic data. Most notably, the Lax-connection takes its values in (the complexification
of) a certain Lie algebra g: the choice of this algebra then has to appear in the construction
of the σ-model in some way. As we will see later in subsection 2.4, this choice, together
with other algebraic structures, will also be part of the defining data of the model and will
play an important role in its description.

2.3 Geometry of the spectral parameter and twist 1-form

The Riemann surface C. The starting point of our construction is the choice of a
compact Riemann surface C of genus g = 0 or g = 1.

• For the rational models, we take this surface to be the Riemann sphere:

Rational (g = 0): C = CP1 . (2.7)

• For the elliptic models, we take this surface to be a complex torus with half-periods
ℓ = (ℓ1, ℓ2):

Elliptic (g = 1): C = C/Γ with Γ = 2Z ℓ1 ⊕ 2Z ℓ2 (2.8)

the 2-dimensional period lattice.
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In what follows, we will describe C using a local complex coordinate z. In the rational
case, the Riemann sphere C = CP1 corresponds to the complex z-plane to which we add
the point z = ∞. In the elliptic case, the torus C = C/Γ corresponds to the complex
z-plane quotiented by the identification z ∼ z + 2n1ℓ1 + 2n2ℓ2, n1, n2 ∈ Z. As the notation
suggests, we will later identify this complex variable z with the spectral parameter of the
underlying integrable σ-model.

The twist 1-form ω. The next ingredient needed for the construction is a meromorphic
1-form ω on the Riemann surface C, which we will call the twist 1-form. We will write it
in terms of the local coordinate z as

ω = φ(z) dz . (2.9)

The object φ(z) appearing in this expression is then often referred to as the twist function:4

• For C = CP1, it is a rational function of z.

• For C = C/Γ, it is an elliptic function of z, i.e. it satisfies the double-periodicity
condition

φ(z + 2ℓi) = φ(z) . (2.10)

We will denote by

P̂ = {p̂1, . . . , p̂n} (2.11)

the set of poles of ω on C and by m = (m1, . . . , mn) ∈ Zn
≥1 their multiplicities. Moreover,

we will suppose that ω only has simple zeroes and that there are an even number 2M of
them. We will separate these zeroes into two subsets

Ẑ± = {ẑ ±
1 , . . . , ẑ ±

M} (2.12)

of equal size M . Note that the Riemann-Hurwitz formula implies

2M =
n∑

r=1
mr + 2(g − 1) . (2.13)

In agreement with our previous notations, the points Ẑ± will later be identified with the
poles of the Lax connection of the underlying σ-model. As a warning, let us note that from
now on, we will mostly refer to these points as zeroes of ω, rather than poles of the Lax
connection since ω will be the more fundamental object throughout the article. In particular,
they should not be confused with the points P̂, which are the poles of ω (but are neither
poles nor zeros of the Lax connection).

4This is the standard terminology used in the literature, which takes its origins in the Hamiltonian
formulation of these integrable models (cf. the brief review in subsection 2.4). We stress however that
geometrically, ω = φ(z) dz behaves as a 1-form on C under a change of the coordinate z (see later in this
subsection). This is the reason why we introduced the terminology “twist 1-form” for ω, to recall the geometric
nature of this object.
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Reality conditions. To ensure that the integrable σ-model associated with the data (C, ω)
is real, we will have to impose certain reality conditions on these objects. For instance, in the
elliptic case, we will ask that the half-periods of the torus C/Γ satisfy

ℓ1 ∈ R>0 and ℓ2 ∈ iR>0 . (2.14)

Moreover, we will suppose in both cases that the zeroes ẑ ±
r of ω are all real and that

the poles p̂r are either real or come in pairs of complex conjugate points. Together with
an appropriate reality condition on its overall factor, these requirements translate to the
following property of φ(z):

φ(z) = φ(z) . (2.15)

Change of coordinate and moduli space of abelian differentials. In the previous
paragraphs, we described (C, ω) using a complex coordinate z and writing ω as φ(z) dz. Let
us now consider a change of this coordinate z 7→ z̃ = h(z), where h is a biholomorphism
(i.e. a holomorphic invertible map whose inverse is also holomorphic). Since ω is a 1-form,
it can be expressed in terms of the new coordinate z̃ as

ω = φ̃(z̃) dz̃ = φ
(
h−1(z̃)

)
∂z̃
(
h−1(z̃)

)
dz̃ . (2.16)

The integrable model that we will introduce in the next subsections can be constructed using
either of the coordinates z or z̃ and will in the end be independent of this choice: the change
z 7→ z̃ will simply correspond to a redefinition of the spectral parameter of this theory, but
will not affect its target space or its integrable structure. These will instead depend only on
the intrinsic geometric structure of (C, ω): in the mathematical terminology, this corresponds
to a point in the so-called moduli space of abelian differentials.5 To describe this space in
more explicit terms, we will need to distinguish between the rational and the elliptic case.

We start with the rational case, for which C = CP1 is formed by the complex z-plane, to
which we add a point at infinity. The allowed changes of coordinate are then the Möbius
transformations

z 7−→ z̃ = h(z) = az + b

cz + d
, (2.17)

where (a, b, c, d) are real6 parameters (with ad − bc ̸= 0 and considered up to rescalings
λ(a, b, c, d)), forming the group PSLR(2). For a given choice of pole multiplicities m =
(m1, . . . , mn), one way of parameterising the moduli (C, ω) is then through the choice of a
global proportionality factor and the positions of the poles and zeroes of ω with respect to
the coordinate z, quotiented by the action of Möbius transformations. The latter can for
instance be fixed by setting any three of the poles/zeroes to specific values. This leaves
a total of 2M + n − 2 free parameters.

We now turn to the elliptic case, for which z was seen as a coordinate on the complex plane
modulo the equivalence relation z ∼ z + 2ℓi. In this formulation, the allowed transformations
of coordinates are the dilations and translations

z 7−→ z̃ = h(z) = az + b , (2.18)
5Since ω is allowed to have poles and non-zero residues, it is more precisely an abelian differential of the

3rd kind.
6Here, we impose that a, b, c, d are real in order to preserve the reality conditions discussed earlier.
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with parameters a ∈ R>0 and b ∈ R. This new coordinate z̃ is then considered up to the
equivalence relation z̃ ∼ z̃ + 2ℓ̃i, where (ℓ̃1, ℓ̃2) = a(ℓ1, ℓ2). The transformations with a ̸= 1
thus change the values of the half-periods ℓi. However, the combination

τ = ℓ2
ℓ1

(2.19)

is left invariant and thus corresponds to an intrinsic parameter characterising the complex
structure of C, called the modulus of the torus.

In this elliptic case and for a given choice of pole multiplicities m = (m1, . . . , mn), one
can then describe the moduli (C, ω) by the choice of the half-periods (ℓ1, ℓ2), a global factor
and the positions of the poles and zeroes,7 quotiented by the dilations and translations.
This leaves 2M + n free parameters. One standard way to fix the dilation freedom, often
considered in the literature on elliptic functions, is to set the periods of the torus to be 1
and τ : one is then free to use the translation freedom to set one of the zeroes/poles to a
specific value. Another possibility is to fix two zeroes/poles: in that case, the half-periods
(ℓ1, ℓ2) are then left as free parameters.

Moduli space of split abelian differentials. Let us note that the geometric data
considered earlier does not exactly correspond to points (C, ω) in the moduli space of abelian
differentials. First of all, we restricted ourselves to the case where ω has an even number
of zeroes which are all simple. Secondly, we introduced an additional structure, namely the
splitting of these zeroes into two equal-size subsets Ẑ± — see equation (2.12) — which will
later correspond to a distribution of these points as poles of the two light-cone components
L±(z) of the Lax connection. Motivated by this observation, we introduce a slightly different
but more adapted space of parameters Dg,m, which we will call the moduli space of split
abelian differentials and which depends on g ∈ {0, 1} and integers m = (m1, . . . , mn) ∈ Zn

≥1
such that ∑r mr is even. Explicitly, a point in Dg,m is defined as the data (C, ω, Ẑ±) of:

• a Riemann surface C of genus g = 0 or g = 1;

• a meromorphic 1-form ω on C, which has n poles with multiplicities m = (m1, . . . , mn)
and an even number 2M =∑n

r=1 mr + 2(g − 1) of simple zeroes;

• the partition of these zeroes into two subsets Ẑ± of size M .

Moreover, we ask that this data respects the reality conditions discussed earlier. The moduli
space Dg,m has (real) dimension ∑n

r=1 mr+n+4(g−1). In practice, it can be parameterised as
in the previous paragraph for the data (C, ω) only, but additionally keeping track of the labels
± attached to the zeroes ẑ ±

r ∈ Ẑ±. This structure will play a crucial role throughout the paper.

2.4 The integrable σ-model and its Lax connection

We will now describe the integrable σ-model built from the geometric data (C, ω, Ẑ±) ∈ Dg,m

introduced in the previous subsection. In particular, we will explain which additional
ingredients are needed for its construction and will discuss its Lax connection and R-matrix.

7Note that these positions are not completely arbitrary: they should be such that the sum of zeroes minus
the sum of poles (with multiplicities) lies in the lattice Γ.
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We note that the content of this subsection is technically not needed to formulate the main
results of the paper in sections 3 and 4: the readers eager to hear about those or already
familiar with the construction can thus skip this part. However, we still include this review
as we feel it can provide some useful context and intuition for the rest of the paper.

Defining data. Recall from subsection 2.1 that a σ-model is characterised by its target
space T , with metric G and B-field B. The integrable model under consideration corresponds
to a very specific choice of (T , G, B), built from the following ingredients

• the geometric data (C, ω, Ẑ±) ∈ Dg,m described in the previous subsection;

• the choice of a Lie algebra g, which can be any real simple Lie algebra in the rational
case but is restricted to slR(N) in the elliptic one;

• the choice of a maximally isotropic subalgebra k of the so-called defect Lie algebra.

A complete description of this last point would require properly introducing the notion
of defect Lie algebra. For the purposes of this paper, we will not need the details of this
construction nor the general definition of (T , G, B) and will thus stay quite brief for simplicity.
Suffice it to say, this defect Lie algebra is canonically built from the data of the simple Lie
algebra g and the pole structure of ω and the construction of the integrable σ-model further
requires the choice of a subalgebra k, satisfying some properties of isotropy and maximality8.
Given some fixed ω and g, there can in general exist several admissible choices for this
k, which lead to different σ-models: however, these theories turn out be deeply related.9
Importantly, the aspects that we will discuss in this paper turn out to be independent of
this choice and rely only on the data of (C, ω, Ẑ±) and g.

Although we will not review the explicit construction of the target space geometry
(T , G, B) from the data (C, ω, Ẑ±, g, k), we stress here that it is systematic and naturally
follows from the unifying frameworks of 4D-CS theory and affine Gaudin models. In particular,
the expression of the metric and B-field (G, B) on T strongly depends on the data (C, ω, Ẑ±) ∈
Dg,m associated with the geometry of the spectral parameter (for instance the positions of
the poles and zeroes of ω as well as the periods of the torus C in the elliptic case). We
will see an explicit illustration of this in subsection 4.1, with the example of an elliptic
integrable deformation of the Principal Chiral Model. We finally note that the dimension
of the target space T is given by d = M dim g, where we recall that M = |Ẑ±| is half
the number of zeroes of ω.

Lax connection. We now describe the integrable structure of this model, in particular its
Lax connection L±(z), which is also built from the defining data (C, ω, Ẑ±, g, k). To start with,

8To give some intuition, let us consider the example where the poles P̂ = {p̂r}n
r=1 of ω are all real and

simple. The defect algebra is then defined as the direct sum g⊕n, equipped with an invariant bilinear form
(X, Y ) 7→

∑n

r=1 resp̂r ω ⟨Xr, Yr⟩, where ⟨·, ·⟩ is the invariant pairing on g. The additional data that is needed
for the construction is then a subalgebra k ⊂ g⊕n, which is maximally isotropic with respect to this bilinear
form. Further explanations on the nature and role of the defect Lie algebra and its isotropic subalgebra can be
found in the appendix C, where the origin of the integrable σ-model from 4D Chern-Simons theory is reviewed.

9In particular, this non-uniqueness underlies the phenomenon of Poisson-Lie T-dualities [25, 26] between
these integrable σ-models — see [27–29].
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the choice of g simply prescribes the Lie algebra gC in which L±(z) is valued. Furthermore,
the analytic structure of L±(z) strongly depends on the geometric data (C, ω, Ẑ±) ∈ Dg,m.
In agreement with the notations of subsection 2.1, L±(z) has simple poles at the zeroes
Ẑ± = {ẑ ±

1 , . . . , ẑ ±
M} of ω:

L±(z) =
U±,r

z − ẑ ±
r

+ O
(
(z − ẑ ±

r )0) , (2.20)

for some g-valued currents U±,r : Σ → g. In particular, this uses the separation of these zeroes
into the two equal-size subsets Ẑ± (see equation (2.12) and the surrounding discussion), which
is ultimately related to the relativistic invariance of the theory. In the next two paragraphs, we
will describe in more detail the structure of L±(z) as a meromorphic function, distinguishing
the rational and elliptic cases. In both of these, the zeroes ẑ ±

r and the associated currents
U±,r will turn out to encode all the information on the Lax connection.

The poles of ω, the associated defect Lie algebra and the corresponding choice of
maximally isotropic subalgebra k also enter the construction of the Lax connection L±(z)
and in particular its expression in terms of the fields ϕ i of the σ-model. More precisely,
this data prescribes a relation between these fields and the object

(
∂k

zL±(p̂r)
)k=0,...,mr−1

r=1,...,n
,

which is built from evaluations of the Lax connection and its derivatives at the poles of ω

and is naturally interpreted as an element of the defect Lie algebra. Solving this relation,
one finds that the currents U±,r appearing as residues of L±(z) can be expressed as linear
combinations of the derivatives ∂±ϕ i, with coefficients depending in a complicated way on
the parameters of ω and the fields ϕ i, but not their derivatives.

To summarise, the fundamental fields {ϕ i}d
i=1 of the σ-model are naturally attached to the

poles of ω, the Lax connection is conveniently expressed in terms of the currents {U±,r}M
r=1

associated with the zeroes and the two are related by some “interpolation” mechanism
controlled by the choice of k. We note that the number of components contained in these
currents (for a given chirality ±) is equal to the dimension d = M dim g of the target
space: this reflects the fact that the flatness condition (2.5) encodes all of the equations
of motion (2.4) of the σ-model fields {ϕ i}d

i=1.

The rational Lax connection. For this paragraph, we consider the rational case C = CP1.
In that setup, the Lax connection L±(z) can be essentially characterised as the unique rational
function of z ∈ CP1 with the singularities (2.20) and no other poles. Namely, we have

L±(z) =
M∑

r=1

U±,r

z − ẑ ±
r

+ U±,0 , (2.21)

where the constant term U±,0 is related10 to the other currents {U±,r}M
r=1 and thus should

not be interpreted as a new independent ingredient in the construction. For simplicity, we
supposed here that all the zeroes ẑ ±

r of ω are located in the finite complex plane C ⊂ CP1.
If the point z = ∞ was a zero of ω, one would get a polynomial term of degree 1 in the
equation (2.21) instead of a simple fraction. One can always go back to the case of finite
zeroes by a Möbius transformation of z: here and in what follows, we always suppose that
we are in this situation, to simplify the presentation.

10The precise form of this relation depends on the choice of ω and k and will not be needed here.
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The elliptic Lax connection. Let us now turn to the elliptic case C = C/Γ, which is
slightly more subtle. Recall from the beginning of this subsection that in this setup, the Lie
algebra gC can only be chosen as slC(N). To proceed, we will need to pick an appropriate
choice of basis of this algebra, which is called the Belavin basis {Tα}α∈A. To avoid getting
into technicalities, we gather the explicit definition and the main properties of this basis
in the appendix A and only recall some basic facts here. The elements Tα of this basis
are labelled by non-vanishing couples α = (α1, α2) of integers modulo N , i.e. by the set
A ≡ ZN × ZN \ {(0, 0)} (in particular |A| = N2 − 1 = dim slC(N), as expected). In addition
to the Belavin basis, we will need to use a family of meromorphic functions {rα(z)}α∈A
also labelled by A, defined in terms of the Weierstrass σ-function and closely related to the
so-called Kronecker function associated with the torus C = C/Γ. To unclutter the discussion,
we also review the definition and the properties of these various functions in an appendix B
and will call upon some of these results as we progress in the main text. Using these various
ingredients, we can express the elliptic Lax connection as [17]

L±(z) =
M∑

r=1

∑
α∈A

rα(z − ẑ ±
r )Uα

±,r Tα , (2.22)

where we decomposed the currents U±,r = ∑
α Uα

±,r Tα along the Belavin basis. The first
property of the functions {rα(z)} that we shall need is their behaviour rα(z) ∼ 1

z around z = 0.
In particular, this ensures that the above Lax connection has the required singularity (2.20)
at the zeroes ẑ ±

r of ω.
Another useful result about the functions {rα(z)}α∈A is the fact that they are not

periodic under shifts of z by 2ℓi, but rather satisfy the quasi-periodicity condition (B.17).
Combined with the “grading” property (A.5) of the Belavin basis {Tα}α∈A, this translates
to the following quasi-periodicity of the Lax connection:

L±(z + 2ℓi) = AdΞi L±(z) . (2.23)

Here, Ξ1 and Ξ2 are specific N × N matrices defined in equation (A.1): we refer to the
appendix A for more details about them. The relation (2.23) means that, technically, the Lax
connection L±(z) does not reduce to an elliptic function on the torus C = C/Γ. However, an
important property of the matrices Ξi is their cyclicity of order N , i.e. the fact that they
satisfy ΞN

1 = ΞN
2 = I. In particular, this means that although L±(z) is only quasi-periodic

under shifts of z by 2ℓi, it is properly periodic under shifts by 2Nℓi:

L±(z + 2Nℓi) = L±(z) . (2.24)

One can thus think of L±(z) as an elliptic function on another torus C/Λ, defined using
the sublattice

Λ = 2Nℓ1 Z⊕ 2Nℓ2 Z ⊂ Γ . (2.25)

Let us note that the translations z 7→ z + 2n1ℓ1 + 2n2ℓ2 define an action of the cyclic
group ZN ×ZN on the torus C/Λ and that the initial curve C = C/Γ can be then thought of
as the quotient of C/Λ with respect to this action. The quasi-periodicity condition (2.23)
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then states that the Lax connection L±(z), seen as a meromorphic function on C/Λ, is
equivariant with respect to the translational action of ZN ×ZN on C/Λ and its action by the
adjoint automorphisms AdΞi on the Lie algebra slC(N) in which L± is valued. In fact, one
can argue that the right-hand side of (2.22) is the unique function with this equivariance
property and the singularities (2.20) (see [17] for further details).

Maillet bracket and R-matrix. As explained in subsection 2.1, in addition to the
existence of a flat Lax connection, integrability requires the Poisson-commutation of the
associated charges, which is ensured if the Lax matrix satisfies a Maillet bracket [23, 24]. In
particular, the latter depends on a R-matrix R(z1, z2) ∈ gC ⊗ gC, which then characterises
the Hamiltonian structure of the theory. For the integrable σ-model under consideration,
associated with the data (C, ω, Ẑ±, g, k), it was proven in the rational case [5, 8] and conjectured
in the elliptic one [17] that the Lax matrix satisfies such a Maillet bracket. The corresponding
R-matrix takes a factorised form

R(z1, z2) = R0(z2 − z1)φ(z2)−1 , (2.26)

where R0(z2 − z1) is a skew-symmetric seed R-matrix [30] depending only on the difference
of the spectral parameters and φ(z) is the meromorphic function appearing in the 1-form
ω = φ(z) dz. In this context, φ(z) is often referred to as the twist function [31–33]. One
then sees that the 1-form ω also plays a crucial role in the Hamiltonian integrable structure
of the model.

The seed R-matrix R0(z) is a solution of the classical Yang-Baxter equation, which
ensures that R also satisfies this identity. Moreover, it depends only on the choice of C and
g. In the rational case C = CP1, it is given by the Yangian R-matrix

R0
Yang(z) =

1
z

∑
α

T α ⊗ Tα . (2.27)

Here {Tα} is a basis of the Lie algebra gC and {T α} is its dual basis with respect to the
invariant bilinear form ⟨·, ·⟩ = −Tr(·) on gC, where the trace is taken in the fundamental
representation.

In the elliptic case C = C/Γ, recall that the Lie algebra gC can only be chosen to be
slC(N). We introduced its Belavin basis {Tα}α∈A as well as the family of meromorphic
functions {rα(z)}α∈A above equation (2.22) (see appendices A and B.2 for details). These
are exactly the ingredients needed to define the (conjectured) seed R-matrix of the elliptic
case, which is called the Belavin R-matrix [34]:

R0
Bel(z) =

∑
α∈A

rα(z)T α ⊗ Tα . (2.28)

This matrix is doubly periodic with period 2Nℓi and can thus be seen as an elliptic function
on the torus C/Λ.

Origin from affine Gaudin models and 4D Chern-Simons. We finally note that the
Maillet bracket with twist function discussed in the previous paragraph is the key ingredient
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in the formulation of integrable σ-models as affine Gaudin models [3–5].11 This formalism
offers a unifying approach to the study of these theories based on algebraic structures (such
as affine Lie algebras) and is deeply rooted in the Hamiltonian formulation. We will not
discuss it further in the present paper and refer for instance to the recent lecture notes [11]
for more details.

The affine Gaudin formalism is the Hamiltonian counterpart of another unifying approach,
namely the 4D Chern-Simons theory [7], which is chiefly based on more geometric aspects
and is rooted in the Lagrangian formulation. In appendix C, we give a brief summary
of how the integrable σ-model associated with the data (C, ω, Ẑ±, g, k) can be constructed
from this approach. This non-exhaustive review is not a prerequisite for understanding the
rest of the paper and is mostly included to provide some intuition behind the integrable
model under consideration.

3 1-loop RG-flow of the geometric data

In section 2, we reviewed the construction of a large class of classical integrable σ-models,
whose target spaces (T , G, B) are built from some geometric data (C, ω, Ẑ±) (formally a
point in the moduli space of split abelian differentials Dg,m) and some additional algebraic
ingredients (g, k). We now turn to the discussion of some quantum aspects of these theories,
namely their 1-loop renormalisation. We will denote by µ the energy scale and introduce
the Renormalisation-Group (RG) parameter t = 1

4π logµ. For general σ-models, it is well-
known that the 1-loop RG-flow takes the form of a generalised Ricci flow of the metric
and B-field (G, B) [18–21]:

d
dt(Gij + Bij) = ℏR+

ij + · · · , (3.1)

where R+ is the torsionful Ricci tensor associated with the geometry (G, B)12 and the dots
contain higher-order ℏ-corrections as well as diffeomorphism terms and shifts of the B-field by
exact forms (which can contribute to the 1-loop order but will not play an important role in
this article). It is conjectured that the flow (3.1) preserves the specific subspace of metrics and
B-fields corresponding to the aforementioned integrable σ-models and thus that these theories
are 1-loop renormalisable. The RG-flow is then simply reabsorbed as a running of the coupling
constants of the integrable σ-model, i.e. the continuous parameters entering its defining data
(C, ω, Ẑ±, g, k). Of particular interest for this section are two conjectures, put forward in [1, 2],
which predict the form of the RG-flow of the geometric data (C, ω, Ẑ±) ∈ Dg,m. Remarkably,
this flow depends in a very minimal way on the choice of the simple Lie algebra g (more
precisely through an overall proportionality factor) and is independent of the last ingredient
k: we will thus focus here on (C, ω, Ẑ±) exclusively.

11In the elliptic case, the formalism of affine Gaudin models associated with the Belavin R-matrix is not yet
fully worked out and will be the subject of a future work [35].

12More precisely, R+
ij = R+ k

ijk, where R+ k
ijl is the Riemann tensor measuring the curvature of the

connection Γk
ij − 1

2 Hk
ij , Γ are the Christoffel symbols of the metric G and H = dB is the torsion arising

from the B-field.
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We will start by describing a conjecture proposed by Costello, which was reported
and supported in the work [2] of Derryberry. This proposal, which we will call the period-
conjecture, applies directly to both the rational case C = CP1 and the elliptic one C = C/Γ.
In contrast, the second conjecture that we will discuss, which was put forward in [1] was
initially phrased for rational models only. We will refer to this as the ∂Ψ-conjecture and
propose a natural extension to the elliptic case; moreover, we will establish its equivalence
with the period-conjecture.

3.1 The period-conjecture

Periods of (C, ω). Let us consider the data (C, ω) of the Riemann surface C and the
meromorphic 1-form ω. We will be interested in the associated periods, which are defined
as integrals ∫

γ
ω (3.2)

of ω over well-chosen paths γ in C. We will consider two different types of such integrals:

• the absolute periods, defined as integrals of ω over closed contours in C;

• the relative periods, defined as integrals of ω between two of its zeroes.

These are specific functions of the parameters entering the definitions of C and ω, whose
data is essentially equivalent to the moduli (C, ω). We will flesh this relation out in more
detail in a few paragraphs, but let us first give the statement of the period-conjecture.

The conjecture. To formulate it, let us recall that the geometric data entering the definition
of the integrable σ-model is not only the choice of (C, ω) but also the splitting of its zeroes into
two equal-size subsets Ẑ± = {ẑ ±

r }M
r=1, forming what we called a split abelian differential in

the space Dg,m. Recall moreover that the model depends on the choice of a simple Lie algebra
g: for the purposes of this section, g will only enter the discussion through its dual Coxeter
number cg

13. In these notations, Costello’s period-conjecture [2] then states that, at 1-loop,14

d
dt

[ ∮
ω

]
= 0 ,

d
dt

[ ∫ ẑ±s

ẑ±r

ω

]
= 0 ,

d
dt

[ ∫ ẑ−s

ẑ+
r

ω

]
= 2ℏ cg . (3.4)

In other words, the absolute periods are RG-invariants, whereas the relative periods are
invariants if they are between two zeroes in the same set Ẑ± and flow linearly otherwise.

13To define this number, let us consider the invariant bilinear pairing ⟨·, ·⟩ = −Tr(·) on g, where the trace
is taken in the fundamental representation and the minus sign is introduced so that this form is positive
definite if g is compact. As g is simple, this pairing is proportional to the Killing form, defined by the bilinear
trace in the adjoint representation. The dual Coxeter number cg is then defined through the corresponding
proportionality factor:

Tr(adX ◦ adY ) = −2cg⟨X, Y ⟩ , ∀X, Y ∈ g . (3.3)

14Technically, this conjecture was proposed in [2] for models corresponding to a 1-form ω with only double
poles and no equivariance properties akin to (2.23). However, its formulation is manifestly insensitive to
having higher-order poles in ω and we expect that it also applies to equivariant theories, including the elliptic
models considered in this paper, without major modifications.
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The period parametrisation. The conjecture (3.4) shows that the periods of ω are
quite natural quantities to describe the 1-loop RG-flow of the theory. In fact, they define a
reparametrisation of the moduli (C, ω) in which this flow is completely trivialised. To explain
this, let us first describe these periods in more detail.

We start with the absolute ones, which are obtained from closed paths in C. Typical
examples of such paths are small circles γr encircling the poles p̂r of ω: the corresponding
absolute periods then coincide with the residues resp̂r ω. We note that these residues sum to
zero and thus encode n − 1 independent quantities. Other examples of closed contours in C

are its A- and B-cycles, which are generators of its first homotopy group: for the Riemann
sphere C = CP1 there are no such cycles, while there are two of them α and β for the torus
C = C/Γ, thus yielding 2 additional absolute periods. All the other closed paths in C are
either contractible to a point without crossing any of the poles of ω or can be deformed
into a concatenation of contours γr, α and β, in which case the corresponding integrals are
linear combinations of the absolute periods described above (with integer coefficients). We
thus obtain a total of n − 1 + 2g independent absolute periods (where n is the number of
poles of ω and g the genus of C), given by

resp̂r ω =
∮

γr

ω for r∈{1, . . . ,n−1} , ΠA =
∮

α
ω and ΠB =

∮
β

ω , (3.5)

where the last two exist only in the elliptic case g = 1. According to the period-conjeture (3.4),
these quantities are all RG-invariants.

We now turn our attention to the relative periods, defined as the integrals of ω between
two of its zeroes. Fixing two such zeroes, there are of course many different paths which
connect them: the corresponding integrals are the same if the paths can be deformed smoothly
one from another without crossing poles of ω. Up to such deformations, two of these paths can
differ only by a combination of the closed contours γr, α and β described above. Therefore,
although a relative period is not uniquely defined by the choice of the two corresponding zeroes,
these non-equivalent definitions yield the same answer up to integral linear combinations
of the absolute periods resp̂r ω, ΠA and ΠB. In particular, this non-unicity does not pose
a problem for the period-conjecture (3.4), since these absolute periods do not flow. From
now on, we fix a choice of path between each pair of zeroes (ẑ, ẑ ′) and use it to define the
corresponding integral: by a slight abuse of notation, we do not keep track of this choice
and simply use the generic symbol

∫ ẑ′

ẑ ω to designate this integral.
We now note that this construction does not define an independent set of periods. Indeed,

the sum
∫ ẑ′

ẑ ω +
∫ ẑ′′

ẑ′ ω coincides with
∫ ẑ′′

ẑ ω, up to absolute periods. In the end, this leaves
only 2M − 1 independent relative periods, where we recall that 2M is the number of zeroes
of ω. Here, we will consider a particular choice for these “generators”, which relies on the
separation of the zeroes into the two subsets Ẑ± = {ẑ ±

r }M
r=1, namely

Π±
r =

∫ ẑ±M

ẑ±r

ω for r ∈ {1, . . . , M − 1} and Π0 =
∫ ẑ−M

ẑ+
M

ω . (3.6)

We have thus defined a complete set of independent periods, composed of n − 1 + 2g

absolute ones and 2M − 1 relative ones. As it turns out, these define local coordinates on the
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moduli space Dg,m. In other words, they provide enough information to fully characterise
(C, ω, Ẑ±), although this relation is in practice not explicit. As a heuristic argument for this
claim, we note that the total number of independent periods found above is 2M +n+2(g−1):
this agrees with the dimension of Dg,m, determined in subsection 2.3 using the parametrisation
in terms of zeroes and poles modulo changes of coordinate. The main interest of this period
parameterisation is that it completely trivialises the 1-loop RG-flow of the theory. Indeed,
the quantities

(
resp̂r ω

)n−1
r=1 , (ΠA,ΠB) and (Π±

r )M−1
r=1 (3.7)

are all RG-invariants, while the remaining period Π0 has a very simple evolution under the RG:

Π0 = 2ℏ cg(t− t0) =
ℏ cg
2π

log
(

µ

µ0

)
. (3.8)

In particular, this quantity is the only scale-dependent coupling and can thus be used to
quantify the dimensional transmutation phenomenon occurring in the quantum model.

Additional remarks. We end this subsection with a variety of further remarks about
the period-conecture.

To start with, note that even before the choice of the 1-form ω, the very first defining
ingredient of the model is the data of the Riemann surface C. This data is characterised
by certain moduli, whose number and nature depend on the genus g of C. For this paper,
we restricted ourselves to the rational case g = 0, for which there are no such moduli, and
the elliptic case g = 1, for which there is only one modulus τ , as defined in (2.19). This
modulus can be characterised in terms of the absolute periods of the 1-form dz (which, up to
a global factor, is the unique abelian differential of the first kind on the torus, i.e. a 1-form
without any pole). More precisely, we have

τ =
∮

β
dz
/∮

α
dz . (3.9)

We note however that the 1-form dz is quite different from the twist 1-form ω associated with
integrable σ-models. In particular, it is the absolute periods of ω which are invariants of the
RG-flow (3.4), not those of dz. This means that the modulus τ of the torus generally flows non-
trivially under renormalisation. In other words, the complex structure underlying the spectral
parameter of an elliptic integrable σ-model varies with the energy scale at the quantum level.

Furthermore, we stress that the period-conjecture (3.4) does not depend only on the data
(C, ω) but also on the separation of the zeroes of ω into the two subsets Ẑ±. Together, these
data form what we called a split abelian differential (C, ω, Ẑ±) ∈ Dg,m. The equation (3.4)
can thus naturally be seen as a flow on the moduli space Dg,m, which is intrinsically defined in
terms of the data encoded in its points (the only external information required in equation (3.4)
is the overall factor cg, which can be reabsorbed in a rescaling of the flow parameter). This
flow is in fact a special case of a more general framework, which appeared in a different context
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in the mathematics literature, under the name of Rel-flow — see for instance [36–38].15 To
describe this, let us consider abelian differentials (C, ω) with arbitrary structures of poles
and zeroes. We denote by ẑ1, . . . , ẑM ′ the zeroes, which are then not necessarily simple and
not split into two subsets Ẑ± (hence the absence of ±-labels). In place of this splitting, we
associate to each zero ẑr a number fr ∈ C. We then define the Rel-flow on the moduli space
of these differentials (with fixed multiplicities of poles/zeroes) by

d
dt

[ ∮
ω

]
= 0 and d

dt

[ ∫ ẑs

ẑr

ω

]
= fr − fs . (3.10)

The flow of the period-conjecture (3.4) then corresponds to the special case where there are
an even number M ′ = 2M of simple zeroes, half of which being associated with the number
fr = +ℏ cg while the other half has fr = −ℏ cg. We expect the general Rel-flow (3.10) to also
describe the 1-loop RG-flow of some integrable 2d field theories built from 4d-CS / affine
Gaudin models but which however would not be relativistic σ-models (this is consistent with
the observation made in section 2 that the splitting of the zeroes into Ẑ± is related to the
relativistic invariance of the underlying integrable model). We note that the right-hand side
of the second equation in the rel-flow (3.10) is reminiscent of the structure of curious matrices
recently discussed in [16]. This suggests that the relative periods might also play a role in the
E-model formulation of these integrable field theories, which is the framework used in [16]:
it would be interesting to further explore these perspectives.

We end with a slight reformulation of the period-conjecture (3.4). We introduce a
function P(z) through the differential equation

∂z logP(z) = 2π

ℏ cg
φ(z) , (3.11)

where we recall that φ(z) is the twist function, defined through ω = φ(z) dz. This function
P(z) is generally multi-valued on C: more precisely, it possesses a non-trivial monodromy
around the poles p̂r of ω and along the A- and B-cycles of C in the elliptic case. The period-
conjecture is then equivalent to the statement that these monodromies are RG-invariants,
together with

P(ẑ ±
s )

P(ẑ ±
r )

= RG-invariant and P(ẑ −
s )

P(ẑ +
r )

= µ

µ
(rs)
0

, (3.12)

where µ
(rs)
0 are constant numbers. It is worth noticing that the use of this function P(z)

is reminiscent of the results of [22, 39–46], which concerned the quantisation of integrable
σ-models and in particular the construction and the diagonalisation of quantum integrals of
motion in these theories. We will further comment on this point in the conclusion section 5.

15In particular, we refer to the introduction of [38] for the most explicit connection to equation (3.10). Note
that the Rel-flow considered in the references [36–38] is defined on the moduli space of abelian differentials
of the first kind, i.e. for holomorphic 1-forms without poles. However, this construction can be extended
without modifications to the case considered in the present paper, where the 1-form ω has poles, generally
with non-vanishing residues (in the mathematical terminology, this is called an abelian differential of the
third kind).
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3.2 The rational ∂Ψ-conjecture

We now review another conjectural formulation of the 1-loop RG-flow that we call the ∂Ψ-
conjecture. It was proposed in [1, 22] for rational integrable σ-models and was recently proven
for a large class of such theories in [15, 16]. After reviewing its statement, we will discuss
its equivalence with the period-conjecture. We focus here on the rational case C = CP1 and
will treat the elliptic one in the next subsection.

The functions f and Ψ. Let us first introduce the necessary ingredients to state the
conjecture. We work with a coordinate z and the corresponding expression of the 1-form as
ω = φ(z) dz, where φ(z) is the twist function. It will be instructive to consider the inverse
of this function, which takes the form

φ(z)−1 =
M∑

r=1

(
1

φ′(ẑ +
r )

1
z − ẑ +

r
+ 1

φ′(ẑ −
r )

1
z − ẑ −

r

)
+ a0 + a1 z + a2 z2 , (3.13)

where (a0, a1, a2) are real parameters whose expression we will not need. Note that for
simplicity, we supposed here that the zeroes ẑ ±

r of ω are all finite (this is always possible,
up to a redefinition of z). Let us now introduce another function f(z), taking a form very
similar to φ(z)−1:

f(z) = ℏ cg

[
M∑

r=1

(
1

φ′(ẑ +
r )

1
z − ẑ +

r
− 1

φ′(ẑ −
r )

1
z − ẑ −

r

)
+ b0 + b1 z + b2 z2

]
, (3.14)

where we recall that cg is the dual Coxeter number of g and (b0, b1, b2) are real parameters
which for the moment are arbitrary. Up to these parameters and the prefactor ℏ cg, the main
difference with φ(z)−1 is the relative sign between the contributions of the zeroes ẑ +

r and
ẑ −

r . The definition of f(z) is thus deeply related to the separation of the zeroes into the two
subsets Ẑ±. It will also be useful to introduce the related functions

f±(z) = ℏ cg

[
±2

M∑
r=1

1
φ′(ẑ ±

r )
1

z − ẑ ±
r

+ b0 ± a0 + (b1 ± a1) z + (b2 ± a2) z2
]

, (3.15)

defined such that

f(z) = f+(z) + f−(z)
2 and ℏ cg φ(z)−1 = f+(z)− f−(z)

2 . (3.16)

We note that f±(z) has poles at the points Ẑ± but not at the ones Ẑ∓.
The main protagonist of the ∂Ψ-conjecture is a function Ψ, related to f by

Ψ(z) = −φ(z) f(z) . (3.17)

We note that this function is regular at ẑ ±
r despite these points being poles of f(z) since

they are also zeroes of φ(z). The poles of Ψ(z) are thus located at the same points p̂r

as that of the twist function φ(z) itself. In fact, Ψ(z) can be alternatively defined as the
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(almost unique) rational function of z which has the same pole structure16 (i.e. positions
and multiplicities) as φ(z) and such that

Ψ(ẑ ±
r ) = ∓ℏ cg . (3.18)

The conjecture. Using the ingredients introduced in the previous paragraph, the ∂Ψ-
conjecture [1, 22] states that, at 1-loop,17

d
dt ω = ∂Ψ = ∂zΨ(z) dz , (3.19)

where ∂ is the holomorphic Dolbeault operator. This formula thus provides a direct and
explicit expression for the 1-loop RG-flow of the twist 1-form ω, which however in practice
can be quite complicated when expressed in terms of the defining parameters of ω. This is
in contrast with the period-conjecture, which is formulated more implicitly in terms of ω

(depending instead on its integrals) but which essentially trivialises the RG-flow.
The ∂Ψ-conjecture was first proposed in [1] for models corresponding to twist 1-forms ω

with double poles at infinity, which further had to satisfy a specific technical requirement.
If these conditions are met, the conjecture was proven in the recent works [15, 16], using
the interpretation [28] of these theories as so-called E-models [25, 26], for which convenient
formulations of the 1-loop RG-flow are known [47, 48]. For rational models with general ω,
i.e. relaxing the condition mentioned above, the ∂Ψ-conjecture was formulated in [22] and
has not been proven yet, except for very specific cases.18

Geometric interpretation. To understand the structure underlying this conjecture, let
us compare the twist 1-form ωt at a given value t of the RG-parameter and the one ωt+δt

after an infinitesimal shift δt of this parameter. From equation (3.19), we get

ωt+δt = ωt − δt
(
φ′
t(z)ft(z) + φt(z)f ′

t (z)
)
dz + O(δt2) = φt

(
h−1
t;δt(z)

)
∂zh−1

t;δt(z) dz (3.20)

where
ht;δt(z) = z + δt ft(z) + O(δt2) . (3.21)

Comparing with equation (2.16), we thus see that the infinitesimal variation t 7→ t+ δt along
the RG-trajectory formally acts on ω as an infinitesimal change of spectral parameter z 7→ z +
δt f(z). This might seem surprising at first sight, since the underlying σ-model is independent
of the choice of coordinate z (see section 2): indeed, we might then be tempted to conclude from
the above interpretation of the RG-flow that this theory is invariant under renormalisation.
This is of course not the case, as one should expect: the caveat in this reasoning is that the

16More precisely, Ψ(z) has the same pole structure as φ(z) on the complex plane C. Around infinity, if
φ(z) = O(1/zk) for some k ∈ Z, then Ψ(z) = O(1/zk−2). This slight change of behaviour is due to the
different nature of φ(z) and Ψ(z) as geometric objects on CP1 and essentially captures the presence of the
term b0 + b1 z + b2 z2 in f(z).

17In terms of the twist function, this conjecture becomes d
dtφ(z) = ∂zΨ(z) = −∂z(φ(z)f(z)). Up to a change

of convention in the prefactor of f(z), this last equality was the original formulation proposed in [1, 22].
18In the work [29], these general theories were reinterpreted as degenerate/gauged E-models [49, 50], whose

1-loop RG-flow is also known [51]. This could offer a potential approach for a general proof of the rational
∂Ψ-conjecture, in the spirit of [15, 16].

– 22 –



J
H
E
P
0
5
(
2
0
2
4
)
1
0
8

σ-model is invariant only under global biholomorphisms, i.e. transformations of z which are
holomorphic, invertible and whose inverse is also holomorphic. For the rational case, the only
biholomorphisms are the Möbius transformations (see equation (2.17)), which infinitesimally
correspond to variations

δz = ϵ0 + ϵ1 z + ϵ2 z2 . (3.22)

In other words, any infinitesimal variation of z which is not a polynomial of degree at most
2 does not lift to a global biholomorphism. This is the case of the variation δz = δt f(z)
corresponding to the RG-flow, since the function f(z) contains simple fractions at the points
ẑ ±

r . The induced variation of ω thus amounts to a non-trivial transformation of the σ-model
and its parameters, as expected.

We note, however, that the polynomial part b0 + b1 z + b2 z2 in the definition (3.14) of
f(z) creates a term in the variation of z (3.21) which takes the form of an infinitesimal
Möbius transformation (3.22). This part thus encodes the freedom of performing a Möbius
transformation along the RG-flow without affecting the running of the physical coupling
constants. This is why the parameters (b0, b1, b2) are left undetermined in the definition of
f(z): in principle, they can take any value without changing the physics. More precisely, this
is the case if we worked with a redundant parameterisation of ω, where we did not fix the
Möbius freedom. If one has fixed it, for instance by setting three of the poles/zeroes to a
given choice of positions, the parameters (b0, b1, b2) are not free anymore and should take
very specific values which ensure that this choice is preserved along the RG-flow.

RG-flow of the poles and zeroes. As explained in [1], the ∂Ψ-conjecture is well-adapted
to describe the RG-flow of some of the natural parameters of the model, namely the positions
of the poles and zeroes of ω. For instance, a simple analysis of the most singular terms
around a pole z = p̂r on both sides of the formula (3.19) yields

d
dt p̂r = f(p̂r) . (3.23)

This is consistent with the interpretation of the RG-flow as the infinitesimal change of spectral
parameter δz = δt f(z) discussed above. There exists a similar formula for the RG-flow of
the zeroes ẑ ±

r ; however, this is slightly more subtle since the function f(z) has a pole at this
point. Instead, one has to use the function f∓(z) introduced in equation (3.15), which is
closely related to f(z) but is regular at ẑ ±

r . Indeed, a careful analysis of the equation (3.19)
around z = ẑ ±

r shows that

d
dt ẑ ±

r = f∓(ẑ ±
r ) . (3.24)

For completeness, we note that the right-hand side of (3.23), i.e. the flow of the pole p̂r,
can be rewritten as f±(p̂r) independently of the sign, using equation (3.16) and the fact
that p̂r is a zero of φ(z)−1 by construction.

Equivalence with the period-conjecture. We now prove that the ∂Ψ-conjecture (3.19)
is equivalent to the period-conjecture (3.4) in the rational case. This relation was suggested
in [2, Remark 9.2]: here, we spell out its detailed derivation.
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The right-hand side of equation (3.19) is a ∂-exact 1-form and thus has no residues (in
other words, the z-derivative of a rational function cannot create simple fractions of order
one). This means that, assuming the ∂Ψ-conjecture, the residues of ω are RG-invariants:

d
dt resp̂r ω = 0 . (3.25)

This gives back the “absolute” part of the period-conjecture, i.e. the first equation in (3.4),
since in the rational case, the only absolute periods of ω are its residues.

Reciprocally, assuming the RG-invariance of the absolute periods means that d
dt ω is

a meromorphic 1-form on CP1 with no residues: it a standard result that it is then equal
to ∂Ψ̃ for some rational function Ψ̃(z). Moreover, one easily shows that Ψ̃(z) then has
the exact same pole structure as φ(z).19 To summarise, the “absolute” part of the period-
conjecture is equivalent to the existence of a rational function Ψ̃(z), with the same pole
structure as φ(z), such that

d
dt ω = ∂Ψ̃ = ∂zΨ̃(z) dz . (3.26)

Our goal now will be to prove that the “relative” part of the period conjecture, i.e. the
second and third equations in (3.4), is then equivalent to the function Ψ̃(z) being equal to
the one Ψ(z) appearing in the ∂Ψ-conjecture.

To do so, let us consider the integral of ω between two given points z1 and z2. Its
t-derivative has two types of contributions, coming respectively from the variation of the
integrand ω and the variation of the endpoints. More precisely, we have

d
dt

[ ∫ z2

z1
ω

]
=
∫ z2

z1

d
dt ω + dz2

dt
∂

∂z2

[ ∫ z2

z1
ω

]
+ dz1

dt
∂

∂z1

[ ∫ z2

z1
ω

]
. (3.27)

In our setup, the t-derivative of ω is given by equation (3.26). The fundamental theorem
of complex integration then allows us to compute the three terms in the above equation,
simply yielding

d
dt

[ ∫ z2

z1
ω

]
= Ψ̃(z2)− Ψ̃(z1) +

dz2
dt φ(z2)−

dz1
dt φ(z1) . (3.28)

Let us now specialise to z1 and z2 beings zeroes ẑ σ
r and ẑ σ′

s of ω, with r, s ∈ {1, . . . , M}
and σ, σ′ ∈ {+,−}, so that the integral becomes a relative period. The last two terms in
the above equation then vanish by construction, leaving

d
dt

[ ∫ ẑσ′
s

ẑσ
r

ω

]
= Ψ̃

(
ẑ σ′

s

)
− Ψ̃

(
ẑ σ

r

)
. (3.29)

The second and third equations in the period-conjecture (3.4) are then equivalent to

Ψ̃
(
ẑ ±

s

)
− Ψ̃

(
ẑ ±

r

)
= 0 and Ψ̃

(
ẑ −

s

)
− Ψ̃

(
ẑ +

r

)
= 2ℏ cg . (3.30)

19More precisely, Ψ̃(z) and φ(z) have the same pole structure on the finite complex plane. Around infinity,
one shows that Ψ̃(z) = O(1/zk−2) if φ(z) = O(1/zk). This is the same behaviour as Ψ(z), as discussed in
footnote 16.
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A solution to these constraints is given by Ψ̃(ẑ ±
r ) = ∓ℏ cg. This is the same behaviour as

Ψ(z), as one can see from equation (3.18). It was mentioned then that this property, together
with having the same pole structure as φ(z), uniquely characterises the function Ψ(z). In the
end, we get Ψ̃(z) = Ψ(z), as we wanted to show: either conjecture thus follows from the other.

We note for completeness that Ψ̃(ẑ ±
r ) = ∓ℏ cg is not the unique solution to the con-

straints (3.30): in fact, one easily shows that the most general solution takes the form
Ψ̃(ẑ ±

r ) = ∓ℏ cg + α, where α is a constant (independent of r and the ±-label). This simply
corresponds to taking Ψ̃(z) = Ψ(z) + α: it is clear that the ∂Ψ-conjecture stays the same if
one shifts Ψ by a constant so that these more general solutions simply correspond to a redun-
dancy in the formulation of this conjecture and not to a different outcome (equivalently, this
redundancy amounts to a shift of f(z) by −α φ(z)−1). This ends the proof of the equivalence
between the period-conjecture and the ∂Ψ-one for rational models. As mentioned earlier,
the latter was shown to hold for a large class of such theories in [15, 16], thus providing
an indirect proof of the former in those cases.

General Rel-flow. We end this subsection with a small digression about the general
Rel-flow (3.10). The latter was mentioned in the previous subsection as a generalisation
of the period-conjecture flow (3.4), defined for 1-forms ω having zeroes {ẑr}M ′

r=1 which are
not necessarily simple and not split into the two subsets Ẑ±. This Rel-flow depends on a
collection of numbers (fr)M ′

r=1 attached to the zeroes and reduces to the period-conjecture
flow (3.4) when half of these numbers are equal to +ℏ cg and the other half to −ℏ cg. Going
through the reasoning of the previous paragraph, one easily sees that (in the rational case)
this generalised flow also admits a “∂Ψ-form”, i.e. can be written as d

dtω = ∂Ψ for some Ψ.
More precisely, the function Ψ(z) is characterised by having the same pole structure as φ(z)
and the evaluations Ψ(ẑr) = −fr at its zeroes. When the latter are simple, we can write
Ψ(z) = −φ(z)f(z) where f(z) has a form akin to (3.14): more precisely, f(z) has poles at
z = ẑr, with residues fr/φ′(ẑr). This is similar to the setup considered in [16].

3.3 The elliptic ∂Ψ-conjecture

The ∂Ψ-conjecture put forward in [1] and reviewed in the previous subsection initially
concerned the RG-flow of rational integrable σ-models. We now formulate an elliptic version
of this proposal and show that it is also equivalent to the period-conjecture.

Elliptic generalisation of the function f . A key role in the rational ∂Ψ-conjecture was
played by the function f(z). As a first step towards an elliptic generalisation, we describe
its equivalent in the case C = C/Γ. Recall the form (3.14) of the rational f(z), containing a
simple fraction 1/(z− ẑ ±

r ) for each zero ẑ ±
r of ω. A natural guess for the elliptic generalisation

would be to replace this fraction with an elliptic function having a simple pole at ẑ ±
r and

no other singularities. However, such a function does not exist (as the sum of its residues
would not vanish). The next natural option is the Weierstrass ζ-function ζ(z − ẑ ±

r ): we
refer to the appendix B for a review of its definition and properties. In particular, it has the
required behaviour ∼ 1/(z − ẑ ±

r ) around the point ẑ ±
r but is only quasi-periodic, as seen
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from equation (B.9). We then define the generalisation of f(z) to the elliptic case as

f(z) = ℏ cg

[
M∑

r=1

(
ζ(z − ẑ +

r )
φ′(ẑ +

r )
− ζ(z − ẑ −

r )
φ′(ẑ −

r )

)
+ b0 + b1 z

]
, (3.31)

where (b0, b1) are coefficients which for the moment are arbitrary. These are the equivalent of
the parameters (b0, b1, b2) in the rational formula (3.14): their interpretation and the absence
of b2 in the elliptic case will be explained later in this subsection. As another motivation
for the elliptic version (3.31) of f(z), recall that the rational one was defined by drawing
a parallel with the inverse of the twist function — see equation (3.13) and the discussion
below. In the elliptic case, we have

φ(z)−1 =
M∑

r=1

(
ζ(z − ẑ +

r )
φ′(ẑ +

r )
+ ζ(z − ẑ −

r )
φ′(ẑ −

r )

)
+ a0 , (3.32)

for some coefficient a0, so that a similar parallel still holds.
We finally note that f is not elliptic: instead, the quasi-periodicity (B.9) of the Weierstrass

ζ-function (written in terms of the constants Li) translates to the following property of f(z):

f(z + 2ℓi) = f(z)− 2βℓi
, with βℓi

= ℏ cg

[
Li

M∑
r=1

(
1

φ′(ẑ −
r )

− 1
φ′(ẑ +

r )

)
+ b1ℓi

]
.

(3.33)
βℓi

is a constant and the notation will be justified later in this subsection, when we will
identify this quantity as the β-function of the half-period ℓi. We note that the 2-vectors
ℓ = (ℓ1, ℓ2) and βℓ = (βℓ1 , βℓ2) satisfy

βℓ × ℓ = βℓ2ℓ1 − βℓ1ℓ2 = iπℏ cg
2

M∑
r=1

(
1

φ′(ẑ −
r )

− 1
φ′(ẑ +

r )

)
. (3.34)

Here, we used the “scalar-valued cross-product” × defined in equation (B.13) and the Legendre
relation (B.14) — see appendix B for further details.

Elliptic generalisation of the function Ψ. We now turn our attention to the function
Ψ(z). We keep the same definition Ψ(z) = −φ(z)f(z) as in the rational case (3.17). Similarly
to that case, one easily checks that this function has the same pole structure (on C) as
φ(z) and the evaluations Ψ(ẑ ±

r ) = ∓ℏ cg at its zeroes. In addition, it now satisfies the
quasi-periodicity property

Ψ(z + 2ℓi) = Ψ(z)− 2βℓi
φ(z) , (3.35)

which follows from the one (3.33) of f(z) and the elliptic nature (2.10) of φ(z).
The three properties above (pole structure, evaluations at ẑ ±

r and quasi-periodicity)
uniquely characterise Ψ(z). To prove this statement, let us consider any function Ψ(z)
satisfying these conditions and define f̃(z) = −Ψ(z)/φ(z): we then want to prove that
f̃(z) = f(z), with f as defined in the previous paragraph. Since Ψ(z) and φ(z) have the
same pole structure, the only poles of f̃(z) in C are the zeroes of φ(z), i.e. the points ẑ ±

r

and their translates by lattice vectors in Γ. Moreover, one easily checks from the condition
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Ψ(ẑ ±
r ) = ∓ℏ cg that the residue of f̃(z) at these points is ±ℏ cg/φ′(ẑ ±

r ), exactly as f(z).20

Therefore, the function f(z)− f̃(z) has no poles in the complex plane. Let us now observe that
the quasi-periodicity property (3.35) of Ψ(z) means that f̃(z) has the same behaviour (3.33)
as f(z). The difference f(z)− f̃(z) is therefore properly periodic. In conclusion, f(z)− f̃(z)
is an elliptic function with no poles: it is a well-known result that such a function is simply
a constant. We then obtain f̃(z) = f(z), as required, by reabsorbing this constant in the
arbitrary parameter b0 in (3.31).

To be more precise, the result stated in this paragraph is then that the aforementioned
properties of Ψ(z) uniquely characterise its expression as −φ(z)f(z) for some choice of constant
coefficient b0 in f(z). Note that the linear coefficient b1 is already fixed here by the quasi-
periodicity condition (3.35), as it enters the expression (3.33) of βℓi

. Alternatively, one can
think of a situation where we require the quasi-periodicity (3.35) to hold for some unspecified
numbers βℓi

: the statement is then that Ψ(z) = −φ(z)f(z) for some constant coefficient b0
in f(z) and a linear coefficient b1 defined from βℓi

through the second equation in (3.33).21

The conjecture and its geometric interpretation. The elliptic ∂Ψ-conjecture takes the
exact same form (3.19) as in the rational case, which we recall here for the reader’s convenience:

d
dt ω = ∂Ψ = ∂zΨ(z) dz . (3.36)

The only difference in the elliptic setup is the definition of the function Ψ(z), which is explained
in detail in the previous paragraph. Partly to justify this generalisation of the rational ∂Ψ
conjecture, we will check it for a specific example of elliptic integrable σ-model in section 4.

As in the rational case, the transformation of ω under an infinitesimal variation of
the RG-scale t 7→ t + δt takes the same symbolic form as a change of spectral parameter
z 7→ z + δt f(z). However, this does not correspond to a biholomorphic transformation
of z and thus has a non-trivial effect on the physical parameters contained in ω, as one
should expect: we refer to the corresponding discussion in the rational subsection 3.2 for
a detailed explanation. The only transformations of z that leave the model completely
invariant are the global biholomorphic ones, which in the elliptic case are the dilations and
translations, whose infinitesimal form is δz = ϵ0 + ϵ1 z. Thus the coefficients (b0, b1) in the
definition (3.31) of f(z) encode the freedom of performing such dilations and translations
along the RG-flow without affecting the physical parameters. We note that contrarily to the
rational case, there are no special conformal transformations of z among the biholomorphisms
here, corresponding to the absence of a term b2 z2 in f(z). If the dilation and translation

20Note that this also holds at the translated points ẑ±
r + Γ due to the quasi-periodicity property (3.33) of

Ψ(z), which implies Ψ(ẑ±
r + 2n1ℓ1 + 2n2ℓ2) = Ψ(ẑ±

r ) = ∓ℏ cg, using the fact that ẑ±
r is a zero of φ(z).

21Note that for this to work, the relation (3.33) should hold for both βℓ1 and βℓ2 , with the same b1: this
is equivalent to requiring that the numbers βℓ1 and βℓ2 satisfy the identity (3.34). This is however not an
additional independent constraint that needs to be included in our hypotheses on Ψ(z): indeed, it follows from
its meromorphicity and its quasi-periodicity (3.35). To see that, let us consider the integral of Ψ(z) along the
contour encircling the fundamental cell of C/Γ, which is a parallelogram with sides 2ℓ1 and 2ℓ2. This integral
can be easily evaluated using the quasi-periodicity (3.35): indeed, taking into account the orientation, most of
the terms coming from parallel sides cancel, leaving only 4(βℓ1 ℓ2 − βℓ2 ℓ1) in the end. Up to the factor 4, this
is the left-hand side of the desired identity (3.34). We then obtain the equality with the right-hand side by
writing the integral as the sum of the residues of 2iπ Ψ(z) inside the fundamental cell.
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freedom have been fixed, the coefficients (b0, b1) have to take specific values so that this fixing
is preserved along the RG-flow. Otherwise, they can be arbitrary, reflecting the presence
of a redundancy in the parameterisation.

RG-flow of the poles, zeroes and half-periods. Let us now analyse the consequences
of the ∂Ψ-conjecture (3.36). It is well-adapted to describe the RG-flow of certain natural
parameters of the model. For instance, the flow of the poles {p̂r}n

r=1 and zeroes {ẑ ±
r }M

r=1
of ω can be derived from this conjecture, as done for the rational models in subsection 3.2.
In the end, we find that the same formulae (3.23) and (3.24) still apply in the present case,
but with f(z) now taking the elliptic form (3.31) (and where the related functions f±(z)
are defined through (3.16)).

In addition to these poles and zeroes, natural quantities used to parameterise the elliptic
moduli (C, ω) are the half-periods ℓ = (ℓ1, ℓ2) of the torus. Their RG-flow can also be
extracted from the ∂Ψ-conjecture (3.36). To do so, we consider the identity φ(z +2ℓi) = φ(z)
and impose that it is preserved along the flow d

dtφ(z) = ∂zΨ(z). A few straightforward
manipulations show that this is equivalent to

∂zΨ(z + 2ℓi) + 2dℓi

dt ∂zφ(z) = ∂zΨ(z) . (3.37)

Comparing to the quasi-periodicity property (3.35) of Ψ(z), we thus get

dℓi

dt = βℓi
, (3.38)

where βℓi
is the quantity defined in equation (3.33). As anticipated then, βℓi

is therefore
identified with the β-function of the half-period ℓi.

Note that the expression (3.33) of βℓi
contains the parameter b1. This is to be expected:

indeed, as explained in the previous paragraph, this coefficient encodes the freedom of perform-
ing dilations of the spectral parameter along the RG-flow. As mentioned in subsection 2.3, the
half-periods ℓi homogeneously scale under such transformations: it is thus normal that their
flow depends on b1. Recall however that the ratio (2.19) of these half-periods forms the elliptic
modulus τ , which is invariant under dilations and is an intrinsic geometric characteristic of
the torus. The RG-flow of this quantity is easily derived from that of ℓi, yielding

dτ

dt = βℓ2ℓ1 − βℓ1ℓ2
ℓ2

1
. (3.39)

We recognise in the numerator the specific combination considered in the identity (3.34). We
then obtain the β-function of the elliptic modulus as

dτ

dt = βτ = iπℏ cg
2ℓ2

1

M∑
r=1

(
1

φ′(ẑ −
r )

− 1
φ′(ẑ +

r )

)
. (3.40)

As one should expect, the b1-dependence completely dropped out from this expression, in
agreement with the fact that τ is invariant under dilations.
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Equivalence with the period-conjecture. We now show the equivalence of the elliptic
∂Ψ-conjecture (3.36) with the period-conjecture (3.4). The latter is divided into two parts,
describing respectively the flow of the absolute periods of ω and the flow of the relative ones.
In the elliptic case, there are two types of absolute periods: the residues resp̂r ω and the A-
and B-cycles integrals (see subsection 3.1). The latter are the new protagonists appearing
in the elliptic setup, compared to the rational one. The analysis of the flow of the residues
and the relative periods can be performed exactly as in the rational case: we will not detail
this again here and will simply use the results obtained in the rational subsection 3.2. In
particular, the main statement is as follows. The part of the period-conjecture which concerns
residues and relative periods is equivalent to the flow of ω taking the form d

dtω = ∂Ψ̃, for
some meromorphic function Ψ̃(z) on C, having the same pole structure as φ(z) and satisfying
Ψ̃(ẑ ±

r ) = ∓ℏ cg at the zeroes of ω.
We now work in this setup and want to prove that the rest of the period-conjecture is

then equivalent to having Ψ̃(z) = Ψ(z), where Ψ(z) is the specific function appearing in the
elliptic ∂Ψ-conjecture. By “the rest of the period-conjecture”, we mean the part that does
not concern the flow of residues or relative periods: this is the novelty of the elliptic case,
namely the RG-invariance of the A- and B-periods ΠA and ΠB . These quantities are defined
in equation (3.5) as integrals of ω over the fundamental cycles α and β of the torus C = C/Γ.
In terms of the coordinate z on C, these cycles can be realised as segments [z0, z0 + 2ℓ1] and
[z0, z0 + 2ℓ2], where z0 is any reference point. We then represent the A- and B-periods as

ΠA =
∫ z0+2ℓ1

z0
ω and ΠB =

∫ z0+2ℓ2

z0
ω . (3.41)

We can compute the flow of these quantities induced by d
dtω = ∂Ψ̃, using the general

result (3.28) derived in the previous subsection. We then get:

d
dtΠA/B = Ψ̃(z0 + 2ℓi)− Ψ̃(z0) +

d(z0 + 2ℓi)
dt φ(z0 + 2ℓi)−

dz0
dt φ(z0) , (3.42)

where the indices A and B correspond respectively to i = 1 and i = 2. The twist function
is elliptic so that φ(z0 + 2ℓi) = φ(z0). We thus get various simplifications in the above
equation. In the end, we find that the integrals ΠA/B are RG-invariant if and only if Ψ̃(z)
satisfies the quasi-periodicity condition

Ψ̃(z + 2ℓi) = Ψ̃(z)− 2dℓi

dt φ(z) . (3.43)

This is the same property (3.35) as the function Ψ(z). As explained in detail earlier in
this subsection, this condition, together with having the same pole structure as φ(z) and
evaluations ∓ℏ cg at ẑ ±

r , uniquely characterises Ψ(z). We thus find that ΠA/B are RG-
invariant if and only if Ψ̃(z) = Ψ(z). Altogether, this proves that the period-conjecture is
equivalent to the ∂Ψ-conjecture in the elliptic case as well. We note that for the last step of
this proof to work, we need to identify the parameter βℓi

appearing in the quasi-periodicity
property (3.35) of Ψ(z) with the flow dℓi

dt of the half-period ℓi: this gives an alternative
confirmation of the formula (3.38) derived earlier.
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4 1-loop renormalisation of the elliptic integrable deformed PCM

In the previous section, we have discussed various results and conjectures on the 1-loop
renormalisation of a large class of integrable σ-models. As mentioned there, the conjectures
have been checked for various rational integrable theories. In contrast, the elliptic case is
much less explored. The simplest example in the elliptic family is a specific deformation of the
Principal Chiral Model (PCM) on SLR(N), introduced in [17]. In this section, we compute
explicitly its 1-loop RG-flow and use this result to check the validity of these conjectures for
this new class of models. We start by reviewing the definition of this model.

4.1 The elliptic integrable deformed PCM

Twist 1-form. As explained in section 2, the integrable σ-models considered in this article
depend on the choice of a twist 1-form ω, which is a meromorphic 1-form on a Riemann
surface C. Since this section concerns an elliptic model, we will take this surface to be the
torus C = C/Γ, with half-periods ℓ = (ℓ1, ℓ2) ∈ R × iR. Moreover, we consider a specific
twist 1-form, defined as [17]

ω = φ(z) dz = ρ
{
℘(z)− ℘(ẑ)

}
dz , (4.1)

where ρ and ẑ are real non-zero parameters and ℘(z) = ℘(z ; ℓ) is the Weierstrass ℘-function
associated with the torus C = C/Γ. We refer to the appendix B.1 for a detailed review of this
function and its properties. In particular, it is elliptic, even and has a double pole at the origin:

℘(z + 2ℓi) = ℘(z) , ℘(−z) = ℘(z) , ℘(z) = 1
z2 + O(z2) . (4.2)

On the torus, the twist 1-form (4.1) then has one pole at 0 (of multiplicity 2) and two simple
zeroes at ±ẑ. In the notations of section 2, this means that

Poles: n = 1 , p̂1 = 0 , m1 = 2 ,

Zeroes: M = 1 , ẑ ±
1 = ±ẑ . (4.3)

In particular, we made a choice of partition of the zeroes into two equal-size subsets Ẑ± =
{ẑ ±

1 } = {±ẑ}, as required in the general formalism of section 2.
The moduli (C, ω) is described here using 4 parameters (ℓ1, ℓ2, ρ, ẑ). This parametrisation

admits a redundancy, corresponding to the freedom of rescaling the spectral parameter z:
namely, the associated model will be invariant under the transformation (ℓ1, ℓ2, ρ, ẑ) 7→
a(ℓ1, ℓ2, ρ, ẑ) with a ̸= 0. This thus leaves a total of 3 physical parameters. Note that
there is no translation freedom in this parametrisation: it has been removed by fixing the
pole of ω to z = 0.

Target space and action. The target space of the elliptic integrable deformed PCM is
the Lie group T = SLR(N): the theory is therefore described by a SLR(N)-valued field22

g(x+, x−). It will be useful to introduce the Maurer-Cartan currents

j± = g−1∂±g , (4.4)
22This is the equivalent of the field ϕ : Σ → T considered in subsection 2.1 for a general σ-model with target

space T . In the present section, we use the notation g : Σ → SLR(N), which is standard for σ-models on
group manifolds.
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valued in the Lie algebra slR(N), and to equip the latter with the non-degenerate invariant
bilinear pairing ⟨·, ·⟩ = −Tr(·). We then consider an action of the form

SDPCM[g] =
∫∫

Σ
dx+ dx− ⟨j+, D[j−]⟩ , (4.5)

where D : slR(N) → slR(N) is a constant linear operator on the Lie algebra, which we call the
deformation operator. More precisely, the integrable deformed PCM that we are interested in
corresponds to a very specific choice for D, defined in terms of the parameters (ℓ1, ℓ2, ρ, ẑ)
of the geometric moduli (C, ω), in a way that ensures its integrability.

To introduce this choice of deformation operator D, we will need a few additional
ingredients. Recall from subsection 2.4 that elliptic integrable σ-models are naturally described
in terms of a specific basis of the Lie algebra slC(N) called the Belavin basis {Tα}α∈A, labelled
by elements of A ≡ ZN ×ZN \ {(0, 0)}. We refer to appendix A for more details. The specific
integrable operator D acts diagonally on the Belavin basis, i.e.

D[Tα] = Dα Tα . (4.6)

To complete the definition of the model, we now need to give the expression of the coeffi-
cients {Dα}α∈A in terms of the parameters (ℓ1, ℓ2, ρ, ẑ). For that, we will use the family of
meromorphic elliptic functions {rα(z)}α∈A appearing in the Belavin R-matrix (2.28), whose
definition and properties are reviewed in appendix B.2. We then have

Dα = −ρ
rα′(ẑ)
rα(ẑ) = ρ

{
Qα + ζ(ẑ)− ζ(ẑ + qα)

}
. (4.7)

The last equality in this formula is an equivalent rewriting of Dα in terms of the Weierstrass
ζ-function (B.7) and the numbers qα and Qα defined in equation (B.15) — see appendix B
for further details.

As expected from the previous paragraph, one checks that the coefficient Dα in (4.7) is
invariant under a rescaling (ℓ1, ℓ2, ρ, ẑ) 7→ a(ℓ1, ℓ2, ρ, ẑ) of the parameters and thus effectively
depends only on three physical coupling constants. This redundancy can for instance be fixed
by setting the zero ẑ of ω to a specific value, say ẑ = 1: in this “fixed-zero parameterisation”,
the remaining parameters (ℓ1, ℓ2, ρ) are then all physical. Another possibility is the “modular
parameterisation”, in which we fix the elliptic periods to 2ℓ1 = 1 and 2ℓ2 = τ , with τ the
torus modulus: the physical parameters of the model are then (τ, ρ, ẑ). We refer to [17,
subsection 4.2] for a more detailed discussion of these aspects. Here, we will however keep
this freedom unfixed, as this will allow us to illustrate some of the general ideas put forward
in the previous section.

We note that in the limit ℓ1 → +∞ and ℓ2 → +i∞, which corresponds to a decom-
pactification of the torus C = C/Γ to the Riemann sphere CP1, the coefficients Dα all tend
to the same number so that the operator D becomes proportional to the identity: this is
the undeformed limit, in which one recovers the standard PCM. Finally, let us mention
that for N = 2, and up to reality conditions, the model (4.5) coincides with the celebrated
Cherednik anisotropic integrable σ-model on SU(2) [52].
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Equations of motion and Lax connection. The equations of motion obtained by
varying the action (4.5) read

D[∂+j−] + Dt[∂−j+] +
[
j+, D[j−]

]
−
[
Dt[j+], j−

]
= 0 , (4.8)

where Dt is the transpose of the operator D, defined by ⟨X, D[Y ]⟩ = ⟨Dt[X], Y ⟩. We note
that in addition to this equation of motion, the currents j± satisfy the Maurer-Cartan identity

∂+j− − ∂−j+ +
[
j+, j−

]
= 0 , (4.9)

which holds off-shell, as a direct consequence of the definition j± = g−1∂+g.
For the particular choice (4.6)–(4.7) of deformation operator D, the equation of mo-

tion (4.8) and the Maurer-Cartan identity (4.9) are equivalent to the flatness of the following
Lax connection:

L±(z) =
∑
α∈A

rα(z ∓ ẑ)
rα(∓ẑ) jα

± Tα . (4.10)

Here, we used the decomposition j± = ∑
α∈A jα

± Tα of the currents in the Belavin basis.
The light-cone component L±(z) of this Lax connection is elliptic with periods 2Nℓi and
has a simple pole at ẑ ±

1 = ±ẑ and its translates by Γ, which are the zeroes of the twist
1-form (4.1). This is in agreement with the general formalism of subsection 2.4 and in
particular the equation (2.22).

The specific deformation operator (4.6)–(4.7) and the corresponding Lax connection (4.10)
were derived in [17] using equivariant elliptic 4d-CS theory, which automatically ensures
the flatness of L±(z). The latter can also be checked by direct computation, starting from
the equation of motion (4.8) and using various properties of the functions {rα(z)}α∈A, in
particular the Fay identity (B.18). Finally, we note that the spatial component of this
Lax connection satisfies a Maillet bracket, with the Belavin R-matrix (2.28) as seed and
the twist function (4.1).

4.2 1-loop RG-flow of the deformation operator

We now turn to the 1-loop renormalisation of the elliptic integrable deformed PCM introduced
in the previous subsection. We will proceed in two main steps. In this subsection, we will start
by determining the renormalisation of the deformation operator D characterising the model,
using Ricci-flow techniques. Subsequently, we will prove in the next subsection that this
renormalisation can be reabsorbed in a flow of the defining parameters (ℓ1, ℓ2, ρ, ẑ) which enter
the expression of D, thereby proving the renormalisability of the theory. The computation of
the RG-flow of the deformation operator D will itself be decomposed in three steps: we will
first describe it for a general operator D, not yet specialising to the specific choice making
the theory integrable;23 secondly, we will restrict to the case of an operator (4.6) which is
diagonal in the Belavin basis; and finally we will consider the explicit integrable choice (4.7)
of D. Various proofs and technical computations are relegated to appendix D.

23We note that this RG-flow with arbitrary deformation operator was already obtained in [53]. We include
its derivation in the present paper for completeness.
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General deformation operator. We start by considering the σ-model (4.5) with a generic
deformation operator D. The latter can be characterised by its matrix entries

Dαβ =
〈
Tα, D[Tβ ]

〉
(4.11)

in a basis24 {Tα} of slC(N). To describe the geometry underlying this σ-model, it is useful to
introduce a set of (local) coordinates (ϕ i)d

i=1 on the target space, which in the present case is
the group manifold SLR(N): in practice, this means that we think of the group-valued field g

as a matrix in SLR(N) whose entries are expressed in terms of d = N2 − 1 real scalar fields
ϕ i. The currents j± can then be re-expressed in terms of these fields as

j± = eα
i(ϕ) ∂±ϕ i Tα , (4.12)

where eα
i(ϕ) is the component of g−1 ∂g

∂ϕ i along Tα, which is then a function of the coordinate
fields (ϕ i)d

i=1 but not of their derivatives. With these notations, the action (4.5) can then
be rewritten as

SDPCM[g] =
∫∫

Σ
dx+ dx− Dαβ eα

i(ϕ) eβ
j(ϕ) ∂+ϕ i ∂−ϕj . (4.13)

Compared to the general form (2.3) of a σ-model action, we then see that the metric and
B-field of this theory are identified through

Gij(ϕ) + Bij(ϕ) = Dαβ eα
i(ϕ) eβ

j(ϕ) . (4.14)

In this context, the object eα
i(ϕ) is called a vielbein — see appendices D.1 and D.2 for

more details. It completely captures the dependence of the metric and B-field on the
coordinates (ϕ i)d

i=1, while the dependence on the coupling constants/parameters is encoded
in the coefficients Dαβ. We will denote the inverse of eα

i(ϕ) by ei
α(ϕ).

We now come to the question of the renormalisation of this theory. For a general
σ-model, it is well-known [18–21] that the 1-loop renormalisation of the metric and B-field
takes the form of the Ricci-flow (3.1), controlled by the torsionful Ricci tensor R+

ij . For
the present form (4.14) of the metric and B-field, this equation simply translates to a flow
of the coefficients Dαβ:

d
dtDαβ = ℏR+

αβ , (4.15)

where R+
αβ = R+

ij ei
αej

β is the torsionful Ricci tensor expressed in “flat-space indices” α, β.
The explicit value of this tensor was computed in [53, subsection 5.2]. For completeness and
self-containment, we rederive it here in appendix D.2. In the end, one has

R+
αβ = −Ω− σ

ρα Ω+ ρ
σβ , (4.16)

24Note that for this paragraph, {Tα} can in principle be any basis of slC(N), not necessarily the Belavin
one. To lighten the conventions and as we will eventually be using the Belavin basis specifically, we do not
introduce a different notation for the basis elements Tα. In the present paragraph, α can then be thought of
as an abstract index labelling this basis and not necessarily an element of the set A ≡ ZN × ZN \ {(0, 0)} as
for the Belavin one. For such a generic case, we assume implicit summations over repeated indices: once we
will restrict to explicit labels in A, we will always indicate the sums explicitly.
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where Ω± α
ρσ are the so-called spin connections, which read

Ω+ α
ρσ = Iαλ

{
f η

ρσ Dηλ − f η
ρλ Dησ − f η

σλ Dρη

}
, (4.17a)

Ω− α
ρσ = Iαλ

{
f η

ρσ Dλη − f η
ρλ Dση − f η

σλ Dηρ

}
. (4.17b)

In this equation, we used the structure constants of the basis {Tα}, defined by [Tα, Tβ] =
f γ

αβ Tγ , as well as the symmetric tensor Iαβ, defined as the inverse of Dαβ + Dβα.

Diagonal deformations. We now focus more specifically on deformations of the form (4.6),
i.e. that are diagonal in the Belavin basis {Tα}α∈A. We refer to the appendix A for more
details about this basis. In particular, recall that its elements Tα are labelled by couples
α = (α1, α2) in A ≡ ZN × ZN \ {(0, 0)}. For our purposes, we will need their commutation
relations (A.4), as well as the expression (A.6) of the form ⟨·, ·⟩ in this basis. In the present
language, these imply that the deformation coefficients and structure constants take the form

Dαβ = −δα+β,0 ξ−β1β2 Dβ and f γ
αβ = δα+β,γ√

N

(
ξα1β2 − ξβ1α2

)
, (4.18)

where we recall that ξ = exp
(

2iπ
N

)
.

Substituting the above expressions of Dαβ and f γ
αβ in equations (4.16)–(4.17), one can

determine the form of the Ricci tensor R+
αβ for such diagonal deformations. The details of

this computation are given in appendix D.3. In the end, we show that

R+
αβ = −δα+β,0 ξ−β1β2 R+

β , (4.19)

where
R+

α = 4
N

∑
θ,σ∈A

σ−θ=α

sin2
(

π
σ × α

N

) {Dα + Dθ − Dσ} {Dα + D−σ − D−θ}
{Dθ + D−θ}{Dσ + D−σ}

, (4.20)

written with the “cross-product” × defined in (B.13). Notice in particular that the form
of R+

αβ in equation (4.19) is the same as that of the deformation coefficients Dαβ in (4.18).
Thus, diagonal deformations lead to diagonal Ricci tensors and are therefore stable under
1-loop RG-flow, with the β-function of Dα being given by ℏR+

α .

Elliptic integrable deformation. We finally specialise to the elliptic integrable defor-
mation, for which Dα is given by (4.7), in terms of the parameters (ℓ1, ℓ2, ρ, ẑ). Reinserting
this expression in equation (4.20), we derive in appendix D.4 the expression of R+

α in the
integrable case. This computation requires various manipulations and in particular (suffi-
ciently regularised versions of) the Fay identity (B.18) obeyed by the functions {rα(z)}α∈A.
The final result reads

R+
α = −2N

rα′(2ẑ)
rα(ẑ)2 . (4.21)

Despite the compactness of this form, it will be useful for extracting the β-functions of the
theory to re-express this coefficient solely in terms of the Weierstrass ℘- and ζ-functions.
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This is also done in detail in appendix D.4, using various addition identities obeyed by
these functions and yields

R+
α = N

℘′(ẑ)

[
2
{

℘(ẑ+qα)−℘(ẑ)
}{

Qα+ζ(ẑ)−ζ(ẑ+qα)+
℘′′(ẑ)
2℘′(ẑ)

}
−
{

℘′(ẑ+qα)−℘′(ẑ)
}]

.

(4.22)

4.3 Extracting the RG-flow

From the results of the previous subsection, we find that the 1-loop RG-flow of the elliptic
integrable deformed PCM is governed by

dDα

dt = ℏR+
α , (4.23)

where Dα and R+
α are respectively given by (4.7) and (4.22). We will now show that we

can reabsorb this flow of Dα into a running of the parameters (ℓ1, ℓ2, ρ, ẑ) specifying the
σ-model.25 Thus, we need to prove that we can write the RG-flow (4.23) in the form

dDα

dt = βℓ1
∂Dα

∂ℓ1
+ βℓ2

∂Dα

∂ℓ2
+ βρ

∂Dα

∂ρ
+ βẑ

∂Dα

∂ẑ
, (4.24)

where the coefficients β• are the same for all α ∈ A and are then interpreted as the β-functions
of the parameters. Using various identities, we can calculate the derivatives of Dα appearing
in the right-hand side of the above equation: this is done in appendix D.5. One then finds
that it is possible to match (4.24) with (4.22), leading to the following set of β-functions:

βℓi
= ℏN

( 2Li

ρ℘′(ẑ)+bℓi

)
, βρ = ℏN

(
−2℘(ẑ)

℘′(ẑ) +bρ

)
, βẑ = ℏN

(2ζ(ẑ)℘′(ẑ)+℘′′(ẑ)
ρ℘′(ẑ)2 +b ẑ

)
.

(4.25)
Here, b is an unconstrained variable: in practice, it appears in the computation because
the comparison of (4.24) with (4.22) leads to 3 linear equations for 4 unknown β-functions.
This is to be expected: indeed, it is clear from the above formula that the effect of b on
the RG-flow is to shift (ℓ1, ℓ2, ρ, ẑ) by bℏN(ℓ1, ℓ2, ρ, ẑ) and thus corresponds to performing
a homogeneous dilation of these parameters along the flow. As discussed in subsection 4.1,
such a transformation simply corresponds to a rescaling of the spectral parameter and leaves
the theory unchanged.

To describe the RG-flow purely in terms of physical parameters, we have to fix a choice
of parametrisation. Recall the two different possibilities discussed in subsection 4.1, namely
the fixed-zero parametrisation and the modular parametrisation. In the first one, we fix
ẑ = 1. To conserve this property along the flow, we thus choose b such that βẑ = 0. We
then find the following set of β-functions for the remaining variables:

βℓi
= 2ℏN

ρ℘′(1)

[
Li−ℓi

{
ζ(1)+ ℘′′(1)

2℘′(1)
}]

, βρ =− 2ℏN

℘′(1)

[
℘(1)+ζ(1)+ ℘′′(1)

2℘′(1)

]
. (4.26)

25In the case N = 2, this σ-model coincides, up to reality conditions, with the Cherednik model on
SU(2) [52]. The 1-loop RG-flow of this theory was derived in [54] (using a different parameterisation than the
one considered here).
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Alternatively, if we consider the modular parameterization, i.e. fix 2ℓ1 = 1, denote 2ℓ2 = τ

and choose b such that βℓ1 = 0, we find instead

βτ = 4iπ ℏN

ρ ℘′(ẑ) , βρ = − 2ℏN

℘′(ẑ)
[
℘(ẑ)− 2ηW

]
, βẑ = 2ℏN

ρ ℘′(ẑ)

[
ζ(ẑ) + ℘′′(ẑ)

2℘′(ẑ) − 2ẑ ηW

]
,

(4.27)
where ηW (τ) = L1(1/2, τ/2) denotes the Weierstrass η-function.26 We note that τ has a
non-trivial β-function, meaning that the torus C/(Z+ τZ) is changing along the RG-flow.

4.4 RG-Flow of ω and check of the conjectures

We now want to use the results obtained above to check the general conjectures discussed
in section 3, which concerned the 1-loop RG-flow of the geometric data (C, ω) from which
integrable σ-models are built. For the elliptic deformed PCM considered here, recall that
C = C/Γ and that the twist 1-form ω was defined as (4.1), in terms of the parameters
(ℓ1, ℓ2, ρ, ẑ).

The ∂Ψ-conjecture. The RG-flow of the twist 1-form is given by

d
dt ω =

{
βℓ1

∂φ(z)
∂ℓ1

+ βℓ2
∂φ(z)
∂ℓ2

+ βρ
∂φ(z)

∂ρ
+ βẑ

∂φ(z)
∂ẑ

}
dz , (4.28)

with φ(z) = ρ{℘(z)− ℘(ẑ)}. The partial derivatives in the above equation can be computed
using techniques similar to the ones of appendix D.5 while the β-functions were found
explicitly in (4.25). After various manipulations and the application of many functional
elliptic identities, that we shall not detail here, we find

d
dt ω = −ℏN

d
dz

[{
ζ(z − ẑ)

℘′(ẑ) − ζ(z + ẑ)
℘′(−ẑ) + bz ρ

}{
℘(z)− ℘(ẑ)

}]
dz . (4.29)

This flow takes the exact same form as the ∂Ψ-conjecture (3.36), with the identification

Ψ(z) = −f(z)φ(z) , f(z) = ℏN

{
ζ(z − ẑ)
ρ ℘′(ẑ) − ζ(z + ẑ)

ρ ℘′(−ẑ) + bz

}
. (4.30)

Using that the dual Coxeter number of g = slR(N) is cg = N , one easily checks that this
expression for f(z) agrees with the one (3.31) appearing in the general elliptic ∂Ψ-conjecture,
if one sets b0 = 0 and b1 = b. The fact that b0 is fixed to a specific value here is natural.
Indeed, as explained in subsection 3.3, b0 encodes the freedom of performing translations of
the spectral parameter along the flow. For the deformed PCM, we have fixed this freedom by
setting the pole of ω at z = 0: preserving this choice under the RG-flow (3.36) is equivalent to
setting b0 = 0. In contrast, as discussed around (4.25) and in agreement with its interpretation
in subsection 3.3, the coefficient b1 = b corresponds to rescalings of z and is left unconstrained
here as the dilation freedom was not fixed in the parameterisation (ℓ1, ℓ2, ρ, ẑ).

26Not to be confused with the more familiar Dedekind η-function. Note that the appearance of π in the
first equation of (4.27) is due to the use of the Legendre identity (B.14).
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The period-conjecture. In section 3, we have proven that the ∂Ψ-conjecture is equivalent
to the period-conjecture (3.4) of Costello. The latter should thus also hold for the elliptic
integrable deformed PCM. Let us check this explicitly to illustrate some of the notions
discussed in subsection 3.1. In particular, recall that this conjecture is formulated in terms
of the periods of ω, which are integrals of this 1-form along well-chosen paths in C = C/Γ.
The simplest examples of absolute periods are the residues of ω at its poles: in the present
case, the twist 1-form (4.1) of the deformed PCM has only one pole at z = 0, with vanishing
residue. This residue is then trivially conserved under the RG-flow, in agreement with the
period-conjecture (3.4).

Since we are considering an elliptic model, we have two additional absolute periods,
namely the integrals of ω along the A- and B-cycles of the torus. In terms of the coordinate
z, these can be computed as the integrals of φ(z) = ρ{℘(z) − ℘(ẑ)} over z ∈ [z0, z0 + 2ℓi],
where z0 is any reference point. Using the relation ℘(z) = −ζ ′(z) and the quasi-periodicity
property (B.9) of the Weierstrass ζ-function, one easily finds

ΠA/B = −2ρ
{
Li + ℓi ℘(ẑ)

}
, (4.31)

where A and B correspond respectively to i = 1 and i = 2. As expected these are independent
of the reference point z0. The RG-flow of these quantities can be computed from the
β-functions (4.25) of (ℓ1, ℓ2, ρ, ẑ) determined earlier, using various elliptic identities and
techniques similar to the ones developed in appendix D.5. In the end, we find that the
absolute periods ΠA/B are RG-invariants, in agreement with the period-conjecture (3.4).

Finally, let us turn our attention to the relative periods, which are integrals of ω between
two of its zeroes. In the present case, there are two such zeroes ±ẑ, so there exists only
one relative period Π0, defined as the integral of φ(z) = ρ{℘(z) − ℘(ẑ)} from +ẑ to −ẑ.
Explicitly, we find

Π0 = 2ρ
{
ζ(ẑ) + ẑ ℘(ẑ)

}
. (4.32)

The RG-flow of this quantity can also be computed using the β-functions (4.25), various
identities obeyed by the Weierstrass functions and the methods of appendix D.5. This yields

d
dtΠ0 = 2ℏN , hence Π0

2ℏ cg
= t− t0 = 1

4π
log

(
µ

µ0

)
, (4.33)

where we recall that µ is the RG-scale and µ0 is a reference energy scale. This means that
the last part of the period-conjecture (3.4) also holds for the deformed PCM, as expected.

These results allow us to illustrate the strength of this conjecture. Indeed, starting from
the expression (4.25) of the β-functions, it would be a rather arduous task to guess which
combinations of (ℓ1, ℓ2, ρ, ẑ) are RG-invariants or which one can be identified with the RG-
parameter t. Remarkably, the period-conjecture provides a very simple way of constructing
such quantities, thus trivialising the RG-flow of the theory. We stress here that such a process
will also apply (conjecturally) to integrable σ-models with much more complicated twist
1-forms ω, whose target space geometry and RG-flow can in general be quite involved.
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5 Conclusion and perspectives

Summary. The main topic of this article was the 1-loop renormalisation of a large class
of rational and elliptic integrable σ-models obtained from the formalisms of 4-dimensional
Chern-Simons theory and affine Gaudin models. A crucial role was played by the geometric
data (C, ω, Ẑ±), which is part of the defining ingredients of these theories and is deeply related
to the analytic structure of their Lax connection as a function of the spectral parameter
(see section 2). In particular, this data canonically encodes the continuous parameters of
these models which flow under the renormalisation group. In this context, we discussed in
detail two conjectural formulae for the 1-loop RG-flow of this geometric data, which we called
the ∂Ψ- and period-conjectures and which were first proposed in [1, 2] and partially proven
in [15, 16]. In this article, we established the equivalence of these conjectures, after also
proposing a generalisation of the former from the rational to the elliptic case.

These two formulations each have their advantages. The ∂Ψ-one gives a direct and
explicit expression for the 1-loop RG-flow of the twist 1-form ω and can be used to extract
the β-functions of some of the natural parameters of the models, such as the zeroes and poles
of this 1-form. However, the resulting differential equations obeyed by these parameters are in
general highly coupled and non-linear and it is thus not apparent how to solve them explicitly.
Remarkably, an answer to this problem is offered by the period-conjecture. The latter is
formulated more implicitly, in terms of certain well-chosen integrals of ω called periods, and
completely trivialises the 1-loop RG-flow. Indeed, these periods are either RG-invariants
or grow linearly with the logarithm of the RG scale µ.

The final part of the paper concerned the renormalisation of an explicit example of elliptic
integrable σ-model recently introduced in [17] and which takes the form of a deformation of
the Principal Chiral Model on SLR(N). More precisely, we proved the 1-loop renormalisability
of this model, computed the corresponding β-functions and used this result to check the
validity of the ∂Ψ- and period-conjectures for this example.

Towards a general proof. The most natural perspective of the present article is to prove
the period- and ∂Ψ-conjectures in full generality. In the recent works [15, 16], they were
established (in the ∂Ψ-formulation) for a class of rational models whose twist 1-form ω has
a double pole at infinity. The rational case with an arbitrary pole structure at infinity and
the elliptic case are for the moment open questions, although they have been checked in
various examples. One possible approach towards a general proof would be to follow the same
strategy as in [15, 16], using the formalism of so-called E-models [25, 26, 28, 29, 47, 48]. As an
alternative, we expect that these conjectures can be proven using the “universal divergences”
approach recently put forward in [55, 56]. This will be the subject of a future work [57].

Extension to other models. It would also be interesting to study the period- and
∂Ψ-conjectures for more general classes of integrable σ-models. For instance, the family
considered in this paper does not include σ-models on symmetric spaces or more generally on
ZT -cosets [58]. These theories, as well as deformations [59, 60] and generalisations [61] thereof,
can also be described using the formalisms of affine Gaudin models and 4D Chern-Simons, by
introducing appropriate ZT -equivariance conditions on the twist 1-form ω and on the fields
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(see for instance [5, 7, 61, 62]). We expect the period- and ∂Ψ-conjectures to also hold for
the 1-loop renormalisation of these models. This can be checked on various examples and
we hope that it will be possible to study the general case using similar techniques as the
ones discussed in the previous paragraph and our upcoming work [57].

Another possible extension is to consider the integrable σ-models introduced in [7,
section 15] and [2], whose spectral parameter is valued in a higher-genus Riemann surface
C. The metric and B-field of these models are defined implicitly in terms of a geometric
object called the Szegö kernel, but it is in general difficult to find an explicit description
of this quantity, making the study of these theories more complicated. It was conjectured
in [2] that their 1-loop renormalisation also follows the period-conjecture, which is easily
formulated for a twist 1-form ω defined on an arbitrary compact Riemann surface C. An
equivalent of the ∂Ψ-conjecture for these higher-genus models has not been studied yet and
forms a natural perspective for future developments.

Identification of the RG-parameter. One of the remarkable advantages of the period-
conjecture is that it completely trivialises the 1-loop RG-flow. More precisely, it allows us to
find well-chosen combinations of the parameters of the model which are all RG-invariants,
except for one which is simply identified with the RG-parameter t− t0 = 1

4π log(µ/µ0) (see
subsection 3.1).

We note that such a parameterisation was found earlier for certain specific integrable
σ-models using a more direct approach, for instance the sausage model in [12, equation (3.7)]
and the Fateev model in [13, equation (73)]. These examples fall into the framework of affine
Gaudin models / 4D Chern-Simons and correspond to specific twist 1-forms ω [5, 59, 63]. A
direct computation shows that the quantity found in [12, 13] as the RG-parameter coincides
(up to the prefactor 2ℏ cg) with a period of ω appearing in the period-conjecture. However,
we stress that the latter applies quite more generally and thus allows the identification of the
RG-parameter for all models with twist 1-forms. In the references [12, 13], this identification
of t− t0 in terms of the coupling constants of the metric/B-field was used to study various
properties of the models through Lagrangian perturbation theory, including, for instance,
the computation of ground state energies and minisuperspace approximations.27 It would
be interesting to explore whether similar techniques can be applied to integrable σ-models
corresponding to more general twist 1-forms.

Extension to higher-loops. Another natural perspective is the generalisation of the ∂Ψ-
and period-conjectures at higher-loop. The study of the RG-flow of integrable σ-models beyond
one-loop has been an active subject of research in recent years, see for instance [15, 69–72].
In particular, it was argued in these references that renormalisability at higher-loop generally
requires adding quantum corrections to the metric and B-field. It would be interesting to
see if these corrections and the higher-loop RG-flow can be understood in a systematic
way using the geometric language of twist 1-forms, as done at 1-loop with the ∂Ψ- and

27In particular, these results can be compared with the ones obtained from the conjectured Factorised Scat-
tering and Thermodynamic Bethe Ansatz, when available, providing important support for these conjectures.
See also the non-exhaustive list of references [64–68] for similar developments in various other models with
twist 1-forms.
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period-conjectures. An interesting example to explore these aspects is the sausage model,
for which conjectural expressions for the all-loop metric and RG-flow were proposed in [69]
and [72] (in two different schemes). In particular, the work [72] discussed the explicit solution
of this RG-flow and found a combination of the coupling constants which coincides with the
RG-parameter t − t0 at all loop (see [72, Footnote 3]). This is an extension of the 1-loop
result of [12], which as discussed in the previous paragraph can be reinterpreted as the
specialisation of the period-conjecture for the sausage model. It would be interesting to
reinterpret the all-loop result of [72] in terms of the twist 1-form of this model and explore
potential generalisations to wider classes of theories.

Conformal limits. Having found a general description of the (1-loop) RG-flow of integrable
σ-models, a logical next step is to enquire about its fixed points, which will define conformal
(or at least scale-invariant) theories. This can be studied by considering the UV or IR limit
t → ±∞ of this flow. In particular, a natural question in this context is to understand the
effect of this limit on the twist 1-form of the theory. This was studied in some rational
examples in the work [22], showing that it generally requires a careful treatment: indeed, the
conformal limit corresponds to a rather degenerate process, in which the poles and zeroes of ω

can collide together and/or grow infinitely far apart. Extracting a meaningful conformal limit
ωCFT of the twist 1-form typically requires a well-chosen rescaling of the spectral parameter
z: more precisely, one has to consider two different rescaled spectral parameters, leading
to two different limits of ω in which various poles/zeroes survive, while others decouple.
These two limits correspond to the two chiral halves of the conformal point, one describing
left-moving fields, the other right-moving ones. This was checked in [22] for various examples.
It is an alluring perspective to study whether such a behaviour can be established in more
generality using the period- or ∂Ψ-conjecture.

Let us also make a brief remark concerning the conformal points in the elliptic case. In
the example of the elliptic deformation of the Principal Chiral Model studied in section 4,
one checks that the UV limit sends the torus moduli τ to +i∞, thus corresponding to a
trigonometric limit, in which the torus decompactifies to a cylinder. It would be interesting
to study if such a phenomenon occurs for all elliptic models or if some of them retain their
elliptic nature in the conformal limit.

Comments on the function P(z). We observed at the end of subsection 3.1 that
the period-conjecture can be re-expressed in terms of a certain function P(z), defined by
∂z logP(z) = 2π

ℏcg
φ(z) (up to a constant). In particular, at 1-loop and as seen in equa-

tion (3.12), the RG-scale µ of the model is directly related with the quantity P(ẑ +)/P(ẑ −),
where ẑ ± ∈ Ẑ± are zeroes of ω.

It is worth noticing that this function is expected to also play an important role in the
study of quantum integrable structures at the conformal points of these models — see [22, 39–
46]. More precisely, the conformal limit28 PCFT(z) of this function appears in various
conjectures concerning the construction of commuting conserved charges in these models

28See the previous paragraph for a discussion of the subtleties arising when taking this limit. In particular,
in what follows, ωCFT and PCFT will denote the conformal limit of ω and P in one choice of rescaling of the
spectral parameter, corresponding to either of the chiral sectors of the conformal model.
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and in the so-called ODE/IQFT (or ODE/IM) correspondence describing their spectrum.
Remarkably, in the case of the Fateev model29, a deformation of this correspondence away
from the conformal point has been proposed in the works [39–41], in which the function
PCFT(z) still plays an important role. From the point of view of the renormalisation group
flow, this deformation corresponds to a relevant perturbation, which introduces a dependence
of the model on the RG-scale µ. As mentioned above, at 1-loop, this scale can be extracted
from the specific combination P(ẑ +)/P(ẑ −) of the parameters, built from the function P(z).
It would be interesting to explore potential relations between these results and understand in
more generality the role of the function P(z) in the quantum integrable structure of σ-models
with twist 1-forms (at and away from their conformal point).

Let us end with a remark on the geometric nature of the objects ω and P. In the
construction of classical integrable σ-models, as reviewed in section 2, ω = φ(z) dz is seen as
a meromorphic 1-form on C. In particular, under a change of coordinate z 7→ z̃ = h(z) on C,
we have ω = φ̃(z̃) dz̃ with φ(z) = φ̃(h(z))h′(z). On the other hand, the conformal limit PCFT
of P is expected [22, 42] to behave, at the fully quantum level, as a multi-valued section of the
canonical line bundle LC over C. This suggests that the conformal limit ωCFT = ℏ cg

2π ∂ logPCFT
of ω receives quantum corrections which change its geometric nature, from a meromorphic
1-form on C to a connection on the line bundle L

ℏ cg/2π
C . More precisely, under a change of

coordinate z 7→ z̃ = h(z), we expect ωCFT = φCFT(z) dz to transform according to

φCFT(z) = φ̃CFT
(
h(z)

)
h′(z) + ℏ cg

2π

h′′(z)
h′(z) . (5.1)

Integrable σ-models from twistor space. Let us consider a particularly simple class of
rational integrable σ-models, for which the twist 1-form ω has only two simple zeroes in CP1

(this includes for instance the Principal Chiral Model with Wess-Zumino term as well as the
η− and λ−models). In the past few years, there have been various progresses [73–77] towards
a reformulation of these models in terms of a 6-dimensional holomorphic Chern-Simons
theory on twistor space.30 In that formulation, the data of the twist 1-form ω on CP1 is
replaced by that of a (3, 0)-form Ω on twistor space and a symmetry reduction. This offers an
interesting alternative perspective on the geometric structures underlying these models, their
integrability and their spectral parameters. A natural question in this context is whether
their 1-loop renormalisation also has a simple interpretation in terms of the (3, 0)-form Ω
on twistor space, in analogy with the ∂Ψ- and period-conjectures on the 1-form ω. More
generally, it would be interesting to explore the potential relations between twistor space,
the geometry of the spectral parameter and renormalisation for a wider class of integrable
σ-models, corresponding to more general twist 1-forms ω.

29Here, we use the terminology Fateev model to describe the integrable σ-model introduced in [13] and
whose target space is a two-parameter deformation of the 3-sphere. We note that this name is also often
used for a quantum field theory with exponential interactions, which is dual to the σ-model. The relation
between the function PCFT(z) appearing in the works [39–41] and the twist 1-form in the language of the
present article was established in [22].

30In some cases like the λ-model, this construction comes with various subtleties (see [76, 77] for details).
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A The Belavin basis

In this appendix, we review the definition and properties of the Belavin basis of slC(N),
which plays a crucial role in the elliptic integrable σ-models considered in this paper.

Matrices Ξi. The main ingredient that we will need is a pair of N ×N matrices, defined as

Ξ1 ≡



0 1

0 0 . . .
. . . . . . . . .

. . . 0 1
1 0 0


, Ξ2 ≡



1 0

0 ξ
. . .

. . . . . . . . .
. . . ξN−2 0

0 ξN−1


, (A.1)

where ξ = exp
(

2iπ
N

)
is a N th-root of unity. One easily checks that these matrices satisfy

the following algebraic relations:

ΞN
1 = ΞN

2 = I and Ξ1 · Ξ2 = ξ Ξ2 · Ξ1 . (A.2)

In particular, the adjoint automorphisms AdΞ1 and AdΞ2 are cyclic of order N and commute
with each other: they thus generate an action of the group ZN ×ZN on the Lie algebra slC(N).

The Belavin basis. Let α = (α1, α2) ∈ ZN × ZN be a couple of integers modulo N . Since
the matrices Ξi are cyclic of order N , the quantity

Tα = 1√
N

Ξ−α2
1 Ξα1

2 (A.3)

is well-defined, i.e. is independent of the choice of representatives for α1 and α2 (the minus
sign and the exchange of labels in the exponents are introduced for future convenience). The
matrix T(0,0) is simply proportional to the identity, while the matrices Tα for α ̸= (0, 0) are
traceless and linearly independent. Introducing A = ZN × ZN \ {(0, 0)}, the family {Tα}α∈A
then forms a basis of slC(N) (since |A| = N2 − 1 = dim slC(N)): we call it the Belavin basis.
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Algebraic properties. The commutation relations of the Belavin basis {Tα}α∈A read

[Tα, Tβ ] = fαβ Tα+β with fαβ = 1√
N

(
ξα1β2 − ξβ1α2

)
. (A.4)

Moreover, it is composed of eigenvectors of the (ZN × ZN )-action generated by the adjoint
automorphisms AdΞ1 and AdΞ2 . More precisely, we have

Adβ1
Ξ1

Adβ2
Ξ2

Tα = ξα·β Tα , with α · β = α1β1 + α2β2 . (A.5)

Consider the non-degenerate invariant bilinear form ⟨·, ·⟩ = −Tr(·) on slC(N). We will
denote the dual of the Belavin basis with respect to this form by {T α}α∈A, using upper
indices. We then have

⟨Tα, Tβ⟩ = −δα+β,0 ξ−β1β2 and thus T α = −ξα1α2T−α . (A.6)

B Elliptic and quasi-elliptic functions

This appendix is a review of elliptic and quasi-elliptic functions, in particular the Weierstrass
family and their relatives rα(z). We say that a meromorphic function f(z) is elliptic with
half-periods ℓ = (ℓ1, ℓ2) if it satisfies the double-periodicity property

f(z + 2ℓ1) = f(z + 2ℓ2) = f(z) . (B.1)

If that is the case, f reduces to a function on the torus C/Γ, where Γ = 2ℓ1 Z ⊕ 2ℓ2 Z is
the period 2D-lattice in C.

B.1 The Weierstrass functions

The Weierstrass ℘-function. The simplest example of a non-trivial elliptic function is
arguably the Weierstrass ℘-function, defined by

℘(z ; ℓ) ≡ 1
z2 +

∑
n∈Z2

n̸=(0,0)

{
1

(z − 2n · ℓ)2 − 1
(2n · ℓ)2

}
. (B.2)

In this expression, the second term in the infinite sum is there to ensure its convergence. The
sum makes it explicit that this satisfies the desired double-periodicity property ℘(z+2ℓi ; ℓ) =
℘(z ; ℓ). To lighten the notations, we will often omit the dependence on the half-periods ℓ and
simply write the Weierstrass function as ℘(z). Schematically, it can be seen as the elliptic
version of 1/z2. More precisely, it is the unique elliptic function with the behaviour

℘(z) = 1
z2 + O(z2) , (B.3)

and no poles outside of z = 0 and its translates z ∈ Γ. Among other useful properties, we note
that the Weierstrass function is even, i.e. ℘(−z) = ℘(z), and satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2 ℘(z)− g3 . (B.4)
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Here, (g2, g3) are the Weierstrass invariants, which are related to the half-periods ℓ =
(ℓ1, ℓ2) by

g2 = 60
∑

n∈Z2

n̸=(0,0)

1
(2n · ℓ)4 and g2 = 140

∑
n∈Z2

n ̸=(0,0)

1
(2n · ℓ)6 . (B.5)

Finally, these parameters can be used to define the modular discriminant

∆ = g3
2 − 27g2

3 . (B.6)

The Weierstrass ζ-function. The Weierstrass ζ-function is defined as

ζ(z ; ℓ) ≡ 1
z
+

∑
n∈Z2

n ̸=(0,0)

{ 1
z − 2n · ℓ

+ 1
2n · ℓ

+ z

(2n · ℓ)2

}
. (B.7)

It can equivalently be characterised by the properties

ζ ′(z) = −℘(z) and ζ(z) = 1
z
+ O(z) . (B.8)

This function is odd, i.e. ζ(−z) = −ζ(z), and has simple poles exactly at the lattice points
z ∈ Γ. We stress here that it is not elliptic: indeed, one can show that there are no elliptic
functions on C/Γ with only one simple pole. However, it still satisfies a simple quasi-periodicity
property with respect to shifts by lattice vectors in Γ, namely

ζ(z + 2ℓi) = ζ(z) + 2Li , with L = (L1, L2) ≡
(
ζ(ℓ1), ζ(ℓ2)

)
. (B.9)

Indeed, we see that this is compatible with (B.8) and the double periodicity of ℘(z).

The Weierstrass σ-function. The Weierstrass σ-function is defined as

σ(z ; ℓ) ≡ z
∏

n∈Z2

n ̸=(0,0)

(
1− z

2n · ℓ

)
exp

(
z

2n · ℓ
+ 1

2

(
z

2n · ℓ

)2
)

. (B.10)

It can equivalently be characterised by the properties

σ′(z) = ζ(z)σ(z) and σ(z) = z + O(z2) . (B.11)

This function is odd, i.e. σ(−z) = −σ(z), and has simple zeroes exactly at the lattice points
z ∈ Γ. Moreover, it satisfies the quasi-periodicity property

σ(z + 2ℓi) = − exp
(
2Li [z + ℓi]

)
σ(z) . (B.12)

Cross-product and Legendre relation. We introduce a C-valued “cross-product” ×
on C2 by letting

(a1, a2)× (b1, b2) ≡ a1b2 − b1a2 . (B.13)

The half-periods ℓ = (ℓ1, ℓ2) and the related numbers L =
(
ζ(ℓ1), ζ(ℓ2)

)
then satisfy the

so-called Legendre relation

L × ℓ = iπ
2 . (B.14)
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B.2 The functions rα(z)

Let us consider a pair α = (α1, α2) of complex numbers. We introduce

qα ≡ 2
N

α × ℓ , Qα ≡ 2
N

α × L , (B.15)

using the cross product (B.13). When qα is not in the lattice Γ, the following function
is well-defined:

rα(z) ≡ exp(−Qαz) σ(z + qα)
σ(z)σ(qα)

. (B.16)

Up to an exponential prefactor, this coincides with the so-called Kronecker function associated
with the torus C/Γ. It satisfies rα(−z) = −r−α(z). Moreover, rα(z) has simple zeroes on
the lattice Γ− qα and simple poles on the lattice Γ. In particular, around z = 0, it admits
the simple behaviour rα(z) ∼ 1

z .
Combining the property (B.12) of the σ-function with the Legendre relation (B.14), one

finds a simple quasi-periodicity result for rα(z):

rα(z + 2ℓi) = exp
(2iπ

N
αi

)
rα(z) . (B.17)

The most important property of the functions rα(z) is the functional identity

rα(z1) rβ(z2) = rα+β(z1) rβ(z2 − z1) + rα(z1 − z2) rα+β(z2) , (B.18)

which holds whenever qα, qβ , qα+β /∈ Γ and which follows from the so-called Fay identity of
elliptic σ-functions (or equivalently, Jacobi θ-functions) [78].

Let us now restrict to the case where the parameters α = (α1, α2) are integers in Z× Z.
Due to the property (B.12), one checks that the function rα(z) is invariant under a shift
of these integers by N . We are thus led to consider the couple α = (α1, α2) modulo N ,
i.e. as an element of ZN × ZN (by a slight abuse of notation, we use the same notation for
α ∈ Z × Z and its equivalence class in ZN × ZN ). Discarding the element α = (0, 0), for
which rα(z) is not well-defined, this yields a family of N2 − 1 functions {rα(z)}α∈A, labelled
by A = ZN × ZN \ {(0, 0)}. These functions play a crucial role in the description of the
elliptic integrable σ-models considered in this paper.

C Origin from 4D Chern-Simons theory

The subject matter of this article is the integrable σ-models described in subsection 2.4,
associated with the data (C, ω, Ẑ±, g, k). The goal of this appendix is to briefly review how this
data leads to a consistent construction of the corresponding theory by way of 4-dimensional
Chern-Simons (4D-CS) theory.

Before starting, let us discuss the literature on which this review is based, as a guide to
further references for the interested readers. The construction of integrable σ-models from
4D-CS theory was first proposed in the seminal work [7]. In the language of subsection 2.4,
that work focused mostly on models with double poles in ω and simple choices of the isotropic
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subalgebra k. A more systematic study of the admissible choices for k was initiated in [27]
for double and simple poles in ω, while the case with arbitrary pole structure was treated
in [28, 29, 79], leading to a larger class of models. We also refer to the lecture notes [10] for a
more thorough review. The works [27–29, 79] focused on rational theories (i.e. with C = CP1).
The references [2, 7] also contain some higher-genus models but of a slightly different nature
than the elliptic ones considered in the present paper: the latter were introduced in the recent
work [17] and are based on an equivariant version of the elliptic 4D-CS theory. Although [17]
focused on the case of doubles poles in ω, we include in the present paper the equivariant
elliptic models corresponding to arbitrary pole structures, which can be constructed by
combining the approaches of [79] and [17].

C.1 The 4D-CS theory

As its name suggests, this theory is defined on a 4D space-time manifold: more precisely, this
manifold is taken to be Σ× C, combining the worldsheet of the σ-model with the Riemann
surface of its spectral parameter. The fundamental field of this theory is a gauge field

A = A+ dx+ +A− dx− +Az dz +Az̄ dz , (C.1)

seen as a gC-valued 1-form on Σ × C. It satisfies certain specific properties related to the
data (C, ω, Ẑ±, g, k), which we describe below.

1. The component A± is allowed to have singularities of order one at the points Ẑ± =
{ẑ ±

r }M
r=1;

2. The component A± satisfies certain boundary conditions at the poles P̂ = {p̂r}n
r=1

of ω. More precisely, the object
(
∂k

zA±(p̂r)
)k=0,...,mr−1

r=1,...,n
is naturally interpreted as an

element of the defect Lie algebra and is required to be valued in its maximally isotropic
subalgebra k;

3. In the elliptic case, A satisfies the quasi-periodicity property31 A(z + 2ℓi) = AdΞi A(z).

The action of the theory is defined as [80, 81]32

S4D−CS [A] = i
4π

∫∫∫∫
Σ×C

ω ∧ CS[A] , (C.2)

31Technically, this means that A does not define a smooth field on C = C/Γ, as it is only quasi-periodic
under translations by lattice vectors in Γ. Another point of view, based on the observation that A is doubly-
periodic with periods 2Nℓi, is to see it as defined on another torus C/Λ with Λ = NΓ, similarly to what was
discussed for the Lax connection earlier (see equation (2.25) and the surrounding discussion). In that case,
the quasi-periodicity A(z + 2ℓi) = AdΞi A(z) is interpreted as a condition of equivariance of the gauge field
with respect to the group ZN × ZN . This is the point of view adopted in [17], where the theory was called
equivariant elliptic 4D-CS.

32In the case where ω has higher-order poles, one generally needs to consider a regularised version of this
action to ensure its finiteness, see [79]. We also note that in the formulation of the equivariant elliptic 4D-CS
theory in [17], the integral was taken over C/Λ rather than C = C/Γ. The latter is the quotient of the former
by the equivariance group ZN × ZN and due to the equivariance condition A(z + 2ℓi) = AdΞi A(z), the two
integrals coincide up to the overall combinatorial factor |ZN × ZN | = N2 added in [17, equation (5.4)].
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where CS[A] is the so-called Chern-Simons 3-form of A. In particular, note that the 1-form
ω appears very explicitly in the definition of this action. Since ω is along the dz-direction,
the component Az of the gauge field decouples completely from the theory and does not
define a physical degree of freedom. Moreover, the action (C.2) is invariant under gauge
symmetries A 7→ u−1Au+u−1du, where u is a GC-valued function of (x+, x−, z, z), satisfying
certain appropriate boundary conditions at the poles of ω and, in the elliptic case, the
quasi-periodicity property u(z + 2ℓi) = Ad−1

Ξi
u(z). Finally, varying the action (C.2) with

respect to A, we obtain the equation of motion of the theory:

ω ∧ F [A] = 0 , where F [A] = dA+A ∧A (C.3)

is the curvature of A.

C.2 Extracting the 2D integrable σ-model

To understand the link with a 2D integrable model, we reparametrise the gauge field com-
ponents as Az̄ = −(∂z̄ ĝ)ĝ −1 and A± = ĝ L± ĝ −1 − (∂±ĝ)ĝ −1 where ĝ is a GC-valued field33

and L± are gC-valued fields. In terms of these new degrees of freedom, the equation of
motion (C.3) implies

∂+L− − ∂−L+ + [L+,L−] = 0 and ∂z̄L± = 0 , for z ∈ C \
(
Ẑ+⊔ Ẑ−) , (C.4)

i.e. away from the zeroes of ω. The first of these equations ensures that L± defines a flat 2D-
connection on Σ, while the second means that it depends holomorphically on z ∈ C \(Ẑ+⊔Ẑ−).
These are exactly the defining characteristics of the Lax connection of an integrable 2D field
theory on Σ, with spectral parameter z — see equation (2.5) and the associated discussion.
This is the key mechanism underlying the 4D-CS theory as a unifying framework for 2D
integrable σ-models.

We note that the holomorphicity of L±(z) only holds away from the zeroes Ẑ+⊔ Ẑ−

of ω. In fact, one can argue that the equations of motion of 4D-CS allow for simple poles
at these zeroes so that L±(z) can be seen as a meromorphic function of z. Combined
with condition 1. imposed earlier on the gauge field, we find that L±(z) has a simple pole
at the points Ẑ± = {ẑ ±

r }M
r=1 (forming half of these zeroes), thus recovering the expected

behaviour (2.20). Moreover, in the elliptic case, the quasi-periodicity condition 3. imposed
on the gauge field implies the similar property (2.23) of the Lax connection L±(z). As
mentioned in subsection 2.4, the pole structure of L±(z), together with this quasi-periodicity
condition, is enough to completely fix the form of L±(z), which then reads (2.21) in the
rational case and (2.22) in the elliptic one.

The next step in the construction is to extract the 2D integrable σ-model corresponding
to this Lax connection from the above 4D setup. The fundamental fields of this model
are obtained as the gauge-invariant degrees of freedom contained in ĝ. Indeed, one shows
that the field ĝ can be gauged away in any region away from the poles of ω, i.e. on C \ P̂.
The situation at the poles P̂ is more subtle as the gauge transformations are restricted by

33In the elliptic case, the existence of the field ĝ, such that Az̄ = −(∂z̄ ĝ)ĝ−1, strongly relies on the
equivariance property Az̄(z+2ℓi) = AdΞiAz̄(z). This is related to the notion of rigid elliptic bundles discussed
in [82, section 10.2] and [83, section 9]. We refer to [17, section 5.3] for details.
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specific boundary conditions at these points. A careful analysis shows that, in the end, ĝ

contains only a finite number of 2D gauge-invariant degrees of freedom, extracted from the
evaluations34 (∂k

z ĝ (p̂r)
)k=0,...,mr−1

r=1,...,n
at the poles. These degrees of freedom can be seen as

functions on Σ and can then be combined into a 2D field ϕ : Σ → T valued in a manifold
T , which is interpreted as the target space of the σ-model.

The boundary conditions of point 2. above constrain the values of A± = ĝ L± ĝ −1 −
(∂±ĝ)ĝ −1 and some of its z-derivatives at the poles P̂ of ω. In practice, this translates
to a relation between

(
∂k

z L± (p̂r)
)k=0,...,mr−1

r=1,...,n
and the 2D field ϕ extracted earlier from(

∂k
z ĝ (p̂r)

)k=0,...,mr−1
r=1,...,n

. Combined with the aforementioned results (2.21)–(2.22) on the analytic
structure of the Lax connection L±(z), this allows to completely express this connection in
terms of the 2D field ϕ and the parameters contained in ω, so that ϕ is the only physical
degree of freedom remaining. Finally, reinserting this expression of L±(z) in terms of ϕ into
the action (C.2) and performing the integral over z ∈ C, one eventually rewrites this action
as a 2D functional S[ϕ] on Σ.35 More precisely, one can bring this functional into the σ-model
form (2.3), from which we can read off the metric and B-field (G, B) of the target space T ,
which depend in a complicated way on the starting data (C, ω, Ẑ±, g, k). By construction,
the equations of motion of ϕ derived from this action are equivalent to the flatness of the
Lax connection L±(z), signalling the integrability of the model.

D 1-loop renormalisation of the elliptic DPCM using Ricci flow

This appendix provides further details on the calculations performed in section 4, concerning
the 1-loop renormalisation of the elliptic integrable deformed PCM. We will first focus
on the torsionful Ricci tensor, reviewing its connection to the RG-flow of σ-models. Then
we will perform the explicit computation of this tensor in three steps, first considering an
arbitrary choice of deformation (as one might expect, this leads to a rather complicated
expression); we will then focus on deformations that are diagonal in the Belavin basis; and
lastly, we will further specialise to the specific elliptic deformation discussed in subsection 4.1,
ending up with the result (4.22). Afterwards, we will show how this result allows us to
prove the 1-loop renormalisability of the integrable deformed PCM and the extraction of
the β-functions of its parameters (ℓ1, ℓ2, ρ, ẑ).

D.1 RG-Flow of σ-Models and the Ricci tensor

Generalised Ricci flow. Consider a general σ-model with worldsheet Σ and target space
T . We will denote a choice of coordinates on this space by

(
ϕ i
)d

i=1, the metric by Gij and
the B-field by Bij . The action of the model is then given by

S[ϕ] =
∫∫

Σ
dx+ dx− (Gij(ϕ) + Bij(ϕ)

)
∂+ϕ i ∂−ϕ j . (D.1)

34Note that these evaluations are still subject to residual 2D gauge symmetries and are thus not all physical.
35For the case with arbitrary pole structure in ω and arbitrary choice of boundary conditions, this 2D action

is most efficiently obtained using the formalism of edge modes, as done in [79].
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It is a well-known fact [18–21] that the 1-loop RG-flow of this σ-model is given by the
generalised Ricci flow36

d
dt
(
Gij(ϕ) + Bij(ϕ)

)
= ℏR+

ij(ϕ) , (D.2)

where R+
ij is the torsionful Ricci tensor associated with the target space geometry (T , G, B).

This tensor is defined in terms of the curvature of the Levi-Civita connection associated
with the metric G, to which we add the torsion H = dB induced by the B-field. We will
not detail this general definition here, but will later give a useful way of computing this
tensor for the class of models that we are interested in.

Vielbein. Let us now suppose that we are given a vielbein ei
α(ϕ) (with inverse eα

i(ϕ))
that makes the metric and B-field

Gαβ = Gij(ϕ) ei
α(ϕ) ej

β(ϕ) and Bαβ = Bij(ϕ) ei
α(ϕ) ej

β(ϕ) (D.3)

independent of the coordinates ϕ. In that case, we then sometimes refer to the labels α, β, . . .

as “flat-space indices”, in contrast with the initial coordinate indices i, j, . . . used to describe
the curved geometry. In these notations, the σ-model action simply becomes

S[ϕ] =
∫∫

Σ
dx+ dx− (Gαβ + Bαβ

)
eα

i(ϕ) eβ
j(ϕ) ∂+ϕ i ∂−ϕ j . (D.4)

Here, we will further suppose that the vielbein is independent of the parameters of the
theory. Under this assumption, the RG-flow (D.2) can be rewritten as

d
dt
(
Gαβ + Bαβ

)
= ℏR+

αβ , (D.5)

where R+
αβ = R+

ij ei
α ej

β is the torsionful Ricci tensor in flat indices. The main interest of this
reformulation is that the left-hand side of this equation does not depend on the coordinates
of the target space. A first necessary condition for the renormalisability of the theory is
therefore that the tensor R+

αβ also does not depend on these coordinates.

Expression of R+
αβ in terms of spin connections. It is a standard result of Riemannian

geometry that the torsionful Ricci tensor can be expressed as

R+
αβ = ∂γΩ+ γ

αβ − ∂αΩ+ γ
γβ +Ω+ γ

γδ Ω+ δ
αβ − Ω− δ

γα Ω+ γ
δβ , (D.6)

where ∂γ = ei
γ

∂
∂ϕ i and Ω± γ

αβ is the so-called torsionful spin connection. In practice, we will
not need the intrinsic geometric definition of this object. Rather, we will simply use the fact
that it can be extracted from the equations of motion (EoMs) of the σ-model. Indeed, one
shows that these equations, which read (2.4) in coordinate indices, can always be rewritten as

∂+
[
eα

i ∂−ϕi
]
+Ω+ α

βγ eβ
j eγ

k ∂+ϕj ∂−ϕk = 0 , (D.7a)

∂−
[
eα

i ∂+ϕi
]
+Ω− α

βγ eβ
j eγ

k ∂−ϕj ∂+ϕk = 0 , (D.7b)

in terms of the vielbein.
36One could in general also add a diffeomorphism term and an exact 2-form term on the right-hand side.

These will not be needed for the cases at hand.
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D.2 Ricci tensor for arbitrary deformations

Setup. We will now focus on σ-models that arise from linear deformations of PCMs. Thus,
let the target space T be a Lie group G, whose Lie algebra g is semi-simple. We consider a
deformed PCM, with a field g ∈ G and an arbitrary choice of constant, linear deformation
operator D : g → g. The corresponding action then takes the form (4.5), which we recall
here for the reader’s convenience:

SDPCM[g] =
∫

Σ
dx+dx−〈j+, D[j−]

〉
, (D.8)

written in terms of the Maurer-Cartan currents j± = g−1∂±g and the invariant pairing
⟨·, ·⟩ on g. We now choose a basis {Tα} for the Lie algebra g. We can then consider the
structure constants and the entries of the bilinear form and deformation operator in this
basis, defined through

[Tα, Tα] = f γ
αβ Tγ , καβ ≡ ⟨Tα, Tβ⟩ , Dαβ ≡ ⟨Tα, D[Tβ ]⟩ , (D.9)

where summation over repeated indices is implied.
Moreover, as in the main text, we write the G-valued field g in terms of coordinate

fields (ϕ i)d
i=1 and introduce eα

i(ϕ) as the component of Tα in g−1 ∂g
∂ϕ i . This allows us to

decompose the currents as

j± = jα
± Tα = eα

i(ϕ) ∂±ϕ i Tα (D.10)

and rewrite the action (D.8) as

SDPCM[g] =
∫∫

Σ
dx+ dx− Dαβ eα

i(ϕ) eβ
j(ϕ) ∂+ϕ i ∂−ϕj . (D.11)

Comparing this equation to (D.4), we see that eα
i(ϕ) defines a vielbein for the deformed

PCM and that the metric and B-field in flat indices are given by

Gαβ = 1
2 [Dαβ + Dβα] and Bαβ = 1

2 [Dαβ − Dβα] . (D.12)

As expected, these quantities are independent of the coordinates ϕ i.
We note that the vielbein eα

i is independent of the parameters of the σ-model. According
to the previous section, the RG-flow then takes the form (D.5), which in the present case reads

dDαβ

dt = ℏR+
αβ . (D.13)

Extracting the spin connections from the EoMs. As explained in equation (D.6), the
tensor R+

αβ can be expressed in terms of the torsionful spin connections Ω± α
βγ . Moreover, recall

that the latter can be easily read off the EoMs of the σ-model when written in the form (D.7).
In the present case, we see from the identity (D.10) that eα

i ∂±ϕ i = jα
±. The equations (D.7)

then take the following simple form in terms of the torsionful spin connections and the currents:

∂±jα
∓ + Ω± α

βγ jβ
± jγ

∓ = 0 . (D.14)
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To extract Ω± α
βγ , this is to be compared with the explicit EoMs obtained by varying the

action (D.8) with respect to g. As explained in the main text, these take the form (4.8).
Using the basis decomposition j± = jα

± Tα and equation (D.9), they become

Dαβ ∂+jβ
− + Dβα ∂−jβ

+ −
{

f δ
βα Dδγ + f δ

γα Dβδ

}
jβ

+ jγ
− = 0 . (D.15)

These EoMs are not quite in the desired form (D.14), since they contain derivatives of both
j+ and j−. To solve this problem, we use the Maurer-Cartan identity (4.9), which gives

∂−jα
+ = ∂+jα

− + f α
βγ jβ

+ jγ
− (D.16)

when written in components. This makes it possible to write the EoMs as

{Dαβ + Dβα} ∂+jβ
− +

{
f δ

βγ Dδα − f δ
βα Dδγ − f δ

γα Dβδ

}
jβ

+ jγ
− = 0 . (D.17)

To finally put this in the form (D.14), we take the contraction with the tensor Iαβ defined
as the inverse of Dαβ + Dβα, thus allowing us to read off Ω+. We can similarly substitute
∂+jα

− = ∂−jα
+ + f α

βγ jβ
− jγ

+ in (D.15) to extract Ω−. In the end, we are left with

Ω+ γ
αβ = Iγδ

{
f ε

αβ Dεδ − f ε
αδ Dεβ − f ε

βδ Dαε

}
, (D.18a)

Ω− γ
αβ = Iγδ

{
f ε

αβ Dδε − f ε
αδ Dβε − f ε

βδ Dεα

}
. (D.18b)

This is the equation (4.17) of the main text. Moreover, it coincides with [53, equation (5.16)],
up to differences in conventions.

Calculating the Ricci tensor. Having obtained an expression for the spin connection,
we can calculate the Ricci tensor by using (D.6). Since we assumed D to be constant (in the
sense of independent of the coordinates ϕ i), the same is true for Ω+, such that the first two
terms in (D.6) trivially vanish. For the third contribution, we need to calculate

Ω+ β
βα = −Iβγf δ

βγ Dδα + Iβγf δ
βα {Dγδ + Dδγ} . (D.19)

The first term is a contraction between the symmetric tensor I and the antisymmetric f

and thus vanishes. Using the definition of I, the second term becomes f β
βα = −Trg(adTα),

which is zero due to the unimodularity of the semi-simple Lie algebra g. Thus, only the
fourth term in (D.6) contributes and we are left with

R+
αβ = −Ω− δ

γα Ω+ γ
δβ , (D.20)

as claimed in equation (4.16) of the main text. Explicitly, this tensor then reads

R+
αβ = −IγηIδε

{
f ρ

γα Dερ − f ρ
γε Dαρ − f ρ

αε Dργ

}{
f σ

δβ Dση − f σ
δη Dσβ − f σ

βη Dδσ

}
,

(D.21)
in agreement with [53, equation (5.17)]. This is a closed-form expression for R+. However,
note that it includes a total of 6 internal indices and is thus hard to compute in general.
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D.3 Diagonal deformations

This is as far as we can get without specifying the form of D. We now take g = slC(N)
and we assume that D is diagonal in the Belavin basis (A.3). In particular, from now on,
we take the Tα’s to be elements of this specific basis, labelled by couples α = (α1, α2) in
A ≡ ZN ×ZN \{(0, 0)}. In this case, the bilinear form (A.6) and deformations coefficients read

καβ = −δα+β,0 ξ−β1β2 and Dαβ = −δα+β,0 ξ−β1β2 Dβ , (D.22)

with ξ = exp
(

2iπ
N

)
. Suspending the Einstein summation convention, the torsionful spin

connection (D.18) then greatly simplifies and can be expressed as

Ω± α
θσ = f α

θσ

{
D∓α + D±σ − D∓θ

Dα + D−α

}
, (D.23)

which in turn implies that the Ricci tensor (D.20) can be written in the form

R+
αβ = −

∑
θ,σ∈A

f θ
σα f σ

θβ

{Dθ + D−α − Dσ} {D−σ + Dβ − D−θ}
{Dθ + D−θ}{Dσ + D−σ}

. (D.24)

Furthermore, the structure constants in the Belavin basis can be easily extracted from the
commutation relations (A.4) and read

f γ
αβ = δα+β,γ√

N

(
ξα1β2 − ξβ1α2

)
. (D.25)

This expression can be used to prove the following identity for the product of structure
constants, where no summation over θ or σ is implied (the cross-product was defined in (B.13)):

f θ
σα f σ

θβ = − 4
N

sin2
(

π
σ × β

N

)
δθ+β−σ,0 καβ . (D.26)

Notice that καβ vanishes unless α + β = 0 and we can thus trade all β in (D.24) for −α.
Then we obtain the answer

R+
αβ = καβ R+

β (D.27)

with

R+
α ≡ 4

N

∑
θ,σ∈A

σ−θ=α

sin2
(

π
σ × α

N

) {Dα + Dθ − Dσ} {Dα + D−σ − D−θ}
{Dθ + D−θ}{Dσ + D−σ}

. (D.28)

These are the equations (4.19) and (4.20) of the main text.
Importantly, we see that R+

αβ = καβ R+
β has the same “diagonal” form as Dαβ = καβ Dβ .

Thus, the renormalisation (D.13) of a diagonal deformation does not introduce non-diagonal
terms at 1-loop and we get the following flow for the coefficients Dα:

dDα

dt = ℏR+
α . (D.29)
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D.4 Elliptic integrable deformations

In (D.28), we have reduced the contraction over 6 internal indices to a single sum. To
compute it, we now finally specialise to the elliptic integrable deformed PCM, for which the
coefficients Dα are given by (4.7). We will first simplify the fraction appearing in (D.28) to
make the calculation tractable. For that, we will rely heavily on certain properties of the
elliptic functions rα(z), which enter the expression (4.7) of Dα and are defined in (B.16).
We refer to the appendix B.2 for more details about these functions. Here, we will need
the following four identities:

1. The functions rα have a simple behaviour under reflection, namely

rα(z) = −r−α(−z). (D.30)

2. The functions rα satisfy the Fay identity

rα(z1) rβ(z2) = rα+β(z1) rβ(z2 − z1) + rα+β(z2) rα(z1 − z2). (D.31)

3. Taking the derivative with respect to z1 of the above equation, we obtain a related
identity:

rα′(z1) rβ(z2) = rα+β′(z1) rβ(z2 − z1)− rα+β(z1) rβ′(z2 − z1) + rα′(z1 − z2) rα+β(z2).
(D.32)

4. Lastly, by carefully considering limits, one can show:
d
dz

[
rα(z)rα(−z)

]
= −℘′(z) , (D.33)

where crucially the right-hand side is independent of α.

We will now compute the numerator and denominator of (D.28) separately.

Computing the numerator. First, consider the term Dθ−Dσ appearing in the numerator:

Dθ − Dσ = ρ
rσ′(ẑ)
rσ(ẑ) − ρ

rθ′(ẑ)
rθ(ẑ) . (D.34)

We use (D.30) to change θ to −θ and then (D.32) to simplify the expression, remembering
that the sum in (D.28) enforces σ − θ = α:

Dθ −Dσ = ρ
rσ′(ẑ) r−θ(−ẑ) + r−θ′(−ẑ) rσ(ẑ)

rσ(ẑ) r−θ(−ẑ) = ρ
rα′(−ẑ) rσ(2ẑ) + rα′(ẑ) r−θ(−2ẑ)

rσ(ẑ) r−θ(−ẑ) . (D.35)

Adding also the contribution from Dα, expanding rσ(ẑ) r−θ(−ẑ) using (D.31) in the numerator
to cancel terms and using (D.33) to simplify the rest, we find that the left bracket in the
numerator in (D.28) takes the form

Dα + Dθ − Dσ = ρ
℘′(ẑ) rσ(2ẑ)

rα(ẑ) rσ(ẑ) r−θ(−ẑ) . (D.36)

The right bracket gives a similar contribution, with σ ↔ −θ. Using (D.30) one last time,
the numerator in (D.28) finally evaluates to

{Dα+Dθ−Dσ}{Dα+D−σ−D−θ}=
ρ2 ℘′(ẑ)2

rσ(ẑ)rσ(−ẑ)rθ(ẑ)rθ(−ẑ)
rσ(2ẑ)r−θ(2ẑ)

rα(ẑ)2 . (D.37)
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Computing the denominator. Next, we work out the denominator. Using (D.30)
and (D.33), the left bracket in the denominator of (D.28) takes the form

Dθ + D−θ = ρ
rθ′(−ẑ)
rθ(−ẑ) − ρ

rθ′(ẑ)
rθ(ẑ) = ρ

℘′(ẑ)
rθ(ẑ) rθ(−ẑ) . (D.38)

We can compute Dσ + D−σ in the same fashion. In the end, we obtain

{Dθ + D−θ}{Dσ + D−σ} = ρ2 ℘′(ẑ)2

rσ(ẑ) rσ(−ẑ) rθ(ẑ) rθ(−ẑ) . (D.39)

Now we see that this exactly cancels the left fraction in (D.37). In the end, we have managed
to rewrite the elements R+

α as

R+
α = 4

N

∑
θ,σ∈A

σ−θ=α

sin2
(

π
σ × α

N

)
rσ(2ẑ) r−θ(2ẑ)

rα(ẑ)2 . (D.40)

Computing the sum. This has greatly simplified the result. The last step is to expand the
remaining product of rσ and r−θ and perform the summation. One might wish to use (D.31)
to get terms proportional to rα(2ẑ). However, note that we have to be careful with (D.31) if
z1 = z2, since the r.h.s. contains r(z2 − z1) = r(0), which is divergent. We will thus consider
displacing one of the 2ẑ by ε and take the limit as ε → 0. We then have

rσ(2ẑ + ε) r−θ(2ẑ) = rα(2ẑ + ε) r−θ(−ε) + rα(2ẑ) rσ(ε). (D.41)

Next, we can use the expression (B.16) of rα to find its limiting behaviour for small values
of the argument:

rα(ε) = 1
ε
+ ζ(qα)− Qα +O(ε). (D.42)

Inserting this into the expression above and taking the limit ε → 0 while using that ζ

is odd, we find

rσ(2ẑ) r−θ(2ẑ) = −rα′(2ẑ) + rα(2ẑ)
{
ζ(qσ)− Qσ

}
− rα(2ẑ)

{
ζ(qθ)− Qθ

}
. (D.43)

Importantly, this has separated the σ- and θ-dependence. Indeed, notice that the first term
in the expression above is independent of σ and θ: we are then free to perform the sum of
the sin2-terms overall σ ∈ A, which evaluates to N2/2. On the other hand, the second and
third terms depend only on σ and θ, respectively. Let us focus on the σ-dependent term, the
third one being treated in the same way. We note that it is odd with respect to the reflection
σ 7→ −σ, i.e. ζ(qσ)− Qσ = −ζ(q−σ) + Q−σ. In contrast, the sin2 factor is even: since we are
summing over all σ ∈ A, we then find that the sum must vanish. Thus, the final result is

R+
α = −2N

rα′(2ẑ)
rα(ẑ)2 , (D.44)

as claimed in the equation (4.21) of the main text.
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Rewriting the sum. In order to use the result (D.44) to extract the β-functions of the
model, as we will do in the next subsection, it is useful to re-express R+

α in terms of ζ-
functions. To achieve this, write the denominator as −rα(ẑ) r−α(−ẑ). One can then consider
an ε-expansion along the lines of (D.41), but this times with respect to the variable α; in
the end, we find

R+
α = 2N

ζ(2ẑ + qα)− ζ(2ẑ)− Qα

ζ(2ẑ + qα)− 2ζ(ẑ)− ζ(qα)
. (D.45)

Lastly, one can use the following addition theorem for ζ-functions:

ζ(z1 + z2) = ζ(z1) + ζ(z2) +
1
2

℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

. (D.46)

Using this twice, the numerator becomes

ζ(2ẑ + qα)− ζ(2ẑ)− Qα = −1
2

[
2 {Qα + ζ − ζα} −

℘′ − ℘′
α

℘ − ℘α
+ ℘′′

℘′

]
, (D.47)

while the denominator becomes

ζ(2ẑ + qα)− 2ζ(ẑ)− ζ(qα) = − ℘′

℘ − ℘α
, (D.48)

where we have introduced the shorthand f = f(ẑ) and fα = f(ẑ + qα) for f = ζ, ℘, ℘′, ℘′′,
which will simplify notations greatly in the next subsection. In all, we have thus successfully
simplified the torsionful Ricci tensor down to the expression

R+
α = N

℘′

[
2
{

℘α − ℘
}{

Qα + ζ − ζα + ℘′′

2℘′

}
−
{

℘′
α − ℘′

}]
. (D.49)

This is the equation (4.22) of the main text.

D.5 Extracting the RG-flow and the β-functions

Variation of Dα from running parameters. We now wish to show that the Ricci-
flow (D.29) of the coefficients Dα can be re-absorbed into a running of the parameters
(ℓ1, ℓ2, ρ, ẑ) from which they are built. Instead of using the half-periods ℓ1 and ℓ2 directly,
we will consider the Weierstrass invariants g2 and g3, defined by equation (B.5) — see
appendix B.1 for more details. The data of (g2, g3) is equivalent to that of (ℓ1, ℓ2) but the
former are slightly easier to work with in the present context. It will also be convenient
to use the modular discriminant, defined in equation (B.6) as ∆ = g3

2 − 27g2
3. From now

on, we thus see Dα as a function of (ρ, ẑ, g2, g3).
Our goal is to prove that the Ricci-flow (D.29) of Dα is induced by a variation of these

parameters. To do so, we need to rewrite it as

dDα

dt = βρ
∂Dα

∂ρ
+ βẑ

∂Dα

∂ẑ
+ βg2

∂Dα

∂g2
+ βg3

∂Dα

∂g3
, (D.50)

for some coefficients (βρ, βẑ, βg2 , βg3), which will then be interpreted as the β-functions of
the parameters (ρ, ẑ, g2, g3). The first step in this endeavour, which will be the subject of
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this paragraph, is to compute the partial derivatives appearing on the right-hand side of
this equation. Two of them are relatively simple:

∂Dα

∂ρ
= Qα + ζ − ζα and ∂Dα

∂ẑ
= −ρ {℘ − ℘α} . (D.51)

However, the g2 and g3 derivatives are substantially more complicated. For instance, we have

∂Dα

∂g2
= ρ

[
∂Qα

∂g2
+ ∂ζ

∂g2
− ∂ζα

∂g2

]
, (D.52)

with each derivative in turn being given by

∂Qα

∂g2
= 2g2

2Qα−3g2g3qα

8∆ ,
∂ζ

∂g2
= 2(g2

2+18g3℘)ζ−g2 (3g3+2g2℘) ẑ+18g3℘′

8∆ ,

∂ζα

∂g2
= 2(g2

2+18g3℘α)ζα−g2 (3g3+2g2℘α) ẑ+3g3(6℘′
α−g2qα−12℘αQα)

8∆ , (D.53)

using various identities obeyed by the Weierstrass functions. Combining this together, we find

∂Dα

∂g2
= ρ

8∆
[
2g2

2 {Qα+ζ−ζα}−2g2
2 ẑ {℘−℘α}+18g3

{
2Qα℘α+℘′−℘′

α

}
+36g3 {℘ζ−℘αζα}

]
.

Similarly, the g3 derivatives read

∂Qα

∂g3
= g2

2qα−18g3Qα

4∆ , ∂ζ

∂g3
=−6(3g3+2g2℘)ζ−(g2

2+18g3℘)ẑ+6g2℘′

4∆ ,

∂ζα

∂g3
=−6(3g3+2g2℘α)ζα−(g2

2+18g3℘α)ẑ+g2(6℘′
α−g2qα−12℘αQα)

4∆ , (D.54)

allowing us to write

∂Dα

∂g3
= ρ

8∆
[
−36g3 {Qα+ζ−ζα}+36g3ẑ {℘−℘α}−12g2 {2Qα℘α+℘′−℘′

α}−24g2 {℘ζ−℘αζα}
]
.

To simplify the final expression, we will use the β-function of the modular discriminant
∆, given by

β∆ = 3g2
2βg2 − 54g3βg3 . (D.55)

We can then rewrite the desired form (D.50) of the flow of Dα as

dDα

dt =
[ 3ρ

4∆ {3g3βg2 − 2g2βg3}
] [

2℘α{Qα − ζα} − ℘′
α

]
+
[
ρβẑ +

ρẑ β∆
12∆

]
℘α

+
[
βρ +

ρ β∆
12∆

] [
Qα − ζα

]
+
[
βρ +

ρ β∆
12∆

]
ζ −

[
ρβẑ +

ρẑ β∆
12∆

]
℘

+
[ 3ρ

4∆{3g3βg2 − 2g2βg3}
] [

℘′ + 2℘ζ
]
. (D.56)

We finally note that if one knows βg2 and βg3 , one can easily find the β-function of
ℓi, which reads

βℓi
= 18g3 [Liβg2 + ℓiβg3 ]− g2 [g2ℓiβg2 + 12Liβg3 ]

4∆ . (D.57)
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Matching with the Ricci-flow. We now want to match the two expressions (D.29)
and (D.56) of the flow of Dα. To do so, we reexpand the Ricci tensor (D.49) appearing
in (D.29) in terms whose α-dependence match those of (D.56):

R+
α = N

℘′

[
2℘α{Qα−ζα}−℘′

α

]
+
[2N

℘′

{
ζ+ ℘′′

2℘′

}]
℘α−

2N℘

℘′

[
Qα−ζα

]
−N

℘′

[
2℘
{

ζ+ ℘′′

2℘′

}
+℘′

]
.

One then finds that the flows (D.29) and (D.56) perfectly match for all α ∈ A if one enforces
the following relations between the β-functions:

3g3βg2 − 2g2βg3 = 4ℏ∆N

3ρ ℘′ , βẑ +
ẑ β∆
12∆ = 2ℏN

ρ ℘′

[
ζ + ℘′′

2℘′

]
, βρ +

ρ β∆
12∆ = −2ℏN℘

℘′ .

These equations are underdetermined: indeed, we have 3 relations for 4 β-functions, recalling
that β∆ depends on βg2 and βg3 through equation (D.55). This means that we will get an
unconstrained parameter b in the final expressions of (βρ, βẑ, βg2 , βg3). Explicitly, we find

βρ = ℏN

(
−2℘(ẑ)

℘′(ẑ) + b ρ

)
, βẑ = ℏN

(2ζ(ẑ)℘′(ẑ) + ℘′′(ẑ)
ρ ℘′(ẑ)2 + b ẑ

)
, (D.58)

βg2 = −4ℏN

( 3 g3
ρ ℘′(ẑ) + b g2

)
, βg3 = −6ℏN

(
g2

2
9ρ ℘′(ẑ) + b g3

)
. (D.59)

Note that there is some freedom in the way the unconstrained coefficient b enters these
expressions, as one could for instance consider shifts or dilations of it by any functions of the
other parameters. The form considered here has been chosen to facilitate the identification of
b in the ∂Ψ-conjecture and its interpretation in terms of dilations of the spectral parameter.
We refer to the main text and in particular subsections 4.3 and 4.4 for more details.

The β-function of the modular discriminant ∆ can be easily determined from that of
the Weirstrass invariants (g2, g3) and the relation (D.55). One then finds the particularly
simple expression

β∆ = −12ℏN b∆ . (D.60)

Finally, one can determine the β-function of the half-period ℓi, which is related to (βg2 , βg3)
by the identity (D.57). This yields

βℓi
= ℏN

( 2Li

ρ ℘′(ẑ) + b ℓi

)
. (D.61)

Together, the equations (D.58) and (D.61) form the result (4.25) announced in the main text.
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Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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