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1 Introduction

One of the original motivations for the modern revival of the conformal bootstrap (see [1–4]
for reviews) was the question whether there exists an upper bound on the interaction strength
of a relativistic quantum field theory [5]. An effective field theory version of this question can
be framed as follows: given a dimension 2k+4 operator, can we show that its corresponding
Wilson coefficient g is bounded by (naive dimensional analysis of [6])

g

(4π)2 ≤ O(1)
M2k

, (1.1)

where the coefficient is normalized by a standard loop factor and M is the cut-off scale for
UV physics. Note that in principle this statement is a tautology since any EFT coupling
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saturating the O(1) bound at the cut-off will already be strongly coupled below the cut-off
scale, and not a valid description. However, a direct derivation of the bound from axioms of
quantum field theory can be viewed as a proof that dimensional analysis of EFT couplings is
a theorem. Furthermore, as the couplings can be equally expressed as dispersive integrals
linear in the S-matrix, such upper bounds are then applicable for observables whose low
energy limit reduces to the couplings [7].

The fact that higher dimension operators are constrained by their dispersive representation
was known long ago as “positivity bounds” of leading higher dimension operators [8] (see [9,
10]), where the forward limit dispersion relations related the Wilson coefficient to a definite
positive integral. In recent years, progress has been made in extending beyond the forward
limit, including to scattering of particles with spin or mass [7, 11–41]. Importantly, the linchpin
of gravitational EFTs, the graviton pole reflecting its long-range nature, was successfully
incorporated through impact parameter space dispersion relations [42–45]. See also [46, 47]
for recent reviews.

To set up the problem we will be exploring in this paper, let us begin with the partial
wave representation of the four-scalar amplitude (see [48] for a detailed discussion)

M(s, t) = s
D−4

2
∑

ℓ=even

nD
ℓ fℓ(s)PD

ℓ

(
1 + 2t

s

)
, (1.2)

where PD
ℓ are the D-dimensional Gegenbauer polynomial and

nd
ℓ = (4π)

D
2 (d+2ℓ−3)Γ[d+ℓ−3]
πΓ
[

d−2
2

]
Γ[ℓ+1]

. (1.3)

At low energy, where the theory admits an EFT description, the amplitude is given by a
polynomial in s and t,

M IR(s, t) =
∑
k,q

gk,q s
k−qtq . (1.4)

These Taylor coefficients are linearly related to the Wilson coefficients of the on-shell action,
with 2k counting the total number of derivatives. The coefficients can be analytically defined
from the full amplitude via

gk,q ≡ 1
2πi(q!)∂

q
t

∮
s=0

ds

sk−q+1M(s, t) (1.5)

This can be viewed as an on-shell definition of the EFT coefficients. Here we are neglecting
the effects of massless loops, which can be incorporated by defining the coefficients on “arcs”
on the s-plane [18, 49]. Through the dispersion relation, these EFT couplings are related
the imaginary part of the amplitude:

gk,q = 1
2π(q!)∂

q
t

(∫ ∞

M2

ds′

s′k−q+1+
∫ ∞

−M2−t

ds′

s′k−q+1

)
Im[M(s′, t)]

= 1
2π
∑

ℓ

nD
ℓ λ

D
ℓ,k,q

∫ ∞

M2

ds′

s′k+1 ρℓ(s′) , (1.6)
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where unitarity bounds the spectral parameters to 0 ≤ ρℓ(s) ≡ Im[fℓ(s)] ≤ 2 and the
coefficients λD

ℓ,k,q receive contributions from both s- and u-channel thresholds and are given by:

λD
ℓ,k,q ≡ 1

q!∂
q
t

[(
1− 1

(k−q)!∂
k−q
s

1
s+t+1

)
PD

ℓ (1+2t)
] ∣∣∣∣

s,t=0
. (1.7)

Note that λℓ,k,q is always a function of the spin Casimir J 2 = ℓ(ℓ+D−3). In the remainder
of the paper we will consider only D = 4. Bounds in other dimensions can be just as easily
derived. We next set the cut-off M2 = 1 and define z = 1/s′ to write

gk,q =
∑

ℓ

vℓ,k,q

∫ 1

0
ρℓ(z)zk−1dz, 0 ≤ ρℓ(z) ≤ 2 , (1.8)

where vℓ,k,q = 16(2ℓ+1)λℓ,k,q. This form of the dispersion relation will be the central object of
our study. Finally, extra constraints on the couplings can be derived by requiring the dispersion
relation to be consistent with permutation invariance. This translates to null constraints,
expressing the fact that various couplings at equal mass dimension must be linearly related.

So far most of the focus in the literature has been on projective bounds, where one only
bounds ratios of gk,q. This is a reflection that when using either numerical semi-definite
programming (SDP) [50, 51], pioneered for the EFT bootstrap in [7], or analytical convex
geometry (EFThedron) [20, 52], one only uses 0 ≤ ρℓ(s). To obtain non-projective bounds,
imposing the upper bound on ρℓ(s) is required. In [7], the ρℓ(s) ≤ 2 was implemented for
g2,0 with a single null constraint at k = 4.1 The physical meaning of bounds originating
from this constraint requires some explanation. In this paper we will neglect loop effects
in the EFT, which amounts to assuming it is weakly coupled, ie. gk,q≪1. At the same
time, we will derive non-projective upper bounds on these couplings, of the type gk,q<#.
One way to view such bounds is they correspond to the massless limit of otherwise massive
external particles, as done in [54].

We will study this problem from a geometrical perspective.2 Ignoring the upper bound
on ρ(z) first, the space of couplings can be viewed as a projective positive geometry, defined
by the “moment problem” [18, 49, 52]. In its most basic form, the moment problem asks
what sequences of numbers a1, a2, a3, . . . can be expressed as

ak =
∫ ∞

−∞
ρ(z)zk−1dz, ρ(z) ≥ 0 . (1.9)

The solution is that the Hankel matrices

H =


a1 a2 a3
a2 a3 a4 · · ·
a3 a4 a5

... . . .

 , (1.10)

1Non-perturbative unitarity bounds have also been implemented in the gravitational EFT context using an
ansatz approach [53], where the EFT is scaled with respect to Mpl, and thus those not assume a perturbative
scale M .

2Some of the results presented here have been implemented by the authors in the gravitation context in [55],
where a numerical approach using linear programming was also introduced.
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must be positive semi-definite. Different integration domains for z will translate to positivity
of various generalizations of the Hankel matrix. The dispersion relation is a more general
form of the moment problem, asking what sequences of numbers ak1,q1 , ak2,q2 , . . . satisfy

ak,q =
∑

ℓ

λℓ,k,q

∫ 1

0
ρℓ(z)zk−1dz, ρ(z) ≥ 0 . (1.11)

In [20] this problem was treated as a product geometry between a single moment problem
and a cyclic polytope, and was termed the EFThedron, adding yet another facet to our
understanding of scattering amplitudes through geometry [56]. In [52] the complete solution
to this problem was formulated by treating it as a double moment problem, whose solution
involves a generalization of the Hankel matrices, called moment matrices, together with
positivity constraints enforcing ℓ ∈ N. One can alternatively view eq. (1.11) not as a double
moment, but as a Minkowski sum of individual single moments, one for each spin. Since the
boundaries of single moments are usually much easier to establish, the problem is reduced
to computing the Minkowski sum of individually simple geometrical objects. This is the
approach we will take in this paper.

We will introduce a systematic way of implementing the unitarity upper bound in the
dispersion relation, revealing a fascinating geometric structure, of which the EFThedron was
only a limiting case. At the core of this new geometry is the bounded version of eq. (1.9),
where now we also have the constraint ρ(z) ≤ L. This generalization is known as the L
moment problem, and was first solved a century ago [57], with generalizations and new
approaches developed since (see eg. [58–60]). The solution can be expressed in terms of
more general Hankel-type matrices, but the boundaries themselves are parameterized by
simple functions. For example, in 2D, for a space of moments (ak1 , ak2), the allowed region
is bounded by two curves

lower bdy: (ak1 , ak2) =
(
L
mk1

k1
, L
mk2

k2

)
,

upper bdy: (ak1 , ak2) =
(
L
1−mk1

k1
, L

1−mk2

k2

)
, (1.12)

where m is a parameter ∈ [0, 1]. As we take L → ∞ we are left only with projective
boundaries. We sketch this in figure 1.

The next step is to compute the dispersion relation as the Minkowski sum of single
L-moments, one for each spin and rescaled by the λℓ,k,q factors. Since the boundary of a
Minkowski sum A + B is contained in the Minkowski sum of the boundaries of A and B,
we simply take a sum of boundary parametric curves such as eq. (1.12) and extremize with
respect to the parameters. For example, the Minkowski sum of two moments is shown in
figure 2(a). Remarkably, we find that the Minkowski sum of an infinite number of moments
converges in many of our cases of interest, leading to the non-projective EFThedron. This
geometric object has an infinite number of distinct facets, each resulting from the Minkowski
sum of different subsets of spins. We sketch an example in figure 2(b).

Using this analytic geometry, we can now derive bounds for individual couplings. For
example, for gk,0 with k ∈ even, imposing permutation invariance at eighth derivative order
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Figure 1. The allowed space for single L-moments, for L = 1, 2,∞. For L = ∞ only the projective
bounds 0 ≤ a2/a1 ≤ 1 are left.

(a) Structure of the Minkowski sum of two
single moments.

(b) Minkowski sum for two and an infinite
number of moments.

Figure 2. Minkowski sums of single L-moments.

(k = 4) we reproduce the result for g2,0 in [7], while for 4 ≤ k ≤ 256 we find

gk,0
(4π)2 ≤ 2

k

(
30− 18

(35
36

) k
4
)

1
π2M2k

, (1.13)

with small corrections for higher k, illustrated in figure 3. While the leading derivative
operators are bounded by O(1), subsequent operators are in fact suppressed as 1/k for
k ≫ 1. Such results are stronger than the combination of non-projective bounds for a single
operator and projective bounds for the remaining, which would only imply gk,0 ≤ gk,2. In
figure 4 we compare this bound with the EFT coefficients arising from the UV amplitude of a
massive scalar at one loop. The massive scalar satisfies the bound due to combinatorics from
expanding the loop integrand at low energies. Similar to the projective geometry, in higher
dimensional spaces we can derive analytic expressions for the boundaries, which we compare
to numerical results from linear programming (LP), as well as previously known projective
bounds. For example, with permutation invariance imposed at k = 4, we obtain figure 5.
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Figure 3. Upper bound on gk,0, as a function of
k, with k = 4 null constraint. Blue corresponds
to eq. (1.13), valid for k ≤ 256, while red is valid
for 258 ≤ k ≤ 1876; both exhibit 1/k dropoff.

Figure 4. Eq. (1.13) compared to the massive
scalar amplitude, after normalizing by matching
at g4,0; the scalar amplitude exhibits a stronger,
approximately 1/k! dropoff.

Figure 5. Allowed region for the space (g2,0, g3,1) subjected to the null constraint at k = 4. The
various boundaries contain contributions from different subsets of spins. In contrast, the projective
bounds only imply bounds on the ratio g3,1/g2,0.

The paper is organized as follows. In section 2 we find the non-projective polytope
resulting from the Minkowski sum of finite segments. In addition to describing the space of
couplings at equal mass dimension, we then show how this result can be used to solve the single
L-moment problem. We present other aspects of the L moment problem, including Hankel
constraints, in appendix A. In section 3 we compute the Minkowski sum of single L moments.
This is carried out by extremizing the sum using Lagrange multipliers, but we also discuss
an alternative solution in appendix B. We solve this problem completely in 2D. For higher
dimensions we present closed form solutions for particular cases. In appendix C we discuss
how this approach could be extended to more general cases. In section 4 we apply the results
to obtain physical bounds on the scattering amplitude of four massless scalars. Although not
directly applicable to our four scalar amplitude, in appendix D we show how the previous
results can be used to impose the low spin dominance condition. We conclude in section 5.
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2 De-projection of convex hulls

As reviewed in the previous section, the dispersive representation of EFT coefficients generally
takes the form

ak,q =
∑
ℓ∈N

vℓ,k,q

∫ 1

0
ρℓ(z)zk−1dz, 0 ≤ ρℓ(z) ≤ 2 . (2.1)

When we neglect the upper bound on ρℓ, the space for allowed ak,q is projective and one
can only bound the ratios of ak,q. The corresponding projective space is characterized by
the convex hull of a product of projective moments, with boundaries given in terms of cyclic
polytopes, Hankel and moment matrices as described in [20, 52].

To incorporate the effects of the upper bound, we will view the geometry as the Minkowski
sum of individual convex spaces. To illustrate this point, we will first consider the space of
equal k moments (corresponding to the space of equal mass dimension operators)

(ak,q1 , ak,q2 , . . . , ak,qD
) . (2.2)

For equal k, the integral ρ̃ℓ ≡
∫ 1

0 ρℓ(z)zk−1dz is some number bounded by 0 and L
k ,

identical in all coordinates (ak,q1 , ak,q2 , . . . , ak,qD
). Therefore the space is defined by

ak,q =
∑

ρ̃ℓvℓ,k,q, ρ̃ℓ ∈
[
0, L
k

]
. (2.3)

For the limiting case L = ∞, the above expression is a Minkowski sum of infinite rays,
and leads to a cyclic polytope, as described in [20]. Here we will find the non-projective
generalization of the cyclic polytope, where the infinite rays are just finite segments.

Besides providing the solution to the equal k space of couplings, this result will also
allow us to derive the boundaries for a closely related geometry: the L-moment problem.
This concerns the space of ak (for non-equal k) given by

ak =
∫ 1

0
ρℓ(z)zk−1dz, 0 ≤ ρℓ(z) ≤ L . (2.4)

The limit L→ ∞ corresponds to the Hausdorff moment problem, whose solution is given by
the positivity of Hankel matrices constructed from ak. We will derive the solutions for finite
L by taking a continuum limit of the non-projective polytope describing eq. (2.3).

2.1 Minkowski sums

In this section we review some basic notions related to Minkowski sums. Let us consider
two regions A,B with each point inside the regions defined by a vector. The Minkowski
sum of the two regions is then given by all possible pairs of vectors, one from A and one
from B, and taking their sum:

A+B = {a+b, ∀a ∈ A, ∀b ∈ B} . (2.5)

It can be understood as translating the region B by all vectors a ∈ A, or vice versa. As an
example consider A and B to be separate disks shown in figure 6. Their Minkowski sum is
displayed as the light blue region, which contains any vector in B shifted by all vectors in A.
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Figure 6. The Minkowski sum of two disks A and B. Note that the sum of two points on the
boundary of individual region is not necessarily on the boundary of the Minkowski sum.

Figure 7. The Minkowski sum of the boundary of the two disks ∂A+∂B. We see that it gives a
annulus with two boundaries, and only one is the true boundary of the Minkowski sum.

We will be interested in characterizing this sum in terms of its boundaries ∂(A+B),
which are determined by the individual boundaries ∂A and ∂B. More precisely, any vector
on ∂(A+B) must be comprised by the sum of a vector on ∂A and a vector on ∂B. However
the reverse is not necessarily true, as illustrated in the above figure, where a sum of boundary
vectors sits inside the Minkowski sum. In fact, the boundary of the Minkowski sum A+B is a
subset of boundaries for the Minkowski sum ∂A+∂B. Indeed for our example in figure 7, the
Minkowski sum of ∂A (denoted by the red contour) and ∂B (denoted by the blue contour)
covers a subregion of A+B which contains two boundaries, with the outer one being ∂(A+B) .
In summary, when one is interested in the boundary of a Minkowski sum, only the boundaries
of the individual sets are relevant.

Let us take a simpler example which will be of immediate use. Consider the Minkowski
sum of three segments labeled 1, 2, 3 in figure 8. The boundary of each segment is given by
the end points. Thus following the discussion above, the boundary of the Minkowski sum is
given by the Minkowski sum of the end points, i.e. three vectors. In this case, the vectors
are labeled according to their slope, and thus the boundary can be sequentially constructed

– 8 –
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Figure 8. The Minkowski sum of three segments labelled 1,2,3, ordered according to their slope.

by starting with the vector with the smallest slope, and successively adding the next vector
until all vectors are included. Then one starts subtracting the first vector and so forth until
one is left with the vector of the largest slope.

2.2 De-projecting the cyclic polytope

Consider the space of equal k moments given by eq. (2.3), which we can rewrite as

a ≡
∑

ℓ

mℓvℓ, mℓ ∈ [0, 1] (2.6)

where vℓ = L
k (vℓ,q1 , vℓ,q2 , · · · , vℓ,qD

), and assume the vectors vℓ,k,q, are cyclically ordered
by ℓ in the sense that,

det
(
vi1 vi2 vi3 . . .

)
≡ ⟨i1, i2, i3, · · · iD⟩ ≥ 0, ∀i1 < i2 < i3 · · · < iD . (2.7)

Two dimensions. Let us start in two dimensions, where the N ordered vectors vℓ satisfy

⟨i1, i2⟩ > 0, ∀i1 < i2 . (2.8)

As a consequence the relative angle of any two vectors is less than π and they span at most
a half space. From the example in the beginning of this section, it is straightforward to
determine that the Minkowski sum is a polygon with 2N ordered vertices Vi =

∑
j<i vj and

V̄i =
∑

j>i vj , 1 ≤ i ≤ N . This region can be characterized by the inequalities

det
(
1 1 1
a Vi Vi+1

)
, det

(
1 1 1
a V̄i V̄i+1

)
≥ 0, 1 ≤ i ≤ N , (2.9)

where we have V1 = V̄N+1 = 0. Note that the boundaries are non-linear in a, since the
geometry is non-projective. As an example the Minkowski sum with N = 2, 3, 4 vectors
are displayed in figure 9.

In higher dimensions we can derive the boundaries by projecting the Minkowski sum to
1D. Each projection will give necessary constraints corresponding to two of the co-dimension
1 boundaries. Let us use the 2D example as an illustration. We project all the vectors vℓ

to the one-dimensional line orthogonal to one of the vectors, say vi. The end-points of the
projected segments are now given by 0 and

v
(i)
j ≡ 1

|vi|
⟨j, i⟩ . (2.10)

– 9 –
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Figure 9. 2D polytope for N = 2, 3, 4, with vi = (1, i).

Figure 10. Projecting vectors v to the line orthogonal to vi. The projection of any vector a in the
Minkowski sum must lie between the end points V (i)

i,N and V
(i)

1,i .

If the vectors satisfy eq. (2.8), the projections are oriented according to the ordering: segments
corresponding to 1 ≤ j ≤ i are in the negative direction, while segments corresponding to
i ≤ j ≤ N are in the positive direction.3 This projection is shown in figure 10. The end
points of the 1D Minkowski sum are then simply the sum over the 1D vectors on either
side respectively:

V
(i)

1,i ≡
∑
j≤i

v
(i)
j =

∑
j≤i

1
|vi|

⟨j, i⟩ = 1
|vi|

⟨V1,i, i⟩ ,

V
(i)

i,N ≡
∑
j≥i

v
(i)
j = 1

|vi|
⟨Vi,N , i⟩ , (2.11)

where we have defined Vi1,i2 =
∑i2

j=i1
vj . The last form indicates that a 1D end point is

the projection of one of the vertices of the whole 2D Minkowski sum, as it must. Now a
necessary condition for any point a to be inside the Minkowski sum is that its projection

3Note that for notational simplicity, we are considering vi to be part of both sets. Including it or not does
not change any of the equations, since v(i)

i = 0.
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through vi must lie within the 1D boundaries. This implies

⟨Vi,N , i⟩ ≤ ⟨a, i⟩ ≤ ⟨V1,i, i⟩ . (2.12)

We obtain two boundaries, which we denote as

P lower
i ≡ −⟨a−V1,i, i⟩ = det

(
1 1 1
a V1,i V1,i

)
3×3

≥ 0 ,

P upper
i ≡ ⟨a−Vi,N , i⟩ = det

(
1 1 1
a Vi,N Vi,N

)
3×3

≥ 0 , (2.13)

matching the boundaries in eq. (2.9). Successively repeating the same operation for each
vector vi then yields the complete set of boundaries. Throughout this paper, we will often
refer to boundaries as either upper or lower, labeled in terms of how they would appear
in plots. There is however a more invariant definition: given a set of ordered segments,
the vertices of the lower boundary are obtained from the successive sum starting from the
beginning of the ordering, while the upper boundaries are from the successive sum starting
from the end of the ordering. This is apparent from eq. (2.12). In higher dimensions the
equivalent distinction will be such that the upper boundary is the one containing Vi,N

(regardless of whether it also contains V1,i).
To check these boundaries are correct and can also be saturated, we can substitute

a by its general form in eq. (2.6), a =
∑

j mjvj , where 0 ≤ mj ≤ 1. Since a−V1,i =∑
j<i(mj−1)vj+

∑
i≥j mjvj , the determinant in eq. (2.13) then becomes

Pi =
∑
j<i

(1−mj)⟨j, i⟩ −
∑
j>i

mj⟨j, i⟩ . (2.14)

Due to the cyclic condition, we have that ⟨j, i⟩ is positive for j < i, and negative for j > i,
therefore the expression above is non-negative term by term. These are true boundaries since
the equality Pi = 0 can be saturated by taking mj = 1 for j < i and mj = 0 for j > i, while
mi can be any value between 0 and 1, parameterizing the edge between vertices i and i+ 1.

3D. We next consider three-dimensional vectors, which we again assume satisfy the ordering
of eq. (2.7). We will derive the boundary by considering two successive projections down to
1D, through two vectors vi1 and vi2 , for i1 < i2. Since the vectors are ordered, we deduce:

⟨j, i1, i2⟩ > 0 , j<i1<i2 ,

⟨j, i1, i2⟩ < 0 , i1<j<i2 ,

⟨j, i1, i2⟩ > 0 , i1<i2<j .

(2.15)

That is, when projecting twice down to 1D, the remaining N−2 vectors will be split into two
sets: the vectors vi1+1,vi1+2, . . . ,vi2−1 yield points on one side, and vi2+1,vi2+2, . . . ,vi1−1
on the other.4 The resulting end points of the one-dimensional Minkowski sum are then

4The ordering is cyclic, thus vN+1 ≡ v1.
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Figure 11. 3D polytope with N = 5.

given by summing over the vectors in the respective sets. By requiring any point in the
Minkowski sum to lie between the two endpoints we obtain

⟨Vi1,i2 , i1, i2⟩ ≤ ⟨a, i1, i2⟩ ≤ ⟨V1,i1+Vi2,N , i1, i2⟩ , (2.16)

or

Pi1,i2 ≡ ⟨a−Vi1,i2 , i1, i2⟩ ≥ 0,
P i1,i2 ≡ −⟨a−V1,i1−Vi2,N , i1, i2⟩ ≥ 0 . (2.17)

The complete boundary is then given by the collection of Pi1,i2 , P i1,i2 for all pairs of {i1 < i2}.
We present an example with N = 5 vectors in figure 11. Note that in this case we refer
to P as the upper boundary, as it contains Vi2,N .

General dimension. In D dimensions each boundary is labeled by D−1 indices, corre-
sponding to the D−1 vectors we use to project. We denote this set as I = (i1, i2, i3, . . . iD−1),
1≤i1<i2< . . .<iD−1≤N . Now we must compute, for a given set of projections I, whether
a vector vj has positive or negative projection. Let

I− = {j|v(I)
j ≤ 0}, I+ = {j|v(I)

j ≥ 0}. (2.18)

If the v are ordered, we have, for D = even:

I− = [1, i1] ∪ [i2, i3] ∪ . . . ∪ [iD−2, iD−1]
I+ = [i1, i2] ∪ [i3, i4] ∪ . . . ∪ [iD−1, iD] (2.19)

and for D = odd:

I− = [i1, i2] ∪ [i3, i4] ∪ . . . ∪ [iD−2, iD−1]
I+ = [1, i1] ∪ [i2, i3] ∪ . . . ∪ [iD−1, iN ] (2.20)
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To maintain our convention that the upper boundary, corresponding to the P I ≥ 0, is the
one containing vN , we then define VI and VI such that for D = even:

lower: VI ≡
∑

i∈I+

vj = V1,i1 + Vi2,i3 + . . .ViD−2,iD−1 ,

upper: VI ≡
∑

i∈I−

vj = Vi1,i2 + Vi3,i4 + . . .ViD−1,N , (2.21)

and for D = odd:

lower: VI ≡
∑

i∈I−

vj = Vi1,i2 + Vi3,i4 + . . .ViD−2,iD−1 ,

upper: VI ≡
∑

i∈I+

vj = V1,i1 + Vi2,i3 + . . .ViD−1,N . (2.22)

Then we have the constraints

PI = (−1)D+1⟨a−VI , i1, i2, . . . , iD−1⟩ ,
P I = (−1)D⟨a−VI , i1, i2, . . . , iD−1⟩ . (2.23)

By considering all possible choices 1 ≤ i1<i2< . . .<iD−1≤N we obtain the complete
boundary.

Non-cyclic vectors. In the case where the vs cannot be cyclically ordered, then we no
longer know beforehand whether the 1D projection of any vector will be positive or negative.
Therefore, eqs. (2.19) and (2.20) no longer necessarily follow from the definition in eq. (2.18).
In such case one has to individually check, for every sequence I, which vectors v belong to
which set, I+ or I−, and use this to compute V and V. In practice, since we are interested in
intersecting the geometry with a null constraint, this means only a finite number of boundaries
are relevant, so this is a trivial computational task.

In two dimensions only vectors spanning more than a half-plane cannot be cyclically
ordered, and the problem can be solved straightforwardly. We first pick a half-plane,5 and
name the vectors in this half-plane v, and the remaining ṽ. The Minkowski sum is now

a =
∑

i

mivi +
∑

i

miṽi . (2.24)

Next we add and subtract
∑

i ṽi. Since the sum is associative, we can group this as

a =
(∑

i

mivi +
∑

i

(mi − 1)ṽi

)
+
∑

i

ṽi . (2.25)

The combinations (mi − 1)ṽi are now segments in the same half-plane as the v, so the sum
in parantheses can be computed as before, simply ordering the vectors according to their
slope vℓ,k2,q2/vℓ,k1,q1 . Finally we translate the whole boundary by

∑
i ṽi.

5In the physical problem, there will be an infinite number of vectors, but always accumulating in a single
quadrant. In this case we must pick the half-plane including this quadrant.
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2.3 De-projecting the moment problem: The L-moment

Let us now consider a different problem, where our previous result will guide us to the answer.
We want to find the allowed space of moments (ak1 , ak2 , . . .) that satisfy

ak =
∫ 1

0
ρ(z)zk−1dz, 0 ≤ ρ(z) ≤ L . (2.26)

This is known as the “L-moment problem” [61, 62]. We will solve it in a straightforward
fashion by taking the continuous limit of the polytope discussed in the previous section. To
relate the two we express the above integral as a Riemann sum

ak =
∫ 1

0
ρ(z)zk−1dz →

N∑
i=1

ρi
ik−1

Nk
, (2.27)

where ρi ≡ ρ(i/N) ≤ L. We can then write the above as

ak =
N∑

i=1
mivi,k, m ∈ [0, 1] (2.28)

where vi,k = Lik−1/Nk. Expressed as a discrete sum the L moment problem is equivalent to
a Minkowski sum of segments, with endpoints at 0 and L(vi,k1 , vi,k2 , . . .). Furthermore, the
vi,k are ordered, as taking a collection of N such vectors the resulting N ×N determinant
will be proportional to the Vandermonde determinant, and thus eq. (2.7) holds. The results
in the previous section therefore apply to this case, so the vertices of the Minkowski sum
in eq. (2.28) are given by eq. (2.23). As we take N → ∞, the infinite number of polytope
boundaries merge into a smooth boundary.

Two dimensions. Let us take the two dimensional space (ak1 , ak2) as an example. From
the previous subsection, the vertices are

V1,i|k = L
i∑

j=1
vj,k = L

i∑
j=1

jk−1

Nk
. (2.29)

Now we define m ≡ i
N ∈ [0, 1] and z ≡ j

N ∈ [0,m], which in the N → ∞ limit can be treated
as continuous parameters. The sum in eq. (2.29) simply becomes an integral

V1,i|k = L
i∑

j=1

jk−1

Nk
→ L

∫ m

0
zk−1dz = L

mk

k
, (2.30)

and the boundary vertex is a point on the parametric curve

(ak1 , ak2) = (Uk1(m), Uk2(m)), Uk(m) ≡ L
mk

k
. (2.31)

Similarly for the vertices of type Vi,N in the continuous limit we obtain:

(ak1 , ak2) = (Uk1(m), Uk2(m)), Uk(m) ≡ L
1−mk

k
. (2.32)
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Figure 12. (a1, a2) allowed space and boundaries. In the limit L = ∞, only the projective boundaries
0 ≤ a2/a1 ≤ 1 are left.

Note that we can rephrase the boundary as a particular solution for ρ(z). It is not hard to
work out that the solution for lower and upper boundary are given by

lower : ρ(z) = χI(z), I = [0,m]
upper : ρ(z) = χI(z), I = [m, 1]

where χI(z) = L for z ∈ I and zero otherwise. In other words, the boundary solutions are
constants along some region in z! To find the constraint equations in ak that describe the
boundary, we simply combine the couplings by eliminating the boundary parameter. Then
the allowed space can be expressed as an inequality

L

k2

(
k1
L
ak1

) k2
k1 ≤ ak2 ≤ L

k2

(
1−

(
1− k1

L
ak1

) k2
k1
)
. (2.33)

This represents the allowed space for the 2D L moment problem. We plot this in figure 12,
for k1 = 1, k2 = 2 and for L = 1, 2,∞, observing the L = ∞ limit reproduces the projective
bounds of the usual moment problem, namely 0 ≤ ak2

ak1
≤ 1.

Three dimensions. In 3D the same procedure gives the boundary as a parametric surface.
Taking the continuous limit of a vertex Vi1,i2 we find the boundary is

(ak1 , ak2 , ak3) = (Uk1(m1,m2), Uk2(m1,m2), Uk3(m1,m2)),

Uk(m1,m2) ≡
L

k

(
mk

2−mk
1

)
, (2.34)

while for the upper boundary one has Uk(m1,m2) ≡ L
k

(
1−mk

2+mk
1

)
. The boundary dis-

tribution is given by

Lower : ρ(z) = χI(z), I = [m1,m2],
Upper : ρ(z) = χI1(z)+χI2(z), I1 = [0,m1], I2 = [m2, 1], .

For a space (a1, a2, a3) the two boundaries lead to the inequalities:

a4
1 + 12L2a2

2
12L2a1

≤ a3 ≤ a4
1 − 4La3

1 + 6L2a2
1 + 12L2a2

2 − 12L3a2
12L2(a1 − L) . (2.35)
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Figure 13. Boundaries for (a1, a2, a3) space, L = 1. The left figure shows only the lower boundary,
corresponding to eq. (2.34). The right figure contains both lower and upper boundaries, and has been
cropped at a0 = 0.5 to make both boundaries visible.

The explicit region is shown in figure 13. The generalization to higher dimensions can be
readily obtained from eqs. (2.21) and (2.22), by replacing all terms Vi1,i2 → U(m1,m2).
Explicitly, we obtain

lower: Uk = L

k

D−1∑
i=1

(−1)i+1mk
i

upper: Uk = L

k

(
1−

D−1∑
i=1

(−1)i+1mk
i

)
. (2.36)

Note that the inequalities above are non-projective, i.e. they involve polynomials of ak

with different degrees. This is different from the usual moment problem where the constraints
are given by the positivity of Hankel matrices, which are homogenous in the degree of
couplings. However, through a set of non-linear (exponential) maps to new couplings, the
constraints can again be expressed through the positivity of Hankel matrices. In fact this is
how the solution to the L-moment problem is usually given in the literature, which we review
in appendix A. For our purpose, the parametric form of the boundary will be more useful.

3 Minkowski sums of single L-moments

We now return to the our original problem

ak,q =
∑

ℓ

vℓ,k,q

∫ 1

0
ρℓ(z)zk−1, 0 ≤ ρℓ ≤ L . (3.1)

We will solve this problem by treating the ak,q as yet another Minkowski sum. We can
write the above as 

ak1,q1

ak1,q2
...

akD,qD

 =
∑

ℓ


a

(ℓ)
k1,q1

a
(ℓ)
k2,q2
...

a
(ℓ)
kD,qD

 , (3.2)
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where for each spin, the a(ℓ)
k,q is identified as the solution to the L-moment problem ak =

(ak1 , ak2 , . . . , akD
), with each component aki

rescaled by some number vℓ,ki,qi
. The full

geometry is then given by the Minkowski sum over all spins of such geometries.
As discussed in the beginning of the previous section, to compute the boundary of

the Minkowski sum, one first computes the Minkowski sum of the boundaries. The final
boundary can be found by extremizing this result, most simply using Lagrange multipliers,
as we will discuss shortly. Alternatively we can revert the L-moment problem to its discrete
version, and simply consider the whole problem as a double Minkowski sum of segments.
We will explore this view point in detail in appendix B. Here we will present the result
from the Lagrange method.

We first solve the problem for any 2D space (ak1,q1 , ak2,q2), for any vℓ,k,q. This will be
sufficient to derive optimal bounds on any 2D space of couplings without imposing null
constraints, or bounds on any single coupling with one null constraint.

To implement more null constraints, or to obtain the space of more couplings, would
require us to solve the geometry in higher dimensions. In this case we only obtain partial
results. First, we can easily derive boundaries when only a finite number of spins are
relevant. When the sum over infinite spins cannot be avoided, we are only able to find closed
form expressions for spaces (ak1,q1 , ak2,q2 , . . .) satisfying ki+1−ki=∆k, qi+1−qi=∆q, and when
vℓ,k,q=vℓ,q=g(ℓ)f(ℓ)q, where g(ℓ) and f(ℓ) can be general polynomials of ℓ.

For the entire space of couplings, the problem can be formulated in terms of envelopes
of various moment constraints. This is more amendable to numerical approaches which
we explore in appendix C.

3.1 Extremizing the Minkowski sum

In this section we briefly explain how the boundary of a Minkowski sum can be obtained
by extremizing. Let us use the example of the disks in figure 7 to introduce this method.
We can describe the boundaries of disks A and B as

∂A(θA) = (ax, ay) + rA(sinθA, cosθA) ,
∂B(θB) = (bx, by) + rB(sinθB, cosθB) . (3.3)

The Minkowski sum of boundaries ∂A(θA) + ∂B(θB) is then a 2D region, with the two
components given by

fx(θA, θB) = (ax+bx)+rAsin θA+rBsin θB

fy(θA, θB) = (ay+by)+rAcos θA+rBcos θB . (3.4)

To find the boundary of this region we can consider extremizing in one coordinate while the
other is held fixed. This gives a constraint equation that will allow us to solve one parameter
in terms of the remaining, giving the co-dimension one boundaries of the Minkowski sum
∂A(θA) + ∂B(θB). More precisely, fixing the x-coordinate while extremizing in y, one solves(

∂θA
fx(θA, θB)

∂θB
fx(θA, θB)

)
= λ

(
∂θA

fy(θA, θB)
∂θB

fy(θA, θB)

)
, (3.5)
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where λ is the Lagrangian multiplier. Note that this is simply saying that the two component
vectors are proportional and hence

det
(
∂θA

fx(θA, θB) ∂θA
fy(θA, θB)

∂θB
fx(θA, θB) ∂θB

fy(θA, θB)

)
= 0 → cos θA sin θB = cos θB sin θA . (3.6)

We find two solutions: θA = θB and θA = θB + π. These precisely correspond to the outer
and inner boundaries in figure 7, given by

∂(∂A+ ∂B) = (ax + bx, ay + by) + (rA ± rB)(sinϕA, cosϕA) . (3.7)

This generalizes to higher dimensions. Consider the combination of two D-dimensional regions.
We find the boundary of their Minkowski sum by taking the Minkowski sum of the boundary
(fx1 , fx2 , · · · , fxD), where fxi is a function of 2(D−1) boundary variables, (θ1, θ2, · · · , θ2D−2).
Holding (fx2 , · · · , fxD) fixed and extremizing fx1 we solve

∂θ1fx1

∂θ2fx1
...

∂θ2(D−1)fx1

 =
D∑

i=2
λi


∂θ1fxi

∂θ2fxi

...
∂θ2(D−1)fxi

 . (3.8)

This gives us 2D−2 constraints on D−1 Lagrangian multipliers λi and 2(D−1) boundary
variables θi, giving us D−1-dimensional boundaries.

Finally we comment that since the Lagrange method relies on the variation of the
individual boundaries, it will miss boundaries coming from the end points (or boundary
of boundaries). These end point contributions must be analyzed by hand, which we will
demonstrate through explicit examples.

3.2 Two dimensions with k1 ̸=k2

Let us consider first the sum of two moments

ak,q = a
(ℓ1)
k,q + a

(ℓ2)
k,q . (3.9)

First, we note that a(ℓ)
k,q simply represents a single L-moment ak, with each component rescaled

by some number vℓ,k,q. We sketch this in figure 14. This implies the boundaries of a(ℓ)
k,q

are also the original boundaries of ak that we found in section 2.3, with each component
rescaled by vℓ,k,q. To begin we consider an arbitrary two-dimensional space, (ak1,q1 , ak2,q2).
The boundary for the L-moment problem in a 2D space (ak1 , ak2) is given by the two curves
in eqs. (2.31) and (2.32). After the rescaling, the boundaries are

lower bdy: (a(ℓ)
k1,q1

, a
(ℓ)
k2,q2

) = L

(
vℓ,k1,q1

k1
mk1 ,

vℓ,k2,q2

k2
mk2

)
,

upper bdy: (a(ℓ)
k1,q1

, a
(ℓ)
k2,q2

) = L

(
vℓ,k1,q1

k1

(
1−mk1

)
,
vℓ,k2,q2

k2

(
1−mk2

))
. (3.10)

Now eq. (3.9) requires us to compute the Minkowski sum of such boundaries for different
ℓ, which we carry out according to the discussion in section 3.1. The end result is sketched
in figure 16.
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Figure 14. The allowed space for two single L-moments a(ℓ)
k,q, rescaled by different vℓ,k,q. The moment

ak,q is the Minkowski sum of such geometrical objects.

If we assume that all vℓ,k,qs have the same sign, then each moment is oriented in the
same “quadrant” and the lower boundary of the Minkowski sum ak,q is contained in the sum
of lower boundaries of a(ℓ)

k,q, and similarly for the upper boundary. If some of the vℓ,k,q have
different sign, then one simply needs to arrange boundaries according to what quadrant they
correspond to. We will return to this issue at the end of this section.

Using eq. (3.10) the lower boundary we are after is therefore contained in the 2D region

ak,q(m1,m2) =
L

k

(
vℓ1,k,qm

k1
1 + vℓ2,k,qm

k1
2

)
, m1,m2 ∈ [0, 1] . (3.11)

We can now employ the Lagrange method to find the relation between m1 and m2 that
corresponds to a boundary. The Lagrange equation reads

∇m1,m2ak1,q1 = α∇m1,m2ak2,q2 , (3.12)

which implies a remarkably simple relation between the parameters

m1
m2

=
(
vℓ1,k1,q1

vℓ1,k2,q2

vℓ2,k2,q2

vℓ2,k1,q1

) 1
k2−k1

≡ r1,2 . (3.13)

If the vectors

vℓ =
(
vℓ,k1,q1

vℓ,k2,q2

)
, (3.14)

are ordered with respect to spin-ℓ, then ri,i−1 ≤ 1. We can use this to write m2 = r2,1m1,
which plugging into eq. (3.11) leads to a boundary curve

ak,q = L

k
mk

1

(
vℓ1,k,q + rk

2,1vℓ2,k,q

)
, (3.15)

valid for m1 ∈ [0, 1].
Note that if m1,m2 are unbounded, then these are the only boundaries. Since they are

bounded by 0 and 1, there could exist other boundaries that correspond to fixing one of the
parameters to either 0 or 1. There are four possible choices

(m1,m2) = {(m, 0), (m, 1), (0,m), (1,m)} . (3.16)
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Figure 15. The five possible boundaries of the Minkowski sum of two lower boundaries, corresponding
to yellow and blue. The true lower boundary is given by the green curve, obtained by extremizing via
the Lagrange method, continued by a section of the purple curve.

Plugging these into eq. (3.11) we obtain four curves. We plot these together with the curve in
eq. (3.15) in figure 15. We observe that the lower boundary is in fact formed of two sections,
corresponding to ak,q(m, r2,1m) and ak,q(1,m)

lower bdy 1: ak,q(m, r2,1m) = L

k
mk

(
vℓ1,k,q + rk

2,1vℓ2,k,q

)
, m ∈ [0, 1]

lower bdy 2: ak,q(1,m) = L

k

(
vℓ1,k,q +mkvℓ2,k,q

)
, m ∈ [r2,1, 1] . (3.17)

The correct validity ranges for m follow from requiring continuity of the boundary.
Next we can perform the same analysis for the upper boundary. In this case the region

spanned by the sum of the two upper boundaries is

ak,q(m1,m2) =
L

k

(
vℓ1,k,q1(1−mk1

1 ) + vℓ2,k,q1(1−mk1
2 )
)
, (3.18)

and we find

upper bdy 1: ak,q(m, r2,1m), m ∈ [0, 1]
upper bdy 2: ak,q(1,m), m ∈ [r2,1, 1] . (3.19)

In conclusion, we find the region given by the sum of two moments in figure 16. Note that
as before, the upper boundary is simply a flipped lower boundary.

For N moments, the above result generalizes by induction. We have the lower boundary
contained in the Minkowski sum

ak,q = L

k

N∑
i=1

vℓi,k,qm
k
i . (3.20)

Repeating the arguments from above, we find the lower boundary of a 2D space (ak1,q1 , ak2,q2)
is composed of N sections, where for a section (j), with 1 ≤ j ≤ N

i < j : mi = 1 ,
i ≥ j : mi = ri,jm, m ∈ [rj,j−1, 1] . (3.21)
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Figure 16. The structure of a Minkowski sum of two L-moments. The lower and upper boundaries
are each composed of two sections, corresponding to eqs. (3.17) and (3.19).

A section (j) corresponds to the curve

a
(j)
k,q = L

k

(
G

(j−1)
k,q +mkvℓj ,k,qF

(j)
k,q

)
, m ∈ [rj,j−1, 1] , (3.22)

where G and F are purely numerical factors that depend only on the spin content and the
(k1, k2, q1, q2) of the space being considered

G
(j)
k,q =

j∑
i=1

vℓi,k,q , F
(j)
k,q =

N∑
i=j

vℓi,k,q

vℓj ,k,q
rk

i,j . (3.23)

Note that ri,j depends on (k1, q1, k2, q2), so in fact we have F (j)
k1,q1

= F
(j)
k2,q2

.
Finally, we also have the upper boundary, which is simply obtained by plugging in the

same solution in eq. (3.21) in the sum of individual upper boundaries

ak,q = L

k

N∑
i=1

vℓi,k,q

(
1−mk

i

)
. (3.24)

This leads to an expression for section (j) of the upper boundary

a
(j)
k,q = L

k

(
G

(j)
k,q −mkvℓj ,k,qF

(j)
k,q

)
, m ∈ [rj,j−1, 1] , (3.25)

where G
(j)
k,q =

∑N
i=j vℓ,k,q.

Convergence for infinite spin limit. In general a physical theory will contain an infinite
number of spins, so we must take the Minkowski sum to infinity, N → ∞. One then needs
to worry if the sum in Fk,q given by eq. (3.23) converges. If the sum diverges, then we only
get a trivial projective boundary, such as ak2 ≥ 0. Convergence will therefore be necessary
to obtain non projective bounds.

Assuming a simple case with vℓ,k,q = ℓq, the convergence is easy to determine. We have

ri,1 =
(1
ℓ

) q2−q1
k2−k1

, F
(1)
k,q =

∞∑
ℓ=1

ℓ
q1−q2
k2−k1

k+q
, (3.26)
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Figure 17. Boundaries for (a2,0, a3,1) space, for N = 2, 3,∞, with L = 1. For N spins the lower
and upper boundaries each have N sections or facets. In this example, in the infinite spin limit the
upper boundary is pushed to infinity, and only the lower boundary remains non-trivial. The green
and brown sections of the lower boundary correspond to eqs. (3.30) and (3.31) respectively.

which converges for

q1−q2
k2−k1

k+q < −1 . (3.27)

For example, for the space (a1,0, a2,0) the sum diverges

F
(1)
1,0 =

∞∑
ℓ=1

1 = ∞ . (3.28)

This means there are no non-projective bounds for this 2D space for vℓ,k,q = ℓq. However,
for the space (a2,0, a3,1) the sum is finite

F
(1)
2,0 =

∞∑
ℓ=1

1
ℓ2

= π2

6 . (3.29)

Plugging the above in eq. (3.22), we obtain the first section of the infinite spin configuration as:

(1) : a2,0 = L
π2

12m
2, a3,1 = L

π2

18m
3, m ∈ [0, 1] . (3.30)

The second section can similarly be obtained,

(2) : a2,0 = L

2

(
1 + 4

(
π2

6 − 1
)
m2
)
, a3,1 = L

3

(
1 + 8

(
π2

6 − 1
)
m3
)
, m ∈

[1
2 , 1

]
.

(3.31)
We plot this in figure 17, also comparing with finite spin. Note that in this example, the
upper boundary is just a vertical line starting at the origin, because the corresponding
sum does not converge.
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Figure 18. The Minkowski sum of three distinct rescaled moments a(ℓ)
k,q, with vℓ,k1,q1 > 0 and

sgn[vℓ,k2,q2 ] = {−, 0,+}. The boundary of the sum is obtained by placing the individual boundaries
according to their slope.

Non-positive vℓ,k,q. As mentioned previously when taking the Minkowski sum, if the
vℓ,k,qs have non-uniform signs, then special care is needed to identify the correct combination
of upper/lower boundaries of the individual moments to extremize. For simplicity we consider
the example where we have three moments with vℓ,k1,q1 > 0 and sgn[vℓ,k2,q2 ] = {−, 0,+},
where sgn[x]=0 means x=0. We will refer to such moments as type (+,−), (+, 0) and (+,+)
respectively. This particular case will be relevant in the physical problem. Other cases
can be treated in a similar fashion.

When vℓ,k2,q2 < 0, this corresponds to the moment a(ℓ)
k,q = (vℓ,k1,q1ak1 , |vℓ,k2,q2 |ak2) reflected

about the (ak1,q1) (horizontal) axis. When vℓ,k2,q2 = 0, the moment is given by a
(ℓ)
k,q =

(vℓ,k1,q1ak1 , 0), so it is just horizontal segment of length L
k1
vℓ,k1,q1 . These are illustrated in

figure 18. The three different “lower boundaries” for each independent moment are given by

a
(+−)
k,q (m) = Lvℓ−,k,q

(1−mk)
k

, m ∈ [0, 1] ,

a
(+0)
k,q (m) = Lvℓ0,k,q

mk

k
, m ∈ [0, 1] ,

a
(++)
k,q (m) = Lvℓ+,k,q

mk

k
, m ∈ [0, 1] .

(3.32)

In the first case for (+−), due to the fact that vℓ,k2,q2 < 0, the lower boundary is the upper
boundary of the original moment. Furthermore, the origin now corresponds to m = 1, while
its other endpoint to m = 0. For the second case with vℓ,k2,q2 = 0 the moment itself is a
1D segment, and we use the original lower boundary to parameterize it. Their Minkowski
sum can be written as:

ak,q(m+−,m+0,m++) = a
(+−)
k,q (m+−) + a

(+0)
k,q (m+0) + a

(++)
k,q (m++) . (3.33)

Since all boundaries have slopes belonging to disjoint ranges, one does not need to perform
extremization, and the boundary of the Minkowski sum is simply given by placing the three
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boundaries in order, as illustrated in figure 18. This means the lower boundary is given by

Section 1: ak,q(m, 0, 0), m ∈ [0, 1] ,
Section 2: ak,q(0,m, 0), m ∈ [0, 1] ,
Section 3: ak,q(0, 1,m), m ∈ [0, 1] . (3.34)

The upper boundary can be obtained in an identical manner. If we had several moments of
type (+,+), their respective boundaries would again have overlap in slope, and the result
would need to be obtained by extremizing in the ranges of slopes where there is overlap.
Then the boundary would be given by eq. (3.22) we previously derived, replacing a

(++)
k,q

in the above expressions.

3.3 Higher dimensional spaces

Let us now attempt to solve the same problem in higher dimensions. As in 2D, for vℓ,k,q >

0, in higher dimensions the lower/upper boundary of the sum will be contained in the
sum of lower/upper boundaries of rescaled individual moments a(ℓ)

k,q. Consider a 3D space
(ak1,q1 , ak2,q2 , ak3,q3) and two spins for simplicity. The Minkowski sum of the lower boundaries
in eq. (2.34) is given by

ak,q(m1, n1,m2, n2) =
L

k

(
vℓ,k

(
nk

1 −mk
1

)
+ vℓ2,k

(
nk

2 −mk
2

))
, (3.35)

for 0 ≤ mi ≤ ni ≤ 1. We must compute the boundary of the Minkowski sum of these
boundaries, which is again easily accomplished by the Lagrange method. Unlike the 2D
case, in general the solution to the Lagrange equation is more complicated. Even for the
simplest 3D example (a1,1, a2,2, a3,3) we find

m2,

n2
=

(m1+n1) vℓ1,1vℓ1,3vℓ2,2∓
√
vℓ1,1vℓ1,3

(
(m1+n1) 2vℓ1,1vℓ1,3v

2
ℓ2,2−4m1n1v2

ℓ1,2vℓ2,1vℓ2,3
)

2vℓ1,1vℓ1,2vℓ2,3
,

(3.36)
where for simplicity we defined vℓ,k = vℓ,k,q. As before, this represents just one section of
the 2D boundary. To obtain the others we have to set the various parameters to either
0 or 1, and invoke continuity of the boundary to arrange them in the correct position.
To illustrate a simpler example of a 3D geometry, let us consider a particular case, when
vℓ,k,q = ℓq, ℓ1 = 1 and ℓ2 = 2, and a particular space (a1,0, a2,1, a3,2). In this case eq. (3.36)
drastically simplifies, and we find

n2
n1

= m2
m1

= ℓ1
ℓ2

= 1
2 . (3.37)

Checking for the remaining boundaries when mi, ni = {0, 1}, we find a total of three sections
for the lower boundary, given by

Section (1, 1) : ak,q

(
m1, n1,

1
2m1,

1
2n1

)
, 0 ≤ m1 ≤ n1 ≤ 1

Section (2, 1) : ak,q

(
1, n1,m2,

1
2n1

)
, 1/2 ≤ m2 ≤ 1, 0 ≤ n1 ≤ 1

Section (2, 2) : ak,q(1, 1,m2, n2), 1/2 ≤ m2 ≤ n2 ≤ 1

and similar for the upper boundary. We illustrate the result in figure 19.
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Figure 19. Boundaries for (a1,0, a2,1, a3,2) space, assuming two spins ℓ1 = 1, ℓ2 = 2, vℓ,k,q = ℓq

and L = 1.

Quite remarkably, we can obtain results similar to eq. (3.37) even for slightly more
general cases. Specifically, for vℓ,k,q = g(ℓ)f(ℓ)q, where g and f are any polynomials in
ℓ, and for any D-dimensional space of the form ki+1−ki = ∆k and qi+1−qi = ∆q, with
(∆k,∆q) fixed, we obtain

n2
n1

= m2
m1

=
(
f(ℓ1)
f(ℓ2)

)∆q
∆k = r2,1 . (3.38)

In this case the sum over infinite spins can again be computed in closed form.
However, in general cases, where we also have an infinite number of spins, the parameters

m1, n1 cannot be separated from the sum over spins due to the square root in eq. (3.36),
and so we cannot obtain a closed form expression for the complete boundary. However, this
approach is still useful in situations when relevant boundaries only contain a finite number of
spins. We will encounter such a case in our physical problem in the following section. The
freedom in choosing f in eq. (3.38) will also allow to extend the result beyond such diagonal
type spaces. We discuss this further in appendix C as a promising future direction.

4 The non-projective EFThedron

We now return to the physical setting. Let us begin with the dispersive representation of
the EFT couplings eq. (1.8)

gk,q =
∑

ℓ

vℓ,k,q

∫ 1

0
ρℓ(z)zk−1dz, 0 ≤ ρℓ(z) ≤ 2 , (4.1)

where vℓ,k,q = 16(2ℓ+1)λℓ,k,q.
Couplings are subjected to “null” constraints, which originate from permutation invariance

of the amplitude. These constraints can be easily found by requiring the amplitude to be
expandable in terms of σ2 = s2+t2+u2 and σ3 = stu. Since the dispersion relation is valid
for k, k−q ≥ 2, this means the first null constraint is at order k = 4, so we must have that

– 25 –



J
H
E
P
0
5
(
2
0
2
4
)
1
0
2

σ2
2=4(s4+2s3t+3s2t2) ∝ s4g4,0+s3tg4,1+s2t2g4,2+ . . ., leading to

g4,0 = g4,1
2 = g4,2

3 . (4.2)

Since λℓ,4,0 = λℓ,4,1
2 from eq. (1.7), the first equality trivially holds. However, λℓ,4,2 = 6 −

4J 2 + J 4/2, where J 2 = ℓ(ℓ+ 1), so the second equality leads to the null constraint

n4 : 2g4,2 − 3g4,1 = 0 . (4.3)

Similarly for k = 5 and 6, we have:

n5 : g5,3−2g5,1 = 0, n6 : g6,4−g6,2 = 0 . (4.4)

Geometrically these null constraints define hyperplanes in the space of couplings. Thus
imposing a set of null constraints is equivalent to intersecting the space of couplings with
a collection of hyperplanes.

We will first consider the equal k space, i.e. (gk,q1 , gk,q2 , · · · ) which we showed in section 2
is a polytope. Its intersection with the null plane at the same order k will then give bounds
on coefficients. More generally, to impose null conditions of different k order, it will be useful
to consider the linear combinations of couplings that correspond to null constraints as one
of the coordinates in our space. For example, we define

n4 =
∑

ℓ

(2vℓ,4,2−3vℓ,4,1)
∫ 1

0
ρℓ(z)z3dz

=
∑

ℓ

16(2ℓ+ 1)(J 4 − 8J 2)
∫ 1

0
ρℓ(z)z3dz

=
∑

ℓ

uℓ,4

∫ 1

0
ρℓ(z)z3dz . (4.5)

Then to impose the null constraint on a coupling gk,q we simply consider the geometry in
(gk,q, n4) space, and intersect with the line n4=0. Importantly, since we have derived the
boundary for any 2D space in section 3, this approach indeed allows us to find optimal
bounds on any single coupling assuming one null plane. We also discuss partial results for
a space of two couplings subject to one null constraint.

4.1 Bounding gk,q with k-null constraint

The space of equal k couplings is a polytope described by the determinant constraints in
eq. (2.23). We can then easily intersect any space at order k by the corresponding null
constraints at the same order. This result is of course weaker than imposing for example
the first null constraint at k = 4, but we find it a useful exercise.

k = 4 bounds. As the first null constraint is at k = 4, we consider the space (g4,0, g4,1, g4,2)
subjected to the null constraint n4 = 2g4,2 − 3g4,1 = 0. We find explicitly

λℓ,4,0 = 2, λℓ,4,1 = 4, λℓ,4,2 = 6− 4J 2 + J 4/2 . (4.6)
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Figure 20. g4,0, g4,2 space with 2g4,2 − 3g4,1 null plane.

This implies 2g4,0 = g4,1 identically, so the space for the couplings (g4,0, g4,1, g4,2) is in
fact just a 2D polytope. We can then find the boundaries of this polytope in (g4,0, g4,2)
space. To satisfy cyclic ordering of vectors vℓ = (vℓ,4,0, vℓ,4,2), the spins must be ordered as
{ℓ1, ℓ2, ℓ3, . . .} = {2, 0, 4, . . .}. Now we can impose the polytope conditions

Pi =
(
g4,0 − V1,i|4,0 vℓi|4,0
g4,2 − V1,i|4,2 vℓi|4,2

)
≥ 0 . (4.7)

We do not need to impose the upper boundary conditions P i ≥ 0, since they always contain
a divergent infinite sum, leading to a trivial boundary. Going up to only i = 3 we obtain
the polytope in figure 20, which is sufficient to intersect with the k = 4 null plane. We
find that g4,0 is bounded as:

0 ≤ g4,0
(4π)2 ⪅

0.633
M8 . (4.8)

Note that this bound is the result of imposing just one null constraint. We expect that
imposing more null constraints will significantly improve the bound.

k = 5 bounds. At k = 5 the space is similarly simple. We find

λℓ,5,0 = 0, λℓ,5,1 = 1
2λℓ,5,2 = −5+2J 2, λℓ,5,3 = 1

36
(
−360+294J 2−43J 4+2J 6

)
. (4.9)

Since there are just two independent couplings, the relevant space is again a 2D polytope.
However, these vectors span more than a half plane. The vector corresponding to ℓ=0 is
v0=(−5,−10), so is located in the 3rd quadrant. As discussed in subsection 2.2, one can
simply compute the Minkowski sum by taking v0 → −v0, order the spins and impose the
polytope conditions using this new vector, and finally translate the boundary thus obtained
by v0. Intersecting with the null plane g5,3 − 2g5,1 = 0 we obtain a bound

−0.202
M10 ⪅

g5,1
(4π)2 ⪅

2.269
M10 . (4.10)
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Figure 21. (g6,0, g6,2) space, after imposing the g6,4 = g6,2 null constraint on the 3D space
(g6,0, g6,2, g6,4).

k = 6 bounds. At k = 6 the λ are given by

λℓ,6,0 = 1
3λℓ,6,1 = 2, λℓ,6,2 = 15− 6J 2 + J 4/2, λℓ,6,3 = −5λℓ,6,0 + 2λℓ,6,2,

λℓ,6,4 = 1
288(4320−4176J 2 + 732J 4−44J 6+J 8) . (4.11)

There are just three independent couplings, so again we can choose a subspace, for example
spanned by (g,6,0, g6,2, g6,4). However, in this space the vectors cannot be cyclically ordered.
One can tell this from the determinant det

(
vℓi

vℓj
vℓk

)
which is not sign definite for ordered ℓ.

To proceed we simply first have to impose the polytope constraints Pi1,i2 and P i1,i2 in
eq. (2.23), using the general definition for I± according to eq. (2.18), as discussed at the
end of section 2.2. Since we are interested in the space resulting from intersecting with
a null plane, this only needs to be done for a finite number of boundaries, ie. pairs i1, i2.
Unlike the previous cases in 2D, constraints that involve the infinite sum over spins do not
automatically lead to trivial conditions. What happens instead is that the presence of infinity
in the determinant of the 3×3 matrix requires the positivity of the corresponding 2×2 minor.
This simply implies that we must also impose the 2D constraints Pi and P i in order to obtain
the complete 3D space. Imposing all relevant constraints, and intersecting with the k = 6 null
constraint g6,4 = g6,2, we obtain the space for (g6,0, g6,2) in figure 21, with individual bounds:

0 ≤ g6,0
(4π)2 ⪅

1.01
M12 , − 0.49

M12 ⪅
g6,2
(4π)2 ⪅

30.81
M12 . (4.12)

4.2 Bounding gk1,q with k ̸=k1-null constraint

We would now like to consider the effect of null constraints at some order k2 on couplings gk1,q

where k2 ̸=k1. Since we are interested in the bound on one coupling, we will utilize the 2D
geometry discussed in section 3.2. That is, we will consider the two dimensional (gk1,q, nk2)
space, and simply consider the 1D slice at nk2 = 0. This allows us to derive analytic bounds
for any coupling assuming just one null constraint. From experience the strongest individual
null constraint is the one at k = 4, so we will impose this one in all further computations.
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(a) The rescaled moments a(ℓ)
k,q cor-

responding to spins 0 to 6.
(b) (g2,0, n4) space with four sections of the boundary shown.
The upper bound on g2,0 is follows from intersecting with the
null plane.

Figure 22. Minkowski sums of single L-moments.

4.2.1 Bounds on g2,0, g3,1 with k=4-null constraint

1D bounds on g2,0. We will first obtain the necessary and sufficient conditions on g2,0
under the n4 constraint from the space (g2,0, n4), defined by

g2,0 =
∑

ℓ

vℓ,2,0

∫ 1

0
ρℓzdz ,

n4 =
∑

ℓ

uℓ,4

∫ 1

0
ρℓz

3dz , (4.13)

with vℓ,2,0 = 32(2ℓ + 1) and uℓ,4 = 16(2ℓ + 1)(J 4 − 8J 2), as defined in eq. (4.5). For this
space the vectors vℓ ≡ (vℓ,2,0, uℓ,4) are ordered by {ℓ1, ℓ2, ℓ3, ℓ4, . . .} = {2, 0, 4, 6, . . .}, with
the respective signs of the two components given by: (+,−) for ℓ1, (+, 0) for ℓ2, and (+,+)
for the remaining ℓi. The individual moments are sketched in figure 22(a). We must compute
the Minkowski sum over all such moments. The lower boundary of the space (g2,0, n4) will
be contained in the Minkowski sum of lower boundaries for all spins,

g2,0(m1,m2,mi) =
L

2

(
vℓ1,2,0(1−m2

1) + vℓ2,2,0m
2
2 +

∞∑
i=3

vℓi,2,0m
2
i

)
,

n4(m1,m2,mi) =
L

4

(
uℓ1,4(1−m4

1) + uℓ2,4m
4
2 +

∞∑
i=3

uℓi,4m
4
i

)
. (4.14)

We will now build the explicit form of this boundary. According to our previous discussion, we
must arrange the boundaries such that the slope along the complete boundary is monotonically
increasing or decreasing. The first section, starting at the origin, is given only by the boundary
of the ℓ1 moment, since it has negative slope

Section (1): g2,0(m, 0, 0) =
L

2 vℓ1,2,0(1−m2) = 160(1−m2) ,

n4(m, 0, 0) =
L

4 uℓ1,4(1−m4) = −960(1−m4) , (4.15)
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valid for m ranging from 1, at the origin, to 0, at the end-point of this section. In the second
section only ℓ2 contributes, and for the boundary to be continuous we must have

Section (2): g2,0(0,m, 0) =
L

2 vℓ1,2,0 +
L

2 vℓ2,2,0m
2
2 = 32(5 +m2) ,

n4(0,m, 0) =
L

4 uℓ1,4 +
L

4 uℓ2,4m
4 = −960 , (4.16)

valid for m ∈ [0, 1]. Next we have the third section, where all spins ℓi≥3 have positive slope
and can contribute. Using our previous result eq. (3.22) obtained by extremizing with the
Lagrange method, we know that in this section the parameters for all contributing moments
will be related by mi = ri,3m3, for i ≥ 3, where

ri,3 =
(
uℓ3,4
vℓ3,2,0

vℓi,2,0
uℓi,4

) 1
2

=
( 240
J 4 − 8J 2

) 1
2
. (4.17)

So for this section we obtain

Section (3): g2,0(0, 1, ri,3m) = L

2 vℓ1,2,0 +
L

2 vℓ2,2,0 +
L

2 vℓ3,2,0Fm
2 = 96(2 + 3Fm2) ,

n4(0, 1, ri,3m) = L

4 uℓ1,4 +
L

4 uℓ2,4 +
L

4 uℓ3,4Fm
4 = 960(−1 + 36Fm4) , (4.18)

valid for m ∈ [0, 1], and where

F =
∞∑

i≥3

vℓi,2,0
vℓ3,2,0

r2
i,3 = 80

3

∞∑
ℓ≥4,even

2ℓ+ 1
(ℓ2 + ℓ)2 − 8(ℓ2 + ℓ) ∼ 1.49 . (4.19)

Finally, starting from the origin in the opposite direction, the first section would be given
by the upper boundary of the ℓ = ∞ moment, which is simply a vertical line. This simply
implies g2,0 ≥ 0. We obtain the boundary shown in figure 22(b), with the sections of the lower
boundary corresponding to the parametric curves given by eqs. (4.15), (4.16), and (4.18).

We can now check that n4 = 0 intersects the third section. This gives an optimal
upper bound on g2,0

g2,0
(4π)2 ≤

48
(
4 +

√
F
)

(4π)2M4 ≈ 1.58
M4 . (4.20)

We find this analytically matches the result of [7] for g2 = g2,0/2.

1D bounds on g3,1. For the coupling g3,1 we find λℓ,3,1 = 2J 2 − 3, so again there are
three types of moments: (+,−) for ℓ = 2, (−, 0) for ℓ = 0, and (+,+) for ℓ ≥ 4. The
boundary structure is almost identical to the previous case, the only difference being the
segment corresponding to ℓ = 0 is now in the negative direction. We can find the boundary
in this configuration by reflecting this segment about the origin, solving the problem as
before, and then translating the whole boundary by L

3 (v0,3,1, 0). This procedure gives the
boundary structure shown in figure 23. All sections can be obtained from the previous
computation for g2,0 by simply setting k1 = 3 and q1 = 1, including in the r factor and
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Figure 23. (g3,1, n4) space with four sections of the boundary. The lower and upper bounds on g3,1
follow from intersecting with the null plane n4 = 0.

implicitly in the infinite sum F , which we find still converges, now to a value of ∼ 1.29.
The intersection with the null plane gives:

−0.20
M6 ⪅

g3,1
(4π)2 ⪅

4.67
M6 . (4.21)

We also notice that the lower bound is in fact independent of the null constraint, and
simply follows from adding just the negative contributions to g3,1, which in this case only
come from ℓ = 0.

4.2.2 2D theory space for (g2,0, g3,1) with k=4-null constraint

It is interesting to also consider the theory space for couplings (g2,0, g3,1), subjected to the
k = 4 null constraint. We can first collect the individual bounds derived in the previous
section, and projective bounds derived in [7, 52]. We illustrate this in figure 24, together
with the numerical result due to LP. Note that once we obtain the non-projective bound for
g2,0, we could use the projective bounds on ratios g3,1

g2,0
to obtain non-projective bounds on

g3,1. As evident from the graph, the latter is weaker than the actual g3,1 bound.
We can ask how much of the LP boundaries in figure 24 can be obtained analytically

though the geometry we developed so far. To obtain this complete space directly, would
require us to first build the space (g2,0, g3,1, n4). As discussed in section 3.3, for such a space
we find a complicated solution to the Lagrange equation, making the infinite sum of spins
difficult. However, from previous analysis of the EFThedron, it was observed that in general
at a finite order in k, only the geometry associated with low spins intersects with the null
plane. Thus one might expect the same to hold true for the non-projective geometry. As
we will see, indeed the upper boundary in figure 24 computed via LP can be identified as
boundaries of the Minkowski sum of low spin moments. For the lower boundary, we observe
that in all previous cases the lower bounds hold independently of the null constraint. We can
use this as motivation to simply import the lower boundary from the 2D space (g2,0, g3,1) in
the absence of any null constraint. We expect this to be a weaker bound, but surprisingly
find it is very close to LP results.
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Figure 24. (g2,0, g3,1) after imposing k = 4 null constraint, showing projective and non-
projective bounds.

Lower boundary. First, we directly consider the space (g2,0, g3,1) (without any null
constraint). We have just two types of moments, (+,−) for ℓ = 0 and (+,+) for ℓ ≥ 2.
The first three sections are given by

Section 1: g2,0, g3,1 : gk,q = L

k
vℓ1,k,q(1−mk), m ∈ [0, 1] ,

Section 2: g2,0, g3,1 : gk,q = L

k

(
vℓ1,k,q +mkvℓ2,k,qF

(1)
)
, m ∈ [0, 1] ,

Section 3: g2,0, g3,1 : gk,q = L

k

(
vℓ1,k,q + vℓ2,k,q +mkvℓ3,k,qF

(2)
)
, m ∈ [9/37, 1] , (4.22)

where F (1) ≈ 1.175 and F (2) ≈ 1.643. We illustrate this in figure 25, finding it is in fact
indiscernible from numerical results due to LP, at least to the precision we tested. The plot
is also in perfect agreement with the numerical results obtained in [54].

Section 3 reaches the upper bound for g2,0, so we can terminate the boundary at that point.

Upper boundary. The situation is different however for the upper boundary. It turns out
the boundary from the Minkowski sum of a finite number of low spins approximates the LP
boundaries very well. Let us consider first the sum of just spins ℓ = 2, 4. The Minkowski
sum of lower boundaries is given by

g2,0, g3,1 : gk,q = L

k

(
vℓ2,k,q(1− nk

2 +mk
2) + vℓ3,k,q(nk

3 −mk
3)
)
,

n4 = L

4
(
uℓ2,4(1− n4

2 +m4
2) + uℓ3,4(n4

3 −m4
3)
)
, (4.23)

and there will be six boundaries in total, which can be easily obtained by the Lagrange
method as before. The boundary of interest that would correspond to an upper bound for
(g2,0, g3,1) is given by m2 = 0, with m3 fixed by the Lagrange method to be

m3 = n2vℓ3,2,0 (n2uℓ2,4vℓ3,3,1 − n3vℓ2,3,1uℓ3,4)
uℓ3,4 (n2vℓ2,3,1vℓ3,2,0 − n3vℓ2,2,0vℓ3,3,1)

. (4.24)
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Figure 25. (g2,0, g3,1) space. Analytic results for the boundaries emphasized are derived in the
absence of any null constraint, while the numerical LP results are obtained assuming the k = 4
null constraint. The three sections of the lower boundary nevertheless seem to closely match the
numerical results.

Figure 26. (g2,0, g3,1, n4) space with n4 = 0 null plane. The two sections of the boundary are given
by only a finite number of spins contributing to the Minkowski sum.

We can repeat the exercise now also adding spin ℓ = 6, where the new constraints
on m4, n4 give

m4,

n4
= vℓ4,3,1

(
n2

2uℓ2,4vℓ3,2,0 − n2
3vℓ2,2,0uℓ3,4

)
∓
√
R

2uℓ4,4 (n2vℓ2,3,1vℓ3,2,0 − n3vℓ2,2,0vℓ3,3,1)
, (4.25)

where

R = v2
ℓ4,3,1

(
n2

2uℓ2,4vℓ3,2,0 − n2
3vℓ2,2,0uℓ3,4

)
2 (4.26)

− 4n2n3vℓ4,2,0uℓ4,4 (n2vℓ2,3,1vℓ3,2,0 − n3vℓ2,2,0vℓ3,3,1) (n2uℓ2,4vℓ3,3,1 − n3vℓ2,3,1uℓ3,4) .

Plotting these surfaces in figure 26, we observe the null plane first intersects the section
corresponding to the sum of spins (2, 4), next the one corresponding to spins (2, 4, 6), and so
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Figure 27. (g2,0, g3,1) space with k = 4 null constraint imposed. The gap in the boundary corresponds
to an infinite number of sections, each including an increasing number of higher spins.

Figure 28. (g2,0, g3,1) space with an increasing number of null constraints, obtained from linear
programming. The boundary converges quickly after k = 7 null constraints.

on. This allows us to find the intersection analytically for any such section, since it always
contains a sum over a finite number of spins.

To find the intersection of section (2, 4) with the null plane we must solve
n4(m2, n2,m3, n3) = 0, with m2 = 0 and m3 given by eq. (4.24). This leads to a de-
gree 8 polynomial in either n2 or n3, but only two solutions are real-valued, and only one
satisfies 0 ≤ mi, ni ≤ 1. Plugging this remaining solution into g2,0, g3,1 we find a boundary
shown in figure 27. This boundary is exact, but only valid until the next section (2, 4, 6),
whose intersection can be computed in a similar way.

Finally, we can obtain another exact piece of the upper boundary, which corresponds
to a contribution given only by the ℓ = 0 moment. Putting all the boundaries together, we
obtain figure 27. The remaining gap can be filled by successively adding more and more
spins to the 3D space, and intersecting with the null constraint.

Higher order null constraints from LP. The linear programming setup introduced
in [55] allows us to compute the effect of several null constraints. We plot the result including
null constraints up to k = 7 in figure 28, observing the boundaries already start converging
around this order.
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Figure 29. Left: The first few individual L-moments that need to be summed for a space (gk,0, n4),
for k > 4. Right: The boundary of the sum over all spins, together with the n4 = 0 null plane. As
k increases the boundary shrinks, and above k = 256 the null plane intersects a different section,
changing the analytic form of the bound.

4.2.3 Bounds for arbitrary k with k = 4 null constraint

We can easily derive an upper bound due to the k = 4 null constraint for any coupling of
the form gk,0 for k = even, since λℓ,k,0 = 2, and so the overall boundary structure does not
change as we increase k. We must therefore find the boundaries for a space (n4, gk,0). We
choose this ordering to maintain our convention that k2 ≥ k1. For any k there will be three
types of moments. For ℓ = 2 we have (−,+), for ℓ = 0 we have (0,+), and for all the spins
ℓ ≥ 4 we have (+,+). These are shown in figure 29, together with the boundary structure
of their sum. Note that unlike the previous two cases for g2,0 and g3,1, the sum of upper
boundaries for spins ℓ ≥ 4 no longer gives just a trivial vertical line. Because the slope for
each spin is given by θℓ =

vℓ,k,0
uℓ,4

= 2
J 4−8J 2 , we actually have that largest slope is finite and

corresponds to ℓ3, with θℓ3 ≥ θℓ4 ≥ . . . ≥ θ∞ = 0.
The Minkowski sum of all boundaries is

gk,0(m1,m2,mi) =
L

k

(
vℓ1,k,0m

k
1 + vℓ2,k,0m

k
2 +

∞∑
i=3

vℓi,k,0(1−mk
i )
)
,

n4(m1,m2,mi) =
L

4

(
uℓ1,4m

4
1 + uℓ2,um

4
2 +

∞∑
i=3

uℓi,4(1−m4
i )
)
. (4.27)

Arranging the boundaries in order, starting at the origin, the first two sections are given
by choosing

Section 1: gk,0(m, 0, 0), n4(m, 0, 0) ,
Section 2: gk,0(1,m, 0), n4(1,m, 0) . (4.28)

The next two sections are given by

Section 3: gk,0 = L

k

(
vℓ2,k,0 + vℓ1,k,0 + vℓ3,k,0(1−mk)

)
,

n4 = L

4
(
uℓ2,4 + uℓ1,4 + uℓ3,u(1−m4)

)
, (4.29)
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Figure 30. Upper bound on gk,0, as a function
of k, with k = 4 null constraint. Blue corre-
sponds to eq. (4.31), valid for k ≤ 256, while red
is valid for 258 ≤ k ≤ 1876; both exhibit 1/k
dropoff.

Figure 31. Eq. (4.31) compared to the mas-
sive scalar in eq. (4.35), after normalizing by
matching at g4,0; the scalar amplitude exhibits
a stronger, approximately 1/k! dropoff.

for m ∈ [r3,4, 1] and

Section 4: gk,0 = L

k

(
vℓ2,k,0 + vℓ1,k,0 +

(
vℓ3,k,0(1− (mr2,3)k) + vℓ4,k,0(1−mk)

))
,

n4 = L

4
(
uℓ2,4 + uℓ1,4 +

(
uℓ3,4(1− (mr2,3)4) + uℓ4,4(1−m4)

))
, (4.30)

for m ∈ [r4,5, 1].
The intersection with the null plane will occur in some section j ≥ 3, depending on k.

For instance, for 4 ≤ k ≤ 256 the intersection is in section j = 3, while for 258 ≤ k ≤ 1876
the intersection is in section j = 4, and so on, as shown in figure 29. For 4 ≤ k ≤ 256
we find an upper bound

gk,0
(4π)2 ≤ 2

k

(
30− 18

(35
36

) k
4
)

1
π2M2k

. (4.31)

This upper bound matches that of g4,0 in eq. (4.8) that we found using the polytope constraints,
as it must. For g6,0 we obtain an upper bound ∼ 0.430, stronger than the bound obtained
in eq. (4.12) using the k = 6 null constraint.

For higher k, when the null plane intersects the section j = 4, the modification is relatively
small. We compare the two in figure 30. In both cases the bound roughly behaves as 1

k , and
we expect this behavior to continue for even higher k.

The same derivation can also be similarly carried out for couplings gk,1 for k = odd,
since these only have a slightly more complicated λℓ,k,q = 2J 2 − k. We have verified the
upper bound follows a similar 1/k dropoff, but the lower bound diverges with large k. We
can obtain the minimum bound by summing only the negative contributions when λℓ,k,q < 0,

– 36 –



J
H
E
P
0
5
(
2
0
2
4
)
1
0
2

that is all spins for which ℓ ≤ ℓ∗ = 1/2(−1 +
√
1 + 2k) ∼

√
k. This gives a lower bound

gk,1 ≥ 16
k

∑
ℓ<ℓ∗

(2ℓ+ 1)(2(ℓ2 + ℓ)− k) . (4.32)

For large k this approximates to −2k. Imposing any finite number of null constraints does
not affect this bound.

It is interesting to compare this behavior with an example of a physical theory. We
can consider a theory with a massive scalar mx, with no tree level interaction, such that
the first allowed amplitude is the 1-loop box, given by

M(s, t) = λ4
∫

d4ℓ

(2π)4
1

[ℓ2 −m2
x]
[
(ℓ− p1)2 −m2

x

] [
(ℓ− p1 − p2)2 −m2

x

] [
(ℓ+ p4)2 −m2

x

]
+ perm(2, 3, 4) . (4.33)

The low energy expansion can be computed by first writing the integral in Feynman pa-
rameterization, which in D = 4 is

I(s, t) =
∫ 1

0
da4

i δ

(
1−

∑
i

ai

)
1

(a1a3s+ a2a4t+m2
x)

2 . (4.34)

In terms of the EFT scale M , we have M = 2mx, since the lightest state for this process is
in fact a two-particle state. Summing over all permutations, we obtain, for k = {0, 2, 4, . . .}:

gk,0 : 2
4λ̃4

2M4

{
1, 24

60M4 ,
28

1890M8 ,
212

48048M12 ,
216

1093950M16 ,
220

23279256M20 , . . .

}
(4.35)

We observe these couplings follow a stronger approximately 1/k! fall-off. For normalization
we match to the upper bound we derived for g4,0 ≤ 0.633, such that the remaining couplings
are consistent with our bound in eq. (4.31), as shown in figure 31. Note that at leading orders,
the scalar box is close to our numeric bounds. The deviation increases at large k.

5 Conclusions

In this paper we developed a non-projective generalization of the EFThedron, allowing us to
incorporate the non-linear unitarity bound in full. This allows us to derive non-projective
upper bounds for the EFT couplings, which shows that while the leading derivative couplings
are of O(1), they are heavily suppressed at higher k. As a different application of this
framework, we can also incorporate the low spin dominance condition, a property observed
to hold for gravitational EFT [38] (see also [63]). It would also be interesting to explore
how to implement the upper bound on ρ for impact parameter space dispersion relations
in gravitational EFT [42, 43]. The approach can also be used to implement the integer
degeneracy condition in the modular CFT bootstrap, as recently demonstrated in ref. [64].

In section 2 we solved the single L-moment problem by treating it as a Minkowski sum
of segments. To our knowledge this a new proof to this problem. It would be interesting if
the same approach could be used to solve the double L-moment problem [59], and perhaps
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understand new features of this much richer topic. At the same time, it would be interesting
if the known solution to the double L-moment can be used to obtain bounds on our physical
problem. This would enable the approach used in the projective case, which is easier to set
up and extend to higher dimensional spaces and more null constraints.
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A Aspects of the L-moment problem

In this section we discuss some other interesting aspects of the L-moment problem, in
particular the functions ρ that correspond to our boundary solutions, also known as extremal
solutions, and the formulation of constraints in terms of “exponential Hankel” matrices.

A.1 Boundary distributions

The boundary solutions for ak correspond to particular ρ, which we can easily work out. For
instance, the boundary of a 2D space we found was given by

ak,q =
∫ 1

0
ρzk−1dz = L

mk

k
, (A.1)

and we find the corresponding boundary ρ is a step function

χI(z) =
{
L for z ∈ I ,

0 for z /∈ I .
(A.2)

In general, a solution may contain a sum over several such functions,

ρ(z) =
N∑

i=1
χIi(z) , (A.3)

where Ii = [m2i−1,m2i], mi ≤ mi+1. Just like the boundary itself, we can deduce the
corresponding distributions directly from eqs. (2.21) and (2.22), depending on dimension,
by simply taking Vi1,i2 → χ[mi1 ,mi2 ]. For D = even we find

lower: ρ(z) = χ[0,m1] + χ[m2,m3] + . . .+ χ[mD−2,mD−1] ,

upper: ρ(z) = χ[m1,m2] + χ[m3,m4] + . . .+ χ[mD−1,1] , (A.4)

and for D = odd

lower: ρ(z) = χ[m1,m2] + χ[m3,m4] + . . .+ χ[mD−2,mD−1] ,

upper: ρ(z) = χ[0,m1] + χ[m2,m3] + . . .+ χ[mD−1,1] . (A.5)
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A.2 Exponential Hankel conditions

Similar to the projective moment problem, necessary and sufficient conditions for the L-
moments can be expressed in terms of positive semi-definite matrices. Using the notation
of [59], the conditions for the infinite dimensional problem are given in terms of two new
sequences, b and c, defined by

exp
[
− 1
L

(
a0
X

+ a1
X2+ · · ·

)]
= 1−

(
b0
X

+ b1
X2+ · · ·

)
,

exp
[ 1
L

(
a0
X

+ a1
X2+ · · ·

)]
= 1 +

(
c0
X

+ c1
X2+ · · ·

)
, (A.6)

which must satisfy the usual Hankel positivity constraints, for all n.

1. x ∈ (−∞,∞):
Hn(b) ≥ 0 . (A.7)

2. x ∈ [0,∞):
Hn(b), Hshift

n (b) ≥ 0 . (A.8)

3. x ∈ [0, 1]:
Hn(b), Hshift

n (b), Htwist
n (c) ≥ 0 . (A.9)

One can verify that for the boundary solutions we found particular subsets of the exponential
Hankels indeed vanish. This implies the Hankel constraints are necessary conditions. Next
we review the proof they are also sufficient conditions, in the x ∈ (−∞,∞) case.

Let us begin with the exponential map

e
1
L

(
a0
x

+ a1
x2 +··· a2m

x2m+1
)
= 1+b0

x
+ b1
x2+ · · · (A.10)

Note that while there are 2m ais, the exponential map generates an infinite series for bis.
We would like to show that if the bi satisfy Hankel positivity condition, we can use them to
build a solution for the L-moment problem for the {ai}s. This applies to the Hamburger,
Stieltjes and Hausdorff intervals I. For a general discussion see [62].

So let us begin by bi being a solution to the Hamburger moment problem. Note that
since the l.h.s. of eq. (A.10) has 2m+1 {ai}s, this means that the first 2m+1 {bi}s on the
r.h.s. should fully determine the {ai}s. This further suggests that b2k+1, bk+2, · · · are also
fully determined by {b0, b1, · · · , b2m+1}, and thus the {bi}s correspond to a solution with
m+1 elements in the hull:

bi =
m+1∑
a=1

ρ̃ay
i
a, ρ̃a > 0 . (A.11)

Substituting this into the exponential map the r.h.s. can be rewritten as

1+b0
x
+ b1
x2+ · · · = 1+

m+1∑
a=1

ρ̃a

x−ya
≡ ψ(x)
ϕ(x) , (A.12)
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where

ϕ(x) =
m+1∏
a=1

(x−ya), ψ(x) =
m+1∏
a=1

(x−y′a) , (A.13)

and y′1 < y1 < y′2 < y2 < · · · < y′m+1 < ym+1, i.e. the position of zeros for ψ(x) is distributed
in between the zeros of ϕ(x). Now consider the following density:

ρ(u) ≡ L

2

(
1−signψ(u)

ϕ(u)

)
. (A.14)

We see that ρ(u) is either L or 0. Since the zeros of ψ(x) and ϕ(x) are interspaced, the
integration directly gives∫

du
ρ(u)
x−u

= L

(∫ y1

y′
1

du

x− u
+
∫ y2

y′
2

du

x− u
+ · · ·

)
= L log ψ(x)

ϕ(x) . (A.15)

Now combine eq. (A.10) with eq. (A.12), we have(
a0
x
+a1
x2+ · · · a2m

x2m+1

)
= L log ψ(x)

ϕ(x) =
∫
du
ρ(u)
x−u

→ ak =
∫
du ρ(u)uk , (A.16)

where ρ(u) is defined in eq. (A.14). Thus we have constructed a solution to the L-moment
problem. Note that the solution corresponds to an m-state solution.

B Discrete solution to the double moment problem

Let us understand the results in section 3.2 also from the discrete perspective, instead of the
Lagrange method. Our task is to find the boundary for the sum of two lower boundaries

ak1,q1 = L

k
vℓ1,k,qm

k
1 + L

k
vℓ2,k,qm

k
2 (B.1)

If we imagine discretizing both curves into small segments, we know the resulting boundary
will be given by placing the segments in order according to their slope. The slopes of segments
from curve 1 range from [0, θ1], while those of curve 2 from [0, θ2], where θℓ = vℓ,k2,q2/vℓ,k1,q1 .
We show this in figure 32. If we assume θ2 > θ1, then it is clear the sum will have one
section from [0, θ1] formed with segments originating from both, placed in some particular
order, and a second section from [θ1, θ2] with segments just from curve 2, placed in their
original order. In the continuous limit this leads to the result found via Lagrange multipliers.
We work this out explicitly next.

Let us now consider a sum of an arbitrary number of moments. We assume the vℓ are
ordered and non-negative, such that 0 < θℓ1 ≤ θℓ2 ≤ . . . ≤ θℓn < π/2. This implies all
spins ℓ1, . . . , ℓn have segments with slopes up to θ1, but only spins ℓ2, . . . , ℓn have segments
with slopes from θ1 to θ2, and so on.

The discretized version of the moments, is given by

a
(ℓ)
k,q = vℓ,k,q

∫ 1

0
ρ(z)zk−1dz →

Nℓ∑
i=1

ρℓ,ivℓ,k,q
ik−1

Nk
ℓ

, 0 ≤ ρi,ℓ ≤ L . (B.2)
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Figure 32. Boundary of the Minkowski sum via discretization. Treating the two curves as polytopes
with infinitesimal edges, the resulting polytope contains segments from both curves, in order of
their slope.

We can view each moment as a Minkowski sum of segments s(ℓ)
i , defined in the terms of

their endpoint obtained when ρi,ℓ = L:

s
(ℓ)
i,k,q = Lvℓ,k,q

ik−1

Nk
ℓ

, (B.3)

with slopes

θℓ,i = θℓ
i∆k

N∆k
. (B.4)

Note that as i varies from 0 to Nℓ the slopes of the segments vary from 0 to θℓ. Let us now
consider the range [0, θ1], where segments from all spins can appear. We wish to discretize
all curves into segments s(ℓ)

i with equal slope for all ℓ. We can achieve this by tuning Nℓ for
each spin. To obtain segments of equal slope at equal i but different ℓ, we require

θℓ1,i = θℓ2,i ⇒
N1
N2

=
(
θ1
θ2

) 1
∆k = r2,1 . (B.5)

This means each spin must be discretized in a total of Nℓi
= N1/ri,1 ≥ N1 segments. The

factor ri,1 is finite for ℓ ̸= 0, so the continuous limit remains consistent. For a given spin
ℓj we obtain a set of N1 segments

s
(ℓj)
i,k,q = L

ik

Nk
1
ℓqjr

k
j,1, i ∈ [0, N1] , (B.6)

with slopes

θℓj ,i = θℓ1,i = θ1
i∆k

N∆k
1

, (B.7)

which unlike eq. (B.4) are now independent of spin, but still depend on i as they vary from 0
to θ1. We can now compute the Minkowski sum at fixed i over all spins, since the sum of
segments of equal slope simply amounts to another segment of the same slope, with endpoint

S
(1)
i,k,q =

∑
ℓ

s
(ℓ)
i,k,q = ik

Nk
1
Fk,q , (B.8)
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where
Fk,q =

∑
i=1

vℓ,k,qr
k
i,j . (B.9)

Crucially, the new segments Si are now ordered according to i ∈ [0, N1], as their slope
increases monotonically with i, from 0 to θ1. Next, we can repeat the argument for the range
[θ1, θ2], and we obtain a new set of vectors S(2)

i,k,q, also ordered by i. Taking the union of S(1)

and S(2) we therefore obtain a set of segments ordered by i ∈ [N1, N2], and so the boundaries
of their Minkowksi sum can be obtained from using the results in section 2. For j ∈ [0, N1],
corresponding to the range, [0, θ1] we obtain a vertex on the boundary given by

Vj|k,q =
j∑

i=1

ik

Nk
1
Fk,q . (B.10)

In the continuous limit this becomes

ak,q = L

k
mkFk,q , (B.11)

matching what we found using the Lagrange method in eq. (3.22).

C Towards a solution for the complete space

In this section we present some partial results on determining the complete space for the
simpler “power” moment problem

ak,q =
∑

ℓ

Λℓ,q

∫ 1

0
ρℓ(z)zk−1dz , (C.1)

where Λℓ,q = g(ℓ)f(ℓ)q, with g and f any positive polynomials in ℓ.

C.1 Diagonal spaces

Let us first consider 3D spaces of the form ak1,q1 , ak2,q2 , ak3,q3 ,, where the set of {ki, qi}s satisfy

ki+1 − ki = ∆k, qi+1 − qi = ∆q . (C.2)

For two spins, the Minkowski sum of lower and upper boundaries of this space is given by

ak,q = L

k

∑
ℓ

Λℓ,q

(
m

(ℓ)
1 −m

(ℓ)
2

)
,

ak,q = L

k

∑
ℓ

Λℓ,q

(
1−m

(ℓ)
1 +m

(ℓ)
2

)
, (C.3)

for 1 ≥ m
(ℓ)
1 ≥ m

(ℓ)
2 ≥ 0. We must compute the boundary of the Minkowski sum of these

boundaries, which is again easily accomplished by the Lagrange multiplier method, also
keeping in mind to check the boundaries of parametric space.

For such case, applying the Lagrange method we find:

m
(ℓi)
1

m
(ℓj)
1

= m
(ℓi)
2

m
(ℓj)
2

= rj,i =
(
f(ℓi)
f(ℓj)

)∆q
∆k

. (C.4)
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This reduces the Minkowski sum to just two independent parameters, as required to span the
2 dimensional boundary. Expressing for instance all parameters as m(ℓj)

i = m
(ℓ1)
i rj,1 = mirj,1,

the lower boundary is given by

ak,q = L

k

(
(m1)k − (m2)k

)∑
i

Λℓ,qr
k
i,1 , (C.5)

which is valid for 1 ≥ m1 ≥ m2 ≥ 0, and similarly for the upper boundary. The sum over
infinite spins is now separate from the parameters, and so can be evaluated numerically. In
higher dimensions, the sum of boundaries is given by

ak,q = L

k

∑
ℓ

Λℓ,q

D−1∑
j=1

(−1)j+1m
(ℓ)
j ,

ak,q = L

k

∑
ℓ

Λℓ,q

1− D−1∑
j=1

(−1)j+1m
(ℓ)
j

 . (C.6)

Remarkably, the result eq. (C.4) holds in fact in any number of dimensions, as long as
the conditions (C.2) are satisfied, so it can be plugged in eq. (C.6) to obtain the D−1
dimensional boundaries.

Finally we need to consider bounds of the parameter space. These will give new boundaries,
which as before, can be simply deduced by imposing the upper integration limit as

m
ℓj

i → min[m(ℓj)
i , 1] . (C.7)

Explicitly, the boundary of a D-dimensional space will be labeled by D − 1 indices
(i1, i2, . . . , iD−1), with N ≥ i1 ≥ i2 ≥ . . . ≥ iD−1 ≥ 1. A value ij = n indicates mℓi<n

j = 1
and m

ℓi≥n

j = ri,nmj , with mj ∈ [rn,n−1, 1].

C.2 Approach to more general spaces

Here we introduce a tentative approach to obtain constraints on the complete space of
couplings ak,q. This is motivated by the previous solution to the projective moment problem
discussed in [52]. Recall that a sequence ak can be expressed as a single moment

ak =
∫
R
ρ(x)xk−1, ρ ≥ 0 , (C.8)

if and only if the Hankel matrix is totally positive,

H =


a1 a2 a3 . . .

a2 a3
...

 ≥ 0 . (C.9)

For double moments,

ak,q =
∫
R2
ρ(x, y)xk−1yq−1, ρ ≥ 0 , (C.10)
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the conditions are given by total positivity of the moment matrix

M =


a1,1 a2,1 a1,2 a3,1 a2,2 . . .

a2,1 a3,1 a2,2
a1,2 a2,2

...

 ≥ 0 . (C.11)

There is in fact a simple way to derive the moment matrix from the Hankel matrix. This
can be done by considering linear combinations of the double moments that can be written
as single moments. For instance we can define

b1 ≡ a1,1 =
∫
ρ (x+ γxy)0 ,

b2 ≡ a2,1 + γa2,2 =
∫
ρ (x+ γxy)1 ,

b3 ≡ a3,1 + 2γa3,2 + γ2a3,3 =
∫
ρ (x+ γxy)2 , (C.12)

where γ is some parameter. Importantly, the new couplings bk are again a sum of single
moments bk =

∫
ρzk, with z = x + γxy. Thus bk satisfy Hankel conditions, leading to

constraints back on the ak,q, such as

H =
(
b1 b2
b2 b3

)
=
(

a1,1 a2,1 + γa2,2
a2,1 + γa2,2 a3,1 + 2γa3,2 + γ2a3,3

)
≥ 0 . (C.13)

Importantly, the above condition now must hold for all values of γ. Imposing this through the
discriminant equation on the determinant, we recover exactly the same condition as from the
3× 3 moment matrix in eq. (C.11). We have therefore derived the double moment conditions
by taking an envelope, parameterized by γ, of the single moment conditions.

Let us now attempt to do the same for the double L-moment problem

ak,q =
∑

ℓq
∫
ρ(z)zk−1dx . (C.14)

We mirror the argument above, by taking linear combinations

b1,1 = a1,1 =
∑∫

ρ(z)(z + γzℓ)0 ,

b2,2 = a2,1 + γa2,2 =
∑∫

ρ(z)(z + γzℓ)1 ,

b3,3 = a3,1 + 2γa3,2 + γ2a3,3 =
∑∫

ρ(z)(z + γzℓ)2 , (C.15)

and so on, for γ > 0. We have shown that diagonal spaces with vℓ,k,q = g(ℓ)f(ℓ)q satisfy
simple boundary equations, and in the case above we simply have vℓ,k,q = (ℓ + γ)q. The
boundary (for the first section) is therefore

bk,k = L

k
(nk −mk)

∑
ℓ

vℓi,k,qr
k
i,1 , (C.16)
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where

ri,1 =
(
ℓ1 + γ

ℓ+ γ

)∆q
∆k

. (C.17)

The boundary is now a function of the parameter γ, and if the analogy with the projective
problem is valid, then we expect that taking the intersection of all constraints for all values
of γ should give necessary and sufficient conditions on the ak,q moments. Unfortunately, it
seems unlikely a closed form can be found, since γ enters the constraints through the infinite
sum in eq. (C.16), which is no longer a purely numerical factor. One can instead simply
numerically compute the envelope (for γ > 0). It would also be interesting to consider taking
the continuous limit of the discrete sum. In that case the sum becomes a trivial integral, and
it may be possible to obtain constraints relevant to the double continuous L-moment problem.

D Low spin dominance

The solution for the non-projective polytope derived in section 2 can also be utilized to
explore the consequence of low spin dominance (LSD), first discussed in [38]. We begin with
the dispersive representation for the couplings

ak,q =
∑

ℓ

vℓ,k,q

∫ 1

0
ρℓ(z)zk−1dz, ρℓ(z) ≥ 0 , (D.1)

and consider the mass averaged distribution

⟨ρℓ⟩k ≡
∫ 1

0
ρℓ(z)zk−1dz . (D.2)

The LSD condition is the requirement that

⟨ρℓ1⟩k ≥ α⟨ρℓ⟩k , (D.3)

where ℓ1 is the lowest spin in the spectrum, and α ≥ 0 is some parameter specifying the
strength of the LSD condition. Since for now we only discuss equal k spaces, we will drop
the k subscript for simplicity. Separating out the lowest spin, we can write

aq =
∑

ℓ

⟨ρℓ⟩vℓ,q = ⟨ρℓ1⟩vℓ,q +
∑
ℓ>ℓ1

⟨ρℓ⟩vℓ,q . (D.4)

We now introduce couplings µq,

µq =
∑
ℓ>ℓ1

⟨ρℓ⟩vℓ,q , (D.5)

which due to the LSD condition must satisfy ⟨ρℓ1⟩ ≥ α⟨ρℓ⟩, ie. they satisfy an L-moment
problem with ⟨ρℓ⟩ ≤ L = ⟨ρℓ1 ⟩

α , which through eq. (D.4) will impose constraints back on
aq. Since we are at equal k space, the solution to this problem is given by the polytope
conditions in section 2. Therefore to obtain bounds on the aq couplings, we merely solve
for the µq in terms of aq

µq = aq−⟨ρℓ1⟩vℓ1,q , (D.6)
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and impose the polytope constraints in eq. (2.23) on the µq

PI(µq), P I(µq) ≥ 0 , (D.7)

setting L = ⟨ρℓ1 ⟩
α . Unlike the previous problem, here the upper bound L = ⟨ρℓ1 ⟩

α is not fixed
beforehand, since ⟨ρℓ1⟩ is not known. However, we can demand eq. (D.7) to hold for any
allowed values of ⟨ρℓ1⟩, and this will still generate constraints. When considering purely
projective bounds, this means we simply project out ⟨ρℓ1⟩ ≥ 0, leading to optimal constraints
on aq purely in terms of α. We can also implement the unitarity bound ρ ≤ 2, which implies
⟨ρℓ⟩k ≤ 2

k , by instead projecting out 0 ≤ ⟨ρℓ1⟩k ≤ 2
k .

Open Access. This article is distributed under the terms of the Creative Commons
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