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1 Introduction

Quantum Field Theory (QFT) usually assumes an infinite volume, in which case the energy
levels are continuous, and tunnelling between degenerate vacua is completely suppressed. In
finite volume things are different though: energies are quantised, and tunnelling between
degenerate vacua is allowed, as in Quantum Mechanics. The first feature leads to the known
Casimir effect (see [1] for a review) while the second is at the origin of convexity of the effective
potential [2–11] and therefore restoration of a symmetric true vacuum. In the present article,
we consider the energetic consequences of the interplay between the above finite volume effects,
that we compare in the specific situation where space has the topology of a three-torus.

The Casimir energy of a system in a finite volume is defined as the difference between
the ground state energy calculated with discrete and continuous momenta. It is known
that the result is highly dependent on the geometry of the confining space, as well as the
boundary conditions satisfied by the field inside this space. For a field with mass m, the
Casimir effect is usually suppressed as ≈ exp(−mL) for mL ≫ 1, where L is a typical length
of the system. Tunnelling, on the other hand, is typically suppressed as the exponential
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of the volume ≈ exp[−(mL)3], where (mL)3 is the action of a Euclidean-time-dependent
and spatially homogeneous instanton connecting the two degenerate vacua.1 As a result,
tunnelling is negligible compared to the Casimir effect if we consider the situation mL ≫ 1.2

In the situation where mL ≲ 1, tunnelling and Casimir effects could be of the same order,
potentially leading to new phenomena. The effective theory taking into account tunnelling of
a real scalar field between two degenerate vacua has been studied in [12, 13]. It was found
that the effective potential is indeed convex, with a symmetric true vacuum at ⟨ϕ⟩ = 0 and
a corresponding ground state energy lower than the original degenerate vacua, similarly to
what happens in Quantum Mechanics. This result was obtained by neglecting the spatially
inhomogeneous fluctuations around the instanton configuration, as well as the Casimir effect.
In the present work, we refine this analysis by including all quantum fluctuations and using
a full analytic result for the Casimir energy.

We note here that O(4)-symmetric saddle points, representing bubbles of true vacuum
developing in a false vacuum, are allowed in the situation of non-degenerate vacua only [14, 15]
(see [16, 17] for reviews). Degenerate vacua would lead to bubbles of infinite radius, which
justifies only looking at homogeneous saddle points in the present work. We also note that
the tunnelling-induced symmetry restoration described here happens at zero temperature
and is unrelated to high-temperature symmetry restoration.

An important feature related to the above finite-volume effects is the violation of the
Null Energy Condition (NEC — see [18, 19] for reviews), which is known in the case of the
Casimir effect, and which has been shown in [12, 13] for tunnelling between degenerate vacua.
NEC violation in both cases is related to a non-trivial dependence on the typical length L

of the system considered, which implies a non-extensive ground state energy and leads to
remarkable energetic properties. In this article we derive these effects precisely, taking into
account the full one-loop quantum fluctuations about the instanton, with discrete momenta.

Section 2 sets the framework, where we define the semiclassical approximation for the
partition function of a self-interacting scalar field with a double-well potential. We consider
the same instanton dilute gas as the one used in Quantum Mechanics, based on homogeneous
and Euclidean-time-dependent configurations [20].

In section 3 we derive the Casimir energy for a massive scalar field in a three-torus, using
the Abel-Plana formula. This is done first in one space dimension and then in arbitrary
dimensions, based on a recursion formula which is derived in appendix B, together with the
details of the calculation for two and three space dimensions.

The tunnelling contribution is then described in section 4, where the full one-loop
functional determinant for fluctuations about the instanton is obtained based on the method
of the Green’s function described therein. Throughout the calculation, the discrete nature
of the momenta is kept, and no further approximation is made. This calculation is done
for the first time, and all the details are therefore given in this section. The true ground
state energy is then discussed, and we find that tunnelling can be of the same order of
magnitude as the Casimir effect for mL ≲ 1.

1For this reason tunnelling between degenerate vacua is completely suppressed in the limit of infinite
volume, where spontaneous symmetry breaking occurs instead.

2This is the case of three space dimensions, and of course things could be different in one space dimension.
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In section 5 we discuss the possibility of inducing a cosmic bounce from the NEC violation
mechanism obtained here, without modified gravity or exotic matter, as was already described
in [21, 22], but where quantum fluctuations were calculated with continuous momenta.

2 True ground state energy

We consider a real scalar field in a symmetric double-well potential and in finite volume. The
Quantum Mechanical analogy, corresponding to field theory in zero spatial dimensions, is
well-known from ref. [23]. Here, we choose space to be a three-torus with size L in the three
directions, thus corresponding to the volume L3. The Euclidean action is

SE =
∫ β/2

−β/2
dτ

∫
d3x

(1
2(∂τ ϕ)2 + 1

2(∇ϕ)2 + U(ϕ)
)

, (2.1)

where

U(ϕ) = λ

4!(ϕ
2 − v2)2 + U0 , (2.2)

and τ = it is the imaginary time. We will consider the zero-temperature limit β → ∞.
The energy density U0, which fixes the origin of energies, corresponds to a cosmological
constant in the discussion on Cosmology.

As discussed in the Introduction, in this context the scalar field can tunnel between the
two degenerate bare minima ±v, resulting in an effective theory with a symmetric vacuum
state located at ⟨ϕ⟩ = 0 (see figure 1). The explicit effective potential has been calculated
at quadratic order in [12, 13], where one finds a positive mass term, therefore showing
convexity. In the present article, we focus on the true vacuum expectation value (vev) from
the beginning and thus we consider a vanishing source. Indeed, finite volume implies a
one-to-one mapping between the source and the vev, and thus a unique Legendre transform
to obtain the one-particle-irreducible effective action. In this mapping a vanishing source
corresponds to a vanishing vev.

2.1 Semi-classical approximation

We focus here on the fundamental quantity, which is the true ground state energy

E0 = − lim
β→∞

1
β
logZE = − lim

β→∞

1
β
log

∫
ϕ(−β

2 ,x)=ϕ(β
2 ,x)

D[ϕ] e−SE [ϕ] , (2.3)

β being the inverse temperature, ZE the Euclidean partition function and SE the Euclidean
action (2.1). Above, we have indicated the periodic boundary conditions in Euclidean time
when evaluating the canonical thermal partition function. We will evaluate ZE in the context
of the semi-classical approximation, where the contribution of each dominant configuration
(the saddle points) is independent from the others, such that

ZE =
∫

D[ϕ] e−SE [ϕ] ≈
∑

ϕ saddle

[ϕ] , (2.4)
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Figure 1. The classical potential (solid line) and the effective potential (dashed line) in a finite
volume. Tunnelling between the degenerate minima in the classical potential restores the symmetry,
giving a symmetric true vacuum at ϕc = 0.

where [ϕ] is the one-loop approximation of the individual path-integral corresponding to
a unique saddle point ϕ

[ϕ] =
∫

D[η] e−SE [ϕ+η]

≈ e−S[ϕ]
∫

D[η] e−
1
2

∫
ηS′′

E [ϕ]η = e−SE [ϕ]
(
detS′′

E [ϕ]
)− 1

2 , (2.5)

where S′′
E [ϕ̄] denotes the fluctuation operator about the saddle point ϕ̄, and we have used

the simplified notation for the integral in the exponent. Equation (2.5) requires further
treatment in case the saddle point ϕ explicitly breaks some symmetry of the action. In
this case, the operator S′′

E [ϕ] has one or more zero modes, over which the integral is not
Gaussian. The integral over the zero modes, however, can be traded for an integral over
the collective coordinates of the saddle point.

The homogeneous saddle points ϕ are the solutions to the classical (Euclidean) equations
of motion

ϕ̈ + λv2

6 ϕ − λ

6ϕ3 = 0 , (2.6)

where the dot stands for the derivative with respect to the Euclidean time, ϕ̈ = ∂2ϕ
∂τ2 .

In order for the saddle point to have a finite Euclidean action for β → ∞, it must
approach asymptotically either of the two minima of the classical potential ±v at τ = ±β

2 .
This simplifies the analysis since we only need to look for saddle points satisfying the boundary
conditions ϕ

(
−β

2

)
= ϕ

(
β
2

)
= ±v. There are two trivial solutions in this model, ϕ ≡ ±v.

The contribution of these two configuration reads

[+v] = [−v] = e−L3βU0
(
detS′′

E [v]
)− 1

2 = e−L3βU0
(
det(−∂2

τ −∇2 + m2)
)− 1

2 , (2.7)
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where m2 ≡ U ′′(ϕ)|ϕ=±v = λv2

3 . We postpone the calculation of the functional determinant
to section 3.

2.2 Instanton gas

Equation (2.6) also admits Euclidean-time-dependent but spatially homogeneous solutions, the
instanton and the anti-instanton, i.e., the kink (K) and the anti-kink (K) in Euclidean time

ϕK/K(τ) = ±v tanhω(τ − τ1) , where ω2 = λv2

12 = m2

4 , (2.8)

and τ1 is the location of the (anti-)kink. Strictly speaking, these saddle points do not
contribute to the canonical partition function because they are not periodic in τ . However,
some combinations of them called multi-instantons do, and their contribution can be written
in terms of single kink and anti-kink contributions as we will describe below. The contribution
of a single (anti-)kink reads

[K] =
[
K
]
=
∫ β/2

−β/2
dτ1[I][v] = β[I][v] , (2.9)

where we isolated the contribution of the centre of the (anti-)instanton (the “jump”)

[I] =

√
K

2π
e−K

(
det′ S′′

E [ϕK ]
detS′′

E [v]

)− 1
2

=

√
K

2π
e−K

 det′
(
−∂2

τ −∇2 + m2

2

(
3ϕ2

K
v2 − 1

))
det(−∂2

τ −∇2 + m2)


− 1

2

, (2.10)

and det′ is the fluctuation determinant without the contribution of the zero mode. The
latter arises from the invariance of the system under translation of the jump and leads to the
integration over the variable τ1 in eq. (2.9). We exchange the integration of fluctuations in
the direction of the time-translational zero mode ∼ ∂τ ϕK for an integration over the location
of the jump. In fact, the jump can be located at any point in the time interval (−β/2, β/2),
and we must sum over all possible such positions. This leads to the overall factor of β. The
factor of

√
K
2π is the Jacobian of the transformation to the collective coordinate τ1. Finally,

K is the classical (Euclidean) action of the kink configuration, without U0,

K = 2(mL)3

λ
. (2.11)

We now turn to the contribution of the multi-instantons, together with their zero modes.
These correspond to back-and-forth oscillations between the two maxima of the upside-down
potential. In the dilute instanton gas approximation, we assume that the average separation
between two successive jumps is large compared to the width of a jump

∆τ ≡ ⟨τi − τi−1⟩ ≫ ω−1 . (2.12)
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Then, the classical field configuration corresponding to N successive jumps starting at −v

for τ → −β/2 can be approximately written as follows

ϕN−jumps ≈ v(−1)N+1 tanhω(τ − τ1) tanhω(τ − τ2) . . . tanhω(τ − τN ) , (2.13)

where τi is the location of the i-th jump. Equation (2.13) is valid for both even and odd N .
The above configurations are associated with their “anti” type ones, which differ only by a
minus sign. In appendix A, we discuss a condition for the dilute gas approximation to be valid.

The contribution to the partition function of the N -jumps configuration is given by[
K1K2 . . . KN−1KN

]
≈
∫ β

2

−β
2

dτ1

∫ β
2

τ1
dτ2· · ·

∫ β
2

τN−1
dτN [I]N [v] = βN

N ! [I]
N [v] , (2.14)

where the integration region for the location of the jumps is fixed by an instanton always
being followed by an anti-instanton and vice versa, a condition imposed by only having two
degenerate minima. Note that once again, we have isolated the contribution of fluctuations
around the jumps from the contribution of fluctuations around the constant configuration.

The full partition function of the theory at quadratic order in the fluctuations is finally

ZE ≈ 2
∞∑

N=0

β2N

(2N)! [I]
2N [v] = 2[v] cosh β[I] , (2.15)

where the factor of 2 is introduced by the two options ϕ(−β/2) = ±v. Note that in eq. (2.15),
we only summed over configurations with an even number of jumps, which are the only
configurations satisfying the periodic boundary conditions from eq. (2.3). The ground state
energy can then be expressed in terms of [v] and [I] using eq. (2.3), we find3

E0 = − lim
β→∞

1
β
log[v]− [I] = Estat + Einst . (2.16)

As explained in section 3, the contribution Estat of the static saddle points to the ground
state energy can be identified with the Casimir energy once we renormalise it. The ratio
of functional determinants appearing in [I] is calculated in section 4.

3 Casimir energy

The energy contribution of the static saddle points Estat can be easily written down

Estat =− lim
β→∞

1
β
log[v]

= L3U0 +
1
2 lim

β→∞

1
β
tr log(−∂2

τ −∇2 + m2)

= L3U0 +
1
2
∑

n∈Z3

√
k2

n + m2 , (3.1)

where kn = 2π
L |n|. To arrive at the last equality, we have used

tr log(−∂2
τ −∇2 + m2) = β

∫
dω

2π

∑
n∈Z3

log(ω2 + k2
n + m2) (3.2)

3Here we use that [I] > 0, which can be readily seen from eq. (2.10).
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and performed the integral over ω. The energy Estat is nothing but the vacuum energy E
(3)
0

of a massive scalar field on a three-dimensional torus. We can rewrite eq. (3.1) as

Estat = L3U0 + E
(3)
Casimir +

L3

2

∫
R3

d3k
(2π)3

√
k2 + m2 , (3.3)

where we have adopted the standard definition of the Casimir energy [1]. E
(3)
Casimir is finite.

The last divergent term will be eventually dealt with in renormalisation, see eq. (4.23b) and
below. To compute the Casimir energy, we use the Abel-Plana formula

∞∑
n=0

f(n)−
∫ ∞

0
dt f(t) = 1

2f(0) + i

∫ ∞

0
dt

f(it)− f(−it)
e2πt − 1 (3.4)

which holds for any function f(z) holomorphic in the region Re z ≥ 0 that vanishes fast
enough towards infinity such that both the series and the integral are convergent. Thus,
to use the formula, we must multiply the term in the sum

√
k2

n + m2 by a regulator η(n),
namely a smooth function that decays fast towards infinity and such that η(0) = 1. As
explained in [1], we never need to state our regulator explicitly, as we will find a result that is
completely independent of it. The difference between the discrete and the continuum vacuum
energy, yields the Casimir energy due to the compactness of the space

E
(3)
Casimir(m;L, L, L) = E

(3)
0 (m;L, L, L)− E(3)

∞ (m;L, L, L)

= 1
2
∑

n∈Z3

√
k2

n + m2 − L3

2

∫
R3

d3k
(2π)3

√
k2 + m2 , (3.5)

where our notation specifies that we are considering a three-torus of equal sizes of length L.
The details of the calculations are found in appendix B. In the following, we outline the
main steps.

It is easier to start by computing the Casimir energy on a one-dimensional space with
periodic boundary conditions, namely a circle. The result for it is known (see [1])

E
(1)
Casimir(m;L) = − 1

πL
F(1,0)(mL) , (3.6)

where the function F(1,0)(x) is defined as

F(1,0)(x) =
∫ ∞

x
dy

√
y2 − x2

ey − 1 . (3.7)

We highlight that F(1,0)(x) is a smooth function over the whole positive real line, and has
the following asymptotic behaviours

F(1,0)(0) =
π2

6 , (3.8)

F(1,0)(mL ≫ 1) =
√

π

2
√

mLe−mL
(
1 +O((mL)−1)

)
, (3.9)

namely for very small lengths L the massless behaviour dominates the Casimir energy, while
as L grows an exponential suppression kicks in.
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Now we can use the recursive formula proven in appendix B, valid for the Casimir energy
of a real massive scalar field on a D-dimensional torus of sizes a1, . . . , aD where D > 1

E
(D)
Casimir(m; a1, . . . , aD) = − 1

πDaD

(
D−1∏
i=1

ai

aD

)
F(D,0)(maD)

+
∞∑

n=−∞
E

(D−1)
Casimir

(√
m2 + 4π2n2

a2
D

; a1, . . . , aD−1

)
, (3.10)

where

F(D,0)(x) =
(

D−1∏
i=1

∫ ∞

0
dyi

)
F(1,0)

(√
x2+
∑D−1

i=1 y2
i

)
=
∫ ∞

0
dyF(D−1,0)

(√
x2 + y2

)
. (3.11)

Using the formula (3.10), we find the Casimir energy for a real massive scalar field on a
generic three-torus in eq. (B.18). Setting equal sizes a1 = a2 = a3 = L we finally find4

E
(3)
Casimir(m;L) = − 1

π3L

[
F(3,0)(mL) + πF(2,1)(1, mL) + π2F(1,2)(1, 1, mL)

]
, (3.12)

where the F(i,j) are defined as

F(i,1)(r, x) =
∞∑

n=−∞
F(i,0)(r

√
x2 + 4π2n2) , (3.13a)

F(i,2)(r1, r2, x) =
∞∑

n=−∞
F(i,1)(r1, r2

√
x2 + 4π2n2) . (3.13b)

4 The tunneling contribution

We now turn to the calculation of the tunnelling (or instanton) contribution to the energy.
In section 2.2 we have derived

Einst = −[I] = −

√
K

2π
e−K

 det′
(
−∂2

τ −∇2 + m2

2

(
3ϕ2

K
v2 − 1

))
det(−∂2

τ −∇2 + m2)


− 1

2

. (4.1)

In this section, we compute the ratio of functional determinants. To do so, we employ the
resolvent method, developed in [24–27] and used in, e.g., [17, 28–30]. The method states
that the ratio of the determinants of two operators can be written as an integral of some
modified Green’s function. Explicitly

log det Â

det B̂
= −

∫ ∞

0
ds

∫
d4x (GA(s;x, x)− GB(s;x, x)) , (4.2)

where the modified Green’s functions known as resolvents are defined through the differential
equation (

Â + s
)

GA(s;x, y) = δ(4)(x − y) , (4.3)

4From now on, we write E
(3)
Casimir(m; L) instead of E

(3)
Casimir(m; L, L, L) since we will only be considering a

torus with sides of equal length.
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and similarly for the operator B̂. To see eq. (4.2), we write the modified Green’s functions
in their spectral representation, e.g.,

GA(s;x, x′) =
∑

n

ϕ∗
A,n(x)ϕA,n(x′)

λA,n + s
, where ÂϕA,n = λA,nϕA,n . (4.4)

Then ∫ S

0
ds

∫
d4x GA(s;x, x) = −

∑
n

log λA,n

λA,n + S
, (4.5)

where we used that the eigenfunctions ϕA,n are normalised to one. Therefore,

−
∫ S

0
ds

∫
d4x (GA(s;x, x)− GB(s;x, x)) =

∑
n

log λA,n

λB,n
−
∑

n

log λA,n + S

λB,n + S
. (4.6)

When taking S → ∞, the second term on the r.h.s. vanishes.

4.1 Finding the modified Green’s function

To compute the ratio of determinants appearing in eq. (4.1) via the resolvent method, we
must find two modified Green’s functions. We will first evaluate the more complicated one,
namely for the fluctuation operator around the instanton configuration. The equation reads(

−∂2
τ −∇2 + m2

2

(
3ϕ2

K

v2
− 1

)
+ s

)
GK(s;x, x′) = δ(4)(x − x′) . (4.7)

Because of invariance under spatial translations, we can make the following ansatz

GK(s;x, x′) = 1
L3

∑
n∈Z3

e−ikn·(x−x′)F (K)
n (s; τ, τ ′) , (4.8)

where the discretised momentum is kn = 2π
L n. After changing to variable u = tanhωτ , the

equation for the τ -dependent part becomes(
d

du
(1− u2) d

du
− µ2

n

1− u2 + 6
)

m

2 F (K)
n (s;u, u′) = −δ(u − u′) , (4.9)

where we have introduced the dimensionless quantity µn = 2
√
1 + k2

n
m2 + s

m2 .
The solution to the equation above can be obtained in terms of associated Legendre

functions P µn
2 (u) and Qµn

2 (u) [17, 31]. It reads [28]

F (K)
n (s;u, u′) = 2

m

1
2µn

[
θ(u − u′)

(1− u

1 + u

)µn
2
(1 + u′

1− u′

)µn
2

×
(
1− 3(1− u)(1 + µn + u)

(1 + µn)(2 + µn)

)(
1− 3(1− u′)(1− µn + u′)

(1− µn)(2− µn)

)
+ (u ↔ u′)

]
.

(4.10)

Note that the function above has a pole for µn = 2, namely for n = 0 and s = 0. This
is not surprising: the instanton background breaks the time-translational symmetry of the
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theory, thus inducing a zero mode that appears as a simple pole in the physical Green’s
function G(0;x, x′). We need to define the subtracted Green’s function on the space orthogonal
to the zero mode. Note that in the spectral decomposition, the modified Green’s function
is given by

G(s;x, x′) =
∑

λ

ϕλ(x)ϕ∗
λ(x′)

λ + s
= ϕ0(x)ϕ∗

0(x′)
s

+
∑′

λ

ϕλ(x)ϕ∗
λ(x′)

λ + s
. (4.11)

Thus, to isolate the contribution of the zero mode ϕ0 it is enough to look at the leading 1/s

behaviour in F
(K)
0

F
(K)
0 (s;u, u′) = 3

2m

(1− u2)(1− u′2)
µ2
0 − 4

+ finite terms for s → 0 . (4.12)

By subtracting this term from expression (4.10), we find the time-dependent part of the
modified subtracted Green’s function

F (K)⊥
n (s;u, u′) = 2

m

1
2µn

[
θ(u − u′)

(1− u

1 + u

)µn
2
(1 + u′

1− u′

)µn
2

×
(
1− 3(1− u)(1 + µn + u)

(1 + µn)(2 + µn)

)(
1− 3(1− u′)(1− µn + u′)

(1− µn)(2− µn)

)
+ (u ↔ u′)

]

− δn,0
3
2m

(1− u2)(1− u′2)
µ2

n − 4 . (4.13)

The coincident limit of the modified Green’s function, needed for the resolvent method, is

G⊥
K(s;x, x) = 2

mL3

{
1

2µ0
+ 3(1− u2)

2µ0

(
u2

µ2
0 − 1

− 1
2
1− u2

µ0 + 2

)
+

+
∑′

n∈Z3

1
2µn

(
1 + 3(1− u2)

2∑
κ=1

(−1)κ κ − 1− u2

µ2
n − κ2

)}
, (4.14)

where the primed sum runs over Z3\{0, 0, 0}.
We must now compute the modified Green’s function for the fluctuation operator around

the static saddle points. The differential equation reads

(−∂2
τ −∇2 + m2 + s)Gv(s;x, x′) = δ(4)(x − x′) . (4.15)

Using the same ansatz and the same change of variable we performed above, we get to the
equation for the time-dependent part(

d

du
(1− u2) d

du
− µ2

n

1− u2

)
m

2 F (v)
n (s;u, u′) = −δ(u − u′) , (4.16)

which can be solved in terms of associated Legendre functions of the first and second kind
P µn
0 (u) and Qµn

0 (u). See for example [31]. We have [17]

F (v)
n (s;u, u′) = 2

m

1
2µn

[
θ(u − u′)

(1− u

1 + u

)µn
2
(1 + u′

1− u′

)µn
2
+ (u ↔ u′)

]
, (4.17)

and in the coincident limit

Gv(s;x, x) = 2
mL3

∑
n∈Z3

1
2µn

. (4.18)
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4.2 Computing the renormalised ratio of functional determinants

We have all the ingredients we need to apply the resolvent method in eq. (4.2). We have

log det′ S′′
E [ϕK ]

detS′′
E [v]

=−
∫ ∞

0
ds

∫
d3x

∫ ∞

−∞
dτ
(
G⊥

K(s;x, x)− Gv(s;x, x)
)

=−
∫ ∞

0
ds

∫ 1

−1

2du

m(1− u2)
2
m

{
3(1− u2)

2µ0

(
u2

µ2
0 − 1

− 1
2
1− u2

µ0 + 2

)
+

+
∑′

n∈Z3

1
2µn

3(1− u2)
2∑

κ=1
(−1)κ κ − 1− u2

µ2
n − κ2

}

=− log 3 + 4
m2

∫ ∞

0
ds

1
µ0(µ0 + 2)

− 2
∑′

n∈Z3

log 3m2 + 2k2
n + 3m

√
k2

n + m2

|kn|
√
4k2

n + 3m2 . (4.19)

The expression above still contains a divergent integral

4
m2

∫ S

0
ds

1
µ0(µ0 + 2) = − log 4m2 + logS +O(S−1) → ∞ .

This arises because of the mismatch in the number of eigenmodes between the two operators
in the ratio, a consequence of having subtracted the zero mode from the fluctuation operator
around the kink. Specifically, this can be seen from eq. (4.6). Removing the zero mode from
GA would lead to a divergent contribution log(λB,0 + S) ∼ logS for S → ∞ from the second
term on the r.h.s. . Therefore, this divergence is a mere artefact of removing a zero mode in
the resolvent-formula for the functional determinants eq. (4.2) and should be dropped out.
We find an expression for the un-renormalised logarithm of the ratio of determinants

1
2 log det′ S′′

E [ϕK ]
detS′′

E [v]
=− 1

2 log 12m2 −
∑′

n∈Z3

log 3m2 + 2k2
n + 3m

√
k2

n + m2

|kn|
√
4k2

n + 3m2 . (4.20)

We can identify this quantity as the one-loop correction to the 1PI effective action [32] around
the kink configuration, having subtracted the correction around the static one.

The divergences from the last term in eq. (3.3) and in (4.20) can only be removed
via renormalisation of the one-loop effective action Γ(1)[ϕ]. With the counter-terms, we
have explicitly

Γ(1)[ϕK ]− Γ(1)[v] = SE [ϕK ]− SE [v] +
1
2 log detS′′

E [ϕK ]
detS′′

E [v]
+ Sc.t.[ϕK ]− Sc.t.[v]

= K + 1
2 log detS′′

E [ϕ]
detS′′

E [v]
+
∫ ∞

0
dτ

∫
d3x

(
δm2

2 (ϕ2
K − v2) + δλ

4! (ϕ
4
K − v4)

)
.

(4.21)

Note that once the counter-terms have been added, all the coupling constants, including
the mass and U0, are the renormalised ones and are to be intended as such in what follows.
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For clarity, we still use the same notations as for the bare quantities. Then the instanton
contribution to the energy is

Einst = −e−(Γ(1)[ϕK ]−Γ(1)[v]) . (4.22)

Since the zero-point energy U0 is field independent, it is cancelled out in the difference. The
UV divergences are sensitive to neither the background nor the topology of space. Therefore,
we can find δm2 and δλ by simply renormalising the one-loop effective potential in the infinite
volume limit that is obtained from the effective action for constant field backgrounds,

Γ(1)[ϕ]
∣∣∣
ϕ is constant

=
∫

d4x Ueff(ϕ) , (4.23a)

⇒ Ueff(ϕ) = U(ϕ) + 1
2

∫
d3k
(2π)3

√
k2 + U ′′(ϕ) + δm2

2 ϕ2 + δλ

4! ϕ4 + δU0 . (4.23b)

The integral above is divergent, and we need to choose a regularisation procedure that we
will use to regulate both the integral in the continuum limit and its corresponding series.
We use a smooth-regulator

η

( |k|
Λ

)
= e−

|k|2

Λ2 , (4.24)

where Λ is some large cut-off scale. With this, the integral reads

1
2

∫
d3k
(2π)3

√
k2 + U ′′(ϕ) e−

k2
Λ2

= [U ′′(ϕ)]2

128π2

[
16Λ4

(U ′′[ϕ])2 + 8Λ2

U ′′(ϕ) + 1 + 2γE + 2 log U ′′(ϕ)
4Λ2

]
+O

(√
U ′′(ϕ)
Λ

)
. (4.25)

We choose the following renormalisation conditions

Ueff(ϕ)|ϕ=±v = U0 , (4.26a)
d2Ueff(ϕ)

dϕ2 |ϕ=±v = m2 , (4.26b)

d4Ueff(ϕ)
dϕ4 |ϕ=±v = λ . (4.26c)

Imposing the renormalisation conditions fixes the counter-terms

δU0 =− m4

256π2

(
143 + γE − 8Λ2

m2 + 32Λ4

m4 − log 4Λ2

m2

)
, (4.27a)

δm2 =− λm2

64π2

(
−31− γE + 4Λ2

m2 + log 4Λ2

m2

)
, (4.27b)

δλ =− 3λ2

32π2

(
5 + γE − log 4Λ2

m2

)
. (4.27c)

With the above renormalisation procedure, the divergent term in eq. (3.3) has essentially
been regularised by the counter-term δU0, leaving the renormalised, physical U0 through
the condition (4.26a).
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The contribution of the counter-terms to the effective action reads

Sc.t.[ϕK ]− Sc.t.[v] =
∫ ∞

−∞
dτ

∫
d3x

(
δm2

2 (ϕ2
K − v2) + δλ

4! (ϕ
4
K − v4)

)

= − 2m3L3
(
3δm2

m2λ
+ δλ

λ2

)

= + 3m3L3

32π2

(
−21 + γE + 4Λ2

m2 − log 4Λ2

m2

)
. (4.28)

The resulting expression for the instanton contribution to the ground state energy is

Einst =−
√
12m2

√
m3L3

πλ
exp

{
− 2m3L3

λ

+
∑′

n∈Z3

e−
k2

n
Λ2 log 3m2 + 2k2

n + 3m
√

k2
n + m2

kn

√
4k2

n + 3m2

− 3m3L3

32π2

(
−21 + γE + 4Λ2

m2 − log 4Λ2

m2

)}
. (4.29)

We can check that these counter-terms correctly renormalise the series by considering the
continuum limit of the latter, and extracting its UV divergences. We find

∑′

n∈Z3

e−
k2

n
Λ2 log 3m2 + 2k2

n + 3m
√

k2
n + m2

|kn|
√
4k2

n + 3m2

−→ L3
∫

d3k
(2π)3 e−

k2
Λ2 log 3m2 + 2k2 + 3m

√
k2 + m2

|k|
√
4k2 + 3m2

= L3

2π2

∫ ∞

ϵ
d|k| k2e−

k2
Λ2

(
3m

2|k| −
3m3

8|k|3 +O
(

m5

|k|5

))

= 3m3L3

32π2

(
4Λ2

m2 − log 4Λ2

m2

)
+ finite terms , (4.30)

which are indeed cancelled by the counter-term contribution in eq. (4.29).
The result in eq. (4.29) includes the full one-loop contribution of the fluctuations around

the jump. In refs. [13, 21], the instanton contribution to the ground state energy is calculated
by only keeping homogeneous fluctuations. This can be obtained from the result in eq. (4.29)
by neglecting the contributions from n ̸= 0 fluctuations, namely

E
(hom)
inst = −

√
12m2

√
m3L3

πλ
exp

{
−2m3L3

λ

}
. (4.31)

The calculation of this result resembles one of a tunnelling problem in Quantum Mechanics
(QM). Therefore, we will refer to eqs. (4.31) and (4.29) as QM and QFT results, respectively.
The inhomogeneous fluctuations yield additional one-loop corrections, which we expect to be
perturbatively small compared to the QM result, at least for small coupling λ. In figure 2,
we plot the QM and the QFT results. As expected, the smaller λ the smaller the change
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(a) λ = 0.001 (b) λ = 0.01

(c) λ = 0.1 (d) λ = 1

Figure 2. Comparison between the quantum mechanical approximation and the full QFT result of
Einst, as defined in eq. (4.31) and eq. (4.29) respectively.

in the instanton energy. In particular, for λ ≪ 1, the QM result approximates the full
QFT result really well. This justifies the approximations made in refs. [13, 21], where the
spatial dependence of the quantum fluctuations was ignored. Interestingly, for larger λ the
peak of the energy in the QFT result shrinks and moves to smaller values of mL when
compared to the QM one.

4.3 Comparing with the Casimir energy

We can now compare the relative contribution of the Casimir effect and the tunnelling to
the ground state energy. We show the comparison in figure 3. At first glance, we see that
the Casimir energy is generally larger than the instanton one. However, for mL ∼ 1 the
latter can become of the same order of magnitude as the former, as can be seen in the
bottom panel of figure 3.

Because of its relevance for violating the NEC in eq. (5.1), we are primarily interested in
the sum of energy density and pressure, which in the thermodynamic limit can be written as

ρ + p = E0
V

− dE0
dV

, (4.32)

where E0 is the renormalised ground state energy and V = L3 is the spatial volume.
Specifically, the energy E0 reads

E0 = L3U0 + E
(3)
Casimir + Einst , (4.33)
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(a)

(b)

Figure 3. Comparison of the contributions to the ground state energy as defined in eq. (3.12)
and (4.29) for various values of λ.

where E
(3)
Casimir is given in eq. (3.12) and Einst is given in eq. (4.29). In figure 4, we plot the

relative contribution of the Casimir effect and the instantons to ρ + p. The top panel clearly
shows that for large enough coupling λ the effect of instantons becomes of the same order
as the Casimir effect. In the bottom panel ρ + p is plotted, both ignoring and including
instanton effects for λ = 1. The instanton effects result in a steeper curve, thus making
the NEC violation stronger.

5 Relevance to cosmology

Singularity theorems in general relativity show that singularities are inevitable under very
general circumstances [33]. However, they have in their assumptions some restrictions on the
energy-momentum tensor for matter fields Tµν . In particular, it is assumed to satisfy the
NEC Tµνℓµℓν ≥ 0 where ℓµ is a null vector. For a perfect fluid, the NEC reduces to

ρ + p ≥ 0 , (5.1)
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(a)

(b)

Figure 4. Comparison of the contributions to ρ + p as defined in eq. (4.32) from the tunnelling
and Casimir effects, respectively. Panel (a): the ratio of the contribution of the instantons over the
contribution of the Casimir effect is shown for various values of λ. Panel (b): the sum of energy
density and pressure is shown with and without instanton effects for λ = 1.

where ρ and p are the energy density and the pressure of the fluid respectively. Therefore,
identifying new NEC-violating mechanisms within quantum field theory holds particular
significance in cosmology since the classical singularity theorems do not apply, and the
cosmological singularity can be potentially avoided.

The finite volume effects described in this work could naturally induce a semi-classical
bounce when the effective theory is coupled to gravity in a spatially compact universe, such
as the one considered here.

Recently, there have been discussions that Cosmic Microwave Background temperature
and polarization data from Planck favour a spatially closed Universe [34, 35], although such
preference disappears when the Planck data are combined with other measurements [36–38].
For an FLRW universe, the observational data only constrains the curvature parameter ΩK ,
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defined as ΩK = −K/(a2
0H

2
0 ),5 and currently all cases K = 0,±1 remain possible.6 Although

in the present work we assume the space to be a flat three-torus (K = 0) for simplicity, the
analysis can be generalised to a three-sphere (K = 1) and is left for future work.

The analysis of the Casimir effect in a cosmological context was introduced for the first
time in ref. [39]. Since then, several authors studied its possible effects in cosmology (see
ref. [1] for a review). For example, in ref. [40] the backreaction problem is discussed when
considering the Casimir energy of a massless field, and static solutions to the Friedmann
equations are derived for a closed universe with positive curvature. Other works based on the
Casimir effect, have considered the possibility of inducing an accelerating universe [40–42],
but did not consider tunnelling. We also mention here works involving the scalar Casimir
effect that are related to non-trivial universe topology. In refs. [43–45], the vacuum energy
for a scalar field is evaluated in either a de Sitter universe or an FLRW universe, with one
or more compact extra dimensions. Also, the stabilisation of the Einstein universe via the
Casimir force is discussed in ref. [46].

The effect of quantum tunnelling in cosmology was recently analysed in ref. [21]. Ignoring
the Casimir energy and the space-dependence of quantum fluctuations about the instanton,
it is found that tunnelling can indeed dynamically generate an effective equation of state
that supports a cosmological bounce when coupled to gravity. The energy density and the
pressure of the effective ground state were obtained upon assuming that the tunnelling rate
is large compared to the expansion rate of the universe,

|H| ≡
∣∣∣ ȧ
a

∣∣∣≪ [I(0)] , where [I(0)] =
√
12m2

√
m3L3

πλ
exp

{
− 2m3L3

λ

}
, (5.2)

which allows the calculation of quantum fluctuations for a constant scale factor. The time-
dependence of the latter is then restored when coupling the effective theory to gravity. In
this context, the energy density and the pressure of the ground state fluid read

ρ(0)(t) = E
(0)
0 (t)

L(t)3 = U0 −
√
12m2

√
m3

πλL(t)3 e−
2m3

λ
L(t)3

, (5.3a)

p(0)(t) = − 1
3L(t)2

dE
(0)
0 (t)

dL(t)

= −U0 +
√
12m2

√
m3

πλL(t)3

(
1
2 − 2m3L(t)3

λ

)
e−

2m3
λ

L(t)3
, (5.3b)

where L(t) = a(t)L0, with L0 being an arbitrary “length-cell”. It can be shown (see ref. [21])
that the NEC is violated for any value of the comoving volume a3L3

0, and therefore a bouncing
solution is obtained in FLRW independently of the initial conditions as long as H(t0) < 0.

An advantage of these finite-volume mechanisms is that they intrinsically favour expansion
over contraction since they are exponentially suppressed after a period of expansion (i.e.,
for large volumes). Also, they do not rely on modified gravity or exotic matter and are
dynamically generated by a shrinking co-volume.

5Here the FLRW metric is: ds2 = −dt2 + a2(t)
(

dr2

1−Kr2 + r2dΩ2

)
.

6Ref. [37] finds ΩK = −0.0054 ± 0.0055.

– 17 –



J
H
E
P
0
5
(
2
0
2
4
)
0
9
9

Including the Casimir energy and one-loop corrections to the instanton jump should
not modify the qualitative results in ref. [21] since the NEC is still violated for any value
of the comoving volume, which means that we expect to find a bouncing solution to the
Friedmann equations if we start from a contracting phase. However, quantitative results
can be substantially different since the Casimir contribution is very large. In ref. [22], an
estimation for the size of the universe at the bounce Lbounce was given. Given that the NEC
is always violated, the cosmic bounce will happen when

H2 = ȧ2

a2 = 0 , → E0 = L3U0 + E
(3)
Casimir + Einst = 0 . (5.4)

From this equation, we can estimate Lbounce. For example, in the simplified model analysed in
refs. [21, 22], where E

(3)
cas = 0 and Einst = E

(hom)
inst with E

(hom)
inst given in eq. (4.31), it was found

Lbounce ≃ 10−5 metres for U0 = κ−1Λ = 10−122 ℓ−4
p , m = 10−3 eV and λ ∼ 1. Repeating the

computation with the one-loop ground state energy E0 as obtained in this work, we obtain
Lbounce ≃ 10−2 metres instead. These conclusions might be modified with space in the form
of a three-sphere, leading to different relations between the size of the universe at the bounce,
the present cosmological constant and the mass of the scalar field experiencing tunnelling.

6 Conclusion and outlook

A quantum field system in a finite volume and an infinite volume can have very different
behaviours. It is well known that a finite volume can generally induce a negative contribution
to the energy of the system, known as the Casimir energy. When considering a field potential
with degenerate minima, the finite volume allows tunnelling between those degenerate minima,
which would otherwise be prohibited in the infinite-volume limit. The mentioned tunnelling
also induces a negative ground state energy when the potential of the degenerate minima
is normalised to zero and meanwhile restores the symmetry that is classically broken by
the degenerate minima. In this paper, we have extensively studied both the Casimir and
tunnelling effects for a scalar field theory with a double-well potential in a three-torus.

We have computed the contributions to energy from the Casimir and the tunnelling effects
at the one-loop level. We derived analytic expressions for the Casimir energy for an arbitrary
D-dimensional torus using the Abel-Plana formula. The tunnelling between the degenerate
minima is described by a homogeneous but time-dependent Euclidean bounce solution. At
the one-loop level, one has to integrate the fluctuations about the bounce solution as well as
the classical degenerate vacua, which then need to be properly renormalised. This is achieved
through the resolvent method [24–27] and renormalisation via the one-loop effective potential.

The finite volume constraint has remarkable energetic effects on the confined system,
allowing the violation of the NEC. In addition to the known Casimir effect, we show that
the tunnelling effect also contributes to NEC violation, extending the results in ref. [21].
Depending on the coupling constant, the tunnelling effect can be of a similar order of
magnitude as the Casimir effect. The violation of the NEC could induce a cosmic bounce [22].

The present work may have several generalisations. The presence of fermions (satisfying
anti-periodic boundary conditions) could decrease or cancel the Casimir contribution from
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the scalar field, provided the appropriate number of degrees of freedom is considered.7 In
this situation, tunnelling would become the main origin of NEC violation. Other geometries
or topologies could be considered, for example a three-sphere instead of a three-torus, which
may be relevant to Cosmology.
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A Validity of the dilute instanton gas approximation

The dilute instanton gas approximation is valid if consecutive jumps are widely separated,
namely if the average separation is much larger than the jump width

∆τ ≫ ω−1 . (A.1)

The average separation is given by the total length of the Euclidean time interval divided
by the average number of jumps in said interval

∆τ = β

⟨N⟩
. (A.2)

The average number of jumps is

⟨N⟩ =
( ∞∑

N=0

([I]β)N

N !

)−1 ∞∑
N=0

N
([I]β)N

N ! = β[I] , (A.3)

where the probability density [I] = −Einst of one instanton to form is given by eq. (4.29) and
has to be assumed renormalised. As a consequence, the dilute gas approximation is valid if

[I] ≪ ω . (A.4)

The quantity [I]/ω is plotted in figure 5. We must compare this with the plot in the top
panel of figure 4. The effect of the instantons becomes relevant for λ = 1 and mL ∼ 1. For
these values of the parameters, the instanton rate [I] takes values ∼ 0.3ω, meaning that the
dilute instanton gas approximation is decently good.

B Details on the calculation of the Casimir energy

In this section, we go through the details of the calculation of the Casimir energy, which
has only been outlined in section 3.

7The extension of the Casimir effect to Supergravity in relation to Cosmology has been studied in ref. [47].
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Figure 5. The instanton rate [I] in units of ω for various values of the self-coupling λ.

B.1 D = 1

Let us begin by computing the Casimir energy on a circle. This has already been calculated
in the past, however we perform the necessary steps here to make our calculation in higher
dimensions more transparent. We start by writing the vacuum energy on the circle

E
(1)
0 (m;L) =

∞∑
n=−∞

1
2ω(1)(m;n) , (B.1)

where ω(1)(m;n) is the dispersion relation

ω(1)(m;n) =

√(2πn

L

)2
+ m2 (B.2)

and m is the mass. To use the Abel-Plana formula (3.4), we must have a sum that goes from 0
to ∞. The dispersion relation is symmetric, namely ω(1)(m;n) = ω(1)(m;−n), thus we write

1
2

∞∑
n=−∞

ω(1)(m;n) = 1
2

∞∑
n=0

(2− δn,0)ω(1)(m;n)

= 1
2

(
2
∫ ∞

0
dt ω(1)(m; t) + ω(1)(m; 0) + 2i

∫ ∞

0
dt

ω(1)(m; it)− ω(1)(m;−it)
e2πt − 1 − ω(1)(m; 0)

)

= 1
2

∫ ∞

−∞
dt ω(1)(m; t) + i

∫ ∞

0
dtDisc+

[
ω(1)(m; it)

e2πt − 1

]
, (B.3)

where in the last step we used that the function ω(1)(m; it) has a branch cut on [t+,+∞),
where t+ = mL

2π .8

8To see this, first recall that when f(t) has branch cuts on the imaginary axis, one can replace it and
−it in the last term of the Abel-Plana formula with it + ϵ, −it + ϵ (with ϵ being a positive infinites-
imal) respectively. Second, it is useful to write ω(1)(m; t) = e1/2∗ln(m2+t2). Then one can show that
ω(1)(m; it + ϵ) − ω(1)(m;−it + ϵ) = 2i

√
t2 − m2θ(t − t+) ≡ Disc+[ω(1)(m; it)] using the analytic behavior of

complex logarithm.
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A few comments are in place. First, we observe that there is no boundary term left,
namely a term independent of L. This is because we are computing the energy on a circle,
which has no boundary at all. This is a feature that will hold true in higher-dimensional
cases as well. Second, note how the divergent integral is exactly the continuous limit of
the original sum. In particular

1
2

∫ ∞

−∞
dt ω(1)(m; t) = L

2

∫ ∞

−∞

dk

2π

√
k2 + m2 = E(1)

∞ (m;L) , (B.4)

which is the vacuum energy on a circle of size L when computed in the continuum limit.
We are left with computing the integral over the branch cut. We have

i

∫ ∞

0
dtDisc+

[
ω(1)(m; it)

e2πt − 1

]
= i

∫ ∞

0
dt 2i

√(
2πt
L

)2
− m2

e2πt − 1 Θ(t − t+)

=− 1
πL

∫ ∞

mL
dy

√
y2 − (mL)2

ey − 1

=− 1
πL

F(1,0)(mL) , (B.5)

where we have defined the function

F(1,0)(x) =
∫ ∞

x
dy

√
y2 − x2

ey − 1 . (B.6)

The function above can also be written in terms of modified Bessel functions of the second
type [1]

F(1,0)(x) = x
∞∑

n=1

K1(nx)
n

. (B.7)

We can write the vacuum energy for the massive scalar field on a circle

E
(1)
0 (m;L) = E(1)

∞ (m;L)− 1
πL

F(1,0)(mL) , (B.8)

and for the Casimir energy we obtain

E
(1)
Casimir(m;L) = − 1

πL
F(1,0)(mL) . (B.9)

B.2 Arbitrary number of dimensions: a recursive formula

When we go higher in the number of dimensions we have more and more sums, and the
procedure which we just employed above becomes increasingly cumbersome. Fortunately, we
are able to give a recursive formula that will greatly simplify our calculations.

Ansatz. Let D > 1 be the number of spatial dimensions. Then, the Casimir energy for
the real massive scalar field on the D-torus of sides {a1, . . . , aD} is given by

E
(D)
Casimir(m; a1, . . . , aD) = − 1

πDaD

(
D−1∏
i=1

ai

aD

)
F(D,0)(maD)

+
∞∑

n=−∞
E

(D−1)
Casimir

(√
m2 + 4π2n2

a2
D

; a1, . . . , aD−1

)
, (B.10)
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where

F(D,0)(x) =
(

D−1∏
i=1

∫ ∞

0
dyi

)
F(1,0)

(√
x2+
∑D−1

i=1 y2
i

)
=
∫ ∞

0
dyF(D−1,0)

(√
x2 + y2

)
. (B.11)

We prove the formula (3.10) by construction. Let us assume we know the Casimir energy on
the D − 1-dimensional torus of sides {a1, . . . , aD−1}. The dispersion relation is

ω(D−1)(m;n1, . . . , nD−1) =

√√√√D−1∑
i=1

(2πni

ai

)2
+ m2 . (B.12)

We then compute the Casimir energy on the D-torus of sides {a1, . . . , aD}. The dispersion
relation is

ω(D)(m;n1, . . . , nD) =

√√√√ D∑
i=1

(2πni

ai

)2
+ m2

= ω(D−1)
(√

m2 + 4π2n2
D

a2
D

;n1, . . . , nD−1

)
. (B.13)

Using this, we can write the vacuum energy

E
(D)
0 (m; a1, . . . , aD) =

∞∑
nD=−∞

 ∞∑
n1,...,nD−1=−∞

1
2ω(D)(m;n1, . . . , nD−1, nD)


=

∞∑
nD=−∞

E
(D−1)
0

(√
m2 + 4π2n2

D

a2
D

; a1, . . . , aD−1

)

=
∞∑

nD=−∞

[
E(D−1)

∞

(√
m2 + 4π2n2

D

a2
D

; a1, . . . , aD−1

)

+ E
(D−1)
Casimir

(√
m2 + 4π2n2

D

a2
D

; a1, . . . , aD−1

)]
. (B.14)

The last line above already reproduces correctly the second term in our ansatz. We are
left with evaluating the first term.

∞∑
nD=−∞

E(D−1)
∞

(√
m2 + 4π2n2

D

a2
D

; a1, . . . , aD−1

)

=
(

D−1∏
i=1

ai

∫ ∞

−∞

dki

2π

) ∞∑
nD=−∞

1
2

√√√√4π2n2
D

a2
D

+ m2 +
D−1∑
i=1

k2
i

=
(

D−1∏
i=1

ai

∫ ∞

−∞

dki

2π

)
E

(1)
0


√√√√m2 +

D−1∑
i=1

k2
i ; aD


=
(

D−1∏
i=1

ai

∫ ∞

−∞

dki

2π

)[
E(1)

∞


√√√√m2 +

D−1∑
i=1

k2
i ; aD

+ E
(1)
Casimir


√√√√m2 +

D−1∑
i=1

k2
i ; aD

]
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= E(D)
∞ (m; a1, . . . , aD) +

(
D−1∏
i=1

ai

∫ ∞

−∞

dki

2π

)(
− 1

πaD

)
F(1,0)

aD

√√√√m2 +
D∑

i=1
k2

i


= E(D)

∞ (m; a1, . . . , aD)− 1
πDaD

(
D−1∏
i=1

ai

aD

)
F(D,0)(maD) , (B.15)

which concludes the proof. Note that as E
(1)
Casimir(m;L) ∝ e−mL as mL ≫ 1, it can be easily

argued that the integral and the series appearing in formula (3.10) are convergent for any D.

B.2.1 D = 2

We can use the formula (3.10) to obtain the Casimir energy for a massive scalar field on a
two-torus. For the sake of generality, let us take a torus of linear sizes a1 = a and a2 = b.
The formula then reads

E
(2)
Casimir(m; a, b) = − 1

π2b

a

b
F(2,0)(mb) +

∞∑
n=−∞

E
(1)
Casimir

√m2 + 4π2n2

b2
; a


= − 1

π2b

a

b
F(2,0)(mb)− 1

πa

∞∑
n=−∞

F(1,0)(
a

b

√
m2b2 + 4π2n2)

= − 1
π2a

[
a2

b2
F(2,0)(mb) + πF(1,1)

(
a

b
, mb

)]
. (B.16)

Although not obvious, our result is indeed symmetric under exchanging a and b. We have
defined the function

F(1,1)(r, x) =
∞∑

n=−∞
F(1,0)(r

√
x2 + 4π2n2) . (B.17)

B.2.2 D = 3

Having derived the result for D = 2, we can finally give a result for the Casimir energy for
D = 3. Again, we compute the Casimir energy of a massive scalar field on a three-torus with
sizes a1 = a, a2 = b and a3 = c. Applying the formula (3.10), we get

E
(3)
Casimir(m; a, b, c) = − 1

π3c

a

c

b

c
F(3,0)(mc) +

∞∑
n=−∞

E
(2)
Casimir

√m2 + 4π2n2

c2
; a, b


= − 1

π3c

a

c

b

c
F(3,0)(mc) +

∞∑
n=−∞

(
− 1

π2a

)[
a2

b2
F(2,0)(

b

c

√
m2c2 + 4π2n2)

+ πF(1,1)

(
a

b
,
b

c

√
m2c2 + 4π2n2

)]

= − 1
π3a

[
a2

c2
b

c
F(3,0)(mc) + π

a2

b2
F(2,1)

(
b

c
, mc

)
+ π2F(1,2)

(
a

b
,
b

c
, mc

)]
.

(B.18)
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We have introduced two new functions

F(2,1)(r, x) =
∞∑

n=−∞
F(2,0)(r

√
x2 + 4π2n2) , (B.19)

F(1,2)(r1, r2, x) =
∞∑

n=−∞
F(1,1)(r1, r2

√
x2 + 4π2n2) . (B.20)

B.3 Comparing with the numerical renormalisation

When computing the renormalised ratio of functional determinants appearing in the instanton
contributions, we cannot use the Abel-Plana formula to obtain an analytic result. Instead,
we will subtract the ultraviolet (UV) divergences via counter-terms, which amounts to
subtracting the continuum limit from the series. Therefore, it makes sense to compare this
numerical procedure to the result we obtained for the Casimir energy, given that we only
have analytical control for the latter. In order to do so, define the numerically renormalised
Casimir energy as follows

E
(3)
Casimir(m;L) = 1

2

∞∑
n,ℓ,κ=−∞

√
k2
{n,ℓ,κ} + m2e−

k2
{n,ℓ,κ}

Λ2 −L3

2

∫
R3

dk3

(2π)3
√

k2 + m2e−
k2
Λ2 . (B.21)

We have introduced the regularising function

η(|k|) = e−
k2
Λ2 , (B.22)

where Λ is some large cut-off. Also, we have denoted the discretised momentum by
k2
{n,ℓ,κ} =

4π2

L2 (n2 + ℓ2 + κ2). The continuum integral can be computed analytically and
expanded for large Λ/m

L3

2

∫
R3

d3k
(2π)3

√
k2 + m2e−

k2
Λ2 = m

(mL)3

16π2 e
m2
2Λ2

Λ2

m2K1

(
m2

2Λ2

)

= m
(mL)3

128π2

[
16Λ4

m4 + 8Λ2

m2 + 1 + 2γE + 2 log m2

4Λ2

]
+O

(
m

Λ

)
.

(B.23)

As for the series, it is useful to introduce the degeneracy function r3(j), which returns the
number of ways in which j can be written as a sum of three squared integers. For example
r3(0) = 1 and r3(1) = 6. We can then write

E
(3)
Casimir(m;L) = 1

2

jmax∑
j=0

r3(j)

√
4π2

L2 j + m2e−
4π2j

L2Λ2 + c.t. (B.24)

We introduced a cut-off jmax to the series. This has nothing to do with the regularisation
cut-off Λ, and it is introduced to cut the numerical sum at a certain value. To make sure
that it does not affect the renormalisation procedure, we must choose jmax such that

4π2

L2 jmax ≫ Λ2 ≫ 4π2

L2 , (B.25)
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Figure 6. Comparison between the analytical and numerical renormalisation procedure for the
Casimir energy.

where the last inequality means that Λ must be large enough so that only the UV modes
are affected by the regulator. Then, we can compare the Casimir energy when obtained
analytically versus numerically. This is shown in figure 6. The matching is pretty good
but for the asymptotic regions mL ≪ 1 and mL ≫ 1. This is a feature of the numerical
procedure. To understand this, let us rewrite our conditions on the numerical cut-off jmax
and renormalisation cut-off Λ in a different way

jmax ≫ m2L2

4π2
Λ2

m2 ≫ 1 . (B.26)

From the first of these inequalities, we see that as mL grows, we must increase jmax more
and more, making our numerical procedure more expensive. On the other hand, the second
inequality tells us that what is a good renormalisation cut-off Λ for large mL becomes a bad
cut-off for small mL. Better agreement in the asymptotic regions can be achieved by splitting
the numerical function into two regions and defining appropriate jmax and Λ independently
in either region. This is allowed since the result is cut-off independent.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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