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1 Introduction

PNGBs [1, 2] arise in nature, as phonons, magnons, pions and in a broad range of theoretical
scenarios. It is no surprise that they are abundant. It is a theorem that whenever a continuous
global symmetry is spontaneously broken that NGBs will arise [2]. Furthermore, it is widely
believed that there can be no exact continuous global symmetries in nature (more precisely,
in gravitational theories [3–7]), in which case any NGB will, in reality, be a pNGB. Thus,
while the effective field theory (EFT) description of the low-energy behaviour of exact NGBs
is an interesting object for theoretical study, it is likely that in nature the physics below the
scale of spontaneous symmetry breaking is dominated by the scalar potential generated for
pNGBs, since it contains the most relevant operators.

Since the structure of the pNGB potential determines the vacuum dynamics it is well-
motivated to map the connections between explicit symmetry breaking sources in a UV theory
and the vacuum structure and dynamics in the IR, since this aspect is physically relevant
for pNGBs that are realised in nature. Once this map is firmly established one can then
determine and/or classify the plausible phases of pNGB vacua and their dynamics.

Ref. [8] established the first part of this programme for an SO(N + 1) → SO(N)
spontaneous and explicit symmetry breaking pattern. The fundamental building blocks
of explicit symmetry breaking were found to be the irrep spurions of SO(N + 1) which
preserve an SO(N) subgroup. Each such spurion gives rise, in the IR, to a unique Gegenbauer
scalar potential which is an eigenfunction of the Laplacian on the N -sphere. Any general
pNGB potential for SO(N + 1) → SO(N) can thus be decomposed as a sum of Gegenbauer
polynomials. Note that this is strongly analogous to the solution of the Hydrogen wavefunction
in quantum mechanics. The angular momentum |j, 0⟩ eigenstates correspond to a non-zero
expectation value for the spin-j irrep of SO(3) which gives rise to the jth Legendre polynomial,
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which is simply an SO(3) → SO(2) Gegenbauer polynomial. Any wavefunction which is
a superposition of angular momentum eigenstates may be written as a sum of Legendre
polynomials. Thus what we are familiar with for angular momentum in Hydrogen maps to
the pNGBs of SO(N + 1) → SO(N) breaking, where the spatial rotation global symmetry
becomes an internal global symmetry.

With this organisation of pNGB potentials complete the next logical step, which is to
understand the vacuum dynamics, is the focus of this work. Throughout we are concerned
with the same SO(N + 1) → SO(N) spontaneous and explicit symmetry breaking pattern.
We focus for the most part, as a benchmark, on a single Gegenbauer pNGB potential, in
the understanding that the lessons learned will map, in a straightforward way, into a sum
of Gegenbauer potentials for any form of pNGB potential.

We begin by ascertaining the conditions under which the EFT description of the potential
is valid, both at zero and finite temperature (specifically in the region of an interesting
vacuum transition). This effectively places a quantitative constraint on the magnitude of
the explicit symmetry breaking tolerable. Violation of this constraint implies a potential
for which one does not have a controlled series expansion in the explicit symmetry breaking,
whether at tree-level or at higher loop orders.

Subject to this constraint we then explore the vacuum dynamics for pNGBs, which we find
to be rich and varied. It should be noted that throughout there is explicit SO(N+1) → SO(N)
breaking thus, in terms of exact global symmetries, there is no formal phase transition, since
only SO(N) is an exact symmetry of the Lagrangian. However, since this explicit symmetry
breaking is small, one does have a sense in which the fields, which play the role of order
parameters, undergo vacuum transitions.

In this work we find that below the scale of spontaneous SO(N + 1) → SO(N) breaking,
which is driven by the development of a non-zero value for the SO(N + 1) radial mode,
there are generically additional pNGB vacuum transitions. There is an additional critical
temperature at which the pNGBs themselves develop a vacuum expectation value, triggering
a further stage of spontaneous SO(N) → SO(N − 1) breaking. This breaking is due to
the explicit symmetry breaking, but the change in order parameter is independent of the
magnitude of the explicit symmetry breaking. The reverse can also occur, with a pattern
of SO(N + 1) → SO(N − 1) breaking followed by a further stage of SO(N − 1) → SO(N)
symmetry restoration at lower temperatures.

It follows to determine the nature of these pNGB vacuum transitions. There are two
classes to consider, namely thermal and supercooled. In the thermal case we find that the
transition is generically weakly first-order. On the other hand, when the pNGB sector is
supercooled we find that the vacuum transition, leading to symmetry restoration, can be
strong enough to generate detectable GW signatures.

2 pNGB potential regime of validity

We consider an EFT containing the pNGBs ψ arising from the spontaneous breaking of an
approximate global symmetry at the scale f . We define the action at zero temperature as

L = 1
2gij(ψ)∂µψ

i∂µψj +O(∂4)− εVε(ψ)− ε2Vε2(ψ)−O(ε3) + . . .+ LCT , (2.1)
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where we have Taylor expanded in derivatives and in ε, which is, by assumption for pNGBs,
a small parameter associated with a source of explicit symmetry breaking. LCT represents
the counterterms required for renormalisation.

Before commencing with any concrete calculations some considerations are in order
concerning the validity of this EFT. To be effective, it must be valid for some range of energies
and field scales. For the former, scattering amplitudes involving derivatives will scale as
(p2/M2)j , where j is some integer and M is the cutoff energy of the EFT, often associated
with the mass of the radial mode of spontaneous symmetry breaking or some other UV scale
such as the mass scale of intermediate vector resonances. In any case, the EFT description
breaks down, by assumption, whenever |p2| ∼ M2.

Equally important is the parameter ε. In order to be considered pNGBs there must be
some range of field values over which there is some sensible notion of perturbative calculability
within the EFT and of a scale separation with the UV. For pNGBs the field range is periodic
in the spontaneous symmetry-breaking scale ∼ 2πf . Due to this periodicity we will require
that the EFT description is valid and affords a degree of perturbative calculability over
all pNGB field values.

To determine the potential limits on the magnitude of ε it is helpful to consider the
case of pions. Were the quark masses to be comparable to the QCD scale, or the QED
gauge coupling to be e ∼ 4π in the vicinity of the QCD scale, there would be no sense
in which one would have had light pions at all, as they would naturally have mass at the
QCD scale. Following this, it is tempting to diagnose EFT validity using the pNGB masses.
However, mass-scale separation alone seems insufficient. For instance, in a scenario with
two large sources of explicit symmetry breaking ε1, ε2 ∼ 1 one could in principle fine-tune
their independent contributions to a pNGB potential to give a small mass-squared in the
global vacuum, generating a scale separation m2

ψ ≪M2. However, one would have no control
over perturbative corrections to the form of the pNGB potential, either at tree-level at the
matching scale or in the IR at higher loops, due to the underlying magnitude of explicit
symmetry breaking. We must therefore be more pragmatic in determining the requirement
on ε for the EFT description to be valid. The condition cannot simply be that m2

ψ ≪M2,
which is seemingly necessary but not sufficient. Therefore we opt for the imprecise, but
practical, condition that the pNGB potential at O(ε) must be a good approximation to the
full potential with all quantum corrections included. In other words, while O(ε2) and higher
terms will exist, they must not qualitatively alter the form of the pNGB potential.

The one-loop Coleman-Weinberg potential provides a useful diagnostic in this respect.
For pNGBs this is given by [8–10]

V CW = 1
2Tr

∫
d4p

(2π)4 log
[
p2 + εg−1

(
δ2Vε
δψ2 − δVε

δψ
Γ
)]

, (2.2)

where Γ are the Christoffel symbols. The field-dependent curvature (or mass-squared)
entering this expression is

M2
ε(ψ) = εg−1

(
δ2Vε
δψ2 − δVε

δψ
Γ
)

, (2.3)
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whose trace is simply the Laplace-Beltrami operator acting on the space spanned by the
pNGBs. Notably, this depends on the geometry of the manifold on which the pNGBs live.
In all of our applications we will be interested in the scenarios in which the spontaneous
symmetry breaking pattern is

SO(N + 1)
SO(N)

∼= SN , (2.4)

which we recall consists of the set of points a fixed distance from the origin in RN+1. For the
sake of illustration, we focus on scenarios in which the explicit symmetry breaking follows
the same pattern, preserving the SO(N) subgroup. As a result, we may parameterise the N
Goldstone bosons on this manifold through the unit vector living in RN+1 as

ϕ = f sin Π
f



n1
n2
...

nN
cot Π

f


, (2.5)

where n · n = 1. Thus, in this picture, Π/f essentially corresponds to the angle between the
Goldstone boson direction and a given arbitrarily chosen axes in RN+1.

In these coordinates we have that the relevant mass-squared matrix is

M2
ε(Π) = ε

 cot( Π
f

)
f V ′

ε1N−1 0

0 V ′′
ε

 . (2.6)

where
V ′
ε ≡ ∂Vε

∂Π and V ′′
ε ≡ ∂2Vε

∂Π2 . (2.7)

Thus, considering the traces of products of this matrix which will arise in perturbative
calculations, it suffices to consider the Laplace-Beltrami operator

∆SNVε = V ′′
ε + (N − 1) cot Π

f

V ′
ε

f
. (2.8)

As a result, truncating the momentum integral at the UV-cutoff, the zero-temperature
effective potential at one-loop is

V = V (0) + V CW + V CT (2.9)

= ε

[
Vε +

M2

32π2∆SNVε + V CT
ε

]

+ε2
[
Vε2 + 1

64π2

{ (
V ′′
ε

)2 ( log
(

ε

M2V
′′
ε

)
− 1

2

)

+(N − 1)
(
cot Π

f

f
V ′
ε

)2 (
log

(
ε

M2

cot Π
f

f
V ′
ε

)
− 1

2

)}

+ M2

32π2∆SNVε2 + V CT
ε2

]
+O(ε3) + . . .
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Here the terms denoted V CT represent the counterterms required to renormalise the pNGB
potential and V (0) is the tree-level scalar potential. Thus we see that if ∆SNVε has a very
different functional form to Vε, the counterterm potential cannot be similar in form to Vε,
implying some level of fine-tuning between UV/threshold corrections, which must exist, and
the bare potential in order to realise the form of Vε. If, however, they are of a similar
functional form then the O(ε) corrections will not destabilise the pNGB potential at that
order. We will return to this possibility in due course.

More immediately relevant is that the O(ε2) effective potential corrections may signifi-
cantly modify the qualitative nature of the potential. This would signify the breakdown of
the effective description of the pNGB potential. Thus we will only work with EFTs for the
pNGBs in which ε is sufficiently small that the physics of the zero-temperature potential
is well described at leading order in ε, hence

V ≈ ε

(
Vε +

M2

32π2∆SNVε + V CT
ε

)
, (2.10)

is a reasonable approximation to the pNGB potential at zero temperature. This can only
be diagnosed on a case-by-case basis, and so we leave further discussion of this aspect until
a specific model has been chosen.

Now moving to finite temperature and following by analogy with the Coleman-Weinberg
potential, under the same set of assumptions, the full finite-temperature potential at one-loop
is, to a leading approximation,

V (T ) = V (0) + V CW + V CT + V T , (2.11)

where [11]

V T = T 4

2π2TrJB

(
M2(Π)
T 2

)
, (2.12)

= T 4

2π2

JB (εV ′′
ε

T 2

)
+ (N − 1)JB

ε cot
(

Π
f

)
V ′
ε

fT 2

 , (2.13)

and the function JB is

JB(x) =
∫ ∞

0
dyy2 log

(
1− exp−

√
y2+x

)
. (2.14)

Since we now have a new energy scale in the theory, T , we ought to reconsider the conditions
under which one has an appropriate description of the physics. For T → 0 we have that
V T → 0, as expected, thus at very low temperatures we may simply use the zero-temperature
effective potential already described.

At high temperatures we may also perform an expansion, in which case

V T ≈ −N π2

90T
4 + ε

T 2

24∆SNVε −
T

12π
(
εV ′′

ε

)3/2 − (N − 1) T

12π

(
ε cot Π

f

V ′
ε

f

)3/2
+ . . . . (2.15)

The validity of this expansion rests on two separate aspects. The first is that the high-
temperature expansion should be convergent, hence when the system lies at high enough
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temperatures we require that the physics is, to a good approximation, described by the
second term alone, with the third remaining a subleading correction. The second aspect
concerns the non-analyticity of the JB function, and hence of the third term of eq. (2.15).
This non-analyticity generates imaginary terms in the effective potential in regions where
∂2V (0)(Π)/∂Π2 < 0. Since the effective potential is, by definition, a real scalar quantity this
signals a breakdown in the effective description of the physics.

Without committing to a specific model in which one can calculate the magnitude
of the various terms this is as far as we may proceed, thus we now commit to a specific
class of scenarios.

3 Gegenbauer Goldstones

Experience with many physical systems, including electrostatics and thermodynamics, suggests
that when one encounters the Laplacian the natural functions to work with are the eigenfunc-
tions, satisfying an equation of the form ∆SNVε(Π) ∝ Vε(Π). This is an eigenfunction problem
and the solutions which are analytic in Π are the well-known Gegenbauer polynomials [8]

∆SNG
N−1

2
n (cosΠ/f) = −n(n+N − 1)

f2 G
N−1

2
n (cosΠ/f) , (3.1)

where the eigenvalues and eigenfunctions are characterised by the two integers, N ≥ 1 and
n ≥ 0. In the application to the pNGB potential, these integers are related to the explicit
symmetry breaking pattern SO(N + 1) → SO(N) realised by a symmetry-breaking spurion
in the n-index symmetric irrep of SO(N + 1) [8].

Motivated by this we will thus consider a zero-temperature pNGB potential of the form

V (Π, 0) ≈ εnVεn +O(ε2)

≈ εnf
2M2G

N−1
2

n (cosΠ/f) +O(ε2) + . . . . (3.2)

where note that from now on ε would carry the subscript n to distinguish the above choice
from the general pNGB case of eq. (2.10). No summation over the index n is implied. The
typical shape of the Gegenbauer potential at zero temperature (T = 0) is shown in the
left (εn < 0) and right (εn > 0) panels of figure 1. Note that for positive εn the global
minimum is at a scale ⟨Π⟩ ∼ 5.1f/n [8], whereas for negative εn the global minimum is at
the origin. Importantly, this potential is radiatively stable, since at leading order in this
spurion only this term can arise irrespective of the UV physics. Since any general potential
may be constructed from a linear sum of Gegenbauer polynomials the lessons learnt from
studying the single polynomial case will, in generic cases, extend to more general pNGB
potentials that can arise for the SO(N + 1) → SO(N) case.
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Figure 1. A cartoon picture showing the functional form of the Gegenbauer thermal effective potential
given by eq. (3.7), for the temperature asymptotics T = 0 and T ≫ 0, when the symmetry-breaking
parameter, εn, is either positive or negative. The high-temperature limit terminates below the radial
mode mass M , otherwise the original, approximate, symmetry is restored and the effective description
of the model in terms of pNGBs is lost. Cooling down will lead to SO(N) symmetry restoration or
breaking depending on the sign of εn.

3.1 pNGB potentials at zero temperature

With this model we may now return to our general requirement of eq. (2.10). We consider
the zero-temperature potential at one-loop

V (1)(Π, 0) ≈ εn

[(
1− n(n+ (N − 1))M2

32π2f2

)
Vεn + V CT

εn

]
(3.3)

+ε2
n

[
Vε2

n
+ V CT

ε2
n

− 1
128π2

((
V ′′
εn
(Π)

)2
+ (N − 1)

cot2 Π
f

f2

(
V ′
εn
(Π)

)2)
+ . . .

]
,

where the ellipses denote the logarithmic terms. We see that at O(εn) the quadratic divergence
may be absorbed into a counterterm of the same functional form as the initial potential,
reflecting the radiative stability of this potential. However, we also see that, regardless of the
form of the potential at O(ε2

n), there are calculable terms proportional to ε2
n. In order for

the EFT to be valid it is necessary that these terms are subdominant to the leading one.
Since it is the point at which the second derivative of the potential is maximal in

magnitude, to establish the maximal permitted value of εn we now focus our discussion
around the origin of field space. The Gegenbauer potential and its derivatives scale there as

Vεn(0) = f2M2 (n+N − 2)!
n!(N − 2)! ,

V ′′
εn
(Π)

∣∣∣
Π=0

= cot Π
f

V ′
εn
(Π)
f

∣∣∣∣
Π=0

= −M2(N − 1)(n+N − 1)!
(n− 1)!N ! . (3.4)

Thus we find the condition

ε2
n

128π2N

(
V ′′
εn
(0)
)2

≪ εnVεn(0) , (3.5)
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which, under eq. (3.4), is reduced to

|εn| ≪ 128π2 f2

M2
N !(n− 1)!

(n+N − 1)!n(N − 1)(n+N − 1) ≡ ε0
n,max , (3.6)

as a necessary condition for the EFT expansion to be valid at zero temperature, hence the
upper-script 0 in εn,max refers to the zero-temperature case.

3.2 pNGB potentials at finite temperature

After renormalization, for this class of potentials the high (enough) temperature form is
approximately

V (Π, T ) ≈ εnf
2M2

(
1− n(n+N − 1)

24
T 2

f2

)
G

N−1
2

n (cosΠ/f) +O(ε2) + . . . . (3.7)

Thus, for temperatures satisfying

T 2 ≳ T 2
F = 24

n(n+N − 1)f
2 , (3.8)

where we refer to TF as the “Flipping Temperature”, the overall sign of the scalar potential
has changed, indicating a transition in the position of the global minimum relative to the
zero-temperature potential, see figure 1. The functional form of the scalar potential remains
unchanged up to the overall factor. We must, however, determine whether we may trust
the EFT expansion at this temperature by checking the magnitude of the next term in
the finite-temperature expansion.

We proceed as for the zero-temperature case, but now using the thermal potential in
eq. (2.15). The effective potential becomes

V (Π, T ) ≈ −N π2T 4

90 + εn

[
1− n(n+N − 1)T 2

24f2

]
Vεn(Π)

−
T (εnV ′′

εn
(Π))

3
2

12π − (N − 1)
T (cot Π

f εnV
′
εn
(Π))

3
2

12πf3/2 +O(εn2) . (3.9)

Focusing around the origin of the field space and noting that the second derivative of the
Gegenbauer polynomial is negative there, the relevant constraint reads∣∣∣∣T 2

24 εn∆SNVεn(0)
∣∣∣∣≫ ∣∣∣∣N T

12π
(
εnV

′′
εn
(0)
)3/2

∣∣∣∣ . (3.10)

This is a necessary condition for the validity of the EFT expansion at a given temperature.
For T ≈ TF we get

|εn| ≪ 6π2 f
2

M2
N !(n− 1)!

(n+N − 1)!n(N − 1)(n+N − 1) ≡ εTF
n,max . (3.11)

This is a stronger bound than at zero temperature, since

εTF
n,max = 3

64ε
0
n,max . (3.12)
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The condition eq. (3.10) is necessary for validity at any temperature but not sufficient.1 A
stronger bound is obtained for T = TCrit, the ‘Critical Temperature’, at which the vacuum
transition is initiated. In general TCrit > TF , with the former defined as the temperature
where the potential energy of the two relevant phases becomes degenerate (or the two phases
have equal free energy density)

V (0, TCrit) = V (⟨Π⟩ , TCrit) , (3.13)

where ⟨Π⟩ is the pNGB value at the degenerate vacuum. From figure 1 note that no matter
which cooling-down picture we consider, the potential admits one global minimum around
the field-space origin justifying our choice of V (0, TCrit) as the free energy of one of the
degenerate phases.

Using the effective potential of eq. (3.9), assuming for now εn > 0, the above equality gives

T 2
Crit + [BεT 2

F ]
TCrit
f

− T 2
F = 0 , (3.14)

with the solution

TCrit =
1
2

[
−Bε +

√
4f2

T 2
F

+B2
ε

]
T 2
F

f
. (3.15)

Bε is a dimensionless parameter defined as

Bε =
f∆Vε,3/2
12π∆Vε

≈ f

TF

{
TFN

(
εnV

′′
εn
(0)
) 3

2

12π εnVεn(0)

}
−
f
(
εnV

′′
εn
(⟨Π⟩)

) 3
2

12πεnVεn(0)
(3.16)

where we have defined

∆Vε,3/2 = N
(
εnV

′′
εn
(0)
) 3

2 −
(
εnV

′′
εn
(⟨Π⟩)

) 3
2 , (3.17)

and

∆Vε = εnVεn(0)
(
1− Vεn(⟨Π⟩)

Vεn(0)

)
≈ εnVεn(0) > 0 . (3.18)

The notion of TCrit and the validity of the EFT breaks down if Bε has large imaginary part.
Note that the term included in {· · · } above, which is purely imaginary, has been used in
eq. (3.10) to derive the ε bound of eq. (3.11). However, that bound is not sufficient to make
the left hand side of eq. (3.13) (and as a consequence Bε) to a good approximation real. It is
found that only for an |εn| which is at least O(10−2) smaller than εTF

n,max the f
TF

{· · ·} term
can safely be neglected from Bε and the latter then becomes

Bε ≈ −
f
(
εnV

′′
ε (⟨Π⟩)

) 3
2

12πεnVεn(0)
< 0 and |Bε| ≪ 1 , (3.19)

1In fact, in section 4.1 we propose a stronger condition that arises when considering the breakdown of the per-
turbative expansion and daisy resummation of the effective potential. This constraint does not, however, modify
the qualitative observations which follow and thus we will continue to adopt the simpler condition eq. (3.11).
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Figure 2. Schematic phase diagram for radiatively and thermally stable pNGB potentials, for
εn > 0 (left) and εn < 0 (right). Throughout there is explicit breaking SO(N + 1) → SO(N). At
high temperatures, above the mass of the radial mode, an approximate SO(N + 1) is restored. For
εn > 0 at lower temperatures, SO(N + 1) is spontaneously broken and at some lower temperature the
exact SO(N) is also spontaneously broken. Whereas for εn < 0 at lower temperatures, SO(N + 1) is
spontaneously broken to SO(N − 1) and at some lower temperature the exact SO(N) is restored.

and is real so we can safely evaluate the critical temperature. This stronger bound is used
in this paper as the sufficient condition for the validity of the EFT in the whole relevant
range of temperatures. Under that condition we obtain that TCrit ≳ TF within a few percent.
The two temperatures are sometimes identified in our qualitative discussion but kept distinct
in the numerical calculations.

To summarise, we see that for this class of pNGB potentials there are hierarchies of
vacuum transitions. Starting from zero temperature as the temperature is raised there will be
a vacuum transition in the vicinity of the flipping temperature. Depending on the sign of the
spurion this will be from zero pNGB vev to a non-vanishing one, with ⟨Π⟩ ∝ f/n, or vice-versa.
The nature of this transition is not yet clear from this analysis, yet its existence is clear. Going
to even higher temperatures, above the mass scale of the radial mode in the UV completion
the standard symmetry-restoring transition occurs. These scenarios are illustrated in figure 2.

It is surprising and rather non-trivial that for a single spontaneous symmetry breaking
scenario, with a single explicit symmetry-breaking spurion in a symmetric irrep one has a
hierarchy of vacuum transitions at hierarchical scales. It remains to determine the nature
of this new vacuum transition.

4 Cosmological Gegenbauer phases

Having outlined the general phase structure of pNGB potentials it remains to determine any
potential observable consequences of the additional pNGB vacuum transitions. We consider
a dark sector (DS) containing pNGBs with two initial conditions after the end of inflation;
thermal and supercooled, however in both cases colder than the visible sector. Given the
natural origins and ubiquity of light pNGBs in quantum field theories, and given the clear
evidence for the existence of dark matter, a DS scenario is well motivated and plausible.
In both cases we also investigate potential stochastic GW Background signatures arising
from the vacuum transitions.
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4.1 Hot dark sector

We assume that the early universe dynamics is governed by the inflaton which, at the end
of inflation, starts to oscillate about the minimum of its potential thus, due to its coupling
to the Standard Model fields, the universe enters the reheating period. At the same time
we consider a DS of pNGBs which is completely decoupled from (or may have an extremely
small coupling to) the SM, such that it will not thermalize with the SM fields. The DS
temperature, Th, could be above or below the visible one, Tv, depending on how strongly each
sector couples to the inflaton. The ratio of temperatures after reheating, ξDS = Th/Tv, is
heavily constrained by Big Bang Nucleosynthesis (BBN) and Cosmic Microwave Background
(CMB) measurements [12, 13].

As noted, we assume ξDS < 1. This type of scenario has been investigated in [14, 15].
The case of ξDS > 1 is more delicate since it requires an out-of-equilibrium mechanism to
inject entropy back into the SM before BBN, see e.g. [16]. For model-independent studies
regarding the constraints on DS vacuum transition parameters see also [17, 18].2

A general investigation of the nature of the transition is challenging and essentially
beyond the reach of standard computations. However, subject to the requirement of small
enough εn, discussed in the previous section, we may have some control in the vicinity of
the flipping temperature.

To proceed let us recall that the scalar potential in the DS is a Gegenbauer polynomial.
The vacuum structure of such a potential is non-trivial given that different local minima
coexist for a wide range of temperatures (see figure 1). Analysing its thermal history in the
following, a vacuum transition is expected to occur. Particularly, for εn > 0, Π obtains a
non-zero vacuum expectation value and spontaneously breaks the SO(N) symmetry.

Before getting into a description of the phase transition details let us present an analytic
estimate for the transition strength α, assuming it takes place around T ≈ TF . To quantify
α we use the latent heat released normalized to the radiation energy density, which can
be written as

α(T ) ≡ 1
ρR

(
∆V (Π, T )− T

4 ∆
∂V (Π, T )

∂T

)
, (4.1)

where the difference between the false and true vacuum is taken. The energy density is

ρR = π2 g∗ΠT
4
h

30 + π2 g∗SM(Tv)T 4
v

30

= π2 T 4
h

30

(
N + g∗SM(Tv)

ξ4
DS

)
(4.2)

Since we consider a phase transition within the DS, the Hubble rate and the other relevant
parameters are functions of Th. We keep Tv as a fixed initial parameter and the number
of degrees of freedom in the DS corresponds to the number of pNGBs, i.e., g∗Π = N . We

2Here we will not deal with the case where ξDS = 1, which could happen either by thermalization of the
DS with the SM thermal bath or due to specific initial conditions where the inflaton couples democratically
to both sectors. We escape the former by assuming the DS has a negligible interaction or never comes into
contact with SM and the latter by considering a different evolution of the two sectors during reheating.
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evaluate the radiation degrees of freedom of the SM, g∗SM, from tabulated data in [19] and we
keep them constant for temperatures in the vicinity of the phase transition.

Making use of the high-temperature expansion we have that the potential energy difference
between false and true vacua is

∆V (Π, T ) ≈ V (0, T )− V (⟨Π⟩ , T ) =
[
1− T 2

T 2
F

]
∆Vε −

T ∆Vε,3/2
12π , (4.3)

while the partial derivative with respect to temperature becomes

T

4 ∆
∂V (Π, T )

∂T
= T

4

[
∂V (Π, T )

∂T

∣∣∣∣
Π=0

− ∂V (Π, T )
∂T

∣∣∣∣
Π=⟨Π⟩

]

≈ −1
2
T 2

T 2
F

∆Vε −
1
4
T ∆Vε,3/2

12π , (4.4)

thus

α(T ) ≈ ∆Vε
ρR

([
1− 1

2
T 2

T 2
F

]
− 3

4
T ∆Vε,3/2
12π∆Vε

)
. (4.5)

Focusing around TF , which is used as a proxy for the nucleation temperature Tn since we
have verified they are very close numerically, the second term in the above equation reduces
to the {· · ·} term of eq. (3.16) which, as follows from the discussion above eq. (3.19), has to
be very small for the validity of the EFT. Thus, the transition strength becomes

α(TF ) ≈
∆Vε
ρR

[
1− 1

2
T 2
F

T 2
F

]
= ∆Vε

2ρR
. (4.6)

By setting εn = 10−2εTF
n,max we obtain

α(TF ) ≲
0.002(

1 + g∗
SM(Tv)
ξ4

DSN

) . (4.7)

Before making robust claims regarding the nature and the strength of the phase transition
in the Dark Sector, one should ask about the convergence of the one-loop thermal effective
potential. It is known the latter can suffer from a failure of perturbative convergence
due to the enhancement of IR modes and their associated divergences [20].3 A number of
improvements of the perturbative treatment have been proposed, based on resummation
techniques (see, for instance [21–23], for early examples). These resummed corrections amount
to modifying the perturbative expansion of eq. (2.15), which for our purposes amounts to
correcting the expansion eq. (3.9).

According to the resummation procedure developed by R. Parwani [21] for the λϕ4

theory, the effect of daisy diagrams is incorporated into a shift at the O(T ) term4 of the
finite temperature effective potential while the rest of it remains unchanged. Following this

3The authors are very grateful to an anonymous referee for highlighting the importance of this aspect.
4There would also be a shift at the logarithmic term of the finite temperature effective potential but we

have shown that this term, being of O(ε2
n), is negligible for our scenario so we neglect it in this discussion.
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approach and defining the thermal shift at the mass squared as M2
ε,th(Π, T ), the effective

potential of eq. (3.9) becomes

V daisy(Π, T ) ≈ −N π2T 4

90 +εn
[
1− n(n+N − 1)T 2

24f2

]
Vεn(Π)−

T (εnV ′′
εn
(Π) +M2

ε,th(Π, T ))
3
2

12π ,

(4.8)
which is similar in form to the un-resummed potential except for the last term. M2

ε,th(Π, T )
can be calculated considering the second derivative of V T in eq. (2.15) by Π and at the lowest
order in εn and leading order in T will be written as M2

ε,th(Π, T ) ≡ −εnT 2/T 2
FM2

th(Π) ∝
−εnT 2/T 2

FV
′′
εn
(Π).

The resumation corrects higher orders in εn and so does not affect the leading O(T 4)
and O(T 2) terms, but does modify terms at O(T ) and beyond. Since this T expansion also
corresponds to an expansion in εn, the magnitude and impact of the higher order terms
depends on the magnitude of εn. Following the approach of section 3.2 we find that, to retain
validity of the EFT expansion at a temperature T ≫ TF , εn must now satisfy

εn ≲ εTF
n,max

(
TF
T

)4
. (4.9)

As a result, daisy resummation suggests a more strict constraint on the magnitude of explicit
symmetry breaking in order to have a well-controlled EFT expansion at high temperatures.

In eq. (4.7) we made an estimate regarding the strength of the phase transition based on
the un-resummed effective potential. According to this, the phase transition is weak because
of the strong upper bound on εn, which also controls the magnitude of the explicit breaking
of the original symmetry. This value of α corresponds to, at most, a very weakly first-order
transition and suppressed gravitatonal wave spectrum.

However, based on the previous discussion, this picture remains incomplete unless we
estimate the daisy effects on the latent heat eq. (4.1). If resummation significantly alters
α(T ) around TF then the phase transition that we encounter here could drastically change
our conclusions.

From the definition of α(T ) we see that the relevant quantity which needs to be daisy
resummed is ∆V (Π, T ) and using eq. (4.8) becomes

∆V (Π, T ) → ∆V daisy(Π, T ) =
[
1− T 2

T 2
F

]
∆Vε −

T ∆V daisy
ε,3/2

12π ,

≈
[
1− T 2

T 2
F

]
∆Vε −

(
1− T 2

T 2
F

) 3
2
T∆Vε,3/2

12π , (4.10)

and therefore

T

4 ∆
∂V daisy(Π, T )

∂T
≈ − T 2

2T 2
F

∆Vε −
T

4
∆Vε,3/2
12π

√
1− T 2

T 2
F

(
1− 4T

2

T 2
F

)
.

In total the daisy resummed latent heat is

αdaisy(T ) ≈ ∆Vε
ρR

([
1− T 2

2T 2
F

]
− 3

4
T∆Vε,3/2
12π∆Vε

√
1− T 2

T 2
F

)
, (4.11)
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such that around T ≈ TF

αdaisy(TF ) ≈
∆Vε
2ρR

(
1− 3

2
TF∆Vε,3/2
12π∆Vε

√
0
)
≈ ∆Vε

2ρR
= α(TF ), (4.12)

showing that the nature of the phase transition is unmodified by the effects of daisy re-
summation. As a last remark, note that the derivation of eq. (4.12) is independent of the
resummed εn-bound obtained in eq. (4.9). The two results refer to different temperature
regimes and therefore are disconnected. However we have included the discussion about
eq. (4.9) in our analysis for completeness.

In summary, while resummation is of critical importance in determining the nature of
finite-temperature phase transitions, the results of section 4.1 rely on basic arguments based
on energetics, and thus are robust against effects concerning the breakdown of perturbation
theory and questions around the appropriate resummation approach. Finally, the above
analysis can be straightforwardly applied to the very interesting scenario of a multi-Gegenbauer
potential showing that when a bound similar to eq. (4.9) is respected for each one of the
Gegenbauer’s coefficients, then perturbativity will be secured in the high-temperature regime.

Let us close this section by making a qualitative remark regarding the observational
possibility of the thermal Dark Sector, while referring the reader to appendix A for a
quantitative analysis. As we have argued above via eq. (4.12) the model indeed exhibits, even
though very weakly, a 1st order phase transition (daisy effects do not mess with the order-ness
of the transition). The realization of such a phase transition happens through the production,
expansion and percolation of true vacuum bubbles which generate, via several mechanisms, a
Gravitational Wave signal. The latter could be the detectable signal of our model.

Now recall that for the current case the phase transition occurs at finite temperature
under the presence of a non-negligible thermal plasma formed out of a system of pNGBs.
The produced bubbles will have to propagate through this medium and as a consequence the
associated expanding bubble walls will transmit a substantial energy density and pressure to
the surrounding plasma. Hence, the dominant source of GW production is the motion of the
plasma itself, expressed in the form of sound waves. To characterize the GW spectrum and from
that to estimate the detection possibility one needs to evaluate the peak frequency fsw and the
associated amplitude Ωsw(Peak)h2. As described in greater detail in appendix A, for the GW
spectrum (under the smallness of αdaisy) our thermal Dark Sector is unfortunately doomed to
produce a spectral peak well below the expected reach of future gravitational wave detectors.

4.2 Supercooled dark sector

Let us now explore the extreme possibility that our pNGB DS is supercoooled, parameterized
as ξDS ≈ 0. This may occur if, for instance, the DS is very weakly coupled to the inflaton.
We also discuss the role of εn’s sign. In the previous section we have assumed that εn > 0.
However, in principle, εn can be either positive or negative and, as we explain in the following,
the choice of sign impacts the cosmology of the DS.

It is possible that the expansion rate of the universe is initially much faster than the
bubble nucleation rate in a supercooled DS.5 As a consequence the DS can enter a period

5Since the DS is almost decoupled from the SM it will evolve independently, so we consider that the visible
sector is “frozen” to a given temperature Tv.
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Figure 3. Successive tunneling towards the true vacuum for the benchmark scenario n = 15, N = 4.
The colouring shows that we move from a higher ⟨Π⟩ (purple dot) down to smaller values until the
DS reaches the deepest minimum (red dot).

of supercooling, remaining in a local minimum until quantum tunneling towards another
local or a global minimum takes place.

For εn ≳ 0 the vacuum dynamics of a supercooled DS is governed by the zero-temperature
potential of eq. (3.2). Such a scenario has interesting phenomenology as the associated
potential possesses various local minima and as a consequence the supercooled DS could in
principle exhibit successive vacuum transitions, depicted on figure 3, via tunneling. For an
indicative example we consider the case when the DS is initially in the minimum depicted
by the purple dot in figure 3 with associated vev ⟨Πpurple⟩. We calculate the probability
of tunneling towards its nearest neighbor blue dot with associated vev ⟨Πblue⟩. For this
transition it is clear that the barrier between the vacua is large compared to the energy
difference between them, therefore the thin wall approximation [24] is a well motivated
analytic approach. According to this approximation and following [15], the probability of
nucleating a critical bubble via quantum tunneling is

Γ4 = A4 e
−S4 ≡ 1

R4
0

(
S4
2π

)2
e−S4 (4.13)

where S4 is the O(4)-symmetric bounce solution and R0 is the size of the nucleating bubble.
Moreover, following the cosine-like approximation to the Gegenbauer potential provided

in eq. (2.12) of [8], and employing the triangle approximation to the cosine potential, for
which an anlytic expression was derived in [25], in the thin wall approximation the bounce
action S4 scales as

S4 ≈ 32π2

3
(∆VMax(Π))2(∆Π)4

(∆V (Π))3 , (4.14)
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Figure 4. The bounce solution S4 evaluated numerically as a function of ε for the green dot → red
dot transition as they are represented in figure 3.

where ∆Π is the leading order change in vev between vacua, ∆V (Π) is the change in vacuum
energy between the two vacua and ∆VMax(Π) is the change in vacuum energy between the
vacuum and the top of the barrier between them.

The resulting expression for the bounce, in the large n limit, is

S4 ∼ 23−n−Nn2π5Γ(n+N)
3(N − 1)4Γ

(
n+1

2

)
Γ
(
N
2

)
Γ
(
n+N−1

2

) ×
ε0
n,max
εn

, (4.15)

which ultimately scales proportional to n!/((n/2)!)2, quickly becoming very large for large
n. We also have that

R4
0 ≈ S4

π2∆V (Π) (4.16)

so substituting the above relations back to eq. (4.13) it becomes clear that for ε0
n,max/εn

satisfying the criteria for a controlled EFT expansion the exponential becomes extremely
small. The condition for a successful completion of the vacuum transition is

Γ4 ≳ H4 , (4.17)

which is difficult to fulfil. In conclusion, if the DS is for some reason localized at the purple
dot then it will face an extremely slow decay rate, compared with the expansion of the
universe, such that it will never completely tunnel to the blue dot in a time scale which is
relevant, leading to an eternally-inflating DS.

Naturally one is led to consider the other tunneling possibilities. Naïvely for transitions
closer to the true global minimum one, such as the green to red dot vacuum transition (see
figure 3), one does not expect a dramatic change since the difference in vacuum energy
and the height of the barrier grow in a correlated manner, however eq. (4.14) suggests that
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Figure 5. Inverted tree-level Gegenbauer potential. With the transition from the green dot to the
red dot considered.

the change in vacuum energy may ultimately dominate such that faster tunnelling may be
possible. In such transitions the energy difference is comparable to the barrier height, hence
the thin wall approximation cannot be trusted and a numerical analysis of the bounce action
is required. To this end we rely again on a modified version of CosmoTransitions [26] code.
The numerical analysis of the bounce solution as a function of εn, for the benchmark scenario
studied here, is shown in figure 4, demonstrating that only a case of a large εn, well above
the upper value for an effective description of the pNGB potential, admits values of S4 which
could allow the vacuum transition to complete.

To conclude, we find that a supercooled vacuum transition in a DS with a single
Gegenbauer potential and εn > 0, is highly unlikely to successfully complete unless εn violates
the EFT bound, in which case calculability is called into question.

PT from a flipped potential

Now consider the case with εn < 0, as displayed in figure 5. We focus on the transition from the
second minimum to the origin. Notice that this process corresponds to a symmetry-restoring
phase transition since the pNGB order parameter Π has a zero vev in the true vacuum. This
transition is outside the validity of the thin-wall approximation thus we compute the constant
decay rate, eq. (4.13), numerically. To estimate the bubble radius at nucleation, R0, we use
the value at which the field profile function is halfway between the two minima.

The Hubble rate is written as

H2 ≡ π2g∗SM (Tv)T 4
v

90M2
Pl

+ ∆V (Π, 0)
3M2

Pl
, (4.18)

where the first term comes from the standard radiation degrees of freedom. The second term
above is the vacuum contribution and we have assumed that the DS temperature remains
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Figure 6. Ratio of nucleation rate to Hubble volume as a function of visible sector temperature for
different values of the compositeness scale. The horizontal line marks the nucleation condition while the
vertical lines help visualize the intersection point. At high temperatures Γ4/H

4 ∝ 1/T 8
v while as the

temperature drops the vacuum contribution begins dominating the Hubble rate and Γ4/H
4 ≈ const.

negligibly small. For simplicity, we fix the value of εn = 10−2ε0
n,max and the resonance mass

scale to M = 4πf . Thus only N , n and the symmetry breaking scale f are free parameters.
The tunnelling rate Γ4 is independent of the visible sector temperature and instead

all the temperature dependence is encoded in eq. (4.18). We also find that the polynomial
order n has a negligible impact on the decay rate. Once one fixes N , n and f , one has
that Γ4/H

4 ∝ 1/T 8
v for large Tv. As the temperature drops the vacuum contribution starts

dominating the Hubble rate and Γ4/H
4 ≈ const. This behavior is displayed in figure 6 for

N = 10 and n = 20 and several values of symmetry breaking scale f . One can observe from
this figure that the nucleation temperature is directly proportional to

√
f , as expected on

dimensional grounds. Notice that if a transition is too slow to occur at Tv = 0 then it cannot
start for any Tv. In addition, since the potential is effectively temperature-independent, the
strength parameter of the phase transition is approximately

α(Tv) ≈
∆V (Π, 0)

ρR
. (4.19)

In figure 7 we show this transition strength (colorbar) alongside the behavior of the
nucleation temperature as a function of symmetry breaking scale for two benchmark values
of N . The number of pNGBs, N , significantly impacts the possible range of nucleation
temperature due to the fact that, in our chosen parametrization, N affects the barrier
height and thus, through the bounce action, impacts the tunneling rate exponentially. The
lines terminate at the symmetry breaking scale f for which the nucleation rate matches
the minimum value Γ4 ≈ H4, as can be inferred from figure 6. Close to this point, the
nucleation condition becomes numerically ambiguous. For smaller values of f the lines are
truncated at values with extremely weak vacuum transitions. It can be observed that the
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Figure 7. Nucleation temperature as a function of symmetry breaking scale f with the colorbar
displaying the strength parameter α at the percolation temperature.

strongest phase transitions are associated with the largest possible symmetry breaking scale
and can attain values α ≈ O(1).

For very strong phase transitions the latent heat released accelerates the wall to relativistic
velocities and the effects of the thermal plasma are suppressed. Thus the DS plasma of
pNGBs exerts negligible friction on the wall and one has vw ≈ 1. In this case the GW signal
is sourced by the collision of the walls and not by the sound waves, thus the treatment differs
from section 4.1. To estimate the time scale of the transition we consider the bubble number
density, which for a constant decay rate reads [27]6

1
R3

∗
= 1

4

(Γ4
vw

)3/4
Γ
(1
4

)( 3
π

)1/4
= 1

8π
β3

v3
w

. (4.20)

The GW spectrum from bubble collisions is estimated as [18]

ΩGW(f)h2 = Ω̃× S

(
fg
fcol

)
, (4.21)

where we write the amplitude in terms of mean bubble separation as

Ω̃ ≈ 1.7× 10−5 Ω̃bw(HminR∗)2(8π)−2/3
(
κϕα(Tp)
1 + α(Tp)

)2 (
g∗(Tp)
100

)−1/3
, (4.22)

where H2
min = ∆V/3M2

Pl, the coefficient κϕ is obtained from the detonation approximation
from [31] and the spectral function is given by

S(x) = 19x14/5

5 + 14x19/5 . (4.23)

After red-shifting the peak amplitude we have that

fcol = 1.7× 10−5(R∗Hmin)−1(8π)1/3
(

Tp
100 GeV

)(
g∗(Tp)
100

)1/6 (fpeak
β

)
Hz, (4.24)

6In this expression, the gamma function Γ(x) should not be confused with the decay rate Γ4.
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Figure 8. GW spectrum from bubble collisions for the strongest signals found. The gray contours
are the violin curves for the NANOGrav 15 yr data obtained from [28] using the public tool [29]. The
integrated sensitivity curves for LISA and BBO were obtained using [30].

with fpeak/β ≈ 0.2, Ω̃bw ≈ 0.08. In the expressions above we have used a slightly more
precise percolation temperature, at which the probability to find a region of space-time still
in the false vacuum has decreased to about P (Tp) ∼ e−1.

We show, in figure 8, the predicted GW spectrum from bubble collisions for three
benchmark values of N where in each case we select the value of f which maximises the strength
of the phase transition. We display the sensitivities of the future detectors LISA [32, 33]
and BBO [34]. As we can observe from this figure, the case N = 9 could potentially explain
the recently observed common-red spectrum from the NANOGrav 15 yr data [28] which
is shown as the gray curves.

5 Summary and conclusions

The vacuum structure and dynamics of theories possessing pNGB fields in the IR is of
theoretical interest and physical importance. Indeed, the vacuum structure of QCD itself is a
rich subject rendered tractable by studying the vacuum structure of the pNGBs [35–38]. In
this work we have explored a complementary facet of pNGB vacua which arises if explicit
symmetry breaking occurs due to a spurion in a non-minimal representation. Here, again,
there are metastable vacua, however they exist for different field values, as described in [8].
In this work, we have focused on the same SO(N + 1) → SO(N) symmetry breaking pattern
and investigated the resulting vacuum dynamics, which are found to be much richer than
one might naïvely expect.

Our main result is that the ‘primary’ phase transition associated with spontaneous
SO(N + 1) → SO(N) breaking when the radial mode obtains a vacuum expectation value is

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
0
9
5

not the end of the story. Below this scale the pNGBs will typically undergo additional vacuum
transitions unless the sources of explicit symmetry breaking take the most minimal form.

These vacuum transitions may occur in two ways. Thermally, there is a second critical
temperature scale, the ‘Flipping Temperature’, which scales proportional to TF ∝ f/n and
can thus naturally be well below the spontaneous symmetry breaking scale f . Crucially, at
this temperature the functional form of the pNGB potential remains the same, to leading
order in the spurion. However, the overall sign flips, such that the higher temperature
minimum becomes the lower temperature maximum, and vice-versa for the higher temperature
maximum. As a result, in the vicinity of the flipping temperature an additional vacuum
transition occurs. We find this is likely weakly first-order, at least for parameters consistent
with a controlled EFT.

The second possibility arises non-thermally, if the pNGB sector becomes supercooled in
a metastable state, which is not implausible given the existence of ∼ n different metastable
vacua. In this case multiple vacuum transitions can occur, with the most likely being to a
nearest neighbour. As the field approaches the global minimum the final vacuum transition
can be strong enough to generate observable GWs.

The vacuum structure of our universe is of prime importance and interest in physics.
It determines the ultimate fate of the observable universe and may carry lessons about the
deep UV and quantum gravity itself [39]. Spontaneous symmetry breaking is ubiquitous in
nature, for which Nambu-Goldstone bosons are the physical manifestation of the vacuum
structure. Similarly, pNGBs manifest, through their vacuum structure, patterns of explicit
symmetry breaking. As a result, physically relevant lessons concerning the vacuum structure
and cosmological dynamics of nature may be learned by studying pNGBs, perhaps even the
case in which the Higgs boson is a pNGB; a case we leave to further study.

Acknowledgments

The authors would like to thank Marek Lewicki and Andreas Mantziris for useful discus-
sions. The research of F.K., M.M., S.P. and K.S. leading to these results has received
funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr DEC-
2019/34/H/ST2/00707. M.M. also acknowledges support from the Polish National Science
Center grant 2018/31/D/ST2/02048. K.S. is partially supported by the National Science
Centre, Poland, under research grant 2017/26/E/ST2/00135.

A Hot sector calculations

We now detail a numerical investigation of the phase transition for a hot DS. The theory
of the vacuum decay from a local false minima to the true global minima at zero and finite
temperature has been studied extensively [40–44]. When the temperature is non-negligible
the transition proceeds through thermal fluctuations by the nucleation of true vacuum
bubbles within the space filled with false vacuum energy. The probability of decay per
unit time and volume is

Γ3(T ) =
(
S3(T )
2πT

)3/2
T 4e−S3(T )/T , (A.1)
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where S3(T )/T is the finite temperature Euclidean action of our pNGB model and is less
than the zero-temperature one, S4, around TF .

The true vacuum bubble nucleates when the decay rate becomes comparable to the
expansion rate of the universe. Namely, we define the bubble nucleation temperature by

Γ3 ≈ H4∣∣
T≡Tn

, (A.2)

where the Hubble rate is given by

H2 = ρR
3M2

Pl
+ ∆V daisy(Π, T )

3M2
Pl

, (A.3)

which includes the contribution from the potential energy difference between false and true
minima and MPl = 2.4× 1018 GeV is the reduced Planck mass. Note that for the potential
energy difference the daisy resummed result of eq. (4.10) has been used.

As mentioned earlier, the hidden and visible sectors have independent temperatures
and cool at different rates. From eq. (4.2) above we can read off the total effective number
of degrees of freedom as

g∗ =
(
N + g∗SM(Tv)

ξ4
DS

)
. (A.4)

The time scale of the transition is given by

β

H
≡ T

d

dT

(
S3(T )
T

) ∣∣∣∣
T→Tn

. (A.5)

To compute the action we solve the equation of motion for the system, also known as the
bounce solution. This can be considerably simplified by considering the parametrization of
eq. (2.5) and allowing for a vev only in the Π direction such that

□Π− ∂V daisy(Π, T )
∂Π = 0 . (A.6)

We use a modified version of the publicly available code CosmoTransitions [26] to compute
the Euclidean action.

Finally, it is necessary to have an estimate for the bubble wall velocity. This requires
an out-of-equilibrium computation of the deviation from equilibrium of all the particle
distribution functions. While this is still a very active area of research [45–61], here we will
adopt the analytic estimate of [57, 58]

vw =


√

∆V daisy

αdaisyρR
for

√
∆V daisy

αdaisyρR
< vJ(αdaisy) ,

1 for
√

∆V daisy

αdaisyρR
≥ vJ(αdaisy) ,

(A.7)

where αdaisy is the resummed transition strength given in eq. (4.12) and

vJ = 1√
3
1 +

√
3(αdaisy)2 + 2αdaisy

1 + αdaisy ,
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the Chapman-Jouguet velocity which defines the upper limit for which hydrodynamic solutions
can be found. Although this result is valid for simple extensions of the SM, in our case, we
expect it to give us a realistic estimate. The reason is that we expect the friction force on the
bubble wall to become significant due to the mass of the pNGBs at the metastable vacuum.

The sound wave source template reads7 [62–65] as a function of the frequency, fg,

Ωsw(fg)h2 = 4.13× 10−7 (R∗H∗)
(
1− 1√

1 + 2τswH∗

)(
κsw α

daisy

1 + αdaisy

)2 (100
g∗

) 1
3
Ssw(fg) ,

(A.8)
where R∗ is the average bubble size at collision and the spectral function is

Ssw(fg) =
(
fg
fsw

)3 [4
7 + 3

7

(
fg
fsw

)2]− 7
2

, (A.9)

g∗ is given in eq. (A.4) and all the quantities of the GW spectrum are evaluated at the
nucleation temperature T∗ = Tn ≈ TF . The frequency at the peak of the spectrum is given by

fsw = 2.6× 10−5 Hz (R∗H∗)−1
(

T∗
100GeV

)(
g∗
100

) 1
6
, (A.10)

while the duration of the sound wave source reads [64, 66–68]

τswH∗ =
H∗R∗
Uf

, Uf ≈

√
3
4

αdaisy

1 + αdaisyκsw . (A.11)

For the mean bubble separation we use

H∗R∗ ≈ (8π)
1
3

(
β

H

)−1
. (A.12)

For all the computations that follow in this subsection we have fixed the explicit symmetry
breaking parameter to εn = 10−2 × εTF

n,max since we are focused around T ≈ TF . For the
UV scale at which we expect new resonances to appear we have fixed M = 4πf . Lastly,
since the details of the dynamics of the finite temperature phase transition are to a good
approximation controlled by the DS flipping temperature TF , our only free parameters for
this analysis are n, N , f , ξDS and Tv where the visible sector temperature is fixed above TF .

We present the predictions of the GW spectrum in figure 9 and figure 10 below. In
figure 9 we display the variation of the signal as a function of the Gegenabuer polynomial
order, n, while fixing N = 4, f = 1TeV and Tv = 2TF . We notice that the amplitude of the
signal is very small compared with the expected experimental sensitivities, in particular we
find αdaisy ≈ 0.002 (in agreement with our analytic prediction for the transition strength
given in eq. (4.7)), β/H ≈ 106 and vw ≈ 0.06. We do not observe strong dependence on
the polynomial order n. Recall that Tn ≈ TF ∼ f/n, hence the flipping temperature is
numerically very close to the critical and the nucleation temperature.

7We notice that there are several templates for the GW which derive from fits to different numerical
simulations. In particular the template we use do not match those of, e.g. [18] but we nevertheless expect that
our conclusion remain qualitatively the same regardless of which template is used.
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Figure 9. The GW spectrum for sound waves with n = 10 − 58 (orange curves). The explicit
symmetry breaking parameter has been set to ε = 10−2 × εTF

n,max. The symmetry breaking scale was
fixed to f = 1TeV and the number of pNGBs to N = 4. The temperature of the visible sector was
fixed to Tv = 2TF for each benchmark.

10−5 10−4 10−3 10−2 10−1 100 101 102

fg (Hz)

10−28

10−25

10−22

10−19

10−16

10−13

10−10

10−7

10−4

Ω
G
W

Tv =2 TF
Tv =4 TF
Tv =6 TF
Tv =8 TF
LISA

BBO

Figure 10. The GW spectrum from sound waves for n = 20. The explicit symmetry breaking
parameter has been set to εn = 10−2 × εTF

n,max. The symmetry breaking scale was fixed to f = 1TeV
and the number of pNGBs to N = 4. The temperature of the visible sector was fixed as specified on
the plot legends.
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In figure 10, we instead vary the ratio of hidden to visible temperatures by choosing
different values of Tv/TF while setting N = 4, n = 20 and f = 1TeV. In this case we
notice a substantial reduction in the amplitude as we increase the temperature hierarchy.
This is expected as the amplitude formula eq. (A.8) is inversely proportional to the total
number of degrees of freedom, in agreement with the results of [14]. Furthermore we have
verified numerically that varying other parameters of the potential do not substantially
change the amplitude of the signal and, irrespectively of the adopted benchmark, we obtain
a strength parameter of about αdaisy ≈ 0.002 while for the inverse timescale β/H ≈ 106

and vw ≈ 0.06. These numerical values are indicative of a very weak and quick transition,
if not a crossover, motivating our initial choice of using Tn in the GW template formula
rather than the percolation temperature.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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