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Abstract: We consider two dimensional (2D) gauged linear sigma models (GLSMs) with
(0, 2) supersymmetry and U(1) gauge group which posses global symmetries. We distinguish
between two cases: one obtained as a reduction from the (2, 2) supersymmetric GLSM
and another not coming from a reduction. In the first case we find the Abelian T-dual,
comparing with previous studies. Then, the Abelian T-dual model of the second case is found.
Instanton corrections are also discussed in both situations. We explore the vacua for the
scalar potential and we analyse the target space geometry of the dual model. An example
with gauge symmetry U(1)×U(1) is discussed, which posses non-Abelian global symmetry.
Non-Abelian T-dualization of U(1) (0, 2) 2D GLSMs is implemented for models that arise
as a reduction from the (2, 2) case; we study a model with U(1) gauge symmetry and SU(2)
global symmetry. It is shown that for a positive definite scalar potential, the dual vacua
to P1 constitutes a disk. Instanton corrections to the superpotential are obtained and are
shown to be encoded in a shift of the holomorphic function E. We conclude by analyzing
an example with SU(2)× SU(2) global symmetry, obtaining that the space of dual vacua to
P1 × P1 consists of two copies of the disk, also for the case of positive definite potential. Here
we are able to fully integrate the equations of motion of non-Abelian T-duality, improving
the analysis with respect to the studies in (2, 2) models.
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1 Introduction

The study of suitable features of string theory compactifications leading to more realistic
phenomenological scenarios has been always a great deal of interest in physics and math-
ematics [1–3]. The physical aspects involve the reproduction of important known features
of low-energy physics and the possibility of having new predictions of phenomenological
interest [4]. Some of these features are relevant, for instance, in the early universe or in
microscopic aspects of black hole physics [5, 6], and moreover, in the derivation of the
Standard Model of particle physics and beyond [7]. The study of string compactifications
with fluxes have played a central role leading to more realistic relations of string theory with
phenomenological phenomena at low energies [8]. A very important family of compactifica-
tions are described by a two-dimensional non-linear sigma model (NLSM) on target spaces
consisting of Calabi-Yau (CY) manifolds. These models are superconformal field theories
in 2D with a certain central charge with supersymmetry (2, 2) [9, 10]. They have many
interesting features; however, they lead to low energy effective field theories consistent with
Grand Unification Theories in the four-dimensional spacetime with exceptional gauge groups.
Much more realistic compactifications leading to SU(5) or SO(10) GUTs are the non-linear
sigma models with (0, 2) supersymmetry [11]. This family represents a more general kind of
compactifications than those of the (2, 2) kind (for some reviews, see [12, 13]).

On the other hand, two-dimensional gauged linear sigma models (GLSMs) with (2, 2)
supersymmetry were introduced by Witten in [14], with the aim of studying solutions in
string theory with the possibility to implement a change in the spacetime topology (target
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space) through a simple smooth variation of the parameters in the GLSM. These changes
were observed in [15–18]. More importantly these models work as a theory which interpolate
among different phases which involve topology change. In some models the GLSMs describe
transitions from the Calabi-Yau (CY) phase in the infrared (IR) to the Landau-Ginzburg
phase in the ultraviolet (UV) and viceversa. In the IR the CY phase is obtained by studying
the supersymmetric space of vacua of the underlying effective scalar potential. This space may
have different geometries depending on the specific GLSM that one is considering i.e. one may
vary the number of chiral superfields and the corresponding assignments of the charges which
these fields carry and the Abelian or non-Abelian gauge groups. The same reference [14] also
introduces the (0, 2) GLSMs in 2D. These models have similar properties as the (2, 2) models,
but there are many features in which they differ. For instance, the (0, 2) models are chiral.
These models have been studied actively and very good treatments can be found in [14, 19–23].

Different aspects of (2, 2) GLSMs have been worked out extensively, one of its prominent
applications is the proof of mirror symmetry [24, 25]. The procedure of Hori and Vafa looks to
implement the Buscher-Giveon-Roček-Verlinde target space (T-)duality algorithm (for some
reviews, see [26–28]) to (2, 2) GLSMs, gauging Abelian global symmetries. This procedure
was successful to give a physical proof of the mirror symmetry correspondence. Localization
properties of the partition function have been used to test Abelian T-duality in GLSMs that
lead to mirror symmetry [29]. Moreover, the duality algorithm can be generalized to consider
the gauging of a non-Abelian group in contrast to the gauging of an Abelian group. This is
termed the non-Abelian duality and many interesting traditional results have obtained in this
direction [30–32]. More recently some interesting results involving the idea of non-Abelian
duality can be found in refs. [33–36].

As we mentioned before (2, 2) GLSMs are an important tool to prove mirror symmetry of
CY manifolds, in particular for the case of complete intersections of CY manifolds and toric
varieties [24, 25], and there have been many studies in GLSMs and their applications [37–49].
However, for GLSMs with (0, 2) supersymmetry the realization of mirror symmetry was least
apparent. Certain kind of mirror map can be defined for these models [50–55]. Other notions
of the (0, 2) mirror map are discussed in refs. [21–23, 56–58]. In particular, in [56], it was
studied the Abelian GLSM with a gauged Abelian global symmetry. The authors follow
the duality algorithm mentioned previously and obtained a dual action which is also a (0, 2)
GLSM. In particular they found the instanton contributions in the dual action which are
compatible with the instanton corrections of the original (0, 2) GLSM. Other developments
of (0, 2) GLSMs in different contexts can be found in refs. [59–64]. For a very recent overview
of some important results of the GLSMs see [65, 66].

In the context of (2, 2) GLSMs with U(1) gauge symmetry, the possibility of gauging
up a non-Abelian global symmetry was explored in [67–69]. In this article, the dual action
was given and the instanton corrections of the dual action were determined. Moreover, for
the CY phase, there were given some models in which the geometry of the target space was
found. One motivation to go beyond the realm of Abelian T-duality in [24] comes from the
fact that there is a large set of CY manifolds that do not constitute complete intersections
but rather Grassmanians, Pfaffians or determinantal; that can be studied as Non-Abelian
GLSMs [70], and a description of the symmetries in these models is of interest [38, 40, 42],
in particular the study of mirror symmetry [44, 45, 58]. Nevertheless one can also ask first
the question whether the T-dualities leading to mirror symmetry even for Abelian GLSMs
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can be generalized further, to obtain new geometric identifications. In general the models
have multiple global symmetries that can make the group of T-dualities bigger. This is the
question that we explore in this paper. Such a search can help to determine relations between
apparently different string vacua, serving to explore the landscape.

In the present article we start from the family of (0, 2) GLSMs considered in [56], arising
from a reduction of the (2, 2) theory, and we study the gauging of a non-Abelian global
symmetry. We also consider pure (2, 0) GLSMs models, not obtained from a supersymmetric
reduction.

Let us summarize the main results of our article:

1. We study the non-abelian T-duality of the 2D (0, 2) GLSM. We focus in two cases; the
first one is the pure (0, 2) GLSM, which does not come from a supersymmetry reduction
from a (2, 2) GLSM. The second case comes from a (2, 2) reduction, and this is the one
of the most importance in our work.

2. We start with the Abelian T-dualization of the (0, 2) GLSM, for models with multiple
U(1) gauge fields and multiple chiral superfields. Those models have multiple U(1)
global symmetries, which we T-dualize. Then we discuss the example of a single chiral
superfield with just a spectator, with a single U(1) global symmetry, performing Abelian-
duality. We distinguish two cases, one coming from reduction of (2, 2) supersymmetry
and the other doesn’t. We dualize as well the case of a model with U(1)×U(1) gauge
symmetry and U(1)4 global symmetry, which would lead to its mirror symmetric model
as in [56].

3. We perform the non-Abelian T-dualization, for models with multiples U(1) gauge
symmetries, and with multiple non-Abelian global symmetries. These (0, 2) models
come from a reduction of the (2, 2) supersymmetric case. The non-Abelian T-duality
algorithm is implemented by gauging out this symmetry and introducing Lagrange
multipliers; those last impose constraints that fix the resulting local symmetry to have
a pure gauge vector field. We take as an example the case of SU(2) dualization. We
find the dual action, which is given in terms of the degrees of freedom Y a

+, where a is
the group index, and it contains a scalar potential. We analyze the structure of the
whole vacua manifold and, to perform the analysis, we find regions of the space of
fields where the potential is positive definite. The result is given by a surface that in
function of the values of the parameter r = ℑ(t) has the topology of a plane or the
topology of the union of the plane and a disk. To describe the vacua, we analyze the
three regions: Region 1, Region 2 and Region 3. Region 1 and 2 have the topology
of a disk and its boundary, and Region 3 has the topology of the plane. Thus the
complete structure of the vacuum space W is the union of all three regions, where the
disk size can be contracted depending on the r parameter. Thus, the whole space of
vacua is non-compact.

4. To study the effects of the non-Abelian T-duality in a more interesting example, we
consider the case of a model with non-Abelian global symmetry SU(2) × SU(2) and
with the product of two Abelian gauge groups. The model has four chiral fields and
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two Fermi fields. The model is originally (2, 2) but it is deformed to obtain a pure (0, 2)
GLSM which does not come from reduction. The dual action and the scalar potential
were obtained. Employing the results of the space of vacua for the case of a single
SU(2), the analysis for the complete system was carried out. The space of vacua is the
Cartesian product of two copies of W.

The present article is organized as follows: in section 2 a brief overview of (0, 2) GLSMs is
given. Our aim is not to provide an extensive review but to give the notation and conventions
we will follow. We also discuss the field content and interactions of these models. In section 3
we describe Abelian T-duality in (0, 2) GLSMs. We presented two examples, both of them
with a single U(1) gauge group and a pair of chiral superfields. In the first example we
considered the case of a GLSM which is a reduction of a (2, 2) GLSM and in the second
example we study the case of a pure (0, 2) GLSM. We find the equations of motion and the
dual Lagrangian in both cases. Moreover, we compute the scalar potential and discuss the
geometry of these vacua manifolds. The third example deals with a GLSM with U(1)× U(1)
gauge group and U(1)4 global symmetry group. We presented this model as a preliminary
material which will be later generalized to non-Abelian T-duality in section 5. In section 4
we perform non-Abelian dualization for a general global symmetry group G. In order to be
specific, we particularize to SU(2) global group and give its dual Lagrangian and study its
vacua manifold. Finally, in section 5 we consider an example with a SU(2)× SU(2) global
symmetry. We conclude in section 6 with our results and conclusions. At the end of the
article we added three appendices. Appendix A is devoted to notation and conventions
of supersymmetric 2D representations and appendix B is devoted to show the complete
Lagrangian of the original models and the supersymmetric field transformations; appendix C
is devoted to carry out the algorithm of T-duality at the level of superfield components. We
show that for the simpler example of Abelian duality in this paper, the dual action coincides
with the dual action of the reduced GLSM in the superfields language presented in section 3.

2 Field representations of (0, 2) supersymmetry

In this section, in order to be as self-contained as possible, we write an overview of the basic
ingredients of 2D GLSMs with (0, 2) supersymmetry. Moreover, we will write down their
corresponding Lagrangians and symmetries, and we will describe the matter content and their
interactions. Along the paper we follow the notation and conventions on supersymmetric
field theory as the one in the references [71–73]. For reading background material regarding
(0, 2) GLSMs it is useful to consult the references [14, 19, 20].

We start by reviewing the two-dimensional GLSM with (0, 2) supersymmetry and an
Abelian gauge group, we follow the original Witten’s paper in GLSMs [14]. As usual, the
coordinates of the (0, 2) superspace are given by (y0, y1, θ+, θ+). Where the first two are
the space coordinates and the last two the fermionic counterparts. V is the (0, 2) vector
superfield and in the Wess-Zumino gauge they can be expanded in components as follows:

V = v− − 2iθ+λ− − 2iθ+λ− + 2θ+θ+D, (2.1)

Ψ = v+θ
+θ

+
. (2.2)
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In components, field strength is written as:

Υ = iD+(V − i∂−Ψ)

= −2λ− + [2iD + (∂−v+ − ∂+v−)]θ+ + 2i∂+λ−θ+θ
+
. (2.3)

There are two kinds of matter fields: the chiral multiplets Φ and the Fermi multiplets Γ.
The bosonic covariant chiral fields Φ̃ are defined by the following constraint:

D+Φ̃ = 0, (2.4)

where D+ is the covariant derivative and consequently it has the components expansion:

Φ̃ = ϕ+
√
2θ+ψ+ − iθ+θ

+(∂+ + iv+)ϕ, (2.5)

which is defined with Φ̃ := ΦeΨ, where the (uncharged) chiral superfield Φ fulfils the relation
D+Φ = 0. In order to complete the rest of the matter content let us introduce Γ̃ which
constitutes a (0, 2) Fermi multiplet. This multiplet satisfies the constraint:

D+Γ̃ =
√
2Ẽ , then Ẽ =

√
2
2 eΨD+Γ, (2.6)

where Ẽ = E(Φ̃) is a holomorphic function of the superfield Φ̃. Similarly, we can define
Γ̃ := ΓeΨ and Ẽ := EeΨ, where D+Γ =

√
2E. Thus, the expansion for this Fermi multiplet

and the field E are given by:

Γ̃ = γ −
√
2Gθ+ − iθ+θ+(∂+ + iv+)λ−

√
2Ẽθ+ , (2.7)

Ẽ(Φ) = E(ϕ) +
√
2θ+∂E

∂ϕ
ψ+ − iθ+θ

+(∂+ + iv+)E(ϕ). (2.8)

In the present article it will be considered (0, 2) GLSMs with a U(1) gauge group (or
U(1)n), and with non-Abelian global symmetries to be gauged. Thus the dynamics of the
models studied is given by the addition of all of these Lagrangians, i.e.,

L = Lgauge + Lchiral + LFermi + LD,θ + LJ . (2.9)

The U(1) gauge theory has a natural Lagrangian given by

Lgauge = 1
8e2

∫
dθ+dθ+ΥΥ, (2.10)

where e is the gauge coupling constant.
The gauge invariant Lagrangian for the chiral fields is given by

Lchiral = − i2

∫
dθ+dθ+ Φ̃†(D0 −D1)Φ̃

= ϕϕD + iψ+(∂− + iv−)ψ −
√
2i(λ−ψ+ϕ− ψ+λ−ϕ)

− 1
2[ϕ(∂− + iv−)(∂+ + iv+)ϕ− (∂+ + iv+)ϕ(∂− + iv−)ϕ]. (2.11)
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The dynamics of the Fermi field is given by the Lagrangian:

LFermi = −1
2

∫
dθ+dθ+ ¯̃ΓΓ̃

= iγ(∂+ + iv+)γ + |G|2 − |E|2 −
(
γ
∂E

∂ϕ
ψ+ + ∂E

∂ϕ
ψ+γ

)
. (2.12)

In the case of U(1) gauge theories (or in non-Abelian gauge theories with a gauge
group with a U(1) factor) we have an additional term in the Lagrangian given by the
Fayet-Iliopoulos and Theta term

LD,θ =
t

4

∫
dθ+Υ|

θ
+=0 + h.c., (2.13)

where t = θ
2π + ir, with θ = 2πℜ(t) being an angular parameter and r = ℑ(t) is the

Fayet-Iliopoulos parameter.
In (0,2) theories there is a superpotential Lagrangian LJ , which is the (0, 2) analog of

the superpotential term of the (2, 2) model. LJ is of the form

LJ = − 1√
2

∫
dθ+

(
ΓpJp(Φ)|θ+=0

)
− h.c., (2.14)

where Jp = Jp(Φ) is a holomorphic function of the (0, 2) chiral superfield Φ, and Γp are
Fermi superfields (different from the previous ones). Moreover Jp satisfies the relation
Ep(Φ)Jp(Φ) = 0, where of course D̃+Γp =

√
2Ep. In the present article we will consider

models without superpotential terms and therefore LJ = 0.
The scalar potential can be obtained by the usual procedure in supersymmetric theories

(integrating in the superspace) and it is given by

U(ϕi) =
e2

2

(∑
i

Qi|ϕi|2 − r
)2

+
(
|E(ϕ)|2 + |J(ϕ)|2

)
, (2.15)

where it is clear the contributions coming the D-terms from the (0, 2) gauge multiplet and
from the FI term. The last two terms come from the E field and the last one, corresponds
to the contribution from the superpotential.

2.1 Reduction of the (2, 2) multiplets to (0, 2) superfields

It is known that certain (0, 2) GLSMs can be regarded as a supersymmetric reduction of
(2, 2) GLSMs. The (2, 2) GLSM consists of chiral supefield Φ(2,2), a vector superfield V (2,2)

and its twisted field strength Σ(2,2).
The (0, 2) superfields can be obtained from the (2, 2) chiral superfield Φ(2,2) and the

Γ(2,2) Fermi superfield as:

Φ = Φ(2,2)|
θ−=θ−=0, (2.16)

Γ = 1√
2
D−Φ(2,2)|

θ−=θ−=0. (2.17)

Both matter fields are supersymmetry reductions of the single (2, 2) chiral superfield.
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The (2, 2) vector superfield V (2,2) gives the gauge field strength by:

V − i∂−Ψ = −D−D−V
(2,2)|θ−=θ̄−=0. (2.18)

And also it gives a twisted chiral superfield Σ, which is identified as: θ+Σ = − 1√
2D−V |θ−=θ−=0;

which is also simply: Σ = Σ(2,2)|
θ−=θ−=0.

It can be verified that if Φ(2,2) has charge Q, then the E field can be written as
E = Q

√
2ΣΦ. The holomorphic function J can be obtained from the (2, 2) superpotential

W in the form J = ∂W

∂Φ̃
.

3 Abelian T-duality in (0, 2) GLSMs

In this section we describe the T-duality for GLSMs with a U(1)m gauge group and a U(1)k+s
global symmetry group to be gauged. We present the original model and find the T-dual
model, by solving the equations of motion. For the sake of simplicity we consider the case
when the superpotential J of the (0, 2) model vanishes, thus the underlying scalar potential
consist only of the D-term and the Fayet-Iliopoulos term. We found the dual action and the
geometry of the space of dual vacua. We study two separate cases, the first one is the case in
which the (0, 2) GLSM can be obtained by reduction from a (2, 2) model. The second case
is the general case of a pure (0, 2) GLSM which cannot be obtained from a reduction. In
both cases we describe their corresponding instanton corrections. In the rest of the section
we describe a particular reduced model with gauge group U(1)× U(1) and an Abelian global
symmetry U(1)4. This model was discussed in [56] and it will be analysed in the context
of non-Abelian duality in section 4.

3.1 GLSM with U(1)m gauge symmetry and U(1)k+s global symmetry

Here we describe the Abelian T-dualization for general (0, 2) U(1)m GLSM with U(1)k global
symmetry related to the chiral fields and U(1)s global symmetry associated to the Fermi
fields. We start with a theory with n chiral superfields Φi and ñ Fermi superfields Γj , and
a given number m of U(1) gauge symmetries. The chiral superfields Φi posses Qai charges
and the Fermi superfields Γai have charges Q̃aj . The Lagrangian of this theory is written
in the appendix formula (B.1).

There are m vector superfields Va,Ψa with field strength Υa. In principle each kinetic
term has a global phase symmetry, under which the chiral or the Fermi fields transform. As
all the superfields are distinct, one can employ the m gauge symmetries to absorb m of these
phases, giving a total of k + s global symmetries where k = n −m (n > m) U(1) global
symmetries, these transformations are given in the appendix formula (B.2).

In general we would have the possibility to absorb with the m Abelian gauge symmetries
not only the global symmetries of the chiral superfields, but the total amount of global
symmetries of the chiral and Fermi fields n+ ñ. The master Lagrangian will remain the same
with some few modifications in the sum’s indices. This case will be not considered in this work.

In general one can consider a generic number of Fermi multiplets, this is true because
the general (0,2) model, presented here, doesn’t come necessarily from a SUSY reduction
from the (2,2) theory. Therefore the Fermi multiplets are not necessarily related or coupled
to the chiral multiplets. In the opposite case when the chiral superfields and the Fermi
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superfields come both from the (2,2) reduction, the number of Fermi and chiral fields and
their charges need to match.

Starting from (B.1) one can construct the master Lagrangian (or also named intermediate
Lagrangian) by gauging the global symmetries and adding terms with Lagrange multipliers
Λb related to field strengths Υb

Lmaster =
∫

dθ+dθ+
m∑

a=1

1
8e2

a

ΥaΥa

−
∫

dθ+dθ+
{ k∑

i=1

i

2Φie
2
∑m

a=1
Qa

i Ψa+2
∑k

b=1
Qb

1iΨ1b

(
∂−+i

m∑
a=1

Qa
i Va+i

k∑
b=1

Qb
1iV1b

)
Φi

}

+
∫

dθ+dθ+
{ k∑

i=1

i

2Φi

(←−
∂ −−i

m∑
a=1

Qa
i Va−i

k∑
a=1

Qb
1iV1b

)
e2
∑m

a=1
Qa

i Ψa+2
∑k

b=1
Qb

1iΨ1bΦi

}

−
∫

dθ+dθ+
{ s∑

j=1

1
2e

2
∑m

a=1
Q̃a

j Ψa+2
∑s

c=1
Q̃c

1jΨ1cΓjΓj+
ñ∑

j=s+1

1
2e

2
∑m

a=1
Q̃a

j ΨaΓjΓj

}

+
m∑

a=1

ta
4

∫
dθ+Υa|θ+=0+

k∑
b=1

∫
dθ+dθ+ΛbΥ1b+

k+s∑
b=k+1

∫
dθ+dθ+ΛbΥ1b+h.c.

−
∫

dθ+dθ+
n∑

i=k+1

{
i

2Φie
2
∑n

a=1
Qa

i Ψa

(
∂−+i

m∑
a=1

Qa
i Va

)
Φi

− i2Φi

(←−
∂ −−i

m∑
a=1

Qa
i Va

)
e2
∑m

a=1
Qa

i ΨaΦi

}
. (3.1)

For simplicity in this expression we are assuming that the chiral superfields are not charged
under the global symmetries that the Fermi superfields are charged, and vice-versa. One
could choose that each of the chiral superfields to dualize it is charged only under a single
U(1) global, such that Qb1i = δi

b, as it was done by Hori and Vafa in their fundamental
work on mirror symmetry as a T-duality [24]. There are U(1)k+s global symmetries, where
k + s = n −m + s. For models coming from supersymmetric reduction s is zero and the
Fermi superfield will be gauged with the same global symmetry implemented by the chiral
superfields. In the general case there will be additional global symmetries arising due to the
Fermi superfields in addition to those due to the chiral superfields in the (2, 2) GLSM.

Let us now analyze the equations of motion from this master Lagrangian when the
gauged fields are integrated. Due to the Weiss-Zumino gauge (2.2), e2Ψ = 1 + 2Ψ. In this
way, the fields Ψ1, V1 and Γ1 are linear and the variation is easy performed. Carrying out
the variation of the Lagrangian with respect to ψ1b we obtain for the field V1b:

V1b = A−1
bd

(
− i

2∂−Y
d
− −Rd

)
, (3.2)

where

Abd =
k∑
i=1
|ϕi|2Qd1iQb1i, (3.3)

and

Rd =
k∑
i=1

(
− i2Φiδ−ΦiQ

d
1i + |Φi|2

m∑
a=1

Qai VaQ
d
1i

)
. (3.4)
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Here the new dual variable is defined by: Y c
± ≡ iD+Λc ± iD+Λ

c, and for simplicity, it has
been used δ− = ∂− −

←−
∂ −.

Performing the variation of the Lagrangian with respect to V1b, for the component
ψ1b we have

ψ1b = A−1
bd

(
− i

2∂−Y
d
+ − Sd

)
, (3.5)

and

Sd =
k∑
i=1
|Φi|2Qd1i + 2

m∑
a=1
|Φi|2Qd1iQa1iψa. (3.6)

The variation with respect the component ψ1d for d ∈ {k + 1, . . . , 2k} yields

Qd1jΓjΓj = −i∂−Y d
− → ΓjΓj = −Q−1

1jd∂−Y
d
−. (3.7)

These equations of motion are employed to find the dual model.

3.2 A T-duality algorithm from a model coming from (2,2) reduction

In this subsection we obtain explicit expressions for the equations of motion of a general
master Lagrangian of a (0, 2) GLSM which is obtained by reduction of a (2, 2) model. In
this case, there is a Fermi superfield for every chiral superfield and there could be also extra
Fermi superfields. These Fermi fields have the same charges under the gauge group than
the chiral superfields related to them i.e. Qi = Q̃i and we consider the case s = 0, such
that there are no extra Fermi fields. Then all the global symmetries will affect equally the
chiral superfields and the Fermi superfields. In this case, the duality procedure will be carry
out in the fields Φ and Γ, and there are Lagrange multipliers χ associated to E. So, the
new dual fields are F̃ = eΨD+χ and Ya.

We start from the following Lagrangian, with n chiral fields and then n Fermi fields
(related to them) and without any extra Fermi field. This is ñ = n to give:

Lmaster =
∫

dθ+dθ+
m∑
a=1

1
8e2a

ΥaΥa

−
∫

dθ+dθ+
{ k∑
i=1

i

2Φie
2
∑m

a=1Q
a
i Ψa+2

∑k

b=1Q
b
1iΨ1b

(
∂−+i

m∑
a=1

Qai Va+i
k∑
b=1

Qb1iV1b

)
Φi
}

+
∫

dθ+dθ+
{ k∑
i=1

i

2Φi(
←−
∂ −−i

m∑
a=1

Qai Va−i
k∑
b=1

Qb1iV1b)e2
∑m

a=1Q
a
i Ψa+2

∑k

b=1Q
b
1iΨ1bΦi

}

−
∫

dθ+dθ+
{ k∑

j=1

1
2e

2
∑m

a=1Q
a
j Ψa+2

∑k

b=1Q
b
1jΨ1b(Γj+Γ1j)(Γj+Γ1j)

}

+
m∑
a=1

ta
4

∫
dθ+Υa|θ+=0+

k∑
b=1

∫
dθ+dθ+ΛbΥb+

k∑
b=1

∫
dθ+dθ+χ̄bEb+h.c.

− i2

∫
dθ+dθ+

n∑
i=k+1

{
Φie2

∑m

a=1Q
a
i Ψa

(
∂−+i

m∑
a=1

Qai Va

)
Φi (3.8)

−Φi
(←−
∂ −−i

m∑
a=1

Qai Va

)
e2
∑m

a=1Q
a
i ΨaΦi

}
+
∫

dθ+dθ+
ñ∑

j=k+1

1
2e

2
∑k

a=1Q
a
j ΨaΓjΓj .
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The terms in the last two lines are not charged under the global (gauged) symmetry so those
fields behave as spectators. The main difference with the other case (without reduction)
lies on the dualized fields. In this reduced model, the Fermi fields are also gauged and
new Lagrange multipliers were added, these terms are located on the 5th line of previous
equation. If exists Q ∈ GL(k) such that (Q)ci := Qc1i, then let be X := Q−1 to find the
variations, which results in:

δV1cS=0 :
(
1+2

m∑
a=1

QajΨa+2
k∑
b=1

Qb1jΨ1b

)
=−X

j
cY

c
+

|Φj |2
,

or Ψ1d=
k∑
j=1

Xj
d

(
Xj
cY

c
+

2|Φj |2
+1
2+Q

a
jΨa

)
, (3.9)

δΨ1cS=0 : −iΦjδ−Φj+2
m∑
a=1

QajVa|Φj |2+2
k∑
b=1

Qb1jV1b|Φj |2=−
i

2X
j
c∂−Y

c
−, (3.10)

δΓ1jS=0 :
(
1+2

m∑
a=1

QajΨa+2
k∑
b=1

Qb1jΨ1b

)
(Γj+Γ1j)=−

√
2F̃†

j . (3.11)

Notice that we have solved the equations for the gauged fields, we denote δXS = 0 to the
equation of motion obtained for the field X.

From the derived equations of motion, one can obtain the dual Lagrangian for the (0, 2)
models. In general it is involved to carry out this program, thus we shall consider in this work
the simpler models, with some specific values of m, n and ñ. This will be developed in the
following section for the case of supersymmetryc reduction and then for the pure (2, 0) case.

3.3 GLSMs with a U(1) global symmetry

Now we consider a concrete model described by the GLSM Lagrangian with m = 1, two
chiral multiplets (n = 2) and some Fermi superfields ñ. One of each kind will act as spectator
field, besides it will be considered Q = 1.

For the implementation of the algorithm of duality we consider only the relevant terms
in the Lagrangian; which we call partial Lagrangian ∆Loriginal, where the other terms as
the kinetic energies of the gauge fields, the FI terms and the spectator fields are omitted.
The Lagrangian is given in (B.4). From this common Lagrangian, the 2 cases: the reduction
from (2, 2) and the pure (0, 2) case are taken.

3.3.1 (0, 2) GLSM from a reduction of a (2, 2) GLSM

As we mentioned before in the case when the (0, 2) model is obtained as a reduction from
a (2, 2) model, all the chiral multiplets have associated an only Fermi field (s = 0) and the
E field has a special form with the reduced fields given by

E = iQ
√
2Σ′Φ′ , (3.12)

– 10 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
8

where Σ′ = Σ|
θ−=θ−=0, and Φ′ = Φ|

θ−=θ−=0. Thus the gauged Lagrangian is written as

∆Lmaster =
∫

dθ+dθ+
{
− i

2Φe
2(Ψ+Ψ1)

(
∂− + i(V + V1)

)
Φ (3.13)

+ i

2Φ
(←−
∂ − − i(V + V1)

)
e2(Ψ+Ψ1)Φ

− 1
2e

2(Ψ+Ψ1)(Γ + Γ1)(Γ + Γ1) + ΛΥ1 +Υ1Λ + χẼ1 + Ẽ1χ

}
.

Thus, the eqs. (3.10)–(3.11) substituted back into (3.13), with the gauge fixing |Φ|2 = 1,
lead to the following Lagrangian:

∆LDual =
∫

dθ+dθ+
{
− i

2
Y−∂−Y+
Y+

+ F̃F̃
Y+

}
−
∫

dθ+
(
iYΥ− ĒF

)
+ h.c.. (3.14)

This process can also be realized by components, gauging up each component field to find
the scalar potential; this procedure is carried out in appendix A.

To describe the various contributions to the scalar potential coming from the complete
dual action (3.14) it is needed the component expansion of the dual fields Y and F which are
written in (C.5) and (C.6). Thus as y and H are the bosonic component of each superfield
respectively, the scalar potential consist of the complete Lagrangian adding Fayet-Iliopoulos
term, gauge action and the spectators fields. The kinetic term of the dual variable Y in the first
term of the dual action − i

2
Y−∂−Y+
Y+

, does not contribute to the scalar potential. The third term
in the Lagrangian iYΥ0 leads to a scalar potential of the form −2Dy++2iv01y−+h.c. Moreover,
the Fayet-Iliopoulos and Theta term give rise to a potential of the form D( it2 −

it
2 )+v01(

t
2 +

t
2).

The gauge sector Lgauge contributes with a term of the form v2
01

2e2 + D2

2e2 .We have two additional

contributions from the terms F̃F̃
Y+

and −F̃E + h.c. which lead to terms of the potential of
the form −2HH

y+
and −

√
2(HE + EH), respectively.

Thus, the scalar potential coming from (3.14) can be written as

Udual = D

(
i

2(t− t)− 2y+ + |ϕ2|2
)
+ D2

2e2 + v201
2e2 + v01

(
i

2(t+ t)− 2iy−
)

+ HH

ℜ(y) +
√
2(HE + EH). (3.15)

After eliminating the auxiliary field D and v01, the potential is:

Udual = e2

2

(
−ℑ(t)−ℜ(y) + |ϕ2|2

)2

+ e2

2

(
ℜ(t) + ℑ(y)

)2
+ HH

ℜ(y) +
√
2(HE + EH), (3.16)

which minimum condition with respect to H, E and ℜ(y) gives E = 0, H = 0 and:

|ϕ2|2 −ℜ(y) = ℑ(t), (3.17)

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
8

while for the original theory, te vacua is:

Uoriginal = 0→ |ϕ|2 + |ϕ2|2 = ℑ(t). (3.18)

From equation (3.17) one obtains a cone with vertex at y+ = −r. Considering the U(1)
gauge symmetry this will lead to the line R+, such that the dual expected vacua is R+ × R
while for the original model is P1. Notice that this dual is not the Abelian T-dual leading
to the mirror pair obtained in [24, 56].

This T-duality is not mirror symmetry, because we are only performing a dualization
in a single field direction. The mirror symmetry can also be obtained by our method, by
adding an spectator chiral superfield and gauging two U(1) symmetries, one for each chiral
superfield. Although mirror symmetry is obtained by specific dualization of Abelian global
symmetries, the whole set of Abelian T-dualities that can be explored is wider. We have
discussed these dualities in the (2,2) cases [67].

The superpotential of the original theory is given by [20]:

Woriginal = Υ
4π
√
2
ln
( Σ
qµ

)
. (3.19)

We propose the following ansatz for superpotential of the dual theory:

Wdual = iYΥ− EF + βFeαY , (3.20)

thus we have

Wdual = iΥ
α

ln
(
E

β

)

= iΥ
α

ln
(−iΥ0
αβF

)
. (3.21)

For (0, 2) theories coming from a reduction of a (2,2) model with E = −iQ
√
2ΣΦ, the

non-perturbative dual superpotential is written as [20]

Wdual = iΥ
α

ln
(

Σ
β/(−iQ

√
2Φ)

)
, (3.22)

where we can see by comparison with (3.21) the choices of:

α = 4iπ
√
2 and β = −iqµ

√
2QΦ . (3.23)

3.3.2 The case of a pure (0, 2) GLSM

In this section we consider a building block (0, 2) model which is not coming from reduction
of a (2, 2) case, and study the Abelian T-duality on it. In this case we have m = 1, n = 2,
ñ = 1, k = 1 and s = 0.

For a pure (0, 2) Abelian case the model is the same in formula (B.4). But this time the
field Γ is not dualized and the gauged fields are only V and Ψ. Thus the dual Lagrangian
is given by

∆Ldual =
∫

dθ+dθ+
{
− i2

Y−∂−Y+
Y+

+Y+ΓΓ
2|Φ|2

}
+
∫

dθ+(iYΥ)+ t

4

∫
dθ+Υ+h.c. (3.24)
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The scalar potential is found to be the same that in the previous case discussed in section
3.1.1, except for the term Y+ΓΓ

2 which contributes to the scalar potential with a term of
the form y+GG− y+EE. Gathering all that, it results that the scalar potential of the dual
theory after eliminating the auxiliary field D is given by:

Udual = e2

2

(
−ℑ(t)−ℜ(y) + |ϕ2|2

)2
+ e2

2
[
ℜ(t) + ℑ(y)

]2 + 2ℜ(y)(EE −GG), (3.25)

which minimum condition with respect to G, E and ℜ(y) gives E = G = 0 and:

|ϕ2|2 −ℜ(y) = ℑ(t). (3.26)

This is precisely the same equation found in the previous case (3.17) and consequently the
topology of the manifold of vacua is a also R+ × R. Recall that for the original model
the scalar potential reads:

|ϕ|2 + |ϕ2|2 = ℑ(t), (3.27)

which together with the U(1) gauge symmetry it constitutes a P1. Thus, the ansatz for
the superpotential in the dual model is

Wdual = iYΥ+ βeα(Y+1)

= iΥ
α

[
ln
(−iΥ
αβ

)]
. (3.28)

Here we have employed an ansatz for the instanton corrections, in order to obtain the same
effective potential for the U(1) gauge field as in the (0, 2) case coming from a reduction. The
symmetries of this non-perturbative ansatz coincide with the case coming from reduction,
we will discuss this next. However in this case is not possible to compare to a (0, 2) original
theory (not coming from reduction), one would have to perform the one-loop computation to
correct the D-term; in order to find the effective potential for the U(1) gauge field.

Let us look at the equations of motion for the dual model, for the gauge fields Ψ1, V1
in terms of the dual fields Y+, Y−, those are:

Ψ1 =
Y+
2|ϕ|2 + 1

2 −Ψ0, (3.29)

V1 =
i

2
Φ̄δ−Φ
|Φ|2 −

i

2
∂−Y−
|Φ|2 − V0. (3.30)

From here we see that the real part of Y has vev Y+ ≤ 0 in the gauge Ψ1 + Ψ0 = 0. The
Lagrangian term of the scalar components of the field strength Υ is given by:

L ⊃ v201
2e2 − iv01 (ℜ(t) + 2y−) . (3.31)

From here we see that the Υ field acquires a mass; these will be used as a reference in
the following discussion.

We can follow the arguments of Hori and Vafa [24] to propose the non-perturbative
correction, based on physical arguments. The arguments are: holomorphicity in t, periodicity
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in θ, R-symmetry and the asymptotic behaviour. We can arrive to a shape for Wdual similar
to that of (3.28). The argument of [24] repeated here for our case goes as follows, the
superpotential has axial R-symmetry with charge 2. The important objects are the field
strength Υ, the energy scale set by the FI and θ parameter Λ = µet̃, t̃ = 2πit = 2π(i θ2π − r)
and the dual field Ỹ = (iY + t

4). The Langrangian (3.24) has the remnant of following
R-symmetry: Υ→ e2iαΥ, t̃ = it/4 and iY periodic, with period 2πi and Λ→ e2iαΛ, such that
α = πn, n ∈ Z. The non-perturbative correction transforms properly under the R-symmetry
if it has the structure ∆W = Υf

(
Λ
Υ , Ỹ

)
what expanded in Laurent series reads:

∆W = Υ
∑
m,n

cn,m

(Λ
Υ

)n
e−imỸ

=
∑
m,n

cn,mΥ1−nµne(n−m)t̃+mY . (3.32)

The dualization implies a massive Υ, coming from the region where the original chiral field
satisfies ϕ ̸= 0; thus Υ dependence should be analytic and n ≤ 1. Then for large r one needs
to have a small correction, such that n−m ≥ 0. Finally since the real part of Y , i.e. Y+ ≤ 0,
we have m ≥ 0 to have a small correction. Thus we have 0 ≤ m ≤ n ≤ 1. The only non
trivial solution is n = m = 1. Thus the coefficient α in (3.28) is restricted to be 1.

In the (2, 0) case coming from reduction the argument to determine which are the
non-perturbative corrections to the twisted superpotential W follows the same criteria of
symmetry of (2, 2) models, explored here for pure (0, 2). In addition the models coming from
a reduction inherit the arguments of the original (2, 2) models. As in the original GLSM
there are vertex instantons, several checks of matching are performed; for the example the
effective superpotential for the U(1) gauge field is obtained and coincides in the original and
the dual model. Second, correlation functions between fermions in both theories coincide, if
the non-perturbative corrections are implemented in the dual model [24].

3.3.3 A model with two Abelian gauge symmetries

As an example, let us apply this T-dualization procedure to the case of a (0, 2) GLSM coming
from a reduction, as discussed in ref. [56]. This is a GLSM with two gauge groups U(1).
We have to gauge 4 global symmetries; this is 3 chiral fields Φ and 3 Fermi fields Γ charged
under a U(1) gauge symmetry and another 3 chiral Φ̃ and Fermi Γ̃ charged under the other
U(1). In this case it has to be taken m = 2, n = 6, ñ = 6, k = 2 and s = 0. The former
example has to give the same dual model of [56], apart from the addition of 2 spectator
fields. Let us write the master Lagrangian in general:

Lmaster = − i

2e
2Ψ1+2Ψ′

1Φ1

(
∂− − i(V1 + V ′

1)
)
Φ1 + h.c.

− i

2e
2Ψ1+2Ψ′

2Φ̄2

(
∂− − i(V1 + V ′

2)
)
Φ2 + h.c.

− i

2e
2Ψ2+2Ψ′

3Φ̃1

(
∂− − i(V2 + V ′

3)
)
Φ̃1 + h.c.

− i

2e
2Ψ2+2Ψ′

4Φ̃2

(
∂− − i(V2 + V ′

4)
)
Φ̃2 + h.c.
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− 1
2
(
Γ1 + Γ′1

)
e2Ψ1+2Ψ′

1
(
Γ1 + Γ′

1
)
− 1

2
(
Γ2 + Γ′2

)
e2Ψ1+2Ψ′

2
(
Γ2 + Γ′

2
)

− 1
2
(
Γ̃1 + Γ̃

′
1
)
e2Ψ2+2Ψ′

3
(
Γ̃1 + Γ̃′

1
)
− 1

2
(
Γ̃2 + Γ̃

′
2
)
e2Ψ2+2Ψ′

4
(
Γ̃2 + Γ̃′

2
)

+ Λ1Υ′
1 + Λ2Υ′

2 + Λ3Υ′
3 + Λ4Υ′

4 + h.c.+ χ1E
′
1 + χ2E

′
2 + χ3E

′
3 + χ4E

′
4 + h.c.

− i

2e
2Ψ1Φ3

(
∂− − iV1

)
Φ3 + h.c.− i

2e
2Ψ2Φ̃3

(
∂− − iV2

)
Φ̃3 + h.c.

− 1
2e

2Ψ1Γ3Γ3 −
1
2e

2Ψ1Γ̃3Γ̃3 +
∫

dθ+dθ+
{ 1
8e21

Υ1Υ1 +
1
8e22

Υ2Υ2

}
+ t1

4

∫
dθ+Υ1|θ+=0 +

t2
4

∫
dθ+Υ2|θ+=0 + h.c. (3.33)

The dual fields to the Fermi multiplet are given by F = D̄+χ, F = eψF . The scalar potential,
the analysis of the supersymmetric vacua and the instanton corrections will not be discussed
here; since for the case of the non-Abelian global symmetry they will be discussed in detail
in section 5. The Lagrangian previously obtained constitutes two copies of (3.14), and is
exactly the one obtained by [56] excluding the spectator terms. In their work they considered
mirror symmetry for (0, 2) models coming from a reduction of (2, 2).

4 GLSMs with gauge group U(1)m and non-Abelian global symmetries

In this section we construct the non-Abelian dual models of (0, 2) GLSMs. This can be
implemented when there is a non-Abelian global symmetry present. Thus duality algorithm
is realized gauging this non-Abelian symmetry and adding Lagrange multipliers which take
values in the Lie Algebra of the global group. The only models considered in the present
section are assumed to come from a reduction of a (2, 2) supersymmetric model thus the
number of chiral fields Φi and the number of Fermi fields Γi coincide. They are equally
charged under the U(1)m gauge group and they are assumed to be also equally charged
under the global group. Moreover in order to be as general as possible, we consider models
where the total non-Abelian gauged group is G = G1 × · · · × GS . The Lagrangian of this
model can be written as

Lmaster =
∫

dθ+dθ+
m∑
a=1

1
8e2a

ΥaΥa

−
∫

dθ+dθ+
{ S∑
I=1

i

2Φ
†
Ie

2
∑m

a=1 Q
a
IΨa+2Ψ1I

(
∂− + i

m∑
a=1

QaIVa + iV1I

)
ΦI

}

+
∫

dθ+dθ+
{ S∑
I=1

i

2Φ
†
I

(←−
∂ − − i

m∑
a=1

QaIVa − iV1I
)
e2
∑m

a=1 Q
a
IΨa+2Ψ1IΦI

}

−
∫

dθ+dθ+
{ S∑

I=1

1
2
(
Γ†
I + Γ†

1I
)
e2
∑m

a=1 Q
a
IΨa+2Ψ1I

(
ΓI + Γ1I

)}

+
∫

dθ+
m∑
a=1

ta
4 Υa|θ+=0 +

∫
dθ+dθ+

S∑
I=1

Tr
(
ΛIΥI

)
+ h.c.

+
∫

dθ+dθ+
S∑
I=1

(
χ†
IẼI

)
+ h.c., (4.1)

– 15 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
8

where ΦI = (ΦIn1 , . . . ,ΦInI
), with I ∈ {1, . . . , S}, are vectors of chiral superfields, nI is the

dimension of the representation of the Lie algebra of GI and V1I = V1IaTa, Ψ1I = Ψ1IaTa are
superfields for each factor gauged group GI , and it is assumed an inner product. In these
definitions, T a are the generators of the Lie algebra of GI . In the notation of the Lagrangian
it is understood an inner product on the vector space indexed by the number of factors of
the global group, thus we have to sum over the S factors there. For the implementation of
the duality algorithm we write the partial Lagrangian given by

∆Lmaster =
S∑
I=1

∫
dθ+dθ+

{
− i

2eIΦ
†
Iδ−ΦI +Φ†ΦeIQβI Vβ + V b

1IeIZ
b
I

+Ψa
1I

(
− iΦ†

IT
aδ−ΦI + 2QβI VβZ

a
I

)
+Ψa

1IV
b
1Ia

ab
I

− 1
2
(
Γ†
I + Γa†I T

a)(eI + 2Ψa
1IT a

)(
ΓI + ΓaIT a

)
+
(
V b
1IY+a + iΨb

1I∂−Y
a
−I

)
Tr(T aT b)

−
√
2
2

(
Γa†1IT

aT bF̃
b

I + F̃
a†
I T aT bΓb1I

)}
, (4.2)

which is basically the sum of Lagrangians corresponding to each factor of the global group
GI . In the previous Lagrangian we have the following definitions: aabI := Φ†

I{T a, T b}ΦI ,
eI := 1I + 2∑m

α=1Q
α
IΨα, ZaI := Φ†

IT aΦI .
The variations with respect to V c

1I , Ψc
1I and Γc1I , give the following equations of motion:

δV c
1I
S = 0 : Ψa

1Ia
ca = −Y+IaTr(T aT c)− eIZcI := Kc

I , (4.3)

δΨc
1I
S = 0 : V b

1Ia
bc
I + 2QβI VβZ

c
I − iΦ

†
IT

cδ−ΦI + i∂−Y−aITr(T aT c)

− (Γ†
I + Γa†I T

a)T b(ΓI + ΓcIT c) = 0, (4.4)

δΓc
1I
S = 0 : − 1

2(Γ
†
I + Γa†1IT

a)(eI + 2Ψb
1IT b)T c −

√
2
2 F̃

a†
I T

aT c = 0. (4.5)

Thus the corresponding partial dual Lagrangian becomes

∆Ldual =
S∑
I=1

∫
dθ+dθ+

{
− i

2eIΦ
†
Iδ−ΦI +Φ†

IΦIeIQ
β
I Vβ + F̃

†
IX

−1
I F̃ I

+
√
2
2 (F̃†

IΓI + Γ†
IF̃ I)

(
− iΦ†

Iδ−T
aΦI + 2QβI VβZ

a
I

)
×
(
− Y+IbTr(T bT c)− eIZcI

)
bac

}
, (4.6)

where bac is the inverse of acd, and XI := eI+2T aKa
I = eI−2T aeIZcIbca−2T aY+bTr(T bT c)bca.

Still, it is necessary to remove the original chiral fields Φ from the Lagrangian, step which
will be implemented through the process of gauge fixing. Up to this point we have used
generic well behaved Lie groups Gi, it has not been necessary to specify them.
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4.1 A model with SU(2) global symmetry

Let us consider the case of a model with global symmetry G = SU(2). Before proceeding, some
definitions and conventions related to the SU(2) group are introduced for future reference.
Hence, the following relations hold: Tr(T aT b) = 2δab, {T a, T b} = 2δabId for the generators of
the Lie algebra of the group SU(2); in this way we have the relations aab = 2|Φ|2 and bbc = 1

2|Φ|2 .
Consequently, with eI := 1I + 2∑m

α=1Q
α
IΨα, it is obtained that XI := eIId − T a

eIZ
a
I +2Y a

+
|ΦI |2 .

For the specific model with a U(1) gauge group and an SU(2) global symmetry the
partial Lagrangian is given by

∆Lmaster =
s∑

I=1

∫
dθ+dθ+

{(
− iΦ†

Iδ−T
aΦI +QβV

β
)

×
(
eI |ΦI |2 −

eI
|ΦI |2

ZaZa − Y a
+

Za

|ΦI |2
)

+ F̃
†
X−1F̃ +

√
2
2 (F̃†

IΓI + Γ†
IF̃ I)−

i

2eIΦ
†
Iδ−ΦI

}
. (4.7)

For future convenience the fields Φ =
(
Φ1
Φ2

)
, which are 2 complex fields, can be redefined

in terms of new fields Z0, Z1, Z2, Z3, with the transformation:

Z0 = Φ1Φ1+Φ2Φ2, Z1 = 2ℜ(Φ1Φ2), Z2 = 2ℑ(Φ1Φ2), Z3 = Φ1Φ1−Φ2Φ2. (4.8)

Then, the original chiral fields can be eliminated by gauge fixing the Z’s, these are 4
real constants; and with the inverse transformation, the products of the original fields are
written as sums of these new fields:

Φ1Φ1 =
Z0 + Z3

2 , Φ1Φ2 =
Z1 + iZ2

2 , Φ2Φ2 =
Z0 − Z3

2 . (4.9)

Thus, with the partial gauge fixing: Φ†
IT

b∂−ΦI = ∂−Φ†
IT

bΦI , for b ∈ {0, 1, 2, 3}, the partial
dual Lagrangian has the following form

∆Ldual =
s∑

I=1

∫
dθ+dθ+

{
QβV

β
(
eI − eI

ZaZa
Z0

−
Y a
+Z

a

Z0

)
+F̃

†(
eIId −

T a

Z0
(eIZaI + 2Y a

+)
)−1

F̃

+
√
2
2

(
F̃

†
IΓI + Γ†

IF̃ I

)}
+ t

4

∫
dθ+Υ|

θ
+=0. (4.10)

To write the scalar potential in a more convenient form, the variable can be defined as
ua = 2y

a
+
Z0

+ Za
Z0

. Therefore, the new dual coordinate is denoted as ua. After eliminating
the auxiliary field D, H and v− and v+ we have

Udual = e2

2

(
r + 1 + ZaZa

2Z2
0
− uaZa

2Z2
0

)2
+
ucuc − 2ucZc

Z0
+ 2ZaZa

Z2
0
− 1

1− ucuc

×
[
|E1|2(1− u3) + |E2|2(1 + u3)− E1E2u12 − E2E1u12

]
. (4.11)
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If A = −2yb
+y

b
+

1−ucuc

(
u3 − 1 u12
ū12 −1− u3

)
, then this previous condition is rewritten in the follow-

ing form

Udual = e2

2

(
ℑ(t)− ya+Za

)2
+ (E1 E2)A

(
E1
E2

)
= 0 . (4.12)

This analysis is valid in the IR when the vector fields are integrated.
For future convenience let us write the original scalar potential:

Uoriginal = e2

2

(∑
i

Qi|ϕi|2 − r
)2

+
∑
a

|Ea|2. (4.13)

Notice that the dependence on the fields E is similar in the original and in the dual model.
With the difference that in (4.12) this term is positive definite only in a bounded region of the
moduli space. The vacua manifold W is characterized by the 3 coordinates: ya+, and there
is one equation for the vacua, thus it is a two-dimensional surface. The Y− term does not
appear on the Lagrangian, then y− is not a coordinate in the potential. The eigenvalues of
the matrix A are: λ± = 2ya

+y
a
+

1∓
√
uaua . So, because A is Hermitian, there exists a unitary matrix

P such that A = P †DP , and D is the diagonal matrix with eigenvalues as entries; therefore:

Ẽ
†
AẼ = Ẽ

†
P †DP Ẽ = (P Ẽ)†D(P Ẽ) = λ+|(P Ẽ)+|2 + λ−|(P Ẽ)−|2, (4.14)

which is a quadratic form. Thus, the vacua manifold W is made up of 3 regions depending on
whether ya+ya+ + Zaya+ is greater than, less than, or equal to 0, these regions are: the inside
of a sphere, the outside of it, and the shell of the sphere. Thus, we have three cases:

• Region 1:
yaya + Zaya < 0, ℑ(t) = ya+Z

a and |Ẽ|2 = 0. (4.15)

• Region 2:

yaya + Zaya = 0, ℑ(t) = ya+Z
a and |(P Ẽ)−|2 = 0. (4.16)

• Region 3:

yaya+Zaya> 0, e

2(ℑ(t)−y
a
+Za)2+λ−|(P Ẽ)−|2=−λ+|(P Ẽ)+|2, (4.17)

where:
(P Ẽ)± = ∓u12E1 + (

√
ucuc ± u3)E2√

2
√
ucuc(

√
ucuc ± u3)

. (4.18)

As we have three real variables y1, y2, y3, then the vacua W consist of a two-dimensional
surface. For the regions 1 and 2, the potential is semi-definite positive and the surface
ya+Za = ℑ(t) is a plane inside the sphere, thus this is a disk D, where the modulus r = ℑ(t)
determines the size of the disk (as its relative position inside the sphere). It is important
to notice that if r /∈ [−1, 0] this disk is empty. However, for the case outside the sphere,
one has a surface given by equation (4.17). As a solution of equation (4.12). In figure 1
the geometry of the dual vacua is represented for r = ℑ(t) = −1

2 while in figure 2 the dual
vacua is represented for r = ℑ(t) = 1; in both cases the rest of the parameters are e = 5,
z1 = 0.700629, z2 = 0.509037, z3 = 1

2 , E1 = 1 + 1i, E2 = 3 + 4i and z0 = 1.
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Figure 1. Vacua of the dual model, with
parameter r = ℑ(t) = − 1

2 . Notice that the
change of this parameter changes the topology
of the dual space.

Figure 2. Vacua of the dual model, with
r = ℑ(t) = 1. Notice that the change of
this parameter changes the topology of the
dual space.

It can be seen that for r ∈ [−1, 0] the vacua space has the topology of R2 ∪D, while
for r /∈ [−1, 0] the vacua has simply the topology of R2, although it is geometrically distinct
from R2.

Until this point the superfield E has been arbitrary and it is a function only on Φ (which
is gauge fixed) and other parameters; however, it can be chosen a particular form of it that
comes from the (2, 2) reduction: (

E1
E2

)
= Σ

(
Φ1
Φ2

)
, (4.19)

where Σ = σ +
√
2θ+λ+ − iθ+θ

+
∂+σ, this means for region 1: |σ|2 = 0.

It is remarkable that in this case the equations of motion (4.3), (4.4) and (4.5) can be
exactly solved, without requiring to project out to an Abelian component (or to particularize
to a semichiral vector field) as in the (2, 2) supersymmetric non-Abelian T-duality, as well
for the SU(2) group [67].

4.1.1 Instanton correction

The Lagrangian with the instanton correction is given by

Ldual =
s∑

I=1

∫
dθ+dθ+

{
QβV

β
(
eI − eI

ZaZa
Z0

−
Y a
+Z

a

Z0

)

+ F̃
†(
eIId −

T a

Z0
(eIZaI + 2Y a

+)
)−1

F̃ +
√
2
2

(
F̃

†
IΓI + Γ†

IF̃ I

)}
+
∫

dθ+
{
t

4Υ|θ+=0 + F̃
†
βeα

bYb

}
, (4.20)
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where the last term is the instanton correction and its contribution to the bosonic scalar
potential is: ∫

dθ+F̃
†
βeα

bYb = −
√
2
(
H0β

0 +H1β
1)eαby

b
+ . (4.21)

Then, the new vacua equation is:

e

2

(
ℑ(t)− ya+Za

)2
+
(

Ẽ − eαby
b
+β

)†
A

(
Ẽ − eαby

b
+β

)
= 0 , (4.22)

and similarly, when 0 > ya+y
a
+ + ya+Za the solution gives:

e

2

(
ℑ(t)−ya+Za

)2
=0 and |ε1|2(1−u3)+|ε2|2(1+u3)−ε1ε2u12−ε2ε1u12=0,

(4.23)
where ε = Ẽ − eαby

b
+β. Notice that the effect of the instanton in the effective potential is

just a displacement of the holomorphic function E. Therefore the dual geometry coincides
with the analysis performed without instanton corrections. This is a common point with
observations of the dualities in the (2, 2) GLSMs [67].

5 A model with global symmetry SU(2) × SU(2)

In this section we study a generalization of the model presented in [56] which consist of a
GLSM with gauge symmetry U(1)1 ×U(1)2, two chiral fields Φ1, Φ2 and two Fermi Γ1, Γ2
with charge 1 under the first factor of the gauge symmetry U(1)1; as well as two chiral fields
Φ̃1, Φ̃2 and two Fermi Γ̃1, Γ̃2 with charge 1 under the U(1)2 gauge group. This a deformation
of a (2, 2) model into a (0, 2) model, so the restrictions for the fields E’s are:

E1 =
√
2{Φ1Σ+ Σ̃(α1Φ1 + α2Φ2)},

E2 =
√
2{Φ2Σ+ Σ̃(α′

1Φ1 + α′
2Φ2)},

Ẽ1 =
√
2{Φ̃1Σ̃ + Σ(β1Φ̃1 + β2Φ̃2)},

Ẽ2 =
√
2{Φ̃2Σ̃ + Σ(β′1Φ̃1 + β′2Φ̃2)}, (5.1)

where α, α′, β and β′ are real parameters. In the limit when the α’s and β’s parameters
vanish the reduced (0, 2) model is recovered. The Lagrangian is given in (B.5) and the
scalar potential is given by

Uoriginal = e2

2

(
|ϕ1|2+|ϕ2|2−r1

)2
+e

2

2

(
|ϕ̃1|2+|ϕ̃2|2−r2

)2
+|E1|2+|E2|2+|Ẽ1|2+|Ẽ2|2. (5.2)

The vacuum solution for this model is [56]:

|ϕ1|2 + |ϕ2|2 = r1, |ϕ̃1|2 + |ϕ̃2|2 = r2, (5.3)

i.e., the vacua manifold is a product of P1×P1 with Kähler classes r1 and r2 respectively, and

Ei = Ẽi = 0. (5.4)

– 20 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
8

In the SU(2)× SU(2) generalization both chiral fields and Fermi fields are SU(2) multiplets
related to a different SU(2) sector. Let us write the master Lagrangian

∆Lmaster =
∫

dθ+dθ+
2∑
i=1

1
8e2i

ΥiΥi +
∫

dθ+
2∑
i=1

ti
4 Υi|θ+=0

−
∫

dθ+dθ+ i2Φe
2Ψ1+2Ψ1aTa

(
∂− + iV1 + iV1aTa

)
Φ

−
∫

dθ+dθ+ i2Φ̃e
2Ψ2+2Ψ2aTa

(
∂− + iV1 + iV2aTa

)
Φ̃

+
∫

dθ+dθ+
{
i

2Φ
(←−
∂ − − iV1 − iV1aTa

)
e2Ψ1+2Ψ1aTaΦ

}
+
∫

dθ+dθ+
{
i

2Φ̃
(←−
∂ − − iV2 − iV2aTa

)
e2Ψ2+2Ψ2aTaΦ̃

}
−
∫

dθ+dθ+
{ 1

2
(
Γ + Γ1

)
e2Ψ1+2Ψ1aTa

(
Γ + Γ1

)}
−
∫

dθ+dθ+
{ 1

2
(
Γ̃ + Γ̃2)e2Ψ2+2Ψ2aTa(Γ̃ + Γ̃2)

}

+
2∑
i=1

∫
dθ+dθ+Tr(ΛiΥi) +

2∑
i=1

∫
dθ+dθ+Tr(Λ̃iΥi) + h.c.

+
2∑
i=1

∫
dθ+dθ+χiEi +

2∑
i=1

∫
dθ+dθ+χ̃iEi + h.c. (5.5)

Let us consider the following ansatz for the deformation of the (2,2) model in which
α and β are the parameters of the deformation:(

E1
E2

)
= Σ0

(
Φ1
Φ2

)
+ Σ̃0

(
Φ1
Φ2

)
α1 +Σ

(
Φ1
Φ2

)
α2,

(
Ẽ1
Ẽ2

)
= Σ̃0

(
Φ̃1
Φ̃2

)
+Σ0

(
Φ̃1
Φ̃2

)
β1 + Σ̃

(
Φ̃1
Φ̃2

)
β2. (5.6)

This implies that (E1, E2) and (Ẽ1, Ẽ2) are vectors under SU(2)1 and SU(2)2 respectively. As
well (E1, E2) and (Ẽ1, Ẽ2) are charged with charges 1 under the U(1)1 and U(1)2 respectively.
Then, the dual Lagrangian becomes:

∆Ldual =
∫

dθ+dθ+
{[
V e−V eZ

aZa
Z0
−
V Y a

+Z
a

Z0

]
+F̃

†
(
eId−

T a

Z0

(
eZa+2Y a

+
))−1

F̃

+
[
Ṽ ẽ−Ṽ ẽ Z̃

aZ̃a

Z̃0
−
Ṽ Ỹ a

+Z̃
a

Z̃0

]
+F̃

†
(
ẽId−

T a

Z̃0

(
ẽZ̃a+2Ỹ a

+

))−1

F̃
}

+ t

4

∫
dθ+Υ|

θ
+=0−

∫
dθ+

[(
Σ0+α1Σ̃0

)
F̃

†
Φ+α2F̃

†ΣΦ
]

+ t̃

4

∫
dθ+Υ̃|

θ
+=0−

∫
dθ+

[(
Σ̃0+β1Σ0

)
F̃

†
Φ̃+β2F̃

†Σ̃Φ̃
]
, (5.7)

where the Φ is fixed (in terms of the Z-parameters) with (4.9).
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For the scalar potential we have:

Udual = − e
(
− ya+Za + ℑ(t)

)2
− ẽ

(
− ỹa+Z̃a + ℑ(t̃)

)2

+ 1
2ya+ya+

[
H1H1 +H2H2 +

(
H1H1 −H2H2

)(
Z3 + 2y3+

)
+H2H1

(
2w + Z

12
)
+ h.c.

]
+ 1

2ỹa+ỹa+

[
H̃1H̃1 + H̃2H̃2 +

(
H̃1H̃1 − H̃2H̃2

)(
Z̃3 + 2ỹ3+

)
+ H̃2H̃1

(
2w + Z

12
)
+ h.c.

]
+
√
2
[
(σ0 + α1σ̃0)(H1ϕ1 +H2ϕ2) + α2H1(σ11ϕ1 + σ12ϕ2)

+ α2H2(σ21ϕ1 + σ22ϕ2) + h.c
]

+
√
2
[
(σ̃0 + β1σ0)

(
H̃1ϕ̃1 + H̃2ϕ̃2

)
+ β2H̃1

(
σ̃11ϕ̃1 + σ̃12ϕ̃2

)
+ β2H̃2

(
σ̃21ϕ̃1 + σ̃22ϕ̃2

)
+ h.c

]
. (5.8)

Thus, the bosonic scalar potential depends of 6 coordinates ya+ and ỹa+, and the vacua
Udual = 0 after the minimum condition for H’s gives:

Udual = e

2

(
ℑ(t)− ya+Za

)2
+ (E1 E2)A

(
E1
E2

)

+ e

2

(
ℑ(t)− ya+Z̃a

)2
+ (Ẽ1 Ẽ2)A

Ẽ1

Ẽ2

 = 0, (5.9)

with A = −2yb
+y

b
+

1−ucuc

(
u3 − 1 u12
u12 −1− u3

)
, Ã = −2ỹb

+ỹ
b
+

1−ũcũc

(
ũ3 − 1 ũ12
ũ12 −1− ũ3

)
and

E1 =
[
σ0 + α1σ̃0 + α2(σ11 + σ12)

]
ϕ1, E2 =

[
σ0 + α1σ̃0 + α2(σ21 + σ22)

]
ϕ2 ,

Ẽ1 =
[
σ̃0 + β1σ0 + β2(σ̃11 + σ̃12)

]
ϕ̃1, Ẽ2 =

[
σ̃0 + β1σ0 + β2(σ̃21 + σ̃22)

]
ϕ̃2 , (5.10)

which as in the previous case, each one is positive quadratic form when 0 < 1− uaua and
0 < 1 − ũaũa. If it is this case, the solution is

r = ya+Z
a, r̃ = ỹa+Z̃

a,

σ0 + α1σ̃0 + α2(σ11 + σ12) = 0, σ0 + α1σ̃0 + α2(σ21 + σ22) = 0,
σ̃0 + β1σ0 + β2(σ̃11 + σ̃12) = 0 and σ̃0 + β1σ0 + β2(σ̃21 + σ̃22) = 0, (5.11)

which is simply the Cartesian product W ×W ′ of two copies of the vacua manifold W found
in the exampke of non-Abelian duality in section 4.1. For the instanton correction, it is∫

dθ+
(

F̃
†
βeα

bYb + ˜̃F†
β̃eα̃

bỸb

)
. (5.12)
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Thus the change for the scalar potential is given by: Ẽ → Ẽ − eαby
b
+β. This means that

the last 4 equations in (5.11) are equal to |eαby
b
+β|2.

For the analyzed case, when the potential es positive definite, the geometry of the dual
model is the one of the product of two disks D1 ×D2, which are the building blocks of the
duality in subsection 4.1. Other possible cases involve a not positive definite matrix A or
Ã. Notice that the inclusion of instanton corrections preserves the geometry.

6 Discussion and outlook

In this work we describe T-dualities of 2D (0, 2) Abelian GLSMs. After a brief review on the
basics of (0, 2) GLSMs, we started by constructing Abelian T-duality. This is implemented in
models with U(1) global symmetries; by gauging them. We analyse two cases: models coming
from a (2, 2) supersymmetry reduction and pure (0, 2) models. The fundamental difference is
that in the first case (reduction) the Fermi multiplet is dualized, while in the second case it is
not. We study the simple example of a model with two chiral superfields, the first chiral field
is charged under the U(1) global symmetry and the other remains as an spectator, which
just assists to obtain the global symmetry. A master Lagrangian is obtained by promoting
the global symmetry to be local, and adding Lagrange multiplier fields. The equations of
motion for the gauge fields are obtained from the master Lagrangian leading to the dual
action. The original chiral fields are eliminated by the gauge fixing procedure. We then
compute the contributions to the scalar potential for all the terms in the dual Lagrangian.
From the potential we determine the geometry of the space of supersymmetric vacua. The
geometry of the vacua space for the original model in both cases is P1. The dual model,
under a single U(1) T-duality, has the topology of R+ × R for both cases. Notice that this
is very different to the standard mirror symmetry duality, which will be a T-dualization of
both chiral superfields. This model has a single U(1) global symmetry. One can add an
spectator superfield in order to have two global U(1)s. Mirror symmetry will be obtained by
a T-dualization of both global U(1)s, and our model is obtained by a dualization of a single
U(1). In general models, as there are many global symmetries, there are different dualizations
that can be realized. The instanton contributions to the superpotential are known for (0, 2)
models coming from a (2, 2) reduction [20, 56]. For the case of a pure (0, 2) model, we argue
their structure, but to match them to the original theory is a plan for future work. From
our results it seems that there is a difference of considering (0, 2) models and their dual
counterparts, if they come from a reduction or not. Moreover, in section 3 we carried out
the duality algorithm for a model with two global Abelian symmetries [56]. This is a model
which was later generalized in section 5 to the non-Abelian T-duality case. It consists of
a reduction (0, 2) GLSM with gauge symmetry U(1) × U(1), six chiral superfields and six
Fermi fields. The global Abelian symmetry is given by U(1)4.

Furthermore we construct T-dualities for Abelian GLSMs which non-Abelian global
symmetry. Here we considered only the case coming from the reduction of a (2, 2) model. To
be as general as possible, we obtain the master Lagrangian of a model with U(1)m gauge
symmetry and non-Abelian global group G1 × · · · × GS . Starting from an original (2, 0)
model with chiral, fermi superfields and a gauge multiplet, we obtain the master Lagrangian
by gauging the global symmetries. We find suitable variables to write down the original
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master Lagrangians as a sum over the S factors of the gauged symmetry group; then we find
the equations of motion for the gauge fields. We considered a particular case with just one
global G = SU(2) factor and U(1) gauge symmetry. The dual action is obtained by gauging
the global symmetry SU(2). It is observed that under a suitable redefinition of the chiral
superfields in terms of new variables (fields) Z’s and ua, the dual action can be rewritten in
a simpler form. In these variables also was found the scalar potential (4.12). We also identify
the conditions for which the potential is definite positive. This lead us to consider 3 regions
depending on whether ya+ya+ is less than, equal or greater to Zaya+. We argued that these
regions correspond to the condition with the topology of a open ball, a two-sphere or to the
outside part of the sphere, respectively. Thus the vacua manifold for a positive semidefinite
scalar potential corresponds to the closed disk D. If the potential is not definite positive
the component of the vacua manifold is R2. Furthermore, we discussed non-perturbative
corrections to the superpotential via instantons. We find that if the instanton corrections are
incorporated in the potential Udual the effect is equivalent to shift Ẽ function as Ẽ−eαby

b
+β in

the potential without instanton corrections. This coincides with the observation in the (2, 2)
GLSMs non-Abelian T-duality were the instanton corrections preserve the dual geometry [67].

In section 5 we present the example of GLSM discussed in [56], which comes from a
continuous (0, 2) deformation of a (2, 2) model. This model is a genuine pure (0, 2) GLSM.
We worked out this model by gauging the global non-Abelian symmetry SU(2)× SU(2). We
find the dual Lagrangian, and analyze the dual geometry of the vacua manifold. For the case
of a positive definite potential the manifold is the Cartesian product of the vacua space of the
SU(2) simple model already discussed in section 4, i.e. D1 ×D2. There are also instanton
corrections affecting both sectors by a similar shifting of Ẽ.

Let us comment on the implications of these dualities. For the case of CY target spaces,
which are non compact, these manifolds can posses global symmetries. This is the case
of the resolved conifold GLSM, whose target space has the SU(2) × SU(2) symmetry [69],
which coincides with the global symmetries of the GLSM. We consider that in such cases
non-Abelian T-duality on the NLSM could be connected to non-Abelian T-duality in the
GLSM; as both dualities have the same source; this is something we would like to explore.
However if we consider CY target spaces which are compact, they have a lack of global
symmetries. An Abelian T-dualization on the GLSM provides mirror symmetry in the NLSM.
It could be that there is a kind of T-duality as the one implemented in the work of Strominger-
Yau-Zaslow (SYZ) [74], which connects to non-Abelian T-duality in the GLSM and therefore
to a generalization of mirror symmetry. It would be very interesting to explore this possibility.

In the literature T-duality has been applied to diverse physical systems, in string and field
theories. For instance in field theory the abelian bosonization was found to be understood
in terms of T-duality [75]. Moreover the non-abelian bosonization [76], which encompasses
a richer amount of phenomena was described in terms of the non-Abelian T-duality [77].
AdS/CFT solutions have been explored from the non Abelian T-dualities [35, 78–82]. In our
case it is well known that mirror symmetry is understood as an Abelian T-duality applied to
GLSMs [24, 25]. Thus we believe that the non-Abelian T-duality on GLSMs will correspond
to a generalization of mirror symmetry that we still have to understand further. The idea
of our study to understand how non-Abelian duality operates in (0,2) GLSMs and provide
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some examples. It is still an open problem to find what exactly is this generalized mirror
symmetry and where it will be relevant.

To summarize we have constructed systematically non-Abelian T-duality in (0, 2) gauged
linear sigma models in 2D. In the future we would like to analyze more examples, given
by realistic CY manifolds. We also are interested in analyzing models with a non-zero
superpotential J ̸= 0, which will lead to compact CY. It would also be interesting to explore
the connection of non-Abelian T-dualities in (0, 2) models with mirror symmetry in more
general CY constructions (as Pfaffians and determinantal varieties). And as a future goal
we would like to explore the implications of these GLSMs non-Abelian T-dualities in string
theory, as possible extensions of mirror symmetry.
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A Covariant derivatives and conventions

The covariant superderivatives are given by

D+ = ∂θ+ − iθ+∂+ , D+ = −∂
θ

+ + iθ+∂+ , (A.1)

where ∂+ := ∂
∂y0 + ∂

∂y1 , ∂− := ∂
∂y0 − ∂

∂y1 , ∂θ+ := ∂
∂θ+ and ∂

θ
+ := ∂

∂θ
+ .

The gauge covariant superderivatives D+, D+, D0 and D1 are constructed with the
following constraints:

D0 = D0 , D1 = D1 , (A.2)
D+ = e−ΨD+e

Ψ = (D+ +D+Ψ), (A.3)
D+ = eΨD+e

−Ψ = (D+ −D+Ψ), (A.4)
D0 −D1 = ∂− + iV, (A.5)

where Ψ and V are real functions, that constitute the gauge degrees of freedom.
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The basic gauge invariant field strength Υ is defined as the field strength of V :

Υ = [D+,D0 −D1]V
= D+(iV + ∂−Ψ)
= iD+V + ∂−D+Ψ . (A.6)

B Original Lagrangians

The original Lagrangian for a theory with U(1)m gauge symmetry, n chiral superfields and
ñ Fermi superfields is given by

L =
∫

dθ+dθ+
{ m∑
a=1

1
8e2a

ΥaΥa −
n∑
i=1

i

2Φie
2
∑m

a=1 Q
a
i Ψa

(
∂− + i

m∑
a=1

Qai Va

)
Φi
}

+
∫

dθ+dθ+
{ n∑
i=1

i

2Φi
(←−
∂ − − i

m∑
a=1

Qai Va

)
e2
∑m

a=1 Q
a
i ΨaΦi

}

−
∫

dθ+dθ+
{ ñ∑

j=1

1
2e

2
∑m

a=1 Q̃
a
j ΨaΓjΓj

}
+

m∑
a=1

ta
4

∫
dθ+Υa|θ+=0, (B.1)

where Qai are the charges of the chiral superfields Φi and Q̃aj are the charges of the Fermi
superfields Γai . The fields transformations are given by

δζVa = −∂−(ζa + ζa)/2, δζΨ = −i(ζa − ζa)/2, (B.2)

Φi → ei
∑m

a=1 Q
a
i ζaΦi, Γj → ei

∑m

a=1 Q̃
a
j ζaΓj . (B.3)

The partial Lagrangian for the case of a single chiral superfield is given by:

∆Loriginal =
∫

dθ+dθ+
{ 1
8e2ΥΥ− i

2Φe
2Ψ
(
∂− + iV

)
Φ+ i

2Φ
(←−
∂ − − iV

)
e2ΨΦ

− 1
2e

2ΨΓΓ
}
+ t

4

∫
dθ+Υ|

θ
+=0 + h.c. . (B.4)

The original Lagrangian for a model with SU(2)× SU(2) symmetry is given by [56]

∆Loriginal =
2∑
i=1

∫
dθ+dθ+

{
− i

2Φi
(
e2Ψ∂− −

←−
∂ −e

2Ψ
)
Φi + V e2Ψ|Φi|2 −

1
2e

2ΨΓiΓi
}

+
2∑
i=1

∫
dθ+dθ+

{
− i

2Φ̃i
(
e2Ψ̃∂− −

←−
∂ −e

2Ψ̃
)
Φ̃i + V e2Ψ̃|Φ̃i|2 −

1
2e

2Ψ̃Γ̃iΓ̃i
}
. (B.5)

C Abelian T-duality algorithm in superfield components

In this appendix, we implement the Abelian dualization of a (0, 2) GLSM coming from a
(2, 2) reduction in terms of superfield components. This is as an alternative way to the
superfield language, to carry out the duality. First, we write down the component expansion
of the fields. The gauge superfield is given by

V = v− − 2iθ+λ− − 2iθ+λ− + 2θ+θ+D, Ψ = v+θ
+θ

+
. (C.1)

– 26 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
8

The fields in the model, including the chiral superfield, the Fermi superfield and the superfield
E are written as:

Φ̃ = ϕ+
√
2θ+ψ+ − iθ+θ

+(∂+ + iv+)ϕ,

Γ = γ− −
√
2Gθ+ − iθ+θ+∂+γ− −

√
2Eθ+,

E(Φ) = E(ϕ) +
√
2θ+∂E

∂ϕ
ψ+ − iθ+θ

+
∂+E. (C.2)

The field component expansion for the Lagrangian multipliers which have been used in the
bulk of the article are:

χ = x+ ξθ+ + ρθ
+ + zθ+θ

+
, (C.3)

Λ = ω + kθ+ + lθ
+ + εθ+θ

+
. (C.4)

The new dual fields are given by

Y± = y± +
√
2(θ+υ+ + υθ

+)− iθ+θ+∂+y∓, (C.5)

F = η− −
√
2θ+f − iθ+θ+∂+η−. (C.6)

Then the appropriate Lagrangian of a single chiral field and a Fermi one with Abelian
global symmetry in component fields is written with δ± := ∂± −

←−
∂ ± and I± = δ± + 2iv± as:

∆Lcomponents = −1
2 ϕ̄I−I+ϕ+ i

2 γ̄−I+γ− + iψ̄+I−ψ+ + 2Dϕ̄ϕ+ 2
√
2i(λ̄−ψ̄−ϕ− ϕ̄ψ+λ−)

+ ḠG− ĒE − γ̄−
∂E

∂ϕ
ψ+ − ψ̄+

∂Ē

∂ϕ̄
γ− . (C.7)

To realize the T duality algorithm, gauging the global symmetry we add the fields v±,
λ−, D and E (components of the gauged V , Ψ and Γ) as well as the Lagrange multipliers.
The original fields will be denoted with a subindex 0, the gauged ones with a subindex 1 and
the sum of both without any subindex. Thus, for example: a := a0 + a1, etc. thus:

∆Lmaster = −1
2 ϕ̄I−I+ϕ+ i

2 γ̄−I+γ− + iψ̄+I−ψ+ + 2(D0 +D1)ϕ̄ϕ (C.8)

+ 2
√
2i((λ̄−0 + λ̄−1)ψ̄−ϕ− ϕ̄ψ+(λ−0 + λ−1))− 2i(l − l̄)(D1)

+ ḠG− (Ē0 + Ē1)(E0 + E1)− γ̄−
∂(E0 + E1)

∂ϕ
ψ+ − ψ̄+

∂(Ē0 + Ē1)
∂ϕ̄

γ−

+ i(∂+Ē1x− x̄∂+E1) +
√
2
(
ξ
∂E1
∂ϕ

ψ+ + ψ̄+
∂Ē1

∂ϕ̄
ξ

)
+ z̄E1 + Ē1z

+ 2i(ω∂+λ−1 − ∂+λ̄−1ω̄)− 2(ελ−1 + λ̄−1ε̄)− (l + l̄)(∂−v+1 − ∂+v−1) .

Taking variations with respect to v±,1, λ1, D1 and E1 one obtains the corresponding equations
of motion:

- For δD1L:
i(l − l) = |ϕ|2. (C.9)
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- For δλ1L:
ε+ i∂+ω = −

√
2ϕψ+. (C.10)

- For δv−1L:
2v+|ϕ|2 = −2ψ+ψ+ − i(ϕδ+ϕ)− ∂+(l + l). (C.11)

- For δv+1L:
2v−|ϕ|2 = −γ−γ− − i(ϕδ−ϕ) + ∂−(l + l). (C.12)

- For δE1L:
z̄ + i∂+x̄ = Ē . (C.13)

- For δ∂ϕE1L: √
2ξ = γ̄−. (C.14)

New variables can be defined in the form:

y± := il∓ = i(l ∓ l),
√
2f := z̄ + i∂+x̄,

√
2υ = ∂+ω − iε, η̄− = ξ̄ . (C.15)

Thus, using eqs. (C.9)–(C.14) in the Lagrangian (C.8) it results the dual Lagrangian:

Ldual = −
√
2
(
f̄ Ē0 + E0f + ξ

∂E0
∂ϕ

ψ+ + ψ̄+
∂Ē0

∂ϕ̄
ξ̄ + 2iλ̄−0ῡ − 2iυλ−0

)
(C.16)

+ iy− (∂+v−0 − ∂−v+0) + 2y+D0 −
1
2 ϕ̄δ−δ+ϕ+ i

2 γ̄−δ+γ− + iψ̄+δ−ψ+ + ḠG

− 1
2y+

(
−iϕ̄δ+ϕ− 2ψ̄+ψ+ + i∂+y−

) (
−iϕ̄δ+ϕ− γ̄−γ− − i∂−y−

)
+ 2f̄f.

It is easy to check that this dual Lagrangian coincides with the component field expansion
of the dual Lagrangian (3.14). A similar procedure could be carried over in the case of
models with non-Abelian T-duality.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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