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1 Introduction

It is well-known that in the high-energy limit, perturbative scattering amplitudes and form
factors in gauge theories admit certain factorization properties at the leading power of m/E [1–
7], where m denotes the typical mass scale of internal and external particles, and E denotes
the typical energy scale of the hard scattering. In quantum chromodynamics (QCD), such a
factorization formula up to the two-loop order has been presented in [2]. However, certain
contributions from bubble insertions of heavy-quark loops were not incorporated (hereafter
we will refer to these contributions as the “nh-contributions”). These contributions were
considered in quantum electrodynamics (QED) [3], where it was shown that a soft function
is needed to account for the soft photon exchanges with a heavy-fermion bubble insertion.
Similar contributions to the factorization of differential cross sections have been investigated
in e+e− → hardons [8, 9]. In the context of heavy-to-light form factors, a similar factorization
formula has been presented in [6]. However, as far as we know, there has been no generic
treatment of such contributions in non-Abelian gauge theories with an arbitrary number of
massive flavors (whose masses can be different). The purpose of this note is to bridge this
gap and provide a generic factorization formula that applies to any scattering amplitude up
to two loops in the high-energy limit. This can be used to obtain approximate results for
complicated two-loop massive amplitudes from the corresponding much simpler massless ones.
With suitable renormalization group equations (RGEs), the factorization formula can also be
used to resum the large logarithms lnn(m/E) to all orders in the coupling constant.

2 The factorization formula

We consider the perturbative scattering amplitude of an arbitrary number of massless or
massive partons, with possible colorless particles in addition. In the highly boosted limit
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where the energy scale of the hard-scattering process is much larger than the masses of
external and internal partons, the scattering amplitude can be factorized as1

∣∣∣Mmassive({p}, {m})
〉
=
∏

i

(
Z(m|0)

[i] ({m})
)1/2

S({p}, {m})
∣∣∣Mmassless({p})

〉
, (2.1)

where {p} denotes the set of all external momenta; {m} denotes the set of all parton masses
involved in this scattering process; and i runs over all external partons. Note that we have
suppressed the dependence of the above functions on the dimensional regulator ϵ and the
renormalization scale µ. The Z-factors can be expanded in αs as

Z(m|0)
[i] ({m}) = 1 +

∞∑
n=1

(
αs

4π

)n

Z(n)
[i] . (2.2)

The coefficients Z(1)
[i] and Z(2)

[i] have been given in [2], up to terms proportional to n1
hn0

l ,
where nh is the number of heavy flavors, and nl is the number of massless flavors. The
soft function S also contains n1

hn0
l contributions starting from the second order in αs. Its

presence has been proposed in [3] for QED processes, but has not been extended to more
general non-Abelian gauge theories. The purpose of this note is to provide these missing
ingredients in the factorization formula up to order α2

s.
For illustration, we will take the theory as QCD with all fermions (i.e., quarks) in the

fundamental representation, although our results can be easily adapted to any other gauge
theories with fermions in any representations. We assume that there are several heavy
flavors in the theory, labelled by the index h, with the mass mh. Up to the second order,
the soft function is given by

S({p}, {m}) = 1 +
(

αs

4π

)2∑
i,j
i ̸=j

(−Ti · Tj)
∑

h

S(2)(sij , m2
h) +O(α3

s) , (2.3)

where i and j run over all external legs; h runs over all heavy flavors; and

S(2)(sij , m2
h) = TF

(
µ2

m2
h

)2ϵ (
− 4
3ϵ2 + 20

9ϵ
− 112

27 − 4ζ2
3

)
ln −sij

m2
h

. (2.4)

The boldface Ti is the color generator for the external parton i which is an operator in the color
space [10, 11]. For a final-state quark or an initial-state anti-quark, (T a

i )αβ = ta
αβ ; for a final-

state anti-quark or an initial-state quark, (T a
i )αβ = −ta

βα; and for a gluon, (T a
i )bc = −ifabc.

The dot product is Ti · Tj ≡ T a
i T a

j with repeated indices summed over.
The Z-factor for massless quarks starts at α2

s, and is given by

Z(2)
[q] =

∑
h

CF TF

(
µ2

m2
h

)2ϵ [ 2
ϵ3 + 8

9ϵ2 − 1
ϵ

(65
27 + 2ζ2

3

)
+ 875

54 + 16ζ2
3 − 20ζ3

3

]
. (2.5)

1If some of the parton masses are of the same order as the hard scale, the factorization formula needs to
be slightly modified. This contribution should be considered as part of the hard-scattering amplitude. See,
e.g., [6] in the context of heavy-to-light form factors. We don’t consider this case in this work.
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The one-loop Z-factor for gluons has been given in [2], and reads

Z(1)
[g] =

∑
h

TF

(
µ2

m2
h

)ϵ (
− 4
3ϵ

− 2ζ2
3 ϵ + 4ζ3

9 ϵ2
)

. (2.6)

The two-loop coefficient can be split into three parts:

Z(2)
[g] =

(
Z(1)

[g]

)2
+ 4

3ϵ
(nl + nh)TFZ(1)

[g] +
∑

h

Z(2),h
[g] , (2.7)

where

Z(2),h
[g] = CATF

(
µ2

m2
h

)2ϵ [ 2
ϵ3 + 34

9ϵ2 − 2
ϵ

(
22
9 ln µ2

m2
h

+ 64
27 − ζ2

)

+22
9 ln2 µ2

m2
h

+ 358
27 + 4ζ2

3 − 4ζ3

]

− CF TF

(
µ2

m2
h

)2ϵ (2
ϵ
+ 15

)
. (2.8)

Finally, we discuss the Z-factor for a heavy flavor Q. The one-loop coefficient has again been
given in [2]. The two-loop coefficient can be split into three parts:

Z(2)
[Q] = Z(2),l

[Q] + Z(2),Q
[Q] +

∑
h ̸=Q

Z(2),h
[Q] , (2.9)

where Z(2),l
[Q] contains contributions from gluon loops and light-quark loops; Z(2),Q

[Q] denotes
the contribution from a loop insertion of Q itself; and Z(2),h

[Q] denotes the contribution from
a loop insertion of heavy flavors other than Q. We do not give the explicit expressions for
Z(1)

[Q] and Z(2),l
[Q] here since they are nh-independent, and refer the readers to [2]. The new

ingredients Z(2),Q
[Q] and Z(2),h

[Q] are given by

Z(2),Q
[Q] =CF TF

[
2
ϵ3 + 1

ϵ2

(
4
3 ln µ2

m2
Q

+ 8
9

)
+ 1

ϵ

(
4
9 ln µ2

m2
Q

− 65
27 − 2ζ2

)

−4
9 ln3 µ2

m2
Q

− 2
9 ln2 µ2

m2
Q

−
(274

27 + 16ζ2
3

)
ln µ2

m2
Q

+ 5107
162 − 70ζ2

9 − 4ζ3
9

]
, (2.10)

Z(2),h
[Q] =Z(2),Q

[Q] + CF TF

{
− 8
3ϵ2 H(0, x) + 1

ϵ

[
64
3 H(0, 0, x)−

(
8
9 + 16

3 ln µ2

m2
Q

)
H(0, x)

]

+ 332x2

9 − 332
9 − 128H(0, 0, 0, x) +

(
128
3 ln µ2

m2
Q

+ 48x4 − 128
9

)
H(0, 0, x)

+
(
−16

3 ln2 µ2

m2
Q

− 16
9 ln µ2

m2
Q

+ 224x2

9 − 8ζ2
3 + 16

27

)
H(0, x)

+
(
24x4 − 220x3

3 + 36x + 8
9

)
ζ2 −

16ζ3
3 + 32

3 H(0,−1, 0, x)− 32
3 H(0, 1, 0, x)
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+
(
24x4 − 220x3

9 + 12x − 104
9

)
H(1, 0, x)

−
(
24x4 + 220x3

9 − 12x − 104
9

)
H(−1, 0, x) , (2.11)

where x = mh/mQ and H denotes the harmonic polylogarithms (HPLs) [12]. It is easy to
check that Z(2),h

[Q] = Z(2),Q
[Q] when x = 1, i.e., mh = mQ.

3 Derivation and validation

In this section, we show how to derive the nh-contributions to the Z-factors and the soft
function, and demonstrate the validity of our factorization formula in the context of various
form factors and the scattering amplitudes for tt̄ production.

3.1 The derivation

In the highly-boosted limit, the scattering amplitudes can be described in the soft-collinear
effective theory [13–15]. For each external leg i, we introduce a light-like vector nµ

i with
space-components along the same direction of pi, and a light-like vector n̄µ

i opposite to
pi. They satisfy

n2
i = n̄2

i = 0 , ni · n̄i = 2 . (3.1)

We define a small expansion parameter λ ∼ m/
√
|s|, where m is a representative mass scale,

and s is a representative of sij . The relevant momentum modes are

hard : kµ ∼
√
|s| ,

ni-collinear : (ni · k, n̄i · k, k⊥) ∼
√
|s| (λ2, 1, λ) ,

soft : kµ ∼
√
|s|λ .

The contributions from the hard region correspond to the massless amplitudes Mmassless,
while the collinear and soft regions produce the Z-factors and the soft function S in eq. (2.1).

We are concerned with the two-loop contributions to Z and S with a massive bubble
insertion, which involve the double-collinear integrals and the double-soft integrals, depicted in
figure 1. Note that without the massive bubble, the relevant integrals are well-defined, which
give rise to the non-nh terms in the Z-factors (the soft integrals without the massive bubble
are scaleless and vanish). However, with the massive bubble insertion, these integrals become
rapidity-divergent (similar as the Sukadov problem with a massive vector boson [16, 17]),
and one needs to introduce an additional regulator. To this end we employ the analytic
regulator of [16, 18–20]. With this regulator, the double-soft contributions vanish, and we
only need to consider the double-collinear integrals.

We will need to perform the calculations for external massless-quarks, external massive-
quarks and external gluons. For convenience, we work with the two-point quark-anti-quark
vector form factors and the gluon-gluon scalar form factor with outgoing external momenta p1
and p2. In the center-of-mass frame, the relevant light-like directions are nµ = nµ

1 = (1, 0, 0, 1)

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
2

p1 , m1

p2 , m2

mh

p1 + p2

Figure 1. Two-loop Feynman diagram with a massive bubble for the qq̄-vector vertex.

and n̄µ = nµ
2 = (1, 0, 0,−1). In this frame, p1 and p2 have no perpendicular components,

and can be written as

pµ
1 = p+

1
n̄µ

2 + p−1
nµ

2 , pµ
2 = p+

2
n̄µ

2 + p−2
nµ

2 , (3.2)

where p+
i ≡ n · pi and p−i ≡ n̄ · pi. In the counting of (3.2), we have p+

1 ∼ p−2 ∼ λ2√|s| and
p−1 ∼ p+

2 ∼
√
|s|. By convention, we refer to the n-collinear modes as “collinear” and the n̄-

collinear modes as “anti-collinear”, respectively. We set p2
1 = m2

1, p2
2 = m2

2 and (p1 + p2)2 = s.
In the qq̄ case, m1 and m2 can be zero or non-zero, while they are always zero in the gg

case. The mass of the internal quark is taken to be mh.
We first discuss the qq̄ case with m1 = m2 = mQ. Here, the mQ = mh case has been

considered in ref. [21], and we will consider the more general case where mh and mQ can
be different. The qq̄-vector vertex can be decomposed as

Γµ(p1, p2) = F1
(
s, m2

Q, m2
h

)
γµ + 1

2mQ
F2
(
s, m2

Q, m2
h

)
i σµν(p1 + p2)ν , (3.3)

where σµν = i[γµ, γν ]/2. The form factors Fi can be extracted by applying a set of projectors
given in [21], and be expressed as linear combinations of scalar Feynman integrals. These
Feynman integrals can be defined in the following generic form

I{ai} ≡ µ4ϵ
∫

dk1
(2π)d

dk2
(2π)d

1
[k2

1 − m2
h]a1

1
[k2

2 − m2
h]a2

1
[(k1 + k2)2]a3

1
[(k1 + k2 − p1)2 − m2

1]a4

×
(
−µ̃2)ν

[(k1 + k2 + p2)2 − m2
2]a5+ν

1
[(k1 − p1)2]a6

1
[(k1 + p2)2]a7

, (3.4)

where ν is the rapidity regulator and µ̃ is the corresponding scale introduced to balance
the mass dimension. In our calculation, the last two propagators are actually irreducible
scalar products (ISPs) with a6, a7 ≤ 0. We need to calculate the above integrals in the
double-collinear (cc) and double-anti-collinear (c̄c̄) regions (recall that the soft region integrals
vanish). Note that F2 = 0 at the leading power (LP) in λ, so we only need to calculate the
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form factor F1. The contributions from the cc and c̄c̄ regions are given by

F
(2),bare
1,cc

(
s, m2

Q, m2
h

)
= CF TF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

−s

)( 4
3ϵ2 − 20

9ϵ
+ 112

27 + 4ζ2
3

)

+ CF TF

(
µ2

m2
Q

)2ϵ {
− 4
3ϵ3 − 1

ϵ2

[4
3 − 8

3H(0, x)
]
− 1

ϵ

[8ζ2
3 + 56

9 + 16
3 H(0, 0, x)

]

−4ζ(3)
9 −

(
20x3

3 − 36x + 80
9

)
ζ2 +

40x2

9 − 2504
81 +

(
40x2

9 + 8ζ2
3 − 224

27

)
H(0, x)

−
(
20x3

9 − 12x − 88
9

)
H(−1, 0, x)−

(
20x3

9 − 12x + 88
9

)
H(1, 0, x)− 80

9 H(0, 0, x)

+16
3 H(0,−1, 0, x)− 16

3 H(0, 1, 0, x)
}

, (3.5)

F
(2),bare
1,c̄c̄

(
s, m2

Q, m2
h

)
= CF TF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

m2
h

)(
− 4
3ϵ2 + 20

9ϵ
− 112

27 − 4ζ2
3

)

+ CF TF

(
µ2

m2
Q

)2ϵ { 2
3ϵ3 − 1

ϵ2

[28
9 + 16

3 H(0, x)
]
− 1

ϵ

[2ζ2
3 + 212

27 − 64
9 H(0, x)

−80
3 H(0, 0, x)+

]
− 40ζ3

9 −
(
20x3

3 − 36x + 32
3

)
ζ2 +

40x2

9 − 1652
81

+
(
40x2

9 − 16ζ2
3 − 16

9

)
H(0, x)− 112

3 H(0, 0, x)−
(
20x3

9 − 12x − 88
9

)
H(−1, 0, x)

−
(
20x3

9 − 12x + 88
9

)
H(1, 0, x) + 16

3 H(0,−1, 0, x)− 128H(0, 0, 0, x)

−16
3 H(0, 1, 0, x)

}
. (3.6)

Note that the exchange symmetry between the cc and c̄c̄ regions are broken since we have
only introduced the analytic regulator on the propagator associated with m2. It is possible
to obtain a more symmetric result by introducing two regulators ν1 and ν2 for the two
propagators associated with m1 and m2. This makes the calculations and the intermediate
results more complicated, with the same final results for the Z-factors and the soft function.
Hence, we choose the simpler regularization scheme here and in the following.

The above bare cc and c̄c̄ contributions contain rapidity divergences in the form 1/ν, as
well as ultraviolet (UV) and infrared (IR) divergences as poles in ϵ. When adding together,
the 1/ν singularities cancel, along with logarithms of µ̃. However, there remains a term
proportional to ln(−s/m2

h). This give rise to the two-loop soft function S(2)(s, m2
h) defined

in eq. (2.4). Note that a similar soft function has been given in ref. [3] in QED, with a slight
difference: the overall factor ln(−s/m2

h) in (2.4) is replaced by ln(−s/m2
Q) in eq. (19) of

ref. [3] (converted to our notation). We will see that our convention (2.4) is more convenient
as it remains the same for massless external legs.

After removing the rapidity divergent parts, we can perform the UV renormalization
and extract Z(2),h

[Q] . The UV-renormalized form factor is given by

F1(s, m2
Q, m2

h) = ZQ

[
F bare

1 (s, m2
Q, m2

h)
∣∣∣
αbare

s →Zαs αs

]
, (3.7)
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where Zαs is the MS renormalization constant for the strong coupling αs, and ZQ is the
on-shell field renormalization constant for the massive quark. Neither the one-loop Z

(1)
Q

nor the one-loop F
(1),bare
1 depends on massive quark loops. Hence, for the nh-contributions,

we only need the nh-dependent parts of Z
(2)
Q and Z

(1)
αs . We collect these renormalization

constants in appendix A. Finally, we have

Z(2),h
[Q] = F

(2),bare
1,cc

(
s, m2

Q, m2
h

)
+ F

(2),bare
1,c̄c̄

(
s, m2

Q, m2
h

)
+ Z(1),h

αs

[
F

(1),bare
1,c

(
s, m2

Q

)
+ F

(1),bare
1,c̄

(
s, m2

Q

)]
+ Z

(2)
Q − CFS(2)(s, m2

h) , (3.8)

where the one-loop collinear and anti-collinear contributions F
(1),bare
1,c/c̄ can be found in ref. [21].

Putting everything together, we arrive at the expression in eq. (2.11).
We now move to the case where both external legs are massless, i.e., m1 = m2 = 0. The

contributions from cc and c̄c̄ regions are given by

F
(2),bare
1,cc

(
s, 0, m2

h

)
= CF TF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

−s

)( 4
3ϵ2 − 20

9ϵ
+ 112

27 + 4ζ2
3

)

+ CF TF

(
µ2

m2
h

)2ϵ [ 4
3ϵ2 − 1

ϵ

(8
9 + 4ζ2

3

)
+ 88

27 + 32ζ2
9 − 4ζ3

3

]
, (3.9)

F
(2),bare
1,c̄c̄

(
s, 0, m2

h

)
= CF TF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

m2
h

)(
− 4
3ϵ2 + 20

9ϵ
− 112

27 − 4ζ2
3

)

+ CF TF

(
µ2

m2
h

)2ϵ [ 2
ϵ3 − 4

9ϵ2 − 1
ϵ

(68
27 − 2ζ2

3

)
+ 124

9 + 16ζ2
9 − 16ζ3

3

]
. (3.10)

Note that the rapidity divergent parts of eqs. (3.9) and (3.10) are the same as those of
eqs. (3.5) and (3.6), respectively. Hence, we may extract the same two-loop soft function
S(2)(s, m2

h) here. After that, we can obtain the Z-factor for massless quarks as

Z(2),h
[q] = F

(2),bare
1,cc

(
s, 0, m2

h

)
+ F

(2),bare
1,c̄c̄

(
s, 0, m2

h

)
+ Z(2)

q − CFS(2)(s, m2
h) , (3.11)

where Z
(2)
q is the two-loop on-shell wave function renormalization constant for the massless

quark q. Here we have used the fact that the one-loop collinear and anti-collinear contributions
F

(1),bare
1,c/c̄ (s, 0, m2

h) are scaleless and vanish. The above expression leads to eq. (2.5).
The cases where m1 ̸= m2 can be similarly dealt with. In fact, it is easy to see that the

double-collinear integrals are independent of m2. In this region, the 5th and 7th propagators
in eq. (3.4) need to be expanded as

−(k1 + k2 + p2)2 + m2
2 → −n̄ · (k1 + k2)n · p2 , (k1 + p2)2 → n̄ · k1 n · p2 . (3.12)

The integrals therefore do not involve p2
2 = m2

2. Therefore, the double-collinear contributions
simply leads to F

(2),bare
1,cc (s, m2

1, m2
h). Its expression can be taken from eq. (3.5) or (3.9),

depending on whether m1 is zero or not. Similarly, the double-anti-collinear integrals are
independent of m2

1 and lead to F
(2),bare
1,c̄c̄ (s, m2

2, m2
h). It is then clear that the same soft

function S(2)(s, m2
h) is produced after cancelling the rapidity divergences. The remaining

terms coincide with the sum (Z(2),h
[1] + Z(2),h

[2] )/2.
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Figure 2. Two-loop Feynman diagrams involving a massive quark loop for the gluon form factor.

Finally, we apply the same methodology to the gluon case and derive Z(2),h
[g] . We start

from the gluon scalar form factor generated from the effective Lagrangian

Lint = −λ

4HGµν
a Ga,µν . (3.13)

From the effective H-g(p1)-g(p2) vertex Γµν
gg , we project out the scalar form factor as

Fgg = p1 · p2 gµν − p1,µp2,ν − p1,νp2,µ

2(1− ϵ) Γµν
gg . (3.14)

We use QGRAF [22] to generate the relevant two-loop Feynman diagrams involving a massive
quark loop, shown in figure 2. We then use FORM [23] to manipulate the resulting expressions.
In the gluon cases, there are quark-box and quark-triangle insertions besides the bubble
insertions. Using the method of regions, we find that, in the high-energy limit at LP, the
diagrams with a quark-box insertion do not contribute in the cc and c̄c̄ regions. To determine
Z(2),h

[g] , we therefore only need to consider the contributions from the quark-triangle and
bubble insertions. The scalar integrals appearing in these diagrams can be expressed in
the following generic form

IA
{ai} ≡ µ4ϵ

∫
dk1
(2π)d

dk2
(2π)d

1
[k2

1 − m2
h]a1

1
[k2

2 − m2
h]a2

1
[(k1 + k2)2]a3

1
[(k1 + k2 − p1)2]a4

×
(
−µ̃2)ν

[(k1 + k2 + p2)2]a5+ν

1
[(k1 − p1)2 − m2

h]a6

1
[(k1 + p2)2 − m2

h]a7
. (3.15)

Note that only the first diagram in figure 2 contains rapidity divergences. Hence, we may set
ν → 0 from the beginning for the other diagrams. Only the cc and c̄c̄ regions are relevant
for Z(2),h

[g] , and their contributions are given by

F (2),bare
gg,cc

(
s, m2

h

)
= CATF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

−s

)( 4
3ϵ2 − 20

9ϵ
+ 112

27 + 4ζ2
3

)

+ CATF

(
µ2

m2
h

)2ϵ [ 5
6ϵ2 − 11

36ϵ
+ 179

216 + 5ζ2
6

]
, (3.16)
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F
(2),bare
gg,c̄c̄

(
s, m2

h

)
= CATF

(
µ2

m2
h

)2ϵ(1
ν
+ ln µ̃2

m2
h

)(
− 4
3ϵ2 + 20

9ϵ
− 112

27 − 4ζ2
3

)

+ CATF

(
µ2

m2
h

)2ϵ [ 2
ϵ3 − 17

18ϵ2 − 1
ϵ

(209
108 − 2ζ2

)
+ 817

72 − 17ζ2
18 − 4ζ3

]
. (3.17)

Note that the rapidity divergent parts of eqs. (3.16) and (3.17) are the same as those of
eqs. (3.5) and (3.6), respectively, with the color factor CF → CA. We may then extract
the same two-loop soft function S(2)(s, m2

h) here. After that, we extract the Z-factor for
gluon according to

Z(2),h
[g] = F (2),bare

gg,cc

(
s, m2

h

)
+ F

(2),bare
gg,c̄c̄

(
s, m2

h

)
+ Z(2)

g − CAS(2)(s, m2
h) , (3.18)

where Z
(2)
g is the two-loop on-shell renormalization constant for gluon fields. The above

expression leads to eq. (2.8).

3.2 The quark form factors

We now turn to the validation of our factorization formula (2.1) in the context of quark form
factors. We will only be concerned with the nh-dependent part, since it is the new result of
this work. On the right-hand side of (2.1), we need the two-loop massless quark form factor
with a massless quark-bubble insertion. This can be extracted from [24, 25], and is given by

F
(2),l
1,qq̄ (s) = CF TF

[
− 2

ϵ3 + 1
ϵ2

(4Ls

3 − 8
9

)
+ 1

ϵ

(65
27 − 20Ls

9 + 2ζ2

)
− 4L3

s

9 + 38L2
s

9 − 418Ls

27 − 8ζ2Ls

3 + 4085
162 + 46ζ2

9 + 4ζ3
9

]
, (3.19)

where Ls = ln(−s/µ2).
The massive-massive quark form factor with a massive quark-bubble insertion in the

special case m1 = m2 = mh can be extracted from [26–28], where m1 and m2 denote the
masses of two external quarks, and mh is the mass of the internal bubble. The result reads

F
(2),h
1,QQ̄

(s, m2
h, m2

h, m2
h) =CF TF

[ 8
3ϵ

(
Lm − L2

m − LmLs

)
− 28L3

m

9 − 4L3
s

9 − 8L2
mLs

3

+ 38L2
m

9 + 38L2
s

9 + 40LmLs

9 − 20ζ2Lm

3 − 4ζ2Ls

− 386Lm

27 − 530Ls

27 + 1532
27 − 8ζ2

3

]
, (3.20)

where Lm = ln(µ2/m2
h). It is straightforward to check that it satisfies the factorization formula:

F
(2),h
1,QQ̄

(s, m2
h, m2

h, m2
h) = F

(2),l
1,qq̄ (s) + CFS(2)(s, m2

h) + Z(2),h
[Q] (m2

h, m2
h) . (3.21)

We now turn to the massive-massless quark form factor with a massive quark-bubble
insertion, in the special case m1 = mh. This can be extracted from [29–32], and the
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expression is

F
(2),h
Qq̄ (s, m2

h, m2
h) =CF TF

[4Lm

3ϵ2 + 1
ϵ

(
10Lm

3 − 2L2
m

3 − 8LmLs

3 + 2ζ2
3

)

− 14L3
m

9 − 4L3
s

9 − 8L2
mLs

3 + 47L2
m

9 + 38L2
s

9 + 40LmLs

9

− 14ζ2Lm

3 − 4ζ2Ls −
314Lm

27 − 530Ls

27 + 7951
162 + 35ζ2

9 − 28ζ3
9

]
. (3.22)

The corresponding factorization formula can be verified to hold:

F
(2),h
Qq̄ (s, m2

h, m2
h) = F

(2),l
qq̄ (s) + CFS(2)(s, m2

h) +
1
2Z

(2),h
[Q] (m2

h, m2
h) +

1
2Z

(2),h
[q] (m2

h) . (3.23)

Finally, we consider the two-loop massless-massless quark form factor with a massive-
quark bubble insertion. This is not available in the literature, so we have to calculate
that ourselves. There is only one diagram and it is straightforward to write down the loop
integrands. For the loop integrals, we refer to the next sub-section, since they will also appear
in the gluon-gluon form factors. The unrenormalized two-loop form factor is then given by

F
(2),h,bare
qq̄ = CF TF

[ 8
3ϵ3 + 1

ϵ2

(8Lm

3 − 8Ls

3 + 4
)

+ 1
ϵ

(
−8LmLs

3 + 4L2
m

3 + 4Lm + 4L2
s

3 − 4Ls +
29
3

)

− 8
3L2

mLs +
40LmLs

9 + 56L2
m

9 − 8ζ2Lm

3 − 296Lm

27 − 8L3
s

9

+ 56L2
s

9 − 8ζ2Ls

3 − 818Ls

27 − 112ζ3
9 + 76ζ2

9 + 10301
162

]
. (3.24)

After renormalization, we get

F
(2),h
qq̄ (s, m2

h) =CF TF

[8Lm

3ϵ2 + 1
ϵ

(
−8LmLs

3 + 4L2
m

3 + 4Lm + 4ζ2
3

)

− 56ζ3
9 − 8

3L2
mLs +

40LmLs

9 + 56L2
m

9 − 8ζ2Lm

3

− 242Lm

27 − 4L3
s

9 + 38L2
s

9 − 4ζ2Ls −
530Ls

27 + 94ζ2
9 + 3355

81

]
. (3.25)

Again, we find that it satisfies the factorization formula:

F
(2),h
qq̄ (s, m2

h) = F
(2),l
qq̄ (s) + CFS(2)(s, m2

h) + Z(2),h
[q] (m2

h) . (3.26)

3.3 The gluon form factor

For the gluon form factor, we again consider the diagrams in figure 2. We now need to
calculate the integrals without region expansion. The integrals can be categorized into two
different families. The first family (family A) covers all planar diagrams, and is defined in
eq. (3.15). These integrals can be expressed in terms of multiple polylogarithms (MPLs),

– 10 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
2

and can be found in [33–36]. The second family (family B) corresponds to the non-planar
diagram (the last one in the second row of figure 2), and is defined as

IB
{ai} ≡µ4ϵ

∫
dk1
(2π)d

dk2
(2π)d

1
[k2

1]a1

1
[(k1 − p1 − p2)2]a2

1
[k2

2 − m2
h]a3

1
[(k2 + p1)2 − m2

h]a4

× 1
[(k1 + k2)2 − m2

h]a5

1
[(k1 + k2 − p2)2 − m2

h]a6

1
[(k2 + p2)2]a7

. (3.27)

This family involves elliptic integrals. In the high-energy limit |s| ≫ m2
h, the asymptotic

expressions for integrals in family B can be found in [37]. For the UV renormalization, we
need Zg for the gluon field, Zαs for the strong coupling, as well as Zλ for the effective operator.
These renormalization constants are collected in appendix A. After renormalization, the
two-loop gluon form factor with a massive quark loop is given by

F (2),h
gg (s, m2

h) =
1

Nc
TF

(
−8ζ3 + 2Lm − 2Ls +

56
3

)
+ NcTF

[16Lm

3ϵ2 + 1
ϵ

(
−16LmLs

3 + 8L2
m

3 + 88Lm

9 + 8ζ2
3

)

− 64ζ3
9 − 4L2

mLs +
4
3LmL2

s +
40LmLs

9 + 4L3
m

9 + 64L2
m

9

+ 8ζ2Lm

3 − 422Lm

27 − 4L3
s

9 + 20L2
s

9 + 46Ls

27 + 4ζ2
9 − 2270

81

]
, (3.28)

where Nc is the number of colors. Here, it is worth mentioning that the massive quark-loop
contributions to F

(2)
gg consist of three parts: the contribution from a single massive quark

loop as shown above, the contribution from two massive quark loops (which we denote as the
n2

h contribution), and the contribution from a massive quark loop and a massless quark loop
(which we denote as the nhnl contribution). The last two parts arise from renormalization,
and are not included in the above expression. In the factorization formula, the n2

h and nhnl

contributions are taken care of by the (Z(1)
[g] )

2 term and the (nl + nh)Z
(1)
[g] term in eq. (2.7),

which were already known in [2].
For the purpose of this work, we only need to check the factorization property of F

(2),h
gg .

For that we need the one-loop gluon form factor without quark loops, and the two-loop gluon
form factor with a massless quark loop. They can be extracted from [25, 38] and are given by

F (1),no-quark
gg = NcTF

[
− 4

ϵ2 + 1
ϵ

(
4Ls −

22
3

)
+ 2ζ2 − 2L2

s + ϵ

(
28ζ3
3 + 2L3

s

3 − 2ζ2Ls − 4
)

+ ϵ2
(
−28ζ3Ls

3 − L4
s

6 + ζ2L2
s + 4Ls +

47ζ4
4 − 12

)]
, (3.29)

F (2),l
gg = 1

Nc
TF

(
−1

ϵ
− 8ζ3 − 2Ls +

67
6

)
+ Nc

[
− 14
3ϵ3 + 1

ϵ2

(
4Ls −

26
3

)
+ 1

ϵ

(
−4L2

s

3 − 20Ls

9 + 2ζ2
3 + 155

27

)

+ 4ζ3 +
20L2

s

9 + 4ζ2Ls

3 + 158Ls

27 − 10ζ2
3 − 5905

162

]
. (3.30)
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It is then straightforward to check the factorization formula:

F (2),h
gg (s, m2

h) = F (2),l
gg (s) + Z(1)

[g] (m
2
h)F (1),no-quark

gg (s) + Z(2),h
[g] (m2

h) + Nc S(2)(s, m2
h) . (3.31)

3.4 The scattering amplitudes for tt̄ production

As the last and the most complicated validation, we consider the qq̄ → tt̄ and gg → tt̄

partonic processes. The two-loop amplitudes in the high-energy limit have been calculated
in [39, 40]. The purely massless amplitudes for qq̄ → q′q̄′ and gg → q′q̄′ are given in [41, 42].
In contrast to the form factor cases where the color structure is simple, the soft function in tt̄

production is a non-trivial operator in color space. To deal with this, we follow the same
strategy of [43]. For the ql + q̄k → ti + t̄j channel we choose the color basis as

|c1⟩ = δijδkl , |c2⟩ = (ta)ij (t
a)kl , (3.32)

and for the ga + gb → ti + t̄j channel we use

|c1⟩ = δabδij , |c2⟩ = ifabc (tc)ij , |c3⟩ = dabc (tc)ij , (3.33)

where i, j, k, l, a, b are color indices. The scattering amplitudes are then projected into the
above bases:

|M⟩ =
∑

I

MI |cI⟩ . (3.34)

Using this decomposition, we may rewrite eq. (2.1) as

Mmassive
I =

∑
J

∏
i

(
Z(m|0)

[i]

)1/2
SIJ Mmassless

J , (3.35)

where the soft matrix elements are defined by

SIJ = ⟨cI |S|cJ⟩
⟨cI |cI⟩

. (3.36)

For the qq̄ channel, the matrix elements of Ti · Tj in S (see eq. (2.3)) are given by

T1 · T2 = T3 · T4 =
(
−CF 0
0 1

2Nc

)
,

T1 · T3 = T2 · T4 =

 0 − CF
2Nc

−1 −N2
c −2

2Nc

 ,

T2 · T3 = T1 · T4 =

0 CF
2Nc

1 − 1
Nc

 . (3.37)

For the gg channel, they are

T1 · T2 =


−Nc 0 0
0 −Nc

2 0
0 0 −Nc

2

 ,

– 12 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
2

T3 · T4 =


−CF 0 0
0 1

2Nc
0

0 0 1
2Nc

 ,

T1 · T3 = T2 · T4 =


0 −1

2 0

−1 −Nc
4 −N2

c −4
4Nc

0 −Nc
4 −Nc

4

 ,

T2 · T3 = T1 · T4 =


0 1

2 0

1 −Nc
4

N2
c −4

4Nc

0 Nc
4 −Nc

4

 . (3.38)

Plugging the above into the factorization formula, we are able to reproduce the results
of [39, 40] from the purely massless amplitudes of [41, 42], including all the nh-related
terms. This provides a strong check on our factorization formula and the expressions of
the Z-factors and the soft function.

4 Summary and outlook

In summary, in this work we have proposed a generic factorization formula for scattering
amplitudes up to two loops in the high-energy boosted limit. Our formula completes that
of [2] by incorporating the contributions from massive loops (the nh-contributions). The
formula involves a soft function as an operator in color space, as well as modified Z-factors
with nh-dependence. Using the method of regions with analytic regulators for the rapidity
divergences, we derive these new ingredients through explicit calculations. We verify our
results using various form factors. In particular, we have computed two form factors that
were not available in the literature: the massive loop contributions to the quark-quark vector
form factor and to the gluon-gluon scalar form factor. Furthermore, the scattering amplitudes
for tt̄ production provide a strong validation of our results, with non-trivial color structures.

Our factorization formula can be used to obtain approximate expressions for complicated
two-loop massive amplitudes from the corresponding much simpler massless ones. While such
an approximation is only valid in the high-energy limit, it can be combined with low-energy
approximations (e.g., in the threshold limit or the soft limit) to get reasonable results in
the whole phase space. This may find applications in cutting-edge problems such as the
NNLO QCD corrections to tt̄Z, tt̄H tt̄j and tt̄tt̄ production processes. Combined with
suitable RGEs, our formula can also be used to resum the large mass logarithms to all orders
in the coupling constant, either in the high-energy boosted limit alone, or in the double
boosted/threshold limit considered in [44–47].

Finally, it will be interesting to think about the extension of the factorization formula
to three loops and beyond. In particular, there have been concerns about extra momentum
regions (other than hard, soft and collinear ones) in scalar integrals [48]. These extra regions
cancel out at the two-loop level in QED [3, 21], and clearly also in QCD since our region
analysis correctly reproduces the full results. It remains to be investigated whether this
kind of cancellation also happens at higher-loop orders. It is also worth asking whether

– 13 –



J
H
E
P
0
5
(
2
0
2
4
)
0
8
2

the three-loop soft function involves correlations among three external legs, similar to the
two-loop anomalous dimension governing the IR divergences of massive amplitudes [43],
and how to determine this kind of contributions through explicit calculations. This will
be left for future investigations.
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A Renormalization constants

In this appendix we collect the renormalization constants relevant to our calculations. All
renormalization constants are expanded in terms of the renormalized strong coupling αs. The
renormalization constants for the strong coupling and the Hgg effective coupling λ are given by

Zαs = 1−
(

αs

4π

)
β0
ϵ

+
(

αs

4π

)2
(

β2
0

ϵ2 − β1
2ϵ

)
,

Zλ = 1−
(

αs

4π

)
β0
ϵ

+
(

αs

4π

)2
(

β2
0

ϵ2 − β1
ϵ

)
, (A.1)

where the β-function coefficients are

β0 = 11
3 CA + 4

3TF nf ,

β1 = 34
3 C2

A − 20
3 CATF nf − 4CF TF nf . (A.2)

The renormalization constant for the light-quark field is

Zq = 1 +
(

αs

4π

)2
CF TF

∑
h

(
µ2

m2
h

)2ϵ (1
ϵ
− 5

6

)
.

The two-loop renormalization constant for the massive quark field with mass mQ arising
from a massive quark loop with mass mh is given by

Z
(2)
Q,nh

=CF TF

{[
1
ϵ

(
1 + 4 ln µ2

m2
Q

)
+ 6 ln2 µ2

m2
Q

+ 22
3 ln µ2

m2
Q

+ 947
18 − 30ζ2

]

+
∑
h ̸=Q

[
1
ϵ

(
1 + 4 ln µ2

m2
Q

− 8H(0, x)
)
+ 6 ln2 µ2

m2
Q

+ 22
3 ln µ2

m2
Q

+ 443
18

+
(
10− 36x − 60x3 + 24x4

)
ζ2 + 28x2 +

(
32
3 − 16 ln µ2

m2
Q

+ 16x2
)

H(0, x)
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−
(
8 + 12x + 20x3 + 24x4

)
H(−1, 0, x) +

(
8− 12x − 20x3 + 24x4

)
H(1, 0, x)

+
(
32 + 48x4

)
H(0, 0, x)

]}
, (A.3)

where x = mh/mQ. For the gluon field renormalization, we only give the terms with a single
massive quark loop (i.e., we drop the n2

h and the nhnl terms):

Z(1),h
g = TF

[
− 4
3ϵ

− 4Lm

3 − ϵ

(
2L2

m

3 + 2ζ2
3

)
+ ϵ2

(
4ζ3
9 − 2L3

m

9 − 2ζ2Lm

3

)]
,

Z(2),h
g = TF

{
CA

[ 35
9ϵ2 + 1

ϵ

(26Lm

9 − 5
2

)
+ 4L2

m

9 − 5Lm + 13ζ2
9 + 13

12

]
+ CF

(
−2

ϵ
− 4Lm − 15

)}
, (A.4)

where Lm = ln(µ2/m2
h).
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