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ABSTRACT: We study the O(3) critical model and the free theory of a scalar triplet in the
presence of a magnetic impurity. We use analytic bootstrap techniques to extract results in
the e-expansion. First, we extend by one order in perturbation theory the computation of
the beta function for the defect coupling in the free theory. Then, we analyze in detail the
low-lying spectrum of defect operators, focusing on their perturbative realization when the
defect is constructed as a path-ordered exponential. After this, we consider two different
bulk two-point functions and we compute them using the defect dispersion relation. For a
free bulk theory, we are able to fix the form of the correlator at all orders in . In particular,
taking € — 1, we can show that in d = 3 one does not have a consistent and non-trivial
defect CFT. For an interacting bulk, we compute the correlator up to second order in €.
Expanding these results in the bulk and defect block expansions, we are able to extract an
infinite set of defect CFT data. We discuss low-spin ambiguities that affect every result
computed through the dispersion relation and we use a combination of consistency conditions
and explicit diagrammatic calculations to fix this ambiguity.
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1 Introduction and discussion

One of the fields where the conformal bootstrap has delivered the most astonishing results is
the study of statistical models at criticality. After the celebrated prediction for the critical
exponents of the three-dimensional Ising models [1, 2], several other remarkable results
have been obtained (see [3, 4] for recent reviews). This proves the great potential of the
idea that conformal field theories (CFTs) can be explored to high precision leveraging only
symmetries and internal consistency. Parallel to these numerical developments, a set of
important analytical tools have been introduced, which proved very useful when the theory
admits a perturbative expansion in some small parameter (not necessarily the coupling) and
some control over the perturbative spectrum [5-7]. In particular, among other applications,
these methods were used to reproduce and extend results in the e-expansion for the O(N)
critical model [8, 9] (see [10] for an extensive review).

The spectrum of a CFT contains both local and extended operators. The development
of bootstrap techniques for the latter have recently emerged as an independent research
line, the defect bootstrap program. In a defect setup, there are essentially two observables
which are suitable to a bootstrap analysis: the defect four-point function and the bulk
two-point function. For general defects, these quantities depend on two kinematical cross
ratios and, in this respect, they constitute the direct analogue of four-point correlators in
homogeneous CFTs. While the defect four-point function is accessible also to the numerical
methods of [11], the bulk two-point function generically lacks the positivity properties that
are necessary for this approach. Nevertheless analytical methods based on the Lorentzian
inversion formulae [12, 13] and dispersion relations [14, 15] proved very efficient in predicting
defect CFT data in holographic setups [16, 17] and the e-expansion [18-20].

Motivated by the success of the conformal bootstrap for homogeneous critical models,
it is natural to ask which predictions we can make for statistical models in the presence of
defects. Focusing on the O(N) critical model, there is a variety of extended excitations one
can introduce, including line defects [19-33], boundaries [34-40] and surface operators [41-45].
In this paper we focus on the former and, more specifically, on a class of line defects
commonly denoted as magnetic impurities (analytic bootstrap studies of another line defect,
the localized magnetic field, are available in [19, 20]). Magnetic impurities were originally
introduced in [21, 22] with the aim of modeling a doped two-dimensional anti-ferromagnet at
the quantum critical point. More recently, there has been a renewed interest for these defects.
In [25], they were analyzed at large N with the long-term goal of understanding the interplay
between symmetry protected topological phases and quantum criticality, whereas [27] found
a semiclassical description for this defect in the limit of large spin. In [46], it was also
noted how these defects emerge in a specific scaling limit of superconformal Wilson lines
in N = 4 SYM theory.

The universality class of the O(N) critical model is well described by a theory of N
massless scalar fields with a quartic interaction tuned at the Wilson-Fisher fixed point. In
this context, magnetic impurities admit several different microscopic realizations, such as a
path-ordered exponential or a one-dimensional fermionic theory coupled to the scalar fields
in the bulk. A natural question is whether these microscopic realizations would lead to a
non-trivial conformal defect also when the bulk is free, i.e. at the Gaussian fixed point with



the quartic coupling tuned to zero.! This question has already been raised in [27], where the
combination of large spin and e-expansion techniques suggested that a non-trivial fixed point
exists for some regime of the parameters. Even though the former analysis hints that this
region does not include € = 1, i.e. the three-dimensional bulk, this point is outside the radius
of convergence of the large spin and € expansions. One way to tackle this question could be
working directly in d = 3 and using numerical techniques such as Monte Carlo simulations,
numerical bootstrap, or the recently proposed fuzzy-sphere regularization [48, 49]. Instead, in
this work we show that analytic bootstrap techniques can be used to prove that at ¢ = 1 and
for any finite value of the spin, no non-trivial conformal defect exists when the bulk is free.

A first step towards a numerical bootstrap analysis of line defects in the O(/N) model has
been taken in [29]. As we mentioned, the natural observable for the numerical methods is the
defect four-point function. The result are exclusion plots in the space of dCFT data. Since
the numerical bootstrap philosophy is purely based on imposing symmetries and consistency
conditions, one of the obstacles when dealing with purely defect observable is to impose the
fact that we are dealing with a defect correlator and not with a one-dimensional homogeneous
CFT. Furthermore, to isolate a specific conformal defect (as it has been done, for instance, for
the Ising model in the homogeneous case) one needs to input additional assumption on the
spectrum of light operators. For this reason, in this paper we carry out a careful analysis and
classification of the low-dimensional defect operators that characterize the magnetic impurity.

The most interesting case for condensed matter applications is certainly when the bulk
is interacting. In that case, the beta function of the defect coupling will depend both on the
defect and on the bulk coupling. The idea is to tune the bulk coupling to the critical value,
and then find a defect fixed point by solving for zeroes of the defect beta function. Contrary
to the localized magnetic field case, where the resulting defect coupling is not small for small
values of €, in this case the critical defect coupling is proportional to €. This will allow us to
compute dCFT data up to order 2. Let us summarize our findings.

Summary of the results. The goal of this work is to investigate the details of the low-lying
defect spectrum and apply analytic bootstrap techniques to the bulk two-point function in
the presence of magnetic impurities. Among the various explicit realizations of the magnetic
impurity, we choose to work with the path-ordered exponential (see (2.4) for the precise
definition). This specific realization allows to preserve the full global symmetry algebra only
for N = 3, therefore this is the case we are going to consider in this paper. The extension
to general N, through different realizations of the defect (see appendix A), is certainly an
interesting future direction.

We first consider the case where the bulk theory is free and we compute the beta function
for the defect coupling ¢ up to order (7, finding for the first time an explicit dependence
on the spin j

Bo=nge =50+ =+ (2= (JG+D-3)) (11)

!The more general question of whether a non-trivial conformal defect can exist in a free theory based on
general consistency conditions has been investigated in [47]. Strictly speaking that analysis is valid for a single
scalar field in integer number of dimensions. We expect their results to apply also for N free scalars with a
defect that preserves the O(N) symmetry. However, the reason that we find a non-trivial defect is because we
work in non-integer number of dimensions, a situation not addressed in [47].



This result extends the large spin result of [27] and the large N result of [46] for the ladder
approximation of Wilson lines in N/ = 4 SYM. In that case, taking a specific limit of the
supersymmetric Wilson line in N' = 4 SYM the bulk theory essentially reduces to a free scalar
theory with fields in the adjoint representation of su(NN) and the Wilson line is identical to
the defect we consider here. The authors of [46] considered this setup in the planar limit,
but the construction works at any value of N and our result is the non-planar extension
for the specific case of su(2).

Then we move to the analysis of some important operators in the defect spectrum and
we focus in particular on their explicit realization in the path ordered exponential picture.
It is a known fact that magnetic impurities contain a particular operator g“, called spin
operator, which transforms in the adjoint representation of su(2) and whose dimension, for
the case of a free bulk, is fixed to A ¢ = €/2. For an interacting bulk, the dimension receives
corrections starting at O(e?). It is interesting to understand how this operator is realized
inside the path ordered exponential. Its dimension vanishes for € — 0 therefore it cannot be
constructed using the bulk fields and their derivatives. It turns out that the spin operator is
realized by inserting a generator 7' inside the path ordered exponential (see (3.5) for the
exact prescription). Although 7T is a constant matrix, its insertion inside the trace produces
a non-trivial dependence on the insertion point thanks to the path ordering prescription.
We show how to perform perturbative computations using this prescription, confirming the
expectations for its scaling dimension and computing its two-point function, whose value is
physical because the normalization of the operator is fixed by a Ward identity.

Other interesting operators in the defect spectrum include the displacement operator,
associated to the explicit breaking of translation invariance, and the operator P = ¢*T,, whose
dimension is completely determined by the beta function of the defect coupling (see (3.33)).
In table 1 and 2 we provide a list of the lowest twist spectrum of the defect theory, specifying
their quantum numbers and their scaling dimensions in perturbation theory.

In section 4, we consider the bulk two-point functions of ¢® and ¢? and we compute them
using analytic bootstrap methods. Interestingly, for the case of a free bulk, the form of the
correlator (¢%¢?) is completely fixed at all orders in € and we are left with a single unknown
(e-dependent) constant cg2 which is essentially the one-point function of ¢?. Evaluating this
correlator at € = 1 and assuming that cge ’5:1 # 0, we obtain a correlator that cannot satisfy
the defect bootstrap equations. The inevitable conclusion is that either cy2 ‘5:1 = ( yielding
a trivial defect, or that there is no fixed point defect CFT.

In the interacting case, instead, we can compute the correlator up to order £? finding

4 )
F(r,w) = £ 8¢ + 2 (1 + glogir 2

(1+7)2 11(1+log2+H(r,w))> + 0%, (1.2)

where r and w are two conformal cross-ratios (C.4) and £ a combination thereof (C.3).
The function F(r,w) is the correlator up to a kinematical prefactor (see (4.1)), whereas
H(r,w) is the most complicated part of the result and it is the same function that already
appeared in the case of the localized magnetic field in [19, 20]. In other words, at this order
in perturbation theory, the results for the two line defects (localized magnetic field and
magnetic impurity) have the same structural form. The only major difference is the presence
of an extra contribution for the magnetic impurity, namely the logarithm in (1.2), which



is necessary to account for the Sa operator in the defect OPE. Because this logarithm is
independent of w, it only contributes to spin s = 0 operators in the defect OPE, and therefore
it corresponds to a low-spin ambiguity that cannot be reconstructed from the dispersion
relation. Expanding (1.2) in conformal blocks, it is possible to extract an infinite set of defect
CFT data, up to approximate degeneracies. Our results for the defect scaling dimensions
and for the bulk to defect couplings by are presented in (4.54)—(4.59). These results are
confirmed by diagrammatic computations in section 5, where we also compute the correlator
($2¢?) in the interacting theory, which is hard to extract from a bootstrap analysis.

Our results for the two-point function of S and its anomalous dimension had already
been computed in e-expansion in [21, 22] and can be compared to the Monte Carlo analysis
of [50]. The agreement between the two methods is not very good. This is expected because
in order to obtain sensible results for € = 1 one has to first resum the perturbative expansion,
see e.g. [51]. All our other results are new and, to our knowledge, have never been computed
neither using e-expansion nor Monte Carlo.

2 Magnetic impurities

Our starting point is the O(3) critical model at the Wilson-Fisher fixed point, which is
characterized by the quartic action

S = /dda: B (8uha)® + % (0%0a)?|, (2.1)

where )g is the bare coupling and the fundamental fields ¢, transform in the adjoint represen-
tation of su(2). For d = 4 — e < 4, the coupling A is relevant and it triggers a renormalization
group (RG) flow, which can be studied perturbatively in €. The S-function for the quartic
coupling reads

O\ 11 23

_ — e\ A2 — A3 A 2.2
i dlog At 4872 76874 +O(AY, (22)
and a non-trivial fixed point is reached for
4872 331272 3
As = e+ e 4+ 0(e”). (2.3)

11 1331

This solution is perturbative in € and this is the regime we are going to be interested in
for this work.

Following [27], the line defect is represented by an extended operator given by the trace
of the following path-ordered exponential

Dj(u,v) = Pexp (jog /: dr qﬁ“(T)Ta) , (2.4)

where the factor



has been introduced for future convenience. Throughout the paper, we choose the defect
to extend along the imaginary time direction,? and for compactness we write ¢q(7) =
¢q(7,0,...,0). We will be mostly interested in the infinite defect D; = D;(—o00, ), but
occasionally it will be useful to work with the finite version (2.4).

The matrices T* form a spin-j representation of su(2), or equivalently, they are (25 +1) x
(27 + 1) matrices. We normalize them such that the commutation relations and Casimir read

[T, T° = ie®™T¢,  T,T,=7(j+1). (2.6)

The defect Tr D; preserves the connected component of the O(3) global symmetry,® and as a
result, it can be realized in the lattice by inserting a spin-j impurity interacting with other
lattice sites through SU(2)-preserving interactions. The coupling (p is marginally irrelevant in
four dimensions, but it is relevant for d < 4 and the system flows to a non-trivial interacting
dCFT in the infrared (IR). Interestingly, this dCFT is non-trivial even when the bulk is
tuned to the free-theory point A\g = 0. To see this explicitly, in section 2.1 we summarize the
computation of the S-function, distinguishing the free and the interacting bulk cases. For the
free case, we present a new result at order (7 which shows for the first time the dependence
of the beta function on the spin j. We also discuss correlation functions in section 2.2, and
the discrete symmetries preserved by the defect in section 2.3.

2.1 Defect g-function

The computation of the S-function for line defects goes back to the work of [54] for non-abelian
gauge theories (see also [55] for a recent review). For the magnetic impurities of interest here,
the S-function has been computed, up to two loops, in [56, 57]. The idea, as usual, is to select
a specific observable and renormalize the coupling (y such that the result is UV-finite. Since
for the purposes of renormalization we are interested in the UV-behaviour of the theory, we
can consider a finite line 7 € [u,v]. Then we impose UV-finiteness of the vertex operator

_ Tr{pa(x)T* Dj(u,v))
V(w) = Tr (D, (u,v)) ’

(2.7)

where ¢q(z)T® is inserted in the trace, but it is placed in a point z in the bulk.

2.1.1 Free bulk

Let us start from the case of a free bulk, where the bulk operator ¢,(x) is not renormalized.
In this case, all the divergences in (2.7) can be ascribed to the renormalization of the coupling
Co- The details of the computation are spelled out in appendix B. Here we report only the

2Another interesting observable is the circular loop, which is monotonic under RG flow [52]. The two
configurations are mapped into each other by a conformal transformation and, although at the level of the
defect expectation value there might be conformal anomalies [53], all our conclusions about defect correlators
can be easily adapted to the circular case. The straight line has a more direct interpretation as an impurity in
a condensed-matter system.

3Strictly speaking, in the definition of the defect we take the trace over the representations of SU(2) instead
of O(3), in order to allow for half-integer values of j. At the level of the algebra this makes no difference. We
will ignore this subtlety in what follows, since it does not affect our results.



final result, which we computed for the first time up to order ¢7 in the minimal subtraction
(MS) scheme. The relation between bare and renormalized coupling reads
2 4 4 6 6 6
—u?c 1 ¢ ¢ 8¢ C(g_ 2(“ 1_1>>_11< 5¢ o(ct
Co=p C<+E 5 T 52 T 32 G+~ 3 + 55 +0() |-
(2.8)

From the usual condition that the bare coupling does not depend on the renormalization
scale u, namely d(p/du = 0, one extracts the beta function

5<=—§g+<3—c5+(2_w2(j(j+1)—;>>g7+... (2.9)

Observe the interesting fact that, starting at O(¢”), the S-function depends on the spin
j. This presents an obstacle towards the resummation of the perturbative series, even for
the case of a free bulk. However, when the spin j is large, one can take a double-scaling
limit where ¢ — 0, j — oo and ¢2j is kept fixed. The S-function in this limit was recently
computed in [27], and our result is in perfect agreement for large j. The fixed point equation
B(¢) = 0 can be solved perturbatively in € leading to a defect fixed point for
2 2.3

43:%+%+ <j(j+1)—;> %JFO(&). (2.10)
Notice that the defect coupling is irrelevant in four dimensions, leading to a trivial fixed
point at € = 0. For € > 0 there is a non-trivial fixed point, even though the bulk is free. The
existence of this fixed point in three dimensions, i.e. for £ — 1, was questioned in [27], based
on a large spin analysis. In section 4 we will prove that indeed this fixed point is trivial.

2.1.2 Interacting bulk

For an interacting bulk, it is harder to push the calculation at higher orders in perturbation
theory due to the presence of diagrams with quartic bulk interactions. In the case of the
interacting bulk, we find (see appendix B.6)
2 4 4 2 (4 — 1)y ¢2a
3 5\ JG+1)—3)¢
C():ME/QC( C_e X ( ) +... (2.11)

142> > 49
T T T + 72(4m)%e + 48¢

From this we can exrtract the S-function [21-23]

€ 5 5 b (N < .

- __ — — 1) — = e
o= g0t =t gy T WU =5 ) o F
After setting the bulk coupling to the fixed-point value A., one can solve perturbatively
the equation f¢((x, Ax) = 0, finding

Z=Cye <29—”2 (j(j+1)—;>> + O, (2.13)

1) ¢ (2.12)

2 121 11

Notice that in the interacting theory the dependence on j shows up already at order 2.

When the bulk and the defect coupling are tuned to their fixed point value, we obtain an
interacting defect conformal field theory. While the bulk spectrum is clearly unaffected by
the presence of the defect, it is interesting to understand in some depth how to characterize
the defect operators. This will be the subject of section 3.



2.2 Correlation functions

In equation (2.4), we introduced the line defect in terms of the path-ordering operation.
Explicitly, this amounts to the definition

oo n

Dj(u,v) = Z CQL/ dry...dry Gy (T1) ... ba, (Tn) T ... T . (2.14)
n=0 B2 Ju<m<<m<v

In particular, (2.14) allows to map correlators of the defect theory to those of the homogeneous

theory. The simplest correlation functions in the presence of D; involve insertions of bulk

operators as follows

~ (O1(x1) ... Op(z) Tr Dy)
<01(ZL‘1) e On(l‘n»DJ - nol <TI‘Dj> 5

(2.15)

where recall that D; = D;(—00,00) is the infinite length defect.

However, this is not the most general possibility, and in fact one can define operators @(7’)
that live on top of the defect. Throughout this work, we follow the convention of dressing
defect operators with a hat in order to distinguish them from bulk operators. Moreover, their
argument will be just the one-dimensional coordinate along the defect. As it will become
evident in section 3, defect operators of this model can in principle be matrix-valued (with
matrices having the same dimension of the generators T%). Therefore, for the most general
correlators of defect operators, we have to slice-up the path-ordering as follows

(O1(11) ... On(m0))p, = (Tr [D;(—o0, Tl)O(Tl)Dj(ZlT?rT;)f(Tz) - O(70) D; (T, 00)])

. (2.16)

Note that defect operators are not necessarily matrix-valued. For example, with a single
fundamental field ¢ we can build two distinct operators

O (1) = ¢1,0,...), Oy(1) = ¢*(7,0,.. )T, (2.17)

When we insert O¢ in correlation functions we can factor it outside the trace, while Oy is
a matrix and therefore it interacts non-trivially with the trace. Many examples of defect
operators are provided in section 3.

An important point when dealing with defect correlators, is that they depend on the
coordinate of a defect operator @(7’) also trough the endpoints of the neighbouring defect
operators D;(-,7) and D;(7,-), as it is clear by looking at the right hand side of (2.16). For
this reason, it is convenient to introduce a defect covariant derivative

D;(u,7) Dy O(r) Dy (7,0) = %(Dj(u, ) O(F) D; (, ). (2.18)
From this one readily finds
D,O(r) = 0,0(r) + L g(1) [T, O(7)] . (2.19)

Jr

This covariant derivative is really analogous to the one introduced in the case of Wilson
lines (see e.g. [58]).

Finally, it is possible to consider correlators that contain a mix of bulk and defect
operators, and their correlators are given by the obvious generalization of (2.15) and (2.16).



2.3 Discrete symmetries

It is interesting to look at which discrete symmetries are preserved by the defect, because
they imply selection rules in correlation functions, and they also help in the classification of
defect operators. The bulk theory, both in the free and in the interacting case, is invariant
under time reversal symmetry* and under a global Zy symmetry

Ty : (1, 21) — ¢ (—T, 1), Tz, : ¢*(1,xy) — —¢*(T,21). (2.20)

By a symmetry of the defect theory, one usually means that the correlators in the left
hand side of (2.15) are invariant under the action of the symmetry generators. A sufficient
condition for this to happen is that the generator of a symmetry of the homogeneous theory
also leaves invariant the trace of the defect operator TrD;. This is exactly what happens
to the SU(2) global symmetry. On the contrary, the generators Tz, and T} clearly modify
the defect. It is straightforward to see that the net effect of 77, is to change the sign of
the defect coupling constant [25]

T7,Df =D;°, (2.21)

where ch is the defect extended operator with coupling constant (. On the other hand,
T, flips the signs of the arguments of all the fields in (2.14). However, by a convenient
change of integration variables and name redefinitions, this is equivalent to reversing the
order of the generators inside the trace. For generators of representations of su(2), the
following relation holds”

Tr (T ... T%) = (—1)* Tr (T™ ... T") . (2.22)

From this it follows that also T} is tantamount to a change in the sign of the defect coupling
constant

T, Tt Dy = Tt D; ¢ (2.23)

At this point we can define a modified time reversal symmetry for the defect theory by asking
that the fundamental fields are odd under this symmetry

T, =Tz, 0Ty : ¢*(1,21) = —¢*(—7,71). (2.24)

Now T} is both a symmetry of the homogeneous theory and leaves Tr ch invariant (it changes
the sign of ¢ two times). Therefore, it is a symmetry of the defect theory as well. To get some
useful selection rules, we need to understand how this symmetry acts on defect operators.
This will be briefly discussed in section 3.3.2, after we have acquired a general understanding
of the defect operators of this model.

4In the context of defects, the inversion of the defect coordinate is also known as S-parity [59, 60].

5This is due to the facts that the generators T are taken to be Hermitean and that the su(2) representation
given by the complex conjugated generators (T%)* is equivalent to the original one, so that (I'*)” = PT® P~*
for some matrix P.



3 The defect spectrum

In this section we study the spectrum of operators that live on top of the magnetic impurity
defect. Our motivation is that, to efficiently apply bootstrap techniques, it is helpful to know
what defect operators can contribute to different OPE decompositions. It is useful to start
from the free-bulk theory, because the spectrum is simpler and Ward identities protect several
defect operators. When the bulk interaction is turned on in the e-expansion, the dimension
of these operators will get modified by additional terms proportional to powers of A, which
is perturbatively small. Our approach allows us to understand the perturbative definition
of these operators, which is surprisingly non-trivial in certain cases. This in turn will shed
light on how to list all the possible defect operators in perturbation theory.

3.1 The defect spin operator

As pointed out in [27], an interesting Ward identity is obtained by considering the shift of the
fields ¢q(z) — ¢a(x) + ¢4 for some constants ¢,. This is a symmetry of the free-bulk theory
without the defect. The Noether currents for these symmetries are J¥(z) = —0H¢,(z), and
their conservation is equivalent to the equations of motion since 0 = 9,J#(z) = —O¢q ().
The defect interaction breaks explicitly the shift symmetry, so the conservation equation
is modified by a term localized on the defect

I
\/E

where the minus sign is introduced for future convenience. In this section and in the following

0u " (0,21) = === 55(0) 69 H(a1) (3.1)

ones we will often assume that the coordinate parallel to the defect of bulk operators is zero
thanks to translational invariance along the defect. Note that the bulk fundamental fields ¢,
do not renormalize since the bulk is free. If we introduce the renormalization factors such
that S& = Zg S and ¢y = u%Zg ¢, then it follows that in the MS scheme

Zg=27:", (3.2)

at all orders in perturbation theory, since the right hand side of (3.1) must be finite. In
particular, (3.1) holds also if we substitute renormalized quantities instead of the bare ones.
The operator S, responsible for the symmetry breaking is a defect primary operator at
the fixed point, and we shall call it the defect spin operator. As argued in [27], the above
Ward identities protect their dimension to A g=¢/ 2.7 The explicit form of the defect spin
operator S, in the perturbative setup can be derived via the Schwinger-Dyson equations.
To do this, it is convenient to think of the defect as contributing an extra term to the full

action S = Spuk + Sdefect, Where

Sdefect = — logTrDj . (3.3)

SMore precisely, for renormalized quantities we would have 9,J**(0,z,) = —% 59(0) 6% (21). We will
often forget about the scale factor p and set it to one, as is customary in the CFT literature, because we are
ultimately interested in correlation functions at the fixed point and they depend on p in a trivial way.

It is also possible to derive this result using diagrammatic considerations, as is it was originally done
in [21].
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Inside correlation functions it must hold

5Sdefect o CO 5d 1 Tr (Dj (*OO’ T) Ta Dj (7—7 OO)) )

S ) = gy VR D,

(3.4)

Therefore, comparing with (3.1) one finds that correlators involving a defect spin operator
5*3(7') inserted at a point 7 lying on the defect satisfy

(Or(21) .. S§(T) ... Op(@n))p, = —(O1(x1) ... T*(T) ... Op(2n))p, , (3.5)

where the right hand side has to be interpreted in the same sense as (2.16). In the following,
we will simply write

Sa(r) = =25 Tu(7). (3.6)
In this sense, the S operators in perturbation theory are just normal matrices which acquire

an anomalous dimension once they are inserted into the defect.®
Another interesting consequence of (3.1) is that we can rewrite it as

O¢a(0,2,) = 3 (0) 64 Y (zy), (3.7)

s\a

and this equation can be easily inverted

ul020) = VRC [ar —HO o) (35)
(2l + %)

where without loss of generality we assumed the defect coordinate of ¢, to be zero and ¢ e
is just a free field which does not interact with the defect. In particular, correlators involving
fundamental fields and its orthogonal derivatives (both in the bulk and on the defect) can be
reduced to defect integrals of correlators involving S, (not necessarily at the fixed point),
as it will be shown in sections 3.1.1 and 3.3.1.

It is important to understand what are the conformal descendants of the operator S, at
the fixed point. Such descendants are obtained by acting with the defect covariant derivative
defined in (2.19). In the case of the S, operator, we get

G
NG

where the generator on the right hand side has to be inserted inside the path ordering,

DTS'G(T) = — eabcqbch(T) , (3.9)

similarly to (3.5). This example shows that in this setup the question of whether an operator
is a primary or not can be hard to address, because even though (3.9) contains no 0
derivatives it is in fact a descendant.

Once the bulk quartic interaction is turned on, the shift symmetry is explicitly broken
in the bulk, hence the above analysis does not apply. Nevertheless, it still makes sense to

8Similar non trivial constant operators have already appeared in the literature, see for example (61, 62]. In
our case, this unfamiliar situation could be avoided by considering an equivalent representation of the defect
in terms of one dimensional fermions, such as (A.24). From that point of view S, can be realized as a regular
fermion bilinear operator.
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consider the S, operators defined by (3.5). The dimension of these operators is no longer
protected, and since it is classically vanishing, we have

A 8logZ§ 8logZ§

where now Z¢ depends also on the bulk coupling constant A. Interestingly, we observed that

(3.10)

up to two loops in perturbation theory Zg does not receive any divergent corrections from
the bulk interaction.” Therefore, in the interacting case we can still write

Zg = (Zclyog) ™ +O(EN, ¢, (3.11)

This is sufficient to compute the first correction to the dimension Ag using only the result
for the S-function in the interacting case, without having to do any further diagrammatic
computation [21]

€

N dlog Z
A %623 +0(?) = = — &

5! 72
S = /BC 8C oy 2

484+11(j(j+1)—;> +0@E%. (312

3.1.1 Correlators of defect spin operators in perturbation theory

Once the explicit form of the defect spin operator in perturbation theory is known, it is
possible to evaluate correlators using standard diagrammatic techniques. This section is
devoted to the computation of the two-point function <ga(7'1);§b(7'2)>7_)]. at two loops, both in
the free and interacting bulk cases. The overall normalization of the two-point function in
free theory has a physical meaning, since the normalization of S is fixed by its definition (3.1),
and in fact this normalization will be useful later.

Neglecting for the moment the renormalization factors, this two-point function is the
expectation value of the defect with generators T, and T inserted at 7, and 7o, respectively.
Since in (2.16) one needs to divide by the defect expectation value, we can normalize traces
by dividing by 2j 4+ 1, which is the classical expectation value. Moreover, it is convenient to
define the “connected part” of a diagram as what remains after one subtracts all contributions
that are products of lower order diagrams, or pieces that contain “defect bubbles”. Using
this terminology, the defect correlator is the sum of all connected diagrams.

The leading order term is given by the following diagram
Sa Sp
n 2 (3.13)

where the blue line represents the defect and the blue points indicate that a generator has
to be inserted into the trace. Since there are no lower order diagrams, this diagram is
already connected, and it gives

1
27+1

T (1,1) < 20

IO (r,15) = 3

Sap- (3.14)

90ne way to see this is noting that diagrammatically no propagator can be attached to the operator S'a,
since in the definition (3.6) there are no fundamental fields. This implies that any contribution that involves
both the defect and the bulk interaction either comes from a correction to bulk propagators and is at least of
order O(¢%)\?), or has at least four internal legs attached to the defect and is at least of order O(C*\).
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At one loop there are only two diagrams contributing to the connected term (all other
diagrams exactly factor into an order zero diagram times a piece of a one-loop bubble and
they have to be subtracted)

ga Sb Sa 5'b

N TN T2 (3.15)

where the additional blue points indicate interactions with a generator insertion and the
black line represents a free propagator. In d = 4 — ¢ dimensions the free propagator reads

K 5ab

(Pa(1)dp(2)) =0 = (3.16)

‘ x] — 1‘2|2_‘5 K
where k was defined in equation (2.5). The interactions have to be integrated along the
defect, but without crossing any other generator insertions. These two diagrams have the
same color factor, given by

JU+DEE+1) —1)
3

W Tr (T, T,T.T,) = Sab - (3.17)

T2+ 1
From these diagrams, we still need to subtract the product of the order zero diagram times
pieces of one-loop “defect bubbles”, which have the same kinematical integral but color

factor given by

1 72 +1)°
19 x bubbles™ ~ WTr (T.Ty) Tr (T.T.) = (3) dab - (3.18)
Therefore, we get
(1) 2J(G+ 1)5 dr dr’ dr dr’
Ic (7-17 TQ) = =50 3 ab ’T _ 7_/‘275 + |7_ _ 7_/’275
—0o<TLTI<T/ <T9 T1<T<T2<T/ <400
(3.19)
After performing the trivial integrals, one finds
2¢25(+1
IV (11, 7) = —Mm — 7% Oap - (3.20)

3(1—e)e

As expected, this contribution has a pole for £ — 0, since we are computing the bare two-
point function. At the next order there are many diagrams that contribute to this two-point
function, but the computation goes on in a similar way, and it is carried out explicitly in the
appendix D.1. It is interesting to note that the same diagrams contribute to the free and
interacting bulk cases. The reason is that, at the order we are working, the only new diagram
in the interacting case would be a mass correction to the bulk propagator, which is set to
zero. Once all the diagrams are evaluated, one introduces the wavefunction renormalization
coefficient Zg and rewrite the bare coupling constant in term of the renormalized one, while
keeping in mind that Zs = Zc_l. Then, imposing finiteness of Z§2<g8(T1)§8(T2)>Dj at this
order in the coupling constant yields

2 4 4

P —_ e = = _ 6
Zg=1 6 2€2+2€+O(§ ). (3.21)
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Putting everything together, the renormalized two-point function evaluated at the free bulk
fixed point (2.10) is
N Ny b
(Sa(r1)Sp(r2))p; = ——F——- =2, (3.22)
|7 — m?2s 3
where As = ¢/2 and

2
Ne=j(+1) (1 e +e2122+4” ) + 0@, (3.23)

Clearly, by conformal symmetry and by the fact that S, is protected, we already knew
that (3.22) holds at the non-perturbative level. The above computation is nevertheless
necessary to determine the constant N, §_10

We can use this result together with (3.8) to compute the bulk-to-defect two-point
function between ¢* and Sb

()84(0))p,
ey

(6"(0,2.)8"(0))p, = V¢ / = (3.24)

which is exact in the free-bulk theory.!! Using (3.22), solving the integral and evaluating
at the fixed point yields

s VRGN VAT (155) g

a &b _ . = N
OISO, =g T T e

(3.25)

Interestingly, the above correlator contains a factor F( £) that diverges in the & — 1 limit.
At this stage, it is still unclear whether the divergence could be cured by the e-dependent
term (N, g- Nevertheless, this should be taken as a hint that the theory is sick for ¢ = 1,
i.e. in three dimensions, as it will be proved in section 4.1.1.

When the bulk interaction is turned on, using (2.13) and (3.12) we obtain

1512 — 5572 2725(j + 1)
1— 2
ere ( 2004 11

3.2 The displacement operator and the defect stress-energy tensor

In a similar way, one can consider the Ward identity given by the translational invariance of
the bulk theory. The defect explicitly breaks this symmetry and the conservation of the bulk
stress-energy tensor is also modified by a term localized on the defect [52, 63]

T (0,21) = — (87 D(0) + 0,2”(0) 9, T, (0) ) 8~ (). (3.27)

where z¥(7) is the embedding function that describes the defect and 7 is the coordinate that
parametrizes the line. D' is called the displacement operator and it is a primary operator.

ONote that the normalization of S, is already fixed from the bulk through the Ward identity (3.7).
Since we are interested in the correlator at the fixed point, it is enough to evaluate it with vanishing
parallel distance between the operators. The kinematics is already fixed by conformal symmetry.
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By the above Ward identity, it has protected dimension Ap = 2. The explicit expression
for the bare displacement operator can be derived by considering the variation of the action
with respect to x%(7)

. (3.28)

Computing this functional derivative!? and at the end evaluating at unit speed parametrization
of the flat defect one finds

Tr(Dj(—00, ) Ty Dj(7,0)) .

Di(r) = “20'6u(7) oD,

NG

In terms of correlators, the bare displacement operator inserted at a point 7 lying on the

(3.29)

defect satisfies

(Or(21) ... DY(7) ... Op(@n))p, = f/OE (Or(x1) ... O (T) T On(wa))p, . (3.30)

We will just rewrite this as
Di(7) ~ 8;0°Ty(7) . (3.31)

Note that this analysis holds regardless of whether the bulk is interacting or not, since the
bulk stress-energy tensor is nevertheless conserved.

The other operator that appears in the Ward identity (3.27) is the defect stress-energy
tensor ij. By the Ward identity, it has protected dimension AT’D]- = 1. The existence of
such operator breaks conformal invariance on the line defect, therefore it must vanish at the
fixed point. In our case the defect stress-energy tensor reads'®

R Be «
Tp, (1) = 7%@(7% (3.32)
where for future convenience we defined (1) = ¢oT%(7).** Using the definition of conformal
dimension u% = —AO@ and the fact that ij is protected, we obtain
A 0B¢ B OB¢
Ay =1+—"24+—"——=. 3.33
d + 8C + ﬁC O\ ( )

This formula is exact and holds both for the case of free and interacting bulk theories.
A consequence of the last equation and the definition of the anomalous dimension of ® in
terms of the wave function normalization of the operator is that in free theory

203¢

Zi=— .
¢ ECZC

(3.34)

2Note that one needs to first reintroduce the arc length element |4(7)| in the integral of the defect action (3.3)
since a generic variation of the embedding spoils the unit speed parametrization.

Bfor a generic line defect with a Lagrangian of the form Lgefect = g@, the defect stress tensor reads
T = ﬂg@. This follows from the more general result 9,7, z" = Bi%’ which is a consequence of Noether’s
theorem applied to the renormalized Lagrangian in the case of scale transformations.

'Here and in the rest of this paper we will assume that defect operators with generator insertions have to
be interpreted in the sense of (3.5) and (3.29).
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Finally, using the expression for the beta function in the free bulk theory (2.9) and the value
of ¢ at the critical point, one obtains the conformal dimension of the defect operator o

N 52 63

A@:1+52+2[17r2<j(j+1)§>]+0(s4). (3.35)

One can do the same in the interacting case, where

+0(e%). (3.36)

N 257  4r? 1
R L I O A
p=1te—e [484 11 (J(JJr ) 3)

3.2.1 Correlators of &

In this section we compute the one-loop two-point function of ® both in the free bulk and
in the interacting bulk case. This computation, besides providing a sanity check of the
arguments of the previous section, it also shows how correlators of operators composed both
of generators insertions and of fundamental fields are evaluated in practice.

At tree level there is only one diagram

Y

2 —=jU+1)
b )

(3.37)

’Tl — 7_2|2_E ’

At one loop one finds two kind of connected diagrams: the two operators can be either
connected by a free bulk propagator, or they interact with the defect. Note that even in the
interacting bulk case there are no other diagrams, since bulk interactions contribute only
at the next order. The first kind of diagrams are

the computation of these integrals is analogous to the one for the operators S, in section 3.1.1,
with the only difference that now everything is multiplied by a free propagator. The result is

GiG+1r(2-3%)

] . 3.39
12722 —e)(1 —¢)e|r — |22 (8:39)

I£1) (T17 TQ) = -

The other diagrams are those where the two operators interact with the defect. There are
twelve of them and they come with two different color structures: eight diagrams with
Tr (T,T,TyTy) ~ j2(j +1)? and the remaining four with Tr (T, T, T, Ty) ~ j(j + 1)(j2 + 7 — 1).
The sum of all the diagrams contains a piece proportional to j2(j + 1)? which is a sum of
the ordered integral of two propagators over all possible orders, hence giving x?2 [doy oy —
71|72 [ dog|og — 72| 72T which is vanishing in our regularization. Hence we are left with
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the evaluation of the following four diagrams
_ @G+ DT(2-2)r(1-5)T(e)
1=l 2—2) I — P2
% @G+ )r (-5 (N’ -T(2e-1)
87727%(‘1 — )30 (=24 2¢) |11 — 1|22 (3.40)
_ GiGryra-3
An?73(1 — )2 |r — o272
_ @iG+DT(2-25)T(1-5)T (e)
1D (2 2) I — P2

Summing all the contributions, introducing the wavefunction renormalization coefficient Zg

and imposing finiteness of Z(;2<<f>(7'1)<i>(72)>pj at one loop, we get

Z@=1—3€2+O(C4,C2)\,/\2) ,

3.41)
dlog Z3 9 3 9 (
V5 = Be—F—| +0(7)=5e+0().
[} <*7A* C a< C*y)\* ( ) 2 ( )
The renormalized two-point function evaluated at the fixed point is
. R N;
(®(11)®(72))p; = ——2—— A (3.42)
|71 — 727
where both in the free bulk and in the interacting bulk case
jG+1) ( ( VE 10g77)) 2
. = 1 24 = O
No == (Mre( 25 57 )) 06, (3.43)

Ay =1+e+0(2).

3.3 General defect operators

The defect spin and the displacement operators arose as defect corrections to Ward identities.
It is natural to ask whether there are other defect operators with protected dimensions that
can be obtained in this way. In particular, in the bulk-free theory there exists an infinite

tower of conserved higher spin currents of the schematic form [64, 65]
S
T8 (@)~ D ok Oy -+ 00" Oy, - Oy 00() (3.44)
k=0

where brackets denote traceless symmetrization, and s > 1.'> Their dimension is A, =
s+ 1 —e¢e. From the modified Ward identity

T (0,2) = f} T (0)6 (), (3.45)

5For s = 0, up to an antisymmetric tensor one just get the Noether current associated to the SU(2) global

symmetry: J; ~ eabc¢b8M¢c, which is conserved also in the defect theory.
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one immediately finds a tower of defect operators that at the fixed point have protected
dimension A 7, = s+ 1 & N. Their explicit form can be determined by a computation
analogous to the one of the defect spin operator. In equation (3.45), one gets defect primary
operators only when all the free spatial indices are taken to be orthogonal to the defect,
since derivatives parallel to the defect give rise to descendants. Therefore we can just
7ab

consider J;

47 4., which clearly has orthogonal spin s. As for color indices, it is convenient

to think in terms of so(3) rather than su(2). For even s, the two color indices must be
in the antisymmetric representations; this is equivalent to the vector representation jﬁls

For odd s, the representations can be the traceless symmetric jiabl}s and the singlet jil...z‘s-
Like in the case of the defect spin operators, when the bulk interaction is turned on, these
higher spin currents are weakly broken and their dimensions will get corrections starting
at second order in e.

It is possible to obtain more information on the defect spectrum by looking at Ward
identities for particular correlators. Following [47], consider the bulk-to-defect two-point

function of ¢ and (]3, which by conformal symmetry must take the form

2 b
(6a(0,21)$5(0))p, =

- " (3.46)
1 [P0 R6 |z

|2A¢;

Specializing to the free-bulk case and acting with the Laplacian [, at a point away from
the defect x, we find

R A A b,
0 = (O¢a(0,2)3(0))p, = (Ay + Ay = (A, — Ag)— _A?fQ ——0ap,  (347)
- i i P

and since we know from an immediate tree-level computation diagram that A 3= 1+ 0(¢)
and that b 50 # 0, it must be that A 3= Ay holds at the non-perturbative level. The

same argument can be applied to the transverse spin-s operators @ﬁzs ~ 0 ...0;, éa. One
readily finds that their exact dimension is Ay = Ay + 5. Again, those dimensions will receive
correction in the interacting bulk case, starting always at second order in e.

In the previous sections, we have seen that in this theory there are some defect operators
such as the defect spin and the displacement operator that include in their definition the
insertion of a generator T,, and thus are matrix-valued. As anticipated in section 2.2, this
suggests that a generic local defect operator is a 25 + 1 x 25 + 1 Hermitian matrix, with
entries that are composite operators made of fundamental fields and their derivatives. Their
correlators are given by (2.16). Clearly, when the matrix is proportional to the identity, one
recovers the case of operators that can be factored outside the trace of the path-ordering, such
as the fundamental fields (Zga. In order to be able to construct and identify all the possible

defect operators, it is useful to choose a convenient basis for the space of these matrices.
3
the three generators together with the identity span the whole real vector space of 2 x 2

In the simplest situation where j = 3, i.e. in the fundamental representation of su(2),

Hermitian matrices. In particular, a defect operator with an arbitrary Hermitian matrix

insertion in the defect can be decomposed into operators with insertions that are at most
linear in the generators T%. For the more general case of spin j > % representations, the
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space of possible Hermitian matrix insertions has real dimension (25 + 1)2. We can span this
space by taking Hermitian combinations of products of the generators 7. A natural choice
of basis is given by the totally symmetrized traceless product of generators 7101 .. T}
with & = 0,...,25.1® In particular, there are 4j(j + 1) primary defect operators defined
by the basis elements S{01-0x}(z) = Tlar | T} (z) for k > 1 inserted in the path-ordered
exponential, without any fundamental field. These operators are expected to be among the
lightest operators of the theory, since their classical dimension is zero. Moreover, there cannot
be any mixing between them for representation theory reasons. For operators composed also
of powers of the fundamental fields and their derivatives, it still makes sense to organize
operators according to their color index structure. However, in general there will be several
operators in the same representation and with the same classical dimension, so that one
should worry about their mixing.

Finally, it is important to pay attention to the fact that defect descendants are given
by the defect covariant derivative (2.19) and not by the ordinary one. As an example, as
we found out in (3.9), the defect operator defined by €%¢#,T.(7) is not a new primary, but
it is a descendant.

3.3.1 Correlators of ¢, and @z(i

vty
Among all the defect operators we have just discussed, there are some interesting exact
relations that holds between correlators when the bulk is free. As an example, consider
the defect operator (;Aﬁa, which is just the fundamental field placed on the defect. Using the
analogous of (3.8) for ¢, (i.e. when z; = 0), we can compute its two-point function in terms
of the one of the defect spin operator

. . kji(j+1)d 2/ / (01)S(o 2))D;
o (T T = —|— do do ’ 3.48
<¢ ( 1)¢b< 2)>D] 3 ’7—1 — 7_2|2 e C 1 2 ’7_1 . 0_1| |7_2 o 0_2’)2—6 ( )
which holds at all orders in perturbation theory. In particular, evaluating at the fixed
point we get

i 6ab

n GNgT(1—¢) 1) sin (22
<¢a(7'1)¢b(7'2>>1)j = kji(j+1)— g 3 ) 2 )

3.49
3‘7’1—7’2’2_5 22 e ( )

From this we can check that qga has a vanishing anomalous dimension, as we saw through
Ward identities in section 3.3. Similarly, we can do the same for the two-point function of
one operator in the bulk and one placed on the defect. At the fixed point we find

Sap GZNgT(1— 5)tan (%)

<¢a(07xJ_)¢b(T)>Dj = 3 (|JIJ_|2 + 7-2)1_% (KJ](] * 1) a 771_%(5 - 1)

) . (3.50)

Note that the above two-point function depends only on the four-dimensional distance between
the bulk field and the defect field because they have exactly the same conformal dimension.

Aa . .
The same argument applies to correlators involving (’)l Y i, ~ 0y ... 0;,¢% in which case one

Z

6To show that these symmetrized traceless products constitute a basis, note that they are Zijz o2k +1) =
(25 + 1)? and that they are orthogonal with respect to the trace inner product.
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only need to take orthogonal derivatives in (3.8) before setting x; = 0. Finally, one could do
the same to get the two-point function of two bulk fields, as we shall see in section 5.

Obviously, in the interacting bulk case there will be corrections to the correlators (3.49)
and (3.50) starting at order £2.

3.3.2 Time reversal symmetry for defect operators

We are finally in the position to extend the discussion of time reversal symmetry to generic
defect operators. Their parity under this symmetry will be an useful tool to classify such
operators. It is clear that defect operators without any insertions, i.e. those composed only of
fundamental fields and their derivatives, behave just like bulk operators under this symmetries.
On the other hand, the very same argument used in section 2.3 can be repeated in the presence
of operators with insertions into the defect. A careful analysis shows that the effect of T}
on generator insertions is T3 : T%(7) — —T*(—7). Since Tz, does not act on generators, it
follows that also T is odd under T;. This can also be seen, for example, by the Ward identity

O6a(0, 1) = 50% $a(0) 67 (1) (3.51)
When there are more than just one generator inserted at the same point (only for j > 1),
an analogue analysis shows that the effect of time reversal is not only a factor (—1) for
each generator, but also an inversion in the order of the insertions. For this reason, it is
convenient to express insertions in the basis given at the end of section 3.3. Indeed one can
clearly see that this basis is diagonal under time reversal, and that T} : T fay - - - Tak}(T) —
(—1)F Tyq, .. Tyy (—7).

This symmetry imposes useful constraints on correlators. For example, sometimes it
can be used to lift some degeneracies, since two defect operators with different parities must
have vanishing two-point function at the non-perturbative level. The same holds for the
two-point function of a bulk operator and a defect operator, giving useful selection rules
for the coefficients of the defect block expansion (4.3). Finally, one must be careful that
this conclusion does not generalize to correlators with more defect operators. In fact, in the
case of one-dimensional defects, the three-point function of three defect operators can be
antisymmetric [47].!7 For example, one can check that (S, (71)S,(72)S:(73)) o i€qpe.

3.3.3 Classification of low-lying defect operators

In this section we conveniently collect together all the information about the low-lying
spectrum of the defect that we gained so far through various tools. Defect operators are
classified according to their transverse spin s, their su(2) representation (which we characterize
through their dimensions), their parity under the time reversal symmetry T; and their classical
dimension. Note that some of these operators only exist for sufficiently high values of j, where
Jj specifies the su(2)-representation of the generators T, in the definition of the defect (2.4).

Obtaining a complete list of defect operators at twist zero is straightforward.'® At
twist one, it is sufficient to construct all the possible composite operators using only one

1"Tndeed given any two points on an ordered straight line it is possible to invert their order through a special
conformal transformation that preserves the line. But the same cannot be done for three points.

18Recall that the defect twist 7 of a defect operator with dimension A and orthogonal spin s is defined as
F=A—s.
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0 s | dim Rgy(y) Ti A<§|A:0 A@ A
Sa 0 3 — £ (3.12)
Slavae} | g 2k + 1 (—)* O(e) O(e)

P° 0 3 - 1-£ 1-5+0(?)

) 0 1 + (3.35) (3.36)

D; 1 1 + 2 2
N s 3 + s+1 s+1+0(£?)
jiabl}s s 5 + s+1 s+ 14+ 0(e?)
N s 1 + s+1 s+140(2)
oL s 3 - s+1—¢ s+1—£+0(?)
gleved s | 2kl | (9)F | s+140() s+1+0(e)
plowed | 1 okl | (9)F | s+ 140() s+1+0()

Wit | s | 2kl [ (M ] s+1406) | s+1+0()

Table 1. Defect twist-zero and twist-one primary operators with their quantum numbers and scaling

dimensions.

fundamental field ¢,, an arbitrary number of generators Ty, and orthogonal derivatives 0;.
Then one need to decompose them into irreducible representations of su(2). Finally, since the
defect covariant derivative increases the twist by one, one need to exclude all the descendants
of the twist-zero primaries. Clearly, it is in principle possible to continue the classification by
considering higher twist operators, which can be constructed by using an arbitrary number
of fundamental fields and also orthogonal Laplacians [, . Again, one need to exclude all the
descendants of lower-twist primaries. The number of primary operators grows combinatorially
with the defect twist.

In table 1, we list all the defect twist-zero and defect twist-one primary operators, together
with their quantum numbers and their scaling dimensions at the fixed point (both for the
free bulk and for the interacting bulk cases). In table 2, we show the explicit definition
of these operators in perturbation theory.

Note that for some of these operators the form is just schematic. Indeed, beyond
tree level mixing among operators sharing the same quantum numbers can occur, and an
orthogonalization with respect to the two-point functions must be performed. For example,
the explicit form of the operator U® =4 T1T 9} is correct only at tree-level, and at higher
loops one must make sure that this operator is orthogonalized with respect to qga.

Further results about defect operators, their dimensions and coefficients of their correlators
will be obtained in section 4 trough analytic bootstrap techniques.
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Operator Perturbative definition Existence
Sa T°
Slar.ar} 7o | 7o} 2<k<2j
¢ ¢
o T,
D, 01Ty
jff i e“bcé)il 05 T even s, s > 2
Jler By ... 05, ¢l0T? odd s, s > 1
jil s Oi, ... 0;,0%T, odd s, s > 3
Ofl i Oiy .05, 0% s>1
Olevak | g, L0, g Tt L T 1<k<2j—1,5>0
ploak | g, g et Ty | 3260 <k <2j+1,5>0
Wwhead g, Loy ghebelarees | Tox) 2<k<2j,s>1

Table 2. Schematic perturbative definition of defect twist-zero and twist-one operators.

4 Analytic bootstrap calculation

In this section, we study the magnetic impurity with analytic bootstrap techniques. Although
a variety of inversion formulas have been used for defect CFT [12, 13, 18], here we employ the
dispersion relation developed in [14, 15], which significantly streamlines calculations. To help
the reader, in appendix C we present our conventions for cross-ratios, conformal blocks, etc.

The main result of this section is the computation of the two-point functions of ¢, and
¢? at the conformal fixed point

(Ga(®)S0(y))D, = Sab Fipg (r, w)

w1 [Bely e

F¢2¢2 (’l“, ’UJ)

(¢*(2)¢* (), = (4.1)

Sy [ Se
Here r and w are the two conformal cross ratios expressed in radial coordinates (C.4). Note
that throughout this section we unit-normalize all operators, a convention that differs the
rest of the paper, but which is standard in the CFT literature. After computing these
correlators, we also extract the bulk and defect CFT data by expanding the correlators
using either the bulk!'®

Fyp(r,w) = €203 Apgo ao fau(r,w), €= (1 = rw)(w =) ; (4.2)

1%} Tw

or the defect conformal block expansion

Fyp(r,w) = Zb fAsrw) (4.3)

9We write this and subsequent expressions for Fye(r, w), but analogous results apply to Fy242.
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The former is a consequence of the usual Operator Product Expansion (OPE) valid in CFT,
while the latter is obtained by fusing one of the external operators with the defect. In the
expressions above, fa ¢(r,w) and f As (r,w) are respectively the bulk and defect conformal
blocks. They are special functions that depend on the dimensions and spins of the bulk
or defect operators exchanged in the two OPE channels. Their explicit expressions can be
found in (C.6) and (C.9). The coefficients in the bulk expansion are the product of one-point
functions ap and three-point functions coefficients Ay40 , whereas in the defect channel the
coefficients of the expansion are the squares of the bulk-defect couplings b Jres We refer to
appendix C for their precise definitions.

In order to compute the two-point functions, we are going to use the defect dispersion
relation [14, 15]

Tdw' 1 1 1\ . )
Foyp(r,w) = /0 ori <w’ 0 + o i — w’) DiscFyq(r,w'). (4.4)
This formula reconstructs the full correlator from its discontinuity through the cut running
from w = 0 tow = r

DiscFyq(r,w) = Fyo(r,w +10) — Fyp(r,w — 10) . (4.5)

The dispersion relation is powerful because in perturbation theory the discontinuity is a much
simpler object than the full correlator. More precisely, at any given order in perturbation
theory, the discontinuity depends only on a subset of known bulk data. To see this, it is
convenient to take the discontinuity of the bulk expansion

DiscFyg(r,w) = Y co Disc [§74% fa o(r,w)] . (4.6)
o

Here and below we introduce the shorthand notation co = Aggpoap. Although the sum
in (4.6) runs over all operators in the theory, let us focus for simplicity only on twist-two
operators.?’ Later we will argue that these are the only operators needed for the calculations
in this work, at least at the order in perturbation theory we consider. Twist-two operators
have the schematic form

Te ~ ¢ Oy - Opyda (4.7)
and we can expand their CFT data in perturbation theory as

Ag =284+ 043V +0(Y), a=c” +ec) +.... (4.8)

Here cgo) might itself be of order O(e"), and in fact, in the examples below ¢ ~ O(e).

Now we can compute the discontinuity of each individual block. Using the formulas in
appendix C, one sees that the discontinuity vanishes at tree-level, and the leading term is
proportional to the anomalous dimension

: 0) (e [o—
DiscFge (7, W) | 4o ubletwist = € Z CEQ)%(Q)DlsC [g A¢6Af2A¢+g’g(r, w)} +..., (4.9)
@

20Recall that the twist 7 of a bulk operator with dimension A and spin £ is defined as 7 = A — £.
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where ... stand for contributions at higher order in €. This depends only on tree-level
coefficients and one-loop bulk anomalous dimensions. The tree-level coefficients can be
extracted from knowledge of free theory, while the bulk anomalous dimensions are independent
of the defect and are often known from other means. As a result, the discontinuity can be
computed in perturbation theory, which is the main reason we can employ the dispersion
relation to do bootstrap.?!

There is an important subtlety to the dispersion relation (4.4), namely that it works
provided

Fyp(r,w) ~w®, w—o00, s <0. (4.10)
If instead s* > 0, the formula reproduces the two-point function up to the contribution
of low spin defect operators

*

S
Fye(r, w) = dispersion relation + Z Z bi@A ng’s(r, w) . (4.11)
s=0 A "
A deeper discussion on the origin of this subtlety, along with a more complete treatment of
the dispersion relation and related analytic bootstrap techniques, can be found in [12, 14, 15].

4.1 Analytic bootstrap for the free bulk

Let us start applying this machinery to the magnetic impurity (2.4) in a free bulk theory
in d = 4 — ¢ dimensions, a case for which we find certain results exactly in . This is an
interesting result because even when the bulk is interacting, a situation to be considered in
section 4.2, the exact free-theory result captures an infinite subset of diagrams that contribute
to the interacting correlator.

4.1.1 Bootstrap of (¢p¢)

We first study the two-point function of the order parameter ¢. In this case, we know that
the OPE of ¢ contains only the identity and twist-two operators,?? namely

¢ax¢a:1+2u7£7 (4'12)
l

with
€
5"

Because the exact OPE contains only twist-two operators, the discussion around (4.9) applies

Ag = 2A¢ + E’ A¢ =1- (4.13)

here directly. As we argued there, the discontinuity of twist-two operators is proportional to

2In practice, the biggest challenge in applying this reasoning to high order in perturbation theory is the
existence of operators with nearly-degenerate scaling dimension. One then needs to consider the individual
contribution of each of these operators to the OPE, which is generally non-trivial.

22Intuitively, the reason why only twist-two operators appear in free theory is the following: since there are
no interactions, only operators with two ¢’s appear in the OPE, namely ¢ X ¢ ~ ¢0,, ...0,,0"¢. Those are
exactly the double-twist operators. However, because of the equation of motion U¢ = 0, only the n = 0 family
of twist-two operators contributes. More rigorously, one should compute the four-point function of free fields
¢a, and observe that its block expansion contains only twist-two operators.
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their anomalous dimension. Since in free theory twist-two operators do not have anomalous
dimension, the discontinuity only receives a contribution from the identity operator

DiscFy = Disc €8¢ = 2isin(mrAg)(—€) 3¢ . (4.14)

Notice that this equation is correct to all orders €, and not only at leading order. Using the
dispersion relation (4.4), and adding a low-spin ambiguity as in (4.11), we obtain

Fyg(r,w) = £75¢ + low-spin ambiguity . (4.15)

In order to fix the low-spin ambiguity, we can leverage the results of section 3 on what operators
may appear in the defect channel. As we saw there, the equation of motion (¢, = 0 constrains
the dimensions of the defect operators that couple to it. In particular, following [47], from

D(¢a(2)Ob(7)) = 0, (4.16)

we can infer the existence of two families of operators:
o Modes @8,3 ~ (81)° ¢* with s > 0 and Ag, = Ap+s=1—-¢/2+s.

e An operator Se with s = 0 and A = £/2.23 This is precisely the spin operator of
section 3, which is defined by (3.5).

It is a known fact that the defect-channel expansion of the term ¢~ 2¢ contains the (’A)&s
operators [12], but it does not include any operator with the quantum numbers of Se. As a
result, we conclude that the dispersion relation fails to reproduce the contribution for spin
s = 0, and therefore we need to correct all possible s = 0 operators. The result is that
the most general ansatz for the correlator is

F¢¢>(T7 ’UJ) = f_A¢ + klfl—e/Q,O(Tv ’UJ) + kaAa/Q,O(Ta ’LU) s (417)

where the extra terms are the defect blocks associated with the low-spin ambiguities. The
coefficients k; and ko are not arbitrary. The reason is that for arbitrary ki and ko, it is
generically not possible to expand (4.17) in the bulk channel. To be more precise, consider
changing from radial coordinates (r,w) to lightcone coordinates (z, z), defined in (C.4). In
this coordinate system, one can see that the expansion of (4.17) around |1 —z| < [1 - 2| < 1
contains spurious powers (1 — z)"(1 — z)™™ for m > 2, and spurious logarithms log(1 — 2)
which are not accompanied by log(1 — z). These terms are incompatible with an expansion
in terms of bulk-channel conformal blocks, and therefore we must choose the relative size
of k1 and ko to make sure they are absent. After carrying out this procedure, we find
that the free correlator is

Fyp(r,w) = €8¢ +cgaJo(r), (4.18)

where we introduced?*

(1T> . <Li) e mo(r,w) . (4.19)

23More generally, we would find spinning operators with A= £/2 — s, but they break unitarity for s > 0.
24Note that this function does not depend on w because it is a sum of two s = 0 blocks (C.6).
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Let us stress that this correlation function is exact to all orders in €. However, it depends
on one parameter cy2 that cannot be fixed by the bootstrap. Since (4.18) is exact in ¢, it is
possible to investigate the properties of the fixed point in three dimensions by simply setting
e = 1. Even though in (4.19) there are some divergent factors, one can check that J.(r) is
perfectly finite in the ¢ — 1 limit. We are left with two possibilities: either c¢z‘£:1 =0, or
Cep2 ]521 # 0. In the first case, Fy4 is just a free correlator. This is sufficient to show that ¢
satisfies the free-field equations of motion, and therefore all its correlators are those of the
free theory. Instead if c¢2| is a finite non-zero number, we can try to expand the correlator
in the defect channel by taklng r < 1. However, this expansion contains terms with factors
of log r that cannot be reproduced by the defect blocks. Therefore, this correlator does not
obey the defect bootstrap equation. The inevitable conclusion is that in three dimensions
and for a free bulk there is no non-trivial magnetic impurity.

For 0 < ¢ < 1, instead, the function J.(r) is a truncated solution of crossing,?® because
it has sensible bulk and defect expansions on its own, and it involves finitely many transverse
spins (in this case, s = 0 only).

As an interesting exercise, from the full two-point function we can still extract the CFT
data for ¢ < 1 in both OPE channels as a function of cy2. Let us start with the defect
expansion, which from the discussion above takes the form

Fyg(r,w) = bz@moflfs/Q,O(r’ w) + bzgfs/z,o(ﬁ w) + Z bi@O’SfA¢+s,s(T7 w). (4.20)
s=1

Using the formula for conformal blocks (C.6) it is not hard to extract the CFT data

b, =1+ L%) Cp2 b = 7F<%) Cp2 A ) (4.21)
$00,0 VL (g) Gl S ﬁr(z%s) Cal $Oo,s sl :
Similarly, using the formulas for the bulk blocks (C.9) we find the expansion
Fyg(r,w) = 8¢ + 7203 " Ngu 7,07, fon,e0(r, w) . (4.22)
=0

The bulk expansion contains only twist-two operators, as we expect in the bulk-free theory.
Here Ay4 7, are thee-point OPE coefficients of the O(3) model at the free fixed point, which
are known exactly

923 (Ay)
ApoTy = \[ o)t (4.23)
3./0eA+0-1),

As a result, from the block expansion (4.22), we obtain a prediction for all the one-point
functions of twist-two operators:

(1-e) (552), VAT —e 1),

3
ag2 = \/;c¢2 , az, = 5 ag2 - (4.24)
95¢/2 ( £} L—e+1 1—
() (=), 09,

£
2 2

25This is an analog of the solutions of crossing with finite support in spin of [66], which play an important
role in the e-expansion bootstrap for four-point functions [8, 9, 18, 67, 68].
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The particular case ¢ = 2 corresponds to the stress tensor az, ~ (Tw,)pj.26 This has been
conjectured to be positive [12], hence in bulk-free theory we should have a4 > 0.

At the end of the day, we see that the two-point function of ¢ and the CFT data are
entirely fixed by the bootstrap analysis up to an undetermined constant, which corresponds
to the value of the one-point function ay2 of the unit-normalized ¢? operator at the critical
point. We shall compute this to order O(e?®) in equation (5.4) below.

4.1.2 Bootstrap of (¢2¢?)

Let us now calculate the two-point function of ¢?. Once again the bulk OPE is known exactly

PPx P =1+ T+ > Ony, (4.25)
4 n>1 ¢
where
On,f ~ ¢aDnaM1 s 8ug¢a I (426>
with
Ang=20p+2n+0, Ap=2N;=2—c¢. (4.27)

The bulk expansion reads

o0 o0
Fyoge(r,w) = 280 + €722 " Noo rag, fon,re0 + €220 Y cnufinyrorone.  (4.28)
=0 n, =0

In this case the discontinuity receives contributions from the identity and J, operators, but it
kills all of the O,,; operators. To compute the discontinuity of the [J, operators, notice that
although £_2A¢f2A¢+g,g(r, w) has a branch cut, the combination f_A¢f2A¢+g7g(T, w) does not
have a discontinuity, see (C.9). As a result, the discontinuity reads

o0
DiscFy2 42 (r, w) = Disc [5_2A¢} + Z )\¢2¢2\7ZCLJZ€_A¢]62A¢+&Z(T, w)Disc [5—%} . (4.29)
=0
Furthermore, one can check that in free theory Ag2427 = 2A4p7,. Therefore, the sum
that appears in the discontinuity gives the same result as in the (¢¢)p, correlator, up to
a factor of 2. All in all:

Disc g2 (r,w) = Disc[€24¢] + 2¢,0.]. (r)Disc|[¢ 4] . (4.30)

Both terms get mapped to themselves by the dispersion relation (4.4) because they are of
the form £ f(r), and the dispersion relation only involves w. There is an obvious spin s =0
contribution from the defect identity aé2 that is missed by the dispersion relation. In principle
there could be other low-spin ambiguities. Contrary to the previous case, to our knowledge
there are no powerful Ward identities that can constrain the form of the low spin ambiguities
in (¢2¢2>Dj, therefore the conclusion of our bootstrap analysis is

Fyago(r,w) = €728 4 20¢25_A¢ Jo(r) + aiz + low-spin ambiguity . (4.31)

26In the N =4 SYM literature this observable is usually called the Bremsstrahlung function.
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From a diagrammatic computation we shall see that, at next-to-leading order, there is indeed
an extra term which corresponds, in terms of CF'T data, to the contribution of the operator
® and an infinite family of integer twist operators, both with spin s = 0. This means that
the bootstrap result is not complete, but it can still be used to extract defect CFT data
with s > 0. We refer to the discussion around (5.17) for further details on the low spin
contribution and move on to the extraction of the CFT data in the defect. In the defect
channel we find two families of operators

o0

Fppruw) =Y <b20 fa,.. S0 fﬁjn,svs)‘ (4.32)

n,s=0

The first family of operators has the interpretation @n,s ~ (0,)0"¢?, with

Agn =204 +5+2n, (4.33)
s (3 e—1 €\2 £
) 2 (3) 1F(T)(1—§)n(n—§+1)s(n+s—5+2)n
b¢(9 _C¢2 n—
- VAL (5) (4 5)H (3 - 5) (nts =5 +1),

2° (1 B i)n (2 B )2n+s

4.34
nl(n+s)!(n+s—5+1) ° (434)
whereas the second family is jn,s ~ (0,)%0"¢*T,, with
Ajm =1+s+2n, (4.35)
, 25(—4)" (g) 1r(1%€) @n+s)(5), (~n—5+1),,.,

VIl (1= 5) (n+ s))2(e)an (n+ s+ 5),,

Let us stress again that these results are only valid for s > 0 due to low-spin ambiguities.
Notice that the operators jn,s have integer scaling dimension. In particular, the operators
j(), s are related to the higher spin symmetries in the free bulk theory which are broken by the
defect, as we discussed in section 3. Finally, since low s ambiguities potentially contribute to
all data in the bulk OPE, we cannot extract any meaningful observable in that channel.

4.2 Analytic bootstrap for the interacting bulk
4.2.1 Bootstrap of (¢¢)

Let us now assume that the bulk theory is the O(3) model at the Wilson-Fisher fixed point in
d = 4 — ¢ dimensions, restricting to the first non-trivial order in the perturbative expansion
at small e. We want to study the two-point function of the order parameter ¢,, namely

(@n(o)ulw)l, = T (437

The same correlator was computed in presence of a different line defect using the analytic
bootstrap in a series of recent papers [19, 20]. It turns out that the computation in the
present case is very similar. The reason is very simple: we compute the discontinuity by
expanding the two-point function in bulk blocks and evaluating the discontinuity of each
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block. At first order in perturbation theory, the discontinuity of a block is proportional
to the anomalous dimension of the corresponding bulk operator, which is independent of
the defect. Finally, it turns out that in the O(3) model all the operators that appear in
the ¢ x ¢ OPE at order ¢ have vanishing anomalous dimensions, except for one operator.
More precisely, we have the bulk OPE

¢ax¢a—ﬂ+2ﬂ+220ng, (4.38)

n>1 /¢

where, for the leading twist family [10, 69]
Ao =204+ 0+ 5%5&0 LO(2), Ay=1-S40(2), (4.39)
and
ApodT, = )‘ggﬂ + s)\((;(gjé + 52)\((;2% +0(*), a, = af%) + eafyle) +e a\(ﬂ) +0 ( ) . (4.40)
For higher-twist operators, we have
Anp=20g+2n+0+e7) + 0D, Ago,, =Ndo, , +e2200, , +O(%). (4.41)

Therefore only the bulk identity and ¢? operators contribute to the discontinuity. All the
other operators do not contribute at the order we are working because their anomalous
dimension or OPE coefficients are higher order. At the end of the day, the discontinuity reads

. . b
DiscFyg (1, w) = Disc ™ + 2= Q) 2ae fap(r,w) + O(). (4.42)

A comment is in order: the one-point coefficient a2 which appears in the discontinuity
cannot be determined by the bootstrap but, at leading order, coincides with the tree-level
free theory result [27], and in particular it turns out that ag2 ~ €. Therefore the non-trivial
correction to the discontinuity starts at order £2. The discontinuity (4.42) is the same that
was found in [19, 20], up to a different factor in front of the non-trivial term, which depends
on the specific defect through the one-point function coefficient a42. The other coefficient
Apgp2 does not depend on the defect, just like the anomalous dimensions of bulk operators,

and has the value [8, 9, 70]
2 5

In particular, at leading order )\g;) 52 = \/g . The discontinuity and the result of the dispersion
relation can both be evaluated explicitly in terms of special functions. It turns out that
the result of the dispersion relation is

5a(1)

Fpp(r,w) = €50 + 52\/3 1(; H(r,w) + low spin + O(£%) (4.44)

where H(r,w) can be conveniently expressed as

H(r,w) = € (9 — 1 log2) fao(r, w), (4.45)
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where as always f2 (7, w) is a bulk block. This function can also be represented in a variety
of different ways which are better suited for explicit evaluation or the extraction of the
CFT data, for example as a multivariable hypergeometric function. We refer to [19, 20]
for more details on the computation of H(r,w). As in the free bulk case, the result of the
dispersion relation may miss low spin contributions. For example, in the free theory discussed
in the previous section, we had to add by hand a truncated solution to crossing J(7) to the
correlator. Since now we work perturbatively in e, it is convenient to expand this function

Je(r) =1+ glog (117‘7’)2 +0(e?). (4.46)
We expect a similar correction in the present case. Our goal here is to see if we can find more
general truncated solutions to be added to the final interacting correlator. To be able to make
progress we make the simplifying assumption that only the defect twist-one family contributes.
This assumption is motivated by the fact that this is what happens in the free bulk case
(and in a variety of other perturbative setups) and we expect the defect spectrums in the
free and interacting case to be perturbatively close to each other. Provided the assumption
is true, the most general ansatz for the ambiguity is

Sx
Famb(r,w) = (QO + ToaA) Joo + <Q1 + 7“1OA) J10+ > (@41 +761108) forr,s,  (4.47)
s=1

where ¢ and r are arbitrary constants. For any finite s, € N, the conformal blocks in this
sum can be written as polylogarithms using HypExp [71, 72]. For example, the lowest lying
ones take a very simple form:

fgp(?”, w) =1, 8Af070(7“, w) = log ﬁ , fljo(r, w) = tanh~'r, ... (4.48)
Given the ansatz (4.47), one can attempt to expand it in the bulk channel, but generically
this is not possible. The reason can be seen more easily by changing from radial coordinates
(r,w) to lightcone coordinates (z,z), defined in (C.4). In this coordinate system, one can
see that the expansion of (4.47) around |1 — z| < |1 — z| < 1 contains spurious powers
(1 —2)"(1—2)~™ for m > 2, and spurious logarithms log(1 — z) which are not accompanied
by log(1l — 2z). These terms are incompatible with an expansion in terms of bulk-channel
conformal blocks (C.9), since the latter are symmetric in z and z. Therefore, demanding they
vanish puts non-trivial constraints in the ansatz. Although we do not have a general proof, by
experimenting with low values s, < 5, we conclude that the most general truncated solution is

Fym (1, 0) = qo.foo(r,w) + 1o <3Af0,0(7’7 w) — 2f10(r, w)) = qo + 70 log (4.49)

r
(1+7r)2°
Both equation (4.46) and (4.49) suggest the ambiguities of interest are a constant and a
logarithm. At the end of the day the ansatz for the correlator can be expressed as

(1)
2505 r
F, e 2\/>¢ 3
po(r,w) =& ¢ +¢ 311 H(r,w) + qo + 7o log (472 +0(e”). (4.50)

The constants aé}Q),qO,ro cannot be fixed from the bootstrap alone. However, it can be

shown that they are not independent. One can fix r¢ in terms of af;Q) by exploiting the
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analysis on the defect spectrum in section 3. Indeed, the defect expansion has the same
form as in the case of the free bulk

o0
Foglr,w) =B, Faoo o) +826fa_o(rw) + 3 8o fayuas(rw).  (451)
£ ’ s:1 E)

and in particular it contains the spin operator Se. As discussed in section 3, while this
operator has no longer protected dimension if the bulk is not free, one can see from the Ward
identity that the correction to the anomalous dimension starts at order £2. Therefore, the

leading dimension must coincide with the one in the free bulk case. This fixes rg = €4/5-5-.
Finally, one can fix qp in terms of Agg42a42 just by expanding the correlator in the bulk
channel, namely

F(r,w) = &8¢ + cgé 20 fa

o
520 T E2 cufang e (4.52)
=2

¢2
end of the day the correlator and all the CFT data are fixed in terms of a single unknown

By comparing with (4.50) we fix go = Ajpp2a42 + 62\/2(1(1) (% + % log 2). Therefore, at the
one-point function coefficient ay2, more precisely we obtain

)
F(r,w) = £ % + Cy2 (1 + %log 7T)2 +e 1 (1+log2+ H(r,w))) +0(e%), (4.53)

4
(1+7r

where as always cy2 = Ajgp2a42 = \/g(l —e3y) <€a((;2) + 62a((;2)) + O(e3). The CFT data
for the defect spin operator reads

~ 9
Ag=35+ O(g?), (4.54)

2 ) 16
big =cp2 + 52\/;a((;2) (11 + 11 log 2) +0(e?). (4.55)

Notice that from (4.53) we can extract the defect spin dimension up to O(e) because b,¢
is also O(g). However let us stress that the O(g?) for AS is known and we reported it

in (3.12). Moving on to the other operators in the defect channel, we see that for the
operator (’5070 the CFT data is

A 5 [2 10a((;2) 5
AO,O = A¢ +e€ 5711 + 0(6 ) ) (456)
2 31 20
bzéo,o =1- 52\/;a((;2) (11 -1 log 2> + 0(53). (4.57)

Finally, we find a single infinite family of defect operators @0,5 with

(1)
" 29a 5 1
_ 2 [477¢ 3
AO,S—A¢—|—S—|—€\/; 11 S+1/2—|—O(€), (458)
(1)
2 _os (Ag)s 2\/55%2 (HS_HS—1/2 _ 1 ) 3
P40, =2 ( S V3T S22 iipp)TOEN | (489)
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In the bulk channel we have the twist-two operators 7, with

(520 +1)? )

2

)4 042 2041
s (5) 0(%) F(T*)
oz + 6 \f ) (1+10g2) (Hz —Hea +H, y —3H,) ) + O] .
¢ 3 2 = t—3

(4.60)

Cyp =

X

Notice the absence of double-twist operators with twist higher than 2. This is consistent
with the fact that [8, 69] Agp0, , ~ € and ap, , ~ €*. The latter fact follows immediately
by considering tree-level Feynman diagrams.

5 Diagrammatic computation

In this section we will outline the diagrammatic computation for the correlators of the bulk
fields ¢, and ¢? and compare it with the bootstrap results of section 4.

5.1 One-point function (¢?)
5.1.1 Free bulk

We start from the computation of the one-point function of ¢? in the free theory,?” which
was already computed at next-to-leading order in [27]. This observable is not accessible by
our bootstrap analysis and indeed it is the only information needed to completely fix the two
point function of ¢. Since the bulk is free, we have two ways of doing the computation: we
can exploit the Ward identity and write the bulk correlator in terms of an integrated defect
correlator using (3.8), or perform a direct computation of the bulk correlator in terms of

Feynman diagrams. In terms of the defect correlator, we have

2 Se(r )S“(T’)bj
(¢*(0,21))p, = K /dT/dT = Irul I e T (5.1)

At the fixed point, <5'“(7')5'“(7'/)>Dj is given by (3.22). By computing the integrals, we find?®

RN (5 —5)
o eure oT(-35) (5.2)

(¢*(0,21))p,

Here N, 2 1s the normalization of the two-point function, which according to our conventions is

2

(0*(2)9*(0)) = Ne N o (5.3)

o322

2TThe one-point function of ¢ is zero because of symmetry.

28Notice that in the bootstrap computation we have taken the operators to be unit-normalized, as is customary
in the CFT literature. In the diagrammatic calculation it is convenient to use a different normalization, this is
why the one point function here has an extra factor compared to (C.1).
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If we plug in the value of the coupling at the fixed point (2.10) and the normalization
constant Ng (3.23), we obtain®’

725(5 + 1)e logd — 1 2m25(j + 1) + (log4 — 2) log 4
- JVY " 2
ag G te—o— te ]

>+O@ﬂ. (5.4)

We checked that this result can be reproduced from Feynman diagrams.

5.1.2 Interacting bulk

When we add interactions, it is no longer particularly convenient to express the bulk correlator
in terms of a defect one, since the Ward identity (3.1) gets corrected and the relation between
the two correlators becomes more involved. Therefore we will perform the computation
using Feynman diagrams. The diagrams that contribute to the one-point function <¢2>ij
up to order €2 are

(0*(0,21))p; = A + /[s + [\A + \@/ T Ak} T ;L7
(5.5)

where in the last equation it is intended that one should consider also the specular version of
diagrams such as the third and the fifth, and the black point represents the bulk interaction.
The diagrams without bulk interactions were already computed in the free bulk case in [27],
but because of the shift in the critical coupling (2.13), they will give slightly different results
in the interacting case. The only diagram with bulk interactions was computed in [26]. We
refer to these papers for the details of the computation. All in all we find

(4 1)e ( 272

1 181e 6
A A iy T |

— —— + —¢clog?2 3. .
€~ S Tl >+O(E) (5.6)

5.2 Two-point function (¢¢)

5.2.1 Free bulk

Moving on to the two point function of the order parameter ¢ in a free bulk, we can play
the same trick as before and compute it in terms of an integrated defect two-point function.
In particular, using (3.8), we find

<¢a(07$L)¢b(O,yl)>Dj =
<S(l(7_)‘§’b(7—,)>p. (57)

= 2 ! J free free

= fiC /dT dr (7_2 + ‘xJ_‘Q)l_%(T/2 + ‘yJ_P)l_% + <¢a (O,LEJ_) b (O’yL)>'Dj‘

2Qur result for the one-point function at the fixed point differs from the one in equation 2.14 of [27] at
order £2. We believe this is due to the fact that the authors of [27] used the critical coupling at leading order
instead of next-to-leading order, thus missing a contribution of order €2 in the one-point coefficient.
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At the fixed point, using (2.10) and (3.22), we obtain

(¢a(0,21)0p(0,y1))
N ,{CEN / / dr dab Njoas ™2

P2Bs(r2 4 p2) =5 (2 4 1)1 oo |Befyilte

_ N¢ SabFopg(r, w)
|y |Relyy|Ae

(5.8)

where we exploited symmetry to set the first operator at = (0, 2, 2,0, 0, ...) and the other
one at (0,1,0,0,...) and then expressed everything in radial coordinates (C.4) in order to
simplify the computation. The factor £ was defined in (4.2) and N, = y/k. The integral
can be solved in terms of hypergeometric functions and we obtain

F¢¢(r,w) = §_A¢ +

o, (2etan () oms (31 - 13- 507)
3 e—1

_l’_

2
sh (1l 1 e.etl. 2
7T7'2F<§—3> 2 F1 (273,5277’)>
2

= f d’ =+ )\¢¢¢2 CL¢2 Ja( (59)

where the second line was obtained using the expression of the one-point function (5.2),
the three-point function coefficient (4.23) and well known identities for the hypergeometric
function. This result holds for all £ and perfectly matches the bootstrap prediction (4.18),
in particular we notice that the non-trivial integral corresponds to J.(r), the contribution
of spin s = 0 defect operators defined in (4.46).

5.2.2 Interacting bulk

When we add interactions, it is convenient to use Feynman diagrams, since most of the
diagrams have already been evaluated in [19, 20]. At the order we are working, we have

(Pata)p, =  + = Y (5.10)

where again also the contribution from the specular version of the third diagram is implied.

The first two diagrams are the just the free propagator and the square of the one-point function
of ¢%, which is zero. The only non-trivial diagram is the last one, and it was already computed
in [19, 20] in terms of the function H(r,w) that we introduced in (4.45). All in all, we obtain

4r

_ A €
Fog(r,w) =& 70 + Ce2 (1 + 3 log e

+i)i(1+log2+H(r,w))> , (5.11)

where as always cy2 = Apgg2a42, With Ay442 given by (4.43) and a4 by (5.6). This result
perfectly matches the bootstrap prediction (4.53).
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5.3 Two-point function (¢p2?¢?)
5.3.1 Free bulk

The two-point function of ¢? in free theory can once again be computed in terms of defect
correlators, namely

(6262)p, = K21 / dry / drs / drs / dry 1_2 (1)5Hn)3(r2) A )iy —+
: (712 +12) 3 (12 4+ r2) 5 (rg2 1) 3 (g2 1 1)

Sa 7_1 Sb(7_2)> <¢free¢free>,Dj ) )
+2’£C*/d7—1/d7— 7_1 +T2) (7_2 +1) —% +<¢free¢free>7-73
¢ / - (Sa(11)5%(2) Sp(73) 5" (14))
S (T2 + )5 (2 +r2) 5 (32 + 1) 3 (2 4+ 1)1 2

1 -A A
1 [P0 [y |Pe? (5 P 2epg ¢J5(T)) ’ (5.12)

where we suppressed the explicit dependence on the external coordinates of the free fields
o and used the results of the previous section in order to simplify the expression. Contrary
to the previous cases, we can’t simplify the result further without expanding in €. The
reason is that the four-point function of defect operator is not completely fixed by conformal
invariance®? and one cannot do the first integral without knowing its explicit expression. The
four-point function of S at tree-level is just given by traces of the generators 1%, just like
the two point function. However, one should be careful of the order of the positions where
the generators are inserted, which corresponds to step functions. This happens because, as
we said in section 3, the defect spin operator has to be interpreted as a generator inserted

at a specific position in the path ordering. All in all we get

(Sa(1)8(2)Sp(73) 8" (14))D; =

_ 1
2j +1
+ Tr (T.TpToTy) (0135254 + 01545253 + cyclic perm.) | + O(e) =

= 725 + 1) (01525354 + 01535254 + 01545253 + cyclic perm.) +
—J(j +1) (01535254 + 01545253 + cyclic perm.) + O(e)

(Tr (T, T,TyT}) (01525354 + cyclic perm.) +
(5.13)

where we indicated the order of the points using theta functions. When we plug this result
into (5.12) and use the symmetry of the integrand, the term that goes like ~ j2(j + 1)?
reproduces the square of the one-point function. The other term reduces to

2
—/ drt (2 + ) 2+ ) w2+ 1) T (R )T = s W) (5.14)
TL>T3>T2>TY 2T

where W(r) is

1-— 1
W(r) = 2Lis (2’”) ~ Lis(1 = 7) — Lis(—r) + log(r + 1) log (7;) Flog?2.  (5.15)

A A A A NZ
30The four-point function at the conformal fixed point reads (S, (71)Sa(72)S4(73) S (T4))D; = A, 2Ry s—f(2)
P T Ay
12 .34
where f(z) is an arbitrary function of the conformal cross-ratio z = 72734,
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At the end of the day, the two-point function reads
B N(gg Fy2 42 (r,w)

e [A [t

(6°(0,21)¢*(0,y1))p, (5.16)

where

ar ) - it 1)52W(T) +0(?).

_ A 2 A €
Fyogo(r,w) =& 7% + gz + 2c4287? (1 + B log TESE G
(5.17)

Comparing with the bootstrap result (4.31), we see that the two results coincide up to the
term proportional to W (r). Indeed the function W (r) corresponds to a spin s = 0 ambiguity,
in the language of the bootstrap. It has a simple block expansion in the defect channel

W(r) = (2 — 4log2) fro(r) — 20, fro(r) 443 H)(?fg“”' fao(r).  (5.18)
n=2 T2 n—2

Expanding (5.17) in the defect channel we find that the lowest singlet operator, which we
could identify with &, has
Ay =1+e+0(?). (5.19)

This result matches with the expression computed from the beta function (3.35). One can
also extract the bulk CFT data from (5.17) but the results are not particularly illuminating,.
Therefore we do not present them here.

5.3.2 Interacting bulk

In the interacting case, the two-point function of ¢? can only be computed using Feynman
diagrams. At the order we are working, the relevant diagrams are

woaneony = =+ ]+ [+ L+ DX+
+ V + Y : (5.20)

where as before contributions from specular diagrams are implied. The first diagram stands

for corrections to the propagator that come purely from bulk interactions. These have been
computed long ago in the theory without the defect and generate corrections to the dimension
of A4 in the bulk identity term & ~242 We don’t draw them explicitly to avoid cluttering. The
only non-trivial diagram is the fifth, which can be computed in terms of W (r) (5.14). All the
other diagrams were already computed in [20], therefore we only write the final result, namely

_ € +1 +1)e
F¢2¢2(T,’LU):£ A¢2+a352—ﬂ-jéj)W(7a)+ﬂég_;2) 1+610g2
€ 118 1 4r
— [ —— H —or? (i +1) =1 ~log ——— 3y,
+11< o FSH(rw) =20 (5 + 1)~ §) + 5 Og(r+1)2> +O0(e%)
(5.21)

It would be difficult to compute this result using bootstrap methods, since the discontinuity
would receive contributions from all the double-twist operators.
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A Maps among different realizations of the defect

Many different representations of the defect (2.4) have appeared in the condensed matter
and high energy literature. In this appendix we review a few of them, both because we
want to help the interested reader navigate the existing literature and because the different
representations allow to generalize our setup in different directions.

A.1 Coherent state representation

The first representation we review is a representation in terms of a path integral over
constrained bosonic fields, which is commonly known as a coherent state representation in
the condensed matter literature.?! Following [75], one starts by introducing two copies of
bosonic creation and annihilation operators a = (ay, ag),*

@', al) = & (A.1)

that satisfy a constraint on the number operator

ata = 27, (A.2)
and a set of so called coherent states
|2) = 570 |0) . (A.3)
If we define the composite operator
5o =alT%, (A.4)
where 7% are the generators of s0(3) 2 su(2),%* namely T = %-, we see that it satisfies
197, 8% = ieS. (A.5)
and is normalized as
§95% = j(j+1), (A.6)

31See e.g. [73] or [74] for a discussion of coherent path integrals in a condensed matter setting.

32In this section we will not distinguish bare and renormalized operators to avoid cluttering.

330ne can generalize this construction to su(N) by changing the generators and considering many copies of
creation and annhilation operators.
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It is just the defect spin operator defined in section 3. We then define the Hamiltonian

_ S
WV

Using the definitions above, we can rewrite the defect (2.4) as an integral over the overcomplete

H(r) S (7). (A7)

basis |z) as
TrDj Ty ’Pel dr H(r) _ /DZDZD,U <Z| ef dr H(7)+ip(22—2j) |Z> =

) ) | (A.8)
= / DzDEDy 2k (2] ) o H(T) =ity

where we introduced the auxiliary field p to enforce the constraint (A.2) and we used that
for coherent states3*

P e (A.9)

In order to simplify the result we introduce a small parameter § and discretize

. N=2n/6
Pel I HT) = H e HTw) | (A.10)
k=1
then by using
(7| ) = #5720 (A.11)

and rescaling y — du, we obtain

N N N
TrD; = (H dumd22> (H p2iin <Zn+1 ‘eaH(m) e—”‘”zn>> -
m=1 n=1

N N
o [ (T ) 2 i)

m=1

(A.12)
= / DzDzDpel dr(2iju—zi—ipzz+H(z7)) _

= /DZDZ §(z2 — 2j)e) dr(=z+H(=T))

where we require that the z(7) and z(7) obey appropriate boundary condition, e.g. they
vanish at infinity or obey periodic boundary conditions z(27) = z(0) in the circular case. At
the end of the day we see that our defect can be represented by a theory of one dimensional
complex bosons with action

S = / dr (zz - \C/%ZT“qu“) , (A.13)

obeying the constraint zz = 2j.

34We refer to appendix A of [75] for a summary of the properties of coherent states.
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A.2 Dirac monopole representation

Another interesting representation of the defect can be obtained by integrating over a rescaled
spin field in presence of a Dirac monopole [21]. Starting from the previous path integral
representation (A.12), we rescale

z—=jz, (A.14)
and define
n® =zT%, (A.15)
Following [75], we introduce spherical coordinates such that
n® = (sin 0 cos ¢, sin 6 sin ¢, cos )

PR (cos (Z) e, sin (Z)) (A.16)

1
zdz = idx — 15(1 + cos0)d¢o
e®en®dnbdn® = 2sin 0d0de

C

where €% is the Levi-Civita symbol. Notice that n? = 1. Using the explicit expressions

and Stokes’ theorem we see that

E / eendnbdn® = —55 (1 + cos0)do (A.17)
2 D

/dréz’ —515 zdz
§D

- 55513 (z’dx — %(1 + cos 9)dd>>

= Z/ eentdnbdn® + 2mik (A.18)
4Jp

and therefore

i By svsiOAB 5 by e ,
2/dT (0 67 5’)60)81% dn’0-n® 4 2mik

= /dT 1A:0.n° + 27mik

where we introduced a Dirac monopole field Ag which satisfies

6'7 aAﬁ _

an. n®. (A.19)

1
2
The equations above imply that one can rewrite the defect as [21]

. 0747 a a
TrD; = /Dn“5 (nQ — 1) ¢~ J dr 14cdm v (A.20)
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A.3 Fermionic representations

Both (A.12) and (A.20) represent the defect in terms of a path integral over bosonic fields,
however it is also possible to give a fermionic representation [46, 76, 77|. Following [46],
we can write

T2
[Pexp/ d)“T“] =
1 ab
1)

—-eQ 52 o T2 /T 5 i T eiQ
B [m(fz)aub(n) p</ el (T, ( )5ﬂc’<7>)]u“ (A2

where u® are complex Grassmann odd fields and

T2
Q= / drdr'uc(t)uc (') 0 (1 —7') , (A.22)
T1
where 0(7) = (0,)! is the step function. By completing the square we have

/D@/JD@E exp / dr [zﬂébw +i(uy) + &u)} ~ o] TW@Thue _ =0 , (A.23)

where we dropped an overall constant that depends on the determinant of 0.. At the end
of the day we find

¢ T aa
Trpeve I T = (A.24)
52 o

- St og [ DuDGexp [ ar (0,0 - ST+ i + o) )|

Therefore our defect is created by the insertion of fermionic operators at infinity,

u=u=0

(TrDj) = (¢h(—00)p(0)) (A.25)
where the fermions interact according to the action
_ - O Frra
S = / dr (waTq,z) - S (;w) . (A.26)

In this approach, the defect spin operator is the fermion bilinear operator

N —

8% = PT%). (A.27)

Another alternative approach to describe the spin impurity, which generalizes more easily
to so(IN) [78], for odd N, is to introduce N + 1 one-dimensional Majorana spinors o;. At
the level of operators they satisfy

{o',0;} = 26;- , (A.28)

They must also satisfy a projection

N
[[oi=-1. (A.29)
=0
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Using the two equations above, if we define

1
Sup = —52'0@0;,, (A.30)
with a,b = 1,..., N and
1, 1
a_ Zeabeg, _ _ T - A3l
S’ 26 She 42000 (A.31)

it is a trivial exercise to show that in the case of s0(3) they satisfy (A.5) and (A.6) with

j= % Therefore, S® represents a spin—% operator. The spin impurity defect (2.4) is then

equivalent to the path integral with action

1 . ) 1 ) )
S = /dT 101(970’ — &S‘%a == /dT oo 0" — & 1€ o0 b

NG 4 NG
1 L
=7 /dT 0'0,0" + \C/OE 100040% . (A.32)
Explicitly
. -1 ) ) 470 - _abc
TrD: = /Daz ¢'1 ] dr i0t0rott i€ aoeda (A.33)
2
We can integrate out og, rescale the fields and use that ¢ = —i (T“)bc, since o, are in
the vector of s0(3) = su(2)
Te Dy ~ /DO’a eide io‘aaq—oa+% eabcobac¢a
2
_ /Do_a 6ifd7' iaaafa“—i%(Ta)bcabac¢a (A 34)

B /Da“ S [ dr o° (iaTﬁab—i%(TC)a%c)ob

One can prove that the path integral above indeed reduces to the Wilson loop representa-
tion (2.4) of the defect, specialized to j = %, following the same strategy as in the case of
complex spinors. In particular, one can introduce real Grassmann odd fields u® and write

T2
Q= / drdr’uc(t)uc (') 0 (1 = 7') | (A.35)
T1
and
/Do‘zef drlo®0rotviotut]  o[u?(0r) 7 ut _ =0 (A.36)
By plugging the above representation in (A.21) we find
< T aa
TePeve i @1 = (A.37)
52

a . a . ab_~& c\ab a._a
Iog/DU eXp(Z/DdTO' <187(5 Z\/E(T) qbc)ab—f—uaﬂ.

B Details on the computation of the g-function

- Oug(72)0uq (1)

In this appendix we calculate the three-loop beta function for the interacting Wilson line
in the cases of a free and interacting bulk. The method we use was introduced in [54], but
see also [55] for a recent review.
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B.1 Summary of the strategy

Our goal ultimate goal is to express the bare coupling (y in terms of the renormalized coupling
¢, given in the MS scheme by

Co = p/%¢ (1 n a11¢? + a12¢* + ar3¢8 n agaC* + agsCt n as3C8 n O(C8)> ' (B.1)

€ g2 g3

Provided this holds, then we can extract the beta function from the condition that d{y/du =
0, namely
dg

B(C) = P~ —g ¢+ a11¢® + 2a12¢° + 3a13¢" + O(¢?) . (B.2)

As usual, one also finds the relation between lower and higher order poles

3 5 11

2 3
azz = 9 ar, ass = 3 ajq, as3 = 3 a;1ai2 . (B.3)

Our goal in the rest of this appendix is to compute the vertex V(z) at three loops.

In order to determine the coefficients a;; in equation (B.1), we have to demand that
physical observables are finite when expressed in terms of (. As argued in the main text,
a good such observable is the vertex function

_Tr (¢p(x)D;(0,7))
= 00

(B.4)

Note that the field ¢ is inserted away from the defect, which extends over the finite interval
[0, 7]. Since ¢ itself does not get renormalized because it is free, then V(z) is a finite observable,
and requiring this condition will allow us to determine the counterterms a;;.

B.2 Expectation value of defect at three loops

We start with the expectation value of the defect. Since (TrD(7)) exponentiates, it is
convenient to look at its logarithm. Let us first present the final result, and we shall derive
it below:

log (Tr D(7))
J+1)(25+1)

= (2 (al) — ¢! (a2) + ¢ (2(a3) + 2(ad) + (a5)) +....  (B.5)

In this expression, (al)—(a5) are integrals represented diagrammatically in figure 1. The
thick horizontal line represents the defect, and the thin black lines are ¢ propagators. The
integrals are computed in the range [0, 7], time-ordering is implicit, and propagators are
unit normalized. For example

dri dry
(al) = _— = / ol (B.6)
0<T1<T2<T 21
dr drodrg dry
a2) = = _— B.7
(a2) _%_ / (131742)%7¢ (B-1)
0<T1 <T2<T3<T4<T
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S
(al) (a2)
7N N
@ @ N

(a3) (a4) (ab)

Figure 1. One-, two-, and three-loop propagator diagrams.

Although these integrals are not hard to compute, we do not need them because their
contribution will cancel between numerator and denominator in (B.4).

Now let us explain how we derived (B.5). The procedure is tedious, but fortunately it
can be automated with the help of mathematica. The first step is to compute (D(7)) up to
order (§ by doing all possible Wick contractions. Each diagram consists of a product of an
integral and a trace. The traces are of the form Tr Ty, T,, ... T,,, with all indices ay, ..., @
being contracted. These traces can be computed by applying commutation relations (2.6)
repeatedly, a process that we automated with the computer.

Regarding the integrals, we find a large amount of them, many more than the ones shown
in figure 1. However, many of these integrals factorize into products of lower-point integrals.
Let us show an example for the sake of clarity. Consider the following sum of diagrams

R o T L o

We can think of it as the lower diagram “passing through” the upper diagram. Since all

possible orderings of points are accounted for, this sum is equal to the diagram (al) squared.
Each diagram appears twice, so we obtain

[_Q_r:2—%—+2_@_@_+2_@_. (B.8)

Similar expression can be found for other products of diagrams, even when the diagrams being
multiplied are different, or there are several copies of each. The central idea is that a product
of diagrams is equal to the sum of all time-ordered diagrams such that the relative order of
the legs in each subdiagram is preserved. Formulated in this way, this is a combinatorial
problem that can be automated. By factorizing sums of diagrams as in this example, we
observe that the result exponentiates, and we obtain equation (B.5).

B.3 Expectation value of vertex at three loops

We now consider the full vertex V(x). Once again, let us first present the final result, and
we derive it below:
V()
Covri(i+1)
+ (— 2(b6) — 4(b7) — (b8) — (b9) — 2(b10) — 2(b11) — 2(b12) — 2(b13)

= (b1) — (b2)¢2 + ((b3) + 2(b4) + 2(b5)){;

—2(b14) — 4(b15) + 2(2j(j + 1) — 5)(b16) + 4(j(j + 1) — 2)(b17) — 2(b18)
—4(b19) +2(2j(j + 1) = 5)(b20) + (2(j + 1) — T)(b21) )¢ + ... . (B.9)
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|
)
}

)
|
|
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Figure 2. Vertex diagrams up to three loops.

The diagrams (b1)—(b21) are presented in figure 2. In this figure, the cross x represents the
point where the bulk field ¢(x) is connected to the defect. For example, if the bulk field sits
at * = (w,x, ), where x| are directions orthogonal to the defect, then

dr1 d1o d73 d14 dT7
(b5) = —Lem—r— = / ey e (B.10)
(JzL|? 4+ (w—=m2)?)" 2

0<m <T2<T3<T4<T5<T 53

The value of these integrals is important in obtaining the beta function, and we explain
in section B.4 how to calculate them.

Regarding the derivation of equation (B.9), it proceeds as before. First we generate
all Wick contractions that contribute to Tr(¢(xz)D(7)). For each term, we compute the
traces using the commutation relations (2.6), and then factorize the integrals using relations
analogous to (B.8). One observes that the result is proportional to the right-hand side
of (B.9) multiplied by Tr(D(7)) in (B.5). These steps are tedious, but we have automated
them with a computer.

B.4 Integrals

To obtain the beta function, all is left is to extract the divergent part of the integrals in
equation (B.9). For illustration, we compute in detail diagram (b5) in (B.10). We then
explain how the same idea can be generalized and automated to all other diagrams.
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The first observation is that since we are only interested in the divergent part of V(z),
it is convenient to take the ¢(z) insertion to be far away from the defect. More precisely,
if £ = (w,z), then we take |z, | > 7, where 7 is the length of the defect operator D(1).
In this limit, the #, w and 7 dependence drops out:

S dry dro drs dry d
(b5) = lim_ [, (b5) = / ey (B.11)
1|00 0 Ti T3
<T1<Te<T3<TYu<75<T

An important observation is that we can choose to integrate the variables in whichever order
we like. Since 1 does not appear in the integrand, it is convenient to perform its integral first

ey ™ dr T
(b5) = / dTl dTg dT4 dT5/ ﬁ = / % . (B12)

T, T T, T
T1 41 41
0<T1 <T3<T4<T5<T 53 5 53

In the second equality we introduced shorthand notation fz] and we

kT fO<Ti<Tj<--.<Tk<T,
omit dr; for conciseness. The strategy is to continue choosing the simplest variable to integrate

next. For example, since 74 appears only once, it has a simple integral

1
(b5) = // dry —5— 2 c T -1 / [7'5517;32 T T T 2}- (B.13)

T, T
135 ar 753 135

In the right-hand side we used 731 = 751 — 753 to simplify the result. Now we observe an
important point: as we integrate we generate many terms, and each of them requires a
different order of integration to minimize complexity. For the first two terms in (B.13), we
should integrate first 71 and 73, and only then 75. In this way, all integrals are elementary

T T5 T3
/ [75617;32 51 1T§3 ' :/ d7'5/ dT3/ dry {T§17’§3 —TH T 1]
2 0 0 0
2e+1
-
= . B.14
2(e —1)e2(2e + 1) (B-14)

Instead, for the last term in (B.13) it is better to integrate first 7 and 75, and only then 73:

T 7_5+1 (7_ _ 7_3)5—1

2l'(e = 1)I'(e + 2) L2e+1
I'(2e +3) '

(B.15)

The last 73 integral is the so-called Euler integral. By choosing smartly the order of integrations,
we encountered this somewhat harder integral only at the last step. If instead we had chosen
the order of integration poorly, intermediate results would contain hypergeometric functions,
and only at the end we would see the results simplify.

For completeness, the value of the diagram of interest is

1 _20(g)l(e + 2)) Tt (B.16)

(b5) = <252(25 1) [(2e+3) / (e—1)2
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We now can apply the lessons we learned computing diagram (b5) to all other integrals.
To summarize, we first take the limit |z | > 7, which simplifies the form of the integral
significantly. Then we start integrating the variables 7; that appear at most once in the
integrand. This process generates many terms, and for each of them we might need to pick
different orderings to minimize complexity. Sometimes relations of the form 7;; = 7, + 735
are convenient to simplify intermediate expressions. At the end of the day, we encounter
only two integrals that are not elementary:

Hl—/ duu®(t —u)?, Hg—/ du/ dvu®(u —v)°(r —v)°. (B.17)
0 0 0

These integrals might appear in the last integration step, or as a subdiagram of a larger
diagram. Fortunately, these integrals can be evaluated straightforwardly

T+ DT0+1) oy

b B.1
Y T Tator2 (19
:F(a+b+2)F(b+c+2)3F2<b+1va+b+27b+c+2-1>Ta+b+0+2_ (B.19)

(b+ 1)T(a+2b+ctd) b+2,a+2b+c+4

Implementing this algorithm in mathematica we managed to compute all integrals in figure 2
in closed form. The expressions are not particularly illuminating, so we present them in
an ancillary notebook.

B.5 Computation of the g-function

All that is left is to combine all the ingredients. We compute all integrals in figure 2 using
the method of section B.4. We insert these values in equation (B.4) for the vertex V(z).
Demanding the result to be finite, gives the bare coupling in terms of the renormalized one,
the result being presented in (2.8). As an important sanity check, the higher-order poles
satisfy the consistency conditions (B.3). The bare coupling leads to the beta function (2.9).
In the limit of large quantum number j — oo, the beta function agrees with that of [27],
providing another sanity check.

B.6 pB-function in the interacting bulk case

In this section, we extend the previous results to calculate the $({) in the case of an
interacting bulk. We perform this calculation to order A3, where a single Feynman diagram
contributes to the vertex renormalization. The result of this computation was presented
without derivation in [23], while here we explicitly derive it.

At the order we are interested in, most contributions to the beta function come from
diagrams without bulk interaction or from corrections to the bulk propagator. The only
exception is the diagram

PaTly

(B.20)

where we took the length of the defect operator to be one since the integral is homogeneous.
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Let us first compute the symmetry factor of this diagram. It is important to remember
that T, also participates in the trace, as in the definition of the vertex (2.7). One of the three
legs attached to the defect carries a generator T, with the same index as the external field ¢,
whereas the other two legs carry generators Tj, with contracted indices. Of the three possible
channels, in two of them the contracted generators T; are inserted next to each other, and
hence simplify to j(j + 1)T,. The other channel reads T,7, T, = (§(j + 1) — 1)T,. Hence we
obtain an overall contribution (j G+1) - %) T,. Also note that the integral is path-ordered,
but by permutation symmetry we can divide it by 3! and instead compute the unordered
integral. Therefore, the contribution of this diagram to the vertex is

W(z) Ao G5 K

e R (i 5) 1), (B.21)

where the integral is

d+—<y dt

I(x) :/ )L;s /01 ( | - (B.22)

(@) =y + |z —yil?) i+ (¢t —y))?)

For our purposes, it is sufficient to extract the leading contribution in the |z, | — oo limit that
is also divergent in the ¢ — 0 limit. Note that divergencies % only arise for small |y, | and when
y) lies near the interval [0, 1]. Indeed, the only other region where the integrand is unbounded
is when y approaches the external point x, but for any dimension d the integral is finite

ddy Qg1
/ iz 5 (B.23)
lo—y|<i 1T = Y|

where 241 is the volume of the d — 1-dimensional sphere.
Without loss of generality, we can set x| = (%, L,0,.. .), and then pass to cylindrical

coordinates (y”,yj_) — (yH,p,H,...):

00 +oo T 2—¢g . 1—e
I(L) :/ dp/ dy/ df)/dﬂlg £~ (sin) a=r X
0 —00 0 ( 2

2
( :— y||) +p2+ L% — 2chos«9>
! dt
X 0 ( 2—¢
2

, (B.24)
P2+ (t—y))?)

We are interested in the leading term as L — co. As we remarked above, for the purposes of
extracting the divergent part we can consider p and y| to be bounded. Therefore, we have

]—L 1 ) 146 ™ - ) 1—e
(L) ~ 55— [ dp dyy [ dO | dQ_. p*~° (sin6)'" x
L 0 s 0

3

X /1 | o).
0 (P2+(t—yu)2) ’

(B.25)
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where § > 0 is some arbitrarily small parameter. The integrals over dt, d€2;_. and df are
easily performed and one finds

3—¢
1 27T 2 4 146 _ 1— 2
L)~ =7y dp/a dy) p~ % ((1—y)2F1 <§,1— 53~ pi“) >+
2

1 Y2 3
+ y 2F1 (2,1—3;3;—;2>> - (B.26)

Computing this integral in full generality is hard, but since p < § is small, we can simply

—14ce

expand the integrand. The key point is that only powers p give divergent contribu-

tions, since

9
1
/ dpp1Hee = = L 0(eY) (B.27)
0 ce

All in all, only one term contributes to the divergence, and the remaining dp and dy;
integrations are elementary:

3 l—¢ 3
L () 3
I(L) ~ d dy p~ 1% (sgn(1 —yy) + sgn(y
(L) P (3) ST (-3 o p| . duip (sen(1 - y) ()
1 27t
= 3+ 0. (B.28)

Inserting this into (B.21) we finally get

WA (L) 1 MG (. 1
mN_ﬁKg (](J+1)_3> ) (B.29)

which when combined with the free-theory contributions and with the two-loop correction
to the bulk propagator, leads to (2.11).

C Kinematics and conformal blocks

In this appendix we review the structure of correlators in defect CFT, and we provide
the expressions for conformal blocks needed in this work. The literature on defect CFT
kinematics is extense, for more details see e.g. [63, 79-81].

The simplest correlators in presence of a defect are the one-point function of bulk
operators, and the bulk-defect two-point functions. For the case when both operators are
scalars they read [63]

o)y = 0 Y _ boo
O, =g g OWOWIe, = e e )R “u

where A and A are the conformal dimensions of bulk and defect operators respectively, and
ap and b, are constants. Collectively, they are known as the defect CFT data. Similar
expressions exist when either O or O are spinning operators, and we follow the conventions
of the appendix of [20].
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The main observable we are interested in is the two-point function of bulk operators,
which has the form [63]

. _ Fyyl(z,2)
(o( )¢(y)>D] = ‘ﬂfL‘AHyL’Ad” (C.2)

where z and z are lightcone coordinates that parametrize the hyperplane orthogonal to the
defect. They are related to the external points in the following way

1-21-7) (@-y)? 247wy
=T Tl e el (©:3)

The combination we called £ appears often in equations, and it is convenient to give it a

name. One can also introduce radial coordinates r and w, defined by

”
= z = —. 4
zZ = rw, = (C.4)

The two-point function can be expanded in the defect channel OPE as

Fyp(r,w) Zb AA (r,w), (C.5)

where the sum runs over defect operators labeled by their dimensions A and (transverse)
spins s. The coefficients bé 5 are the bulk to defect couplings introduced above and f A (mw)
are the defect conformal blocks, defined as®®

fA,s(T’ w) = A o F (A, g,A +1-— 12)’73) (2w) 2 Fy (—s, LQP -1,2 - sz —s w2>
(C.6)
where p is the dimension of the defect (p = 1 in our case) and d is the dimension of the bulk.
Alternatively, the correlator can be expanded as a combination of bulk blocks corresponding
to the operators that appear in the bulk OPE. They are labeled by conformal dimensions
A and spins /.

Fyp(r,w) = €293 Npgoao falr,w) (C.7)
0

Here the coefficients are the product of one-point functions and three-point functions of bulk
operators. The latter are unaffected by the defect and thus can be computed in the theory
without the defect. The bulk blocks fa ¢(r,w) are not known in a closed form, but can be
expressed as a sum of Harish-Chandra functions [82]

T(¢+d-2)T (_g_%) <€+d p- 1)F(Tg)
2tr (€+%) I'(—0) <e+d 1) (1 g_p> A2 d—e(T W)
(C.8)

Faulr,w) =27 FR7 (rw) +

35The normalization of our blocks differs by a factor of 27* from [20], which accounts for the fact that our
block expansion is ) bé@fé’s\here =3 2_Sb?9@fA’5|therf‘ Similarly, the bulk blocks in (C.8) differ by a factor
of 27 since Y A0,0,000 fa t|nere = Y 27 A0, 0,000 fa,¢lthere. However, the meaning of the CFT data is
always the same in both cases.
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where ff? (r,w) can be expressed as a double infinite sum

HS S r\]°E gm-n (S5
_ _ 0 _ _ 2 n—m
fA,E(r,w)—ZOX%{(l rw)(l w)] B (A, )y (1—2,1 A)n!m! (u_;>
m=0n= 2 2)n—m
X F(—n -m L u—g+1'—ﬁ+1—n A—M—m A_g—d—i-g‘l)
4173 y a27 2 2 ) 2 ) 2 ) 9 2 2a
(1—7“2)Z_2m2F1<A2+€—m—}—n,A;_g—m—|—n,A—|—€—2(m—n),1—r2>,
(C.9)
where
A_ 1 A _p A+l
s 273,68, (), .10

(a-5+1), (%5 +3),

An important feature of the bulk blocks is their analytic structure in the variable w. Since

At B
W) Po=¢ ¥, for generic A they have a branch cut

between w = 0 and w = r. This feature, together with the convergence of the bulk OPE

they are proportional to (

around w = r, allows us to evaluate the discontinuity of the two-point function as

DiscF(r,w) = Z)\¢¢oaoDisc {§7A¢fA7@(r, w)} . (C.11)
@

D Other perturbative computations

In this appendix we explicitly evaluate some observables in perturbation theory via Feynman
diagrams.

D.1 Two-point function of defect spin operators

Here we compute the two loops contribution to the two-point function <§a(T1)Sb(TQ)>Dj.
Similarly to what has been done at one loop in 3.1.1, we need to compute connected diagrams.
To get them, at two loops we will not only need to subtract the order zero connected
contribution times pieces of two-loops bubble, but also the order one connected contributions

times pieces of one-loop bubbles. We illustrate this with an example

LA, - A, - . % bubbles® +
LD o bubbles®W = (1) LOAD

where the last diagram denotes just a kinematical integral stripped of the color factor. At

(D.1)

the end of this procedure, what we are left is the following

16(2)(71,72):ng2):j(j+1)<i;o= b LN 9 LN
+2=Cm + Qﬁ+=cm + @ +
TSN N4 .\ W 47, SR W A W W

+2QOL).

(D.2)
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This sum of kinematical terms can be reorganized and further simplified since an exponen-
tiation of the previous orders occurs. Indeed we have

10(2)(71’72):j(j+1)< £\ w@)zﬂ(jﬁul)(@o:Jr

2

=

Moreover, one can note that specular diagrams yield the same contribution. Hence one is left
with the evaluation of only five diagrams. The integrals are not difficult and the result is

—1—2¢ 1 o
@o::(é‘f;—l_7—2‘25@.2 F<2 €>F(E Y

3 V(e —1)e
B - Oab 1 I'(e — 1)I'(—2¢)
LNy - myf? 3'<2(€_1)€2(2€_1)_ T(2—¢) )’
_ 5 5ab F(E — 1)F(_2€)
LLAA =G - <_2(€ —122 T T(2—¢) ) ’ (D.4)

1 21-2¢, /el (e)

+
0, r(i+
W N WPTRR 7S o )

3 2(e — 1)2 &2

LD (- (—r<l+e>2+F<l+2€>>.

3 (e—1)2e2T1(1 4 2¢)

Substituting these into (D.3) gives the two loops contribution to the bare two-point function,
which can then be used to compute the renormalized one.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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