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breaks down as the zero modes delocalize.
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1 Introduction

Axions — scalar fields with compact field spaces — were originally proposed to solve the
strong CP problem [1-4], but have since become ubiquitous in high-energy physics. They
have been postulated to serve many roles in beyond the Standard Model physics: to be dark
matter [5-7]; to be the inflaton that generates exponential expansion in the early universe [8];
to give rise to matter/antimatter asymmetry [9]; and many others. Axions are also a generic
prediction in string theory, where they arise copiously as the zero modes of higher-form fields
as a result of the non-trivial topology of the compactified extra dimensions [10-14].

One particularly interesting aspect of axion phenomenology is their connection to topolog-
ical defects such as monopoles and strings. These connections are interesting theoretically, as
they can provide mechanisms for generating the axion mass in Abelian gauge theories [15, 16].
They can also be important phenomenologically: in post-inflationary axion models, for
instance, the axion abundance is determined by radiation from a network of cosmic axion
strings [17-33]. Other recent work on potential signatures of axion string networks can
be found in [34, 35].

Recently, there has been renewed interest in the fact that axion strings can be supercon-
ducting: they support charged zero modes localized to the string core, which lead to a current
on the string proportional to an applied electric field. That axion strings are superconducting
has been understood for many years, as it is intimately related to the phenomenon of anomaly



inflow elucidated by Callan and Harvey [36], which we will review in what follows. A great
deal of the physics of anomaly inflow and axion strings was worked out in subsequent years:
see [37—45] for a collection of early and important works on the subject. The contemporary
interest in axion string superconductivity is in part due to the realization that these strings
could interact with a primordial magnetic field, leading to striking signatures due to the
formation of vortons [46, 47] or bound states [48].

The existence of the charged zero modes is often explained in the context of simple
models with a classical PQ symmetry. In these models, the fermions acquire mass from the
vacuum expectation value of the radial mode of the scalar field whose phase is the axion.
In classical string configurations, the vacuum expectation value goes to zero at the core of
the string solution and intuition strongly suggests that massless modes will exist in a region
localized at the string core. An analogous argument successfully explains the existence of
zero modes on domain walls, as we will review.

While this simple picture is intuitive, for axion strings, it is clearly incomplete. For
one, it pays no heed to the crucial fact that the zero modes on axion strings are chiral—a
property which distinguishes them from zero modes on e.g., Witten strings [49]. Moreover,
in more complicated models (for instance, the DFSZ axion [50, 51]), there can exist string
configurations in which the vacuum expectation value of the scalar does not vanish at the string
core [52]. Despite this, there are arguments that these strings can be superconducting as well.

This picture is also related to another puzzle. What happens to the zero mode when this
classical PQ symmetry is badly and explicitly broken? For instance, if the fermions have a
very large mass m, we should have no trouble completely integrating them out and the axion
string should be blind to their existence. In this case, there is no anomaly to inflow, and so
these zero modes should not exist in the limit m — oco. In contrast, since they are chiral we
still expect them to exist for small but non-zero m. So, there must be some critical value of the
mass m at which they cease to exist. What happens to the zero modes near this critical mass?

The goal of this paper is to shed some light on these puzzles. We will do so by studying
a simple model of axion electrodynamics in which the classical PQ symmetry is explicitly
broken by a Dirac mass m for the fermion. We demonstrate explicitly that there exist zero
mode solutions to the equations of motion in the axion string background, and numerically
solve for their profile. We find that when the Dirac mass is roughly equal in size to the
mass p induced by the scalar field which spontaneously breaks the PQ symmetry, the profile
functions change dramatically: the zero mode becomes completely delocalized from the string
and onto a semi-infinite wedge. We also revisit the anomaly inflow story in the presence of
the bulk mass term, clarifying the topological origin of the zero modes even in the absence
of a “classical” PQ symmetry. Finally, we derive the low-energy two-dimensional effective
theory for the zero mode and calculate the leading higher-derivative interactions with the
bulk gauge field. As one would expect, we show that this effective theory completely breaks
down as m — p. While this simple model is not relevant phenomenologically, our hope
is that this work can be applied to more realistic models, with potential astrophysical or
cosmological effects that can be studied in future work.

It is worth emphasizing that these considerations are entirely distinct from situations in
which the zero modes localized on cosmic (non-axionic) strings can acquire mass from the



pairing of left- and right-moving modes [53], which can be induced e.g., by finite temperature
effects [54]. The mass term we introduce is for the “full” theory of fermions propagating
in four-dimensional spacetime. The zero modes localized to the string remain massless on
topological grounds, as in the original example [36]. The zero modes we discuss are also
distinct from those found in the background of “Z-strings” [55-59]. These string configurations
are not topologically stable and there is no mechanism that protects the zero modes from
pairing up and acquiring a mass [60, 61].

Outline. The rest of this paper is structured as follows. In section 2, we review the axion
string solution in the usual case, with a global PQ symmetry, and solve for the massless zero
modes explicitly. In section 3, we break the PQ symmetry with a Dirac mass and demonstrate
that the zero modes still exist. We discuss how this can be understood by analogy to the
existence of zero modes on domain walls in 2 + 1 dimensions, present numerical results for
the profile of these zero modes on the string, and discuss the behavior in the “critical” mass
case. In section 4, we recap the original anomaly inflow story, with appropriate modifications
to account for the mass term. Finally, in section 5, we derive the low-energy theory of
the zero modes on the string, and discuss how it is impacted by the Dirac mass term. We
conclude in section 6. Two appendices provide more details on the numerical techniques
used to solve for the zero modes using Chebyshev interpolation, and on the derivation of
the low-energy effective action.

2 Axion strings

In this section, we will review the original ultraviolet completion of an axion string studied
by Callan and Harvey [36], with Lagrangian

L= —iFWF’“’ + Pil + |9, 02 + y (D1 +i7° B2 ) v — V(D). (2.1)

This theory lives in four-dimensional Minkowski space My and consists of an abelian gauge
field A, with field strength F),, = 0,4, — 0,A,, an uncharged complex scalar field ® =
Py + Py = f(x)e®) with potential

V(@) =A(laP o) (2.2)

and a single charged Dirac fermion ¢, which chirally couples to ® with strength y. We use
D, = 0, —ieA, to denote the gauge covariant derivative, where D= yD,, and v* are
the standard Dirac gamma matrices with {7*, 7"} = 2n*¥ and 7° = i7°y'y2+3. This theory
enjoys a U(1)pq global symmetry, commonly called the Peccei-Quinn symmetry, under which

the complex scalar and fermion transforms as ® — ¢’*® and ¢ — e v’/ 24, respectively.

2.1 The axion string

The potential (2.2) forces the scalar ® to acquire a vacuum expectation value (®) = v. It
also allows for the existence of static axionic string configurations,

O, (z) = f(r)e™?, (2.3)



characterized by an integer topological charge n € Z. We work in standard cylindrical
coordinates (z,y, z) = (r cos ¢, rsin ¢, z), with the string oriented along the z-axis. In these
configurations, the phase of the complex scalar field, i.e. the “axion” #(x) = arg ®(x), winds
n times around its field space 6 ~ 6 + 27 as we move around the string. Said differently,

1
= — 2.4
n 27T7£d9, (2.4)

where 7 is a closed contour that encircles the string at » = 0. The “radial profile” of this string

is determined by the real function f(r). Far from the string, the potential (2.2) forces the

scalar to sit in the minimum of its potential and so f(r) — v as r — oo. Likewise, regularity

of the solution forces f(r) to vanish in the core of the string: f(r) — 0 as  — 0. These

solutions are also called “global vortices” in the literature, since they are vortex solutions

that are charged under the global U(1)pq symmetry, as opposed to a gauge symmetry.
The tension of an axion string with charge n is given by

2 2
Tn:27r/0Ld7"r l(ii) +77:L2f2+)\(f2—v2)2] : (2.5)

Since f(r) — v as r — oo, the tension diverges logarithmically with the size of the system
or IR cutoff L,

L
T, ~ 2mv*n?log ( ) , L — 0. (2.6)

Tcore
Here, we have introduced the “size” of the string rcore, which is of order reore = (\f)\v)_l. This
IR divergent total energy is common for global strings and is typically regulated by either
placing the theory in a box or by positing that there is another string of opposite charge a

distance L away, as is often the case in, e.g. cosmological simulations of axion string networks.
Minimizing the tension yields the equation of motion

n2
1d( df)_[ﬂ+2)\(f2_q;2)]f:0, (2.7)

rdr Tdr

In general, this equation cannot be solved analytically but is amenable to numerics. We
will restrict our attention throughout to strings of charge n = +1. An asymptotic analysis
of (2.7) shows that the radial profile f(r) behaves as

U01<\/X’UT’>+"' r—0
f(r) ~ : (2.8)
' 0(1_4)\;[27«2>+'” T — 00

with C7 an overall constant that can be analytically determined by matching the two solutions
in an intermediate region, or by numerics. It is clear from the behavior as r — oo that the
string solution varies over length scales rcore = (ﬁv)_l. We may then use the techniques
outlined in appendix A to numerically search for the solution which varies over scales set
by rcore With the correct asymptotics (2.8). We show this profile in figure 1.
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Figure 1. The radial profile f(r) [blue], in units of v, for the axion string of charge +1 and
corresponding (non-normalized) zero mode profile F(r) | ] with y = V.

2.2 Fermionic zero modes

We are interested in the low energy dynamics of (2.1) in the background of the axion string.
Absent the string, the fermion acquires a Dirac mass pu = yv — which we call the “Yukawa
mass” since it arises from the spontaneous breaking of the U(1)p, symmetry — and so the
low-energy theory only contains the massless axion and the abelian gauge field. One might
think that the low-energy theory in the presence of the axionic string is similar; far from
the string, the fermions again get a mass p and the low-energy theory should be unchanged.
However, as argued in [36] this reasoning is incomplete: there are instead massless chiral zero
modes which are localized to the string. In this section, we will review the direct construction
of these zero modes. A common intuitive explanation is that these massless modes exist
because the radially-dependent “mass” of the bulk fermions yf(p) vanishes in the core of the
string. However, we argue in section 3 that this is not a necessary condition, while in the
section 4 we discuss why these modes are necessary from the perspective of anomaly inflow.

In the presence of the string of charge n = +1 and no background gauge field, the
fermions obey the equation of motion

(i + yf(r)e*?)p = 0. (2.9)
For simplicity, we will restrict to solutions of the form
(@) = P(r, ) e P, (2.10)

where (7, ¢) = Y (r, @) is a four-component spinor function with o =0, ..., 3. This ansatz
describes solutions that travel in the (-z)-direction at the speed of light. In the Weyl



representation, (2.9) reduces to the set of coupled equations

0= 2pihn + 7% (yf (r) o + 0 + 1 Dptis )
0= yf (e + % (103 — 770,02

0= yf(r)e @y, — e (z’@ﬂm + r‘la@zpl)

0= 2pyn + €™ (yf (r) s — 10,50 + 1" Oti0)

(2.11)

Such solutions should have definite helicity, and so we may set 11 = 12 = 0. We then
see that ¥y = 1o(r) and 3 = 13(r) are purely radial functions that satisfy the coupled
system of equations

= r)o + 0,
yf( )¢0 ' 7"‘/}3' (2‘12)
=y f(r)ys — 0o
These equations can be easily solved to find two solutions of the form
P00
() = ( g >e-w<t+Z>F(r) : (2.13)
2\ 5
where F'(r) = +yf(r)F(r) or
.
F(r) = Aexp (:I:y/ dr’f(r')) , (2.14)
0
with A an overall constant of integration. For this solution to be appropriately normalizable,
[ e vl@)y (@) = 22plop 1), (215)
or specifically
oo
27r/ drrF%(r) =1, (2.16)
0

so we must select the negative sign in (2.14). We thus find that the axion string with
charge +1 supports a chiral fermionic zero mode that travels at the speed of light in the
(-z)-direction, with form

x) = A\/§<éi>eip(t+z exp< / dr’ f(r > (2.17)

If we were to repeat this analysis with the charge —1 axion string, then it would support a
normalizable chiral zero mode that instead travels at the speed of light in the (42z)-direction,

./4\/7<_1) “iplt=2 exp( /dr f(r ) (2.18)

In figure 1, we show the radial profile F(r) for y = v/A. These zero modes are localized in
a region about the string of size T,y = Tcore/y-



Before we move on, it will be useful to understand why the presence of the axion string
permits these normalizable modes to exist, solely from the perspective of the differential
equations. We will see that, contrary to naive expectation, it is not because the fermion is
“massless” in the core of the string. With (2.10), we can decouple the equations in (2.12)
to find two copies of the second order equation

2 f(r) d

o2 fo v I0|Fr) =0, (2.19)

with g(r) = F(r) and ¢3(r) = —iF(r). As is clear from figure 1, the function f(r) is
smooth and non-singular for all € (0,00). This implies that the solutions to (2.19) are
regular everywhere, except possibly as r — 0 and r — oo, which are regular and irregular
singular points, respectively. A normalizable solution must be regular at both of these points
and generally fails to exist because the solution that is regular about one singularity is
not regular about the other.

Using the asymptotics (2.8) of the background f(r), far from the string (2.19) reduces to

d2
[ _uQ_‘_...

32 F(r)=0, (2.20)

which has solutions that behave as
F(ry=C_F (r)+C,F,(r)~C_e" 4+ C_e", r—oo, (2.21)

where we have defined two linearly-independent solutions F4(r) with definite scaling as
r — 00. In this limit, the fermion zero modes do not “see” the string, but merely feel their
acquired mass . = yv. However, near the core of the string, (2.19) instead reduces to

[& 1d

- = | F(r)=0. 2.22
dr?2  rdr + 1 (r) (222)
As we move towards the core of string r — 0, there is a balance between the first and second
terms in (2.19), the latter of which only appears due to the existence of the string. The third

term, due to the Yukawa interaction, can be neglected. Solutions then behave as
F(r) = CiF\(r) 4+ CoFy(r) ~ C1 + Cor?, 7 =0, (2.23)

where we have again identified two solutions F} 2(r) which have definite scaling as r — 0.
Importantly, both of these solutions are regular near the origin.

We can understand why the axion string allows a normalizable zero mode to exist
as follows. Since (2.19) is a second-order differential equation, it has only two linearly-
independent solutions. Above, we found that a general solution can either be expressed as
a linear combination of F 2(r) or F'y(r). Since these two sets of solutions are not linearly
independent, there always exists a linear map between them. For a solution to be normalizable,
it must decay as r — oo and so we must have that C'. = 0; therefore we must be able to
write this solution as F'(r) = C_F_ = C_1Fi(r) + C_2F»(r). It is often the case that only
one of the solutions Fy(r) or Fy(r) is well-behaved at the origin » = 0 and, unless there



is some special structure that ensures it, the solution that is well-behaved as r — oo will
not be well-behaved as r — 0. Fortunately, the presence of the string ensures that both
linearly-independent solutions are regular as r — 0. Since f(r) is a smooth function, we are
also guaranteed that the solutions are regular for positive r. Consequently, a normalizable
solution to (2.19) exists, regardless of its exact form.

An analogous situation occurs for the unbound states of the quantum mechanical hydrogen
atom, whose radial modes obey

[1d(2d)+w_(j_Ew(7«)_o. (2.24)

S 2r2dr " dr 272

Due to the centrifugal barrier, solutions behave as 1(r) ~ C17r¢ + Cor= "+ as + — 0 and
P(r) ~ C e V2Er 4 C'Jremr as r — oo. Bound states, £ < 0, have a discrete spectrum
because it is impossible to simultaneously impose that the wavefunction be both regular
at the origin and exponentially decay at spatial infinity, except at a discrete set of energy
eigenvalues. For all other energies, solutions with C, = 0 necessarily have Cs # 0. For
unbound states, E > 0, there is no restriction on the behavior as r — oo, and so there exists
a continuum of regular solutions with Cy = 0, for all positive energies.

Having reviewed how axion strings, and their associated fermionic zero modes, arise in
the Callan-Harvey model (2.1), we are now in a position to understand how these zero modes
behave as we deform (2.1). In the next section, we will study what happens to these zero
modes in the presence of a Dirac mass m for the four-dimensional fermion. Even though
the four-dimensional fermion is everywhere massive, these fermionic zero modes still exist
as long as |m| < p. Furthermore, we argue that there is an interesting “phase structure” in
which the zero modes become increasingly unbound from the string as |m| — p, eventually
disappearing for |m| > u.

3 Adding a mass

In the previous section, we reviewed how fermionic zero modes could arise along an axion
string in the context of a simple toy model. In that specific UV completion, the axion string
is a solitonic object in which the U(1)pq symmetry that is spontaneously broken far from the
string is restored at the core. This causes the four-dimensional fermion to see effectively zero
mass near the core, and a popular refrain is that this why we should expect to see massless
fermionic zero modes localized on the string. The goal of this section is to explain why this
is not a necessary condition and see that fermionic zero modes can arise even in theories
where bulk four-dimensional fermions have a nowhere vanishing mass.

We will deform (2.1) by adding a mass m to the Dirac fermion 1,

. _iFWFW DD — )+ (0,8 + i (B1+ i B2) 6 - V(@) (31)

again with V(@) = A\(|]®|? — v?). We restrict to the case where the amplitude of 1 is small.
This theory permits the same axion string solution (2.3) as before. However, the fermion
now obeys a modified equation,

(u? — M(r, Lp)e”%‘(”p))zﬂ =0, (3.2)



where M(r, gp)e”so‘(”"p) =m — yf(r)e”s@ or, explicitly,

M(r, o) = \/(m —yf(r) cosg0)2 +y2f2(r)sin? ¢

‘ m—yf(r)e ™\ (3.3)
) = g on (1)) = it " 2O

In this case, the fermion mass M (r, ¢) no longer goes to zero at the core of the string even
though f(r) — 0, but instead approaches the “core mass” M (r = 0,¢) = m. Even so, we
will still find that this string supports fermionic zero modes as long as this core mass is
less than the Yukawa mass, |m| < pu.

To find these zero modes, we again restrict to axion strings with charge +1 and search
for zero modes of the form (2.10). The mass deformation ma) explicitly breaks the chiral
symmetry or, analogously, the continuous axion shift symmetry ¢ — ¢ + «, and thus changes
the form of the axion string solution. However, classically this potential is controlled by
fermion’s number density 1%, and in the limit of small amplitude — or, quantum mechani-
cally, small occupation numbers — this effect is subleading and can be ignored. Similarly,
we will not consider the electromagnetic field generated by the charged fermion, setting the
vector potential A, = 0, as this effect is also subleading in the limit of small amplitudes.

It is worth noting that integrating out the fermion generates a potential for the scalar that
depends on ¢. The leading Coleman-Weinberg estimate oc M*(r, ¢) log(M (r, ) /1) [62, 63]
is minimized along ¢ = 0 and leads to a domain wall for the axion that emanates off the
string and extends in this direction. In what follows, we are explicitly assuming that this
contribution is fine-tuned away, though we will see that there is a remnant of the axion
domain wall in the orientation of the zero mode profiles.

By Lorentz symmetry, we can set ¥1(r,p) = 1a(r,¢) = 0 since the modes we are
searching for propagate in the (—z)-direction at the speed of light, and so in the Weyl
representation (3.2) reduces to

0 = —mf + ¢ (yf (r) o + i0rtbs + 17 Dpuis)

| . (3.4)
0= —map3 +e'¥ (yf(T)U}s —i0p1bo + 1;18501/)0)

We can solve (3.4) numerically using Chebyshev interpolation, whose details we describe
in appendix A. The resulting profile functions are shown in figure 2 for various values of
m/p. In the plot, we see the normalized zero mode as a function of dimensionless z and y
variables, with a white dot corresponding to the location of the origin and hence the axion
string. Surprisingly, we find that this zero mode becomes less localized to the string the
larger the core mass m is. For large m < p, it is no longer centered at the core of the axion
string and instead stretches out along the positive z-axis. This direction is determined by
the orientation of the string and specifically the axis along which ¢ = 0, corresponding to
the minimum of M(r,p). As m — p, we find that there is a sort of phase transition in
which case the zero mode completely delocalizes onto a two-dimensional wedge. Finally,
the mode completely disappears for m > pu.

To better understand the counterintuitive results shown in figure 2, in section 3.1 we
first solve (3.4) by treating m as a small perturbation. As in section 2.2, we will see that



Figure 2. The profile functions of the zero mode wavefunction |¢y(r, ¢)| in the presence of a Dirac
core mass m and normalized according to (2.15), for various values of m/u and VX = y = /0.1,
with contours in units of \/wp. The other component satisfies ¥3(r, ) = —itho(r, —¢) and is thus
identical in structure. The white dot denotes the origin of the string, r = 0. As m — pu, the zero
mode profiles spread out and become unbound from the string — note the difference in scales of the
contours between the two rows. For m > p, these zero modes cease to exist. Qualitatively similar
results apply when v\ # y.

it is the presence of the axion string, and not a vanishing mass at the core, which allows
for this zero mode to exist. In section 3.2, we describe a simple analog of this mechanism
for Dirac fermions in the three-dimensional half-space Ri’l. In section 3.3, we analyze the
zero mode for the critical case m = p.

3.1 The small mass limit

In this section, we will argue that a normalizable zero mode solution to (3.4) exists in the
small Dirac mass limit by analyzing the structure of (3.4) when m < u. Expanding each
spinor into Fourier modes,

wa(ﬁ CP) = Z waj(?,.)ei&p s (3'5)

LeZ

,10,



the zero mode equation (3.4) reduces to an infinite set of coupled equations

0= —mtbo 1 + yf(r)toe + i0ptpg o + ilr ahg

, o (3.6)
0= —my3 o1 +yf(r)Pse —10:Poe +ilr oy

When m = 0, the length scale over which the zero mode varies is set by the Yukawa mass
i = yv, which dominates the system of equations (3.6) as r — co. The mass m will also be
relevant as r — 0o, and so our perturbative expansion will be in powers of m/pu.

We will thus search for solutions of the form

6@ = 2 [(8) 0+ st e, (3.7)

and work to first order in 6¢) = O(m/u). In this limit, (3.6) reduces to two identical sets
of differential equations,

(=3 e - v ()
(i« i) (r) = yf(G(r) — mF(r) |

where (G, H) = (8v0,1,-10v31) or (G, H) = (03,1, -01.-1). All other equations in (3.6)
are trivially satisfied by setting the other 61, ¢(r) = 0. The function G(r) satisfies the
inhomogeneous equation

[d2_ ffir)d ()

2 )y ar i)

- nyQ(T)] G(r) = —myf(r)F(r), (3.9)

which can be solved using solutions to the homogeneous equation (with m = 0) via variation
of parameters [64]. These homogeneous solutions will determine how the inhomogeneous
solution behaves, and so it will be helpful to understand their asymptotic behavior.

Far from the string, at r — 0o, the homogeneous equation reduces to

d2 )
ldr?_ﬂ +---]G(r):0, (3.10)

in which case the general solution behaves as
G(r)=C_.G_(r)+C,G.(r)~C_e" +Ce!, r—oo, (3.11)

where we have again introduced the two linearly-independent solutions G4 (r) with definite
scaling as r — oo. We will choose their normalization such that the Wronskian is

W(r)=2yf(r). (3.12)
Likewise, as » — 0, the homogeneous equation simplifies to

2 1d 1
- 4. . 1
dr2  rdr 2 Gr) =0 (3.13)

— 11 —



As before, the presence of the axion string introduces a regular singularity at » = 0, and
solutions take the form

oo
=Cyy Z apr* 4 Cop > bprF T logr (3.14)
k=0
Crucially, both of the linearly-independent homogeneous solutions are regular as r — 0,
regardless of the overall coefficients C ; or C 2. The most general solution to (3.9) that
decays as r — oo is

Glr) = %mC,G,(r) + %m G.(r) / Car PG () 4+ %m G_(r) /0 " PG (), (3.15)

for arbitrary values of C_. Since F'(r) and G_(r) both decay as e ", while G, (1) grows as e*",

all three terms in (3.15) decay as e #" as r — oo. Likewise, both F'(r) and the homogeneous

solutions G4 (r) are regular as r — 0, and thus so is (3.15). This solution is thus normalizable.
Given a solution for G(r), we can solve for the other profile function H(r) via

1 d 1
1) = s (dT - T)G(r). (3.16)

This equation should cause some alarm: since f(r) o< v Avr diverges as r — 0, we might

worry that H(r) is not regular as r — 0 even though G(r) is. However, the free coefficient
C_ in (3.15) can generally be chosen to yield a normalizable H(r). Writing (3.16) as

H(r)= 2y?(?”) [C_Tci“(Gr(TU T ( ) / e (3.17)

4 ( )/d F(r )+rdT< )/drF NG (r )]

the combinations

d o0 oo
L (Gi(r)> =Ci Z afkrt + Cy Z bE(1 + klogr)r®, (3.18)
T k=0 k=0

are crucially regular as r — 0, approaching a constant bg. Furthermore, since each of the
integrals in the second line of (3.17) decay as oc r?logr as r — 0, each of those terms vanish
as 7 — 0 and thus do not generate a non-normalizable contribution to H(r).

In contrast, the terms in the first line are dangerous: they can contain a constant piece
which, when divided by f(r), would cause H(r) ~ Hy/r as r — 0 for some constant Hy.
Note, however, that we can always' choose C_ so that the overall constant term in the
square braces of (3.17) cancels. In this case, H(r) ~ Hylogr as r — 0, for some constant
Hy. But, this is still square-integrable, and so we conclude that we can construct, at least
perturbatively, a normalizable zero mode solution in the presence of a small, non-zero Dirac

'The only way this strategy could fail is if both G+(r) also have definite scaling behavior as r — 0,
such that either a = b, = 0. In this case, we cannot tune C_ to cancel the constant and the solution is
non-normalizable. While this behavior is extremely non-generic, we would need the connection formulae
for (3.9) to prove it does not happen. We take our numerical solutions to be proof that it does not.
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mass m. As in the unperturbed case reviewed in section 2, the axion string modifies the
wave equation so that both linearly-independent solutions are regular as r — 0, allowing
for a normalizable zero mode.

The numerical solutions presented in figure 2 demonstrate that these solutions exist
non-perturbatively as well, as long as m < u. As m — u, these solutions become unbound
from the string and occupy a two-dimensional “wedge” in the plane orthogonal to the string.
To better understand the critical case m = u, and why these solutions exist at all, it will be
helpful to first study a simpler, albeit analogous, system in which normalizable zero modes
exist even in the presence of a nowhere vanishing gap.

3.2 Zero modes on domain walls

That a massless field can emerge from one that is everywhere massive is counterintuitive,
so it will be helpful to consider a simpler system where it also occurs: the Dirac fermion
on the half-plane Ri’l [36, 65-67]. Studying this system? will also help us understand why
these zero modes completely delocalize onto a two-dimensional wedge when m = p, which
we will discuss in detail in section 3.3.

Let us first consider a single Dirac fermion in the full space R?! with a spatially-varying
mass, and Lagrangian

£ = (i — m(a))w. (3.19)

Here, (v°,9',7%) = (o01,i03,—io3) are the three-dimensional y-matrices and we use the
Cartesian coordinates (¢, x, z). We take the mass term m(z) to only depend on the coordinate
x. We can search for zero modes that move at the speed of light in the (+z)-direction by
assuming that there exists a solution of the form

-ip(t—z 77('7})
Y(x) = /pe p(t=2) , 3.20
(0) = Vb " (3.20)
with n(x) and x(z) functions of z. With this ansatz, (3.19) reduces to
0=n"+m(z)n—2
4 (x)n 29 (3.21)
0=x"—m(z)x

where the ’ denotes differentiation with respect to x. This solution must have definite helicity,
with x(z) = 0, so that solutions take the form

n(z) = Aexp<— /0 "4 m(a:’)) , (3.22)

where the coefficient A is determined by a normalization condition analogous to (2.15).
For (3.22) to yield a normalizable zero mode propagating in the (+z)-direction, the mass

m(z) must be positive as x — oo and negative as x — —o00, and thus vanish for some value

of x. Likewise, if the mass is instead negative as x — oo and positive as £ — —oo, there is a

2This system naturally appears, for instance, in the study of the quantum anomalous hall effect [68] along
interfaces between topological and regular insulators [67].
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normalizable zero mode propagating in the (-z)-direction. Thus, if there exists a domain
wall in which the fermion mass crosses through zero, there will be chiral fermionic zero
modes — often called chiral domain wall fermions — localized and propagating along it.?
We see that in R?>!, the fermion cannot be everywhere gapped and still yield a normalizable
zero mode. This is one case in which vanishing mass and the existence of fermionic zero
modes are inextricably linked.

However, the situation changes if we restrict to the half-space Ri’l, with > 0. In this
case, constant mass m(z) = p does yield a normalizable zero mode which is exponentially
localized to the boundary at x = 0. For example, by decoupling (3.21) we find that n obeys

0"+ (m/(z) —m?(z))n=0. (3.23)

To match onto the analysis of section 2.2 and section 3.1, we note that, since m(x) approaches
a constant p at infinity, then n(x) ~ C_e™™* + C, el as x — oo. Likewise, as long as m(z) is
regular as x — 0, both linearly-independent solutions will be regular, and so we will always be
able to construct a normalizable solution to (3.23). When m(z) = p is constant everywhere
on R>', this solution is just n(z) = C_e#*. In contrast, this fails on the full-space R2!
because the solution that exponentially decays as £ — oo never matches onto the one which
decays as x — —o00, unless the mass m(zx) switches sign for some z. We note in passing that
the existence of this edge mode in the half-plane depends also on the choice of boundary
conditions for the fermion; see e.g., [70].

To connect this simple system to the one we are interested in (3.2), we can picture the
polar radial coordinate in R*! as the analog of the = coordinate on the half-space Ri’l, while
the axion string itself provides an effective “mass” m(r) which is regular as r — 0, as are the
solutions to (3.2). The same mechanism is at work for both cases: both linearly-independent
solutions are regular at the core of the string or wall, and thus the solution that decays at
spatial infinity is necessarily normalizable. As we discuss in the next section, this simple
system is also useful for understanding the critical case in which core and Yukawa masses are
equal, m = pu, and the zero modes become completely delocalized from the string.

3.3 The critical mass case

From the numerical results presented in figure 2, we found that there is a phase transition
that occurs as we tune the core mass to the Yukawa mass, m — u, wherein the fermionic
zero mode seemingly delocalizes from the axion string. Beyond this critical mass, m > pu,
the zero mode ceases to exist. Since this critical case turns out to be very difficult to study
numerically, it will instead be helpful to attack this case analytically to understand exactly
how these modes behave when m = pu.

First, however, it will be useful to qualitatively understand how solutions to (3.2) should
behave in the limit m — p. In the previous section, we described how a fermionic zero mode

3This is a well-known fact which has been exploited [65] to simulate chiral fermions on the lattice. Many
of the phenomena we find in this paper have analogs there. For instance, these chiral modes only exist for
momenta p in a particular region of the Brillouin zone [69], which we can denote as p € C. For p ¢ C, the chiral
modes cease to exist. In analogy with figure 2, the chiral modes have wavefunctions that are well-localized to
the domain wall for momenta comfortably inside C, while they completely delocalize from the domain wall as
p approaches the boundary 9C, and are no longer normalizable for p ¢ C.
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can arise whenever a fermion’s spatially-dependent mass crosses through zero. At criticality
and far from the string, the mass (3.3) approaches

lim M(r,p) = \/(m — pcosp)? + p2sin? o, (3.24)

r—00

which crosses through zero at ¢ = 0 when (and only when) m = p. From the logic of the
previous section, we should then expect that the zero modes are no longer localized along
the axion string, but are instead allowed to propagate freely along — and are localized to —
the plane defined by ¢ = 0. Thus, we expect that these zero modes may have momentum
along both the z- and z-directions, which we denote p, and p,, respectively, with frequency
w = /p2+pk

We can exhibit these solutions in the critical case by searching for solutions to the
equation of motion (3.2) far from the string along the positive x-axis. In this limit, the
equations of motion become approximately translationally invariant in both the z- and
z-directions, and so we may search for solutions of the form

V() = (,y)e WPt (3.25)

where 1 (z,y) varies slowly along the a-direction. Since these modes must have definite
helicity, we will assume an ansatz of the form

COS &
w sin o

2 sin «

—1COS &

with cos2a = -p,/w, and sin 2o = —p, /w. With this ansatz, when far from the string (3.2)
reduces to

OyF (2, y) ~ —ply/x)F(x,y), x>y, (3.27)

where we have dropped derivatives with respect to 2 and approximated e*¥ ~ 1 + i(y/z).
This can be solved to find

Iyl i 2
F(z,y) = A(z) exp (— : dg/M(x,y)) ~ (;_;) exp (—ﬁ) , (3.28)

for z > |y|, where M (z,y) = u\/(l — cos p)? +sin? ¢ ~ p(y/z) is the mass (3.24) far from
the string, where px > 1. The overall amplitude A(z) is determined by imposing the

normalization condition,
[t vhl@yi (@) = (@m0 (e - p) (329)

at any constant ¢, the direct analog of (2.15). For the ansatz (3.26), this translates into
the requirement that [dy|F(z,y)]* = 1.

We plot this approximate critical wavefunction (3.28) in figure 3 and find that it matches
with the m — p behavior we observe in the numerical results shown in figure 2. As our
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Figure 3. Plot of the approximate critical wavefunction |F(z,y)|, trustable for large positive x, with
contours displayed in units of /zz. When p, = 0 and p., = -w, |F(z,y)| = [¢o(z,y)|, and so this figure
can be directly compared to the bottom left panel of figure 2.

qualitative arguments suggested, we find that the zero modes delocalize from the string once
m = p and instead are free to move along the half-plane defined by ¢ = 0. They are relatively
well-localized along y = ¢ = 0, but become more and more spread out the further we get
from the string, with an approximate width of Ay ~ /z/pu.

To summarize, in this section we studied how fermionic zero modes along an axion
string respond to the addition of a non-zero Dirac mass m. Absent this core mass, the
four-dimensional fermion sees effectively zero mass at the core of the string, and so one might
expect that this vanishing mass explains why the axion string supports fermionic zero modes.
However, we showed that these zero modes exist even when the four-dimensional fermion has
a core mass m and is thus everywhere massive, and we explained what it is about the string
that allows these modes to exist. Furthermore, we found that these zero modes completely
delocalize from the string as m — u, and cease to exist for m > p. In the next section, we
explain this phase structure from the perspective of anomaly inflow, in which these zero
modes are necessary to render the low-energy effective theory consistent.

4 Zero modes from anomaly inflow

The existence of these zero modes can also be inferred on topological grounds, based on
the logic of anomaly inflow [36]. Under an infinitesimal U(1) gauge transformation, the
fields in (3.1) transform as

oA =ieA(z), oNAL = 0, (), (4.1)

where A(z) is the U(1) gauge parameter. In a topologically trivial background, the action (3.1)
is manifestly invariant under such a transformation. In the presence of the axion string,
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however, gauge invariance is more subtle. This symmetry is anomalous in the presence of
the string, such that electric charge is not conserved in a region localized to the string. The
theory is then inconsistent unless there are some anomalous degrees of freedom, i.e. charged
chiral excitations, that are localized to the string and can cancel this anomaly and carry away
electric charge. These zero modes then allow electric charge and the anomaly to “flow” out
of the bulk spacetime and onto the string, ensuring that the full theory remains consistent.

The general strategy is as follows. We will attempt to construct a low-energy effective
field theory of the axion and abelian gauge field by integrating out both the fermion v (z) and
radial mode f(z) of the complex scalar. We do this by first ignoring the contribution from
possible fermionic zero modes and by carefully considering the effect of a gauge transformation
on the effective theory. Our arguments are similar to the original story, which can be found
in [36, 38, 43], except that the U(1)pq breaking mass leads to a subtlety in the identification
of the phase which should be rotated away. Depending on the relative size of m and u, we
find a gauge anomaly localized to the string. This inconsistency then forces us to include
an additional contribution from fermionic zero modes localized to the string which cancels
this anomaly.

We are interested in the gauge invariance of the low-energy effective theory for the
axion field after integrating out the fermions. In the string background (2.3), the fermion
sector of the theory can be written

LY —m+yf(r)e @)y, (4.2)
with 6(x) the axion field, and so we wish to compute
Z,(0) = / DYDY exp[i / Az (i) — M(r,0)e"*0) )| | (4.3)
with M(r,0) and «(r,0) defined in ~(3.3). Performing the path integral by introducing a
Pauli-Villars regulator with mass M, we find

det(ilp — M (r,0)er"0))

Z0(0) det(ilp — M)

(4.4)

Now we perform a spatially-dependent chiral field redefinition, ¢ — e a(r6)/ 24) to try and
remove Z,(6)’s dependence on a(r, ). However, due to the chiral anomaly, this transformation
introduces a Jacobian factor and we thus have

_ det(ip — M(r,0))
2u(0) = det(ilp — M)

. [822/01(7«,9)1? A F} (4.5)

which can be written in the form of an effective action for the axion # interacting with the
gauge field A,. Note that in the m — 0 limit, in which there is a classical U(1)pq symmetry,
a(r,0) — 6 and this Jacobian factor reduces to the usual quantized coupling of the axion to
the gauge field, o« §F A F. Furthermore, integrating out the fermions leads to a nontrivial
effective potential for the axion via the #-dependence in M (r,@).

It is this additional a(r,0)F A F term in the effective action that leads to a potential
issue with gauge invariance. Whether or not this term is gauge invariant is determined by
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Figure 4. The phase of fermion “mass” (4.6) far from the string. The phase is double-valued at
0 =21 ~ 0 for m < p [blue, , ]. The zero mode solutions vanish as m > p [red] once the
phase becomes single-valued.

whether the phase far from the string,
1 _ o -if
o(6) = lim a(r,0) = arg(m — pe™), (4.6)
is single- or multi-valued as a function of #, and this depends on the relative size of m and p
as illustrated in figure 4. For instance, in the limit that m < u, we find

a(f) =~ — 8, (4.7)

which is clearly not single-valued at 6 = 27 ~ 0, and this applies more generally for all m < p.
In this case, we must integrate the effective action by parts to make it well-defined,
1 1
@/a(Q)F/\F%—@/da(H)/\A/\F. (4.8)

However, under the gauge transformation (4.1), this transforms as

5 [ _ 8;/0104(9) AAN F} _ —8;/01@(9) Ad(AF) = —1—817r2/c12a(0) AAF),  (4.9)

where we have integrated by parts again in the last equality, neglecting any potential surface
terms at the string core. Since a(f) is not single-valued, d?a(f) # 0 but is instead localized
along the string, and we find an apparent gauge anomaly.

The reason for this apparent anomaly is that we have heretofore incorrectly assumed
that there are no zero modes at the core of the string. Their existence modifies the chiral
transformation in (4.5) and, with a careful treatment of the variation at the core,* we find

4Somewhat famously, arriving at the exact value of the gauge anomaly, which matches the contribution from
two-dimensional chiral fermions localized on the string worldsheet, requires some care. A proper treatment
involves introducing a “bump-form” which extends the validity of the effective theory in (4.5) to all of spacetime
and properly includes the zero modes on the string core so that all surface contributions vanish [43]. This
bump form can be computed explicitly in terms of the zero modes profiles, and the calculation of [43] is
unchanged in the case m # 0.
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a violation of gauge invariance precisely equal and opposite to the gauge anomaly due to
a massless chiral fermion localized to the string worldsheet,

1 1
_ L AnF|l=Lar, 41
5A{ = /da(&)/\ A } = (4.10)

On the other hand, it is precisely when m > p that the phase «(f) becomes single-valued
since, near the end points at § = 0 and 27, we have a(0) = «a(27) = arg(m — ) = 0. In
this case the interaction o< «(f) F A F' is both well-defined and single-valued, and gauge
invariance is maintained without the need for additional degrees of freedom along the string.
This analysis breaks down as m — u because it no longer makes sense to define an effective
field theory for the axion and gauge field “far” from the string since, as evident from our
numerical results in figure 2 and discussed in section 3.3, the fermionic zero modes are no
longer localized at small 7.

It is worth noting that, from the IR perspective, these anomaly inflow arguments do
not entirely determine the theory on the string. While we have focussed throughout on
a particular UV model, in which the zero modes are unambiguously identified with chiral
modes of the fermion, in general, the anomaly could be cancelled by a different theory on
the string worldsheet. For strings with an even winding number, for instance, the anomaly
can be cancelled by compact bosons living on the worldsheet. Anomaly inflow guarantees
that the IR theory has a U(1) symmetry with a particular anomaly, while the precise theory
on the string depends on the details of the model in the UV.

Finally, it is illuminating to compare our effective action to the effective action computed
via the method of Goldstone and Wilczek [71], as in [36, 38]. In that case, one computes the
current at a point x far from the string core, in response to a background electromagnetic
field, in the long wavelength limit. We choose (zy) = 0, so that the fermion-scalar interaction
can be expanded as

Y f(r) e o i 030 (o) (w — 20) Py 0. (4.11)
The leading contribution comes from the diagram in figure 5. For the theory (3.1), this yields

4 4 4
((2) = nontlan) [ oy oo Ayt (o~ 20)* Auy)

« o iP(z=y)+(p+a)(y—w)+(p+g+k)(w—2)]

L ) (4.12)

xTr{p_M’Y p+g—M’Y5p+g+}é—M7M
1 1 V 1

+p—M75p+k—M7p+}é+g—M’W

and evaluates to
2

e
(JM(2)) = gﬁeﬂmaﬁ(m)m. (4.13)
Following [38], we can posit an effective action (valid far from the string),
S = —— 1 /d@/\A/\F (4.14)
eff — 8772 /,L -m ) .
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Figure 5. Leading order diagram for the current (J#(z)) produced by a spatial variation of the axion
0,0(zp) in the presence of a background electromagnetic field Ay, used by Goldstone and Wilczek to
compute the effective action.

from which the current (4.13) can be computed. When m = 0, integrating (4.14) by parts
yields the usual, properly quantized, coupling of the axion to the gauge field. When m = 0, the
w/ (1 — m) prefactor would appear to violate the quantization condition for the axion-gauge
field coupling. However, expanding for small values of the axion field,

H 2
da(0) = —m +0O(0°)| dg, (4.15)
and we see that (4.14) is precisely the leading term of (4.8), which is properly quantized.
Let us note that there is an ambiguity in which field one calls the “axion,” 6 or «(#).
Both are compact fields, 8 ~ 6§ 4+ 27 and o ~ a + 27. If one works in the “charge-quantized”
basis in which the coefficient of the topological coupling (4.8) is an integer, the axion a has
a (possibly highly) non-trivial metric on its field space given by

2
COos &

(4.16)

Joo = V2(O0/())? =% |1+
K \/1 — (m/u)?sin? o

and so around 6 =~ 0 or a ~ 7 the decay constant is effectively reduced by a factor of
(u—m)/u, which is identical to the factor that appears in (4.14). If one instead works with 6,
the (classical) metric on field space is flat but the coefficient of the topological coupling (4.14)
is not an integer. This story is similar in spirit to the reason for the non-quantized coupling
of the axion to photons, due to mixing with the neutral pion.

To summarize, we have shown that — with a careful treatment of the axion’s periodicity
— the arguments for anomaly inflow, and the resulting necessity of chiral zero modes on the
string, persist in the presence of a field-independent mass, as long as this “bulk” mass is
smaller than the mass generated by the chirally coupled scalar field. This makes it clear
that it is the topology of the axion string, and not the dynamics of the scalar field which
spontaneously breaks the classical U(1)pq symmetry, which is responsible for the existence
of the fermion zero modes.

5 Low-energy effective theory

In the previous section, we found that the full four-dimensional effective theory was rendered
consistent when m < p by including chiral fermionic zero mode localized to the axion string,
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while they disappeared for m > u. Our numerical results in figure 2 show that they disappear
because the zero mode completely delocalizes from the string as m — p. It will be useful to
understand how this process appears from the zero mode’s two-dimensional effective theory
on the string worldsheet. At leading order in p~!, this action is completely constrained by
symmetry and does not depend on the ratio m/u. However, we will show that the Wilson
coefficients of the higher derivative interactions between the zero mode and the gauge field
depend sensitively on m/u and diverge as m — u, causing the two-dimensional effective
theory to break down.

We again will specialize to an axion string with charge +1, and start by introducing
the (quantized) mode expansion for the fermion

1/}(33) _ /oo dp 1 pd}p r, SD p(t+2) +/ AT 1/}1)(7”7 go)e—ip(tJrz) 4 (51)
0 2m+/2 |p P
where the - -- denote the non-zero modes of the massive four-dimensional fermion about the

axion string. Here, 1, (r, ¢) is the zero mode wavefunction (2.10) found in section 3, subject
to the normalization condition (2.15). The creation and annihilation operators, IA);, ay, satisfy
the canonical commutation relations appropriate for a two-dimensional fermion,

{a,.aly =2ro(p—p'),  {b,,bl,} =2md(p—p). (5.2)

Since the only place the momentum p enters into 1, (r, ¢) is in its overall normalization, we can
define the spinor F(r, ) = ¢p(r, ¢)//p and write (5.1) as 1 (x) = x-(t, 2)F(r, )+ - -, where

oodp A= z ot 4 z
x-(t, 2) :/0 — [ape pttz) 4 b;f)ep(l“r )] (5.3)

2T

is a canonically normalized two-dimensional fermion field operator with negative chirality.
It will be convenient to repackage x-(¢, z) into a two-dimensional Dirac fermion x(t, z)
living on the axion string worldsheet

(t,2) = (X(t’ 2)> , (5.4)

X+(t; 2)

by grouping it with a positive chirality fermion x,(¢,z), which we later set to zero. We
will use a, b, ... = 0,3 to denote worldsheet indices, and define our worldsheet ~-matrices as
7% = (3, 4%) = (01,i02),> with chiral projectors v+ = %(Il + 4°43) such that vy = x+. We
will thus impose the constraint v,x = 0 to remove . from the theory. The kinetic term
for the two-dimensional fermion then takes the standard Dirac form,

sz/d%z'ma ax+.--=/d2zz‘xia+x_+m (5.5)

where we denote 9+ = 0; F 0, and use d?c = dtdz to denote the volume element on the
string worldsheet, while we will use d?r = rdrdy = dzdy to denote the volume element
orthogonal to the string. The --- denote terms in the effective action that encode how the
chiral zero mode x_ interacts with the gauge field A,, which we now derive.

SWe use 4° and 4> to distinguish these two-dimensional y-matrices from the four-dimensional 4° and ~3,
used for the four-dimensional Dirac fermion ().
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The zero mode generates a four-dimensional current that points along the axion string

2/(-.0 [ —
= ity — {ef(racp)l (x1"x)(t,2) p=a=0,3 | (5:6)
0 p=172

where | F(r, ¢)|? = (FTF)(r, ), and so its interaction with the gauge field A, is determined by

Sins = = [l 14, = = [da el F(r, ) ™0 (8, 2) Ay(a) (57)

Our goal is to encode the information contained in (5.7) into a series of effective interactions
in the two-dimensional effective theory between x and (derivatives of) the gauge field pulled
back onto the string worldsheet. This will encode the zero mode wavefunction’s multipolar
structure into a set of effective two-dimensional interactions and will define a set of multipole
moments for the current (5.6).

To derive these effective interactions, we perform a long-wavelength expansion of the
gauge field about the axion string = = (¢,0,0, z) following a procedure similar to the one
outlined in [72] and explained in more detail in appendix B. After using current conservation

and integration by parts, (5.7) can be written as

Sy = — / 20 [e(7"x) Aa](t, 2)

o 1 (5.8)
=S| [ttt )P ol 00k o, Bt 2),
n=1""
where we use 7,7,k1,--- = 1,2 indices to denote directions orthgonal to the string,

i.e. ' = (z,y). It is more illuminating to rewrite the higher order terms in this expan-
sion in terms of irreducible SO(2) tensors. This introduces terms oc 0% Fj,, which can be
rewritten using the equations of motion that follow from (4.5),

62 ~

k __ab 1z ;
0 Fka 0 Fba + 1671'28 (a(e)Fau) + Ja (59)

where pr = %EWWFPU is the dual field strength. To second order in the derivative expansion,
we find that the two-dimensional current j¢ = yy*x couples to

~a i ~a 1 ij ~a 1 r~a e? r~a I
SEM D) /dQU [_] Aa + Ilj Fia + Z 2]] a(zF})a - 1 5.7 6bF‘ba + 647['215 J 8p(e}?ap)
(5.10)
where
Ii = /d2rmi|}'(r, ©)|? (5.11)
is the zero mode current’s “dipole,” while
19 = /er (2’27 — 169 z,a) | F(r, )2, I3 = /d27’ 2| F(r, ), (5.12)
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Figure 6. Plots of the Wilson coefficients ¢, ¢3%, and ¢ vs. m/u. The coefficients ¢! and ¢5¥ = ¢§*

vanish due to the zero mode’s reflection symmetry about the z-axis, as evident in figure 2, while the

other coefficient ¢¥¥ is completely determined by ¢ = —c3®.

are the current’s “quadrupole” and variance. Each of the operators in (5.10) are operators on

the string worldsheet, while the dimensionless coefficients ¢i = pli, ¢ = p2I7, ¢ = p2I8
can be understood as Wilson coefficients in the effective theory on the string worldsheet.%

We plot these Wilson coefficients in figure 6 as functions of m/u. Two features are
immediately obvious: at m = 0, the dipole and quadrupole moments vanish due to the
cylindrical symmetry of the zero mode solution, as expected. The trace term ¢ does not
vanish but instead approaches a value cff — 2.19 as m — 0. Such trace terms also appear in
the generic multipole expansion of a point-like source [72] where, as here, they multiply time
derivatives of the field strength and thus do not appear in the static multipole expansion.

As m approaches the critical value, m = p, all three Wilson coefficients quickly blow up,
reflecting the breakdown of the two-dimensional effective theory. This is also expected since,
as seen in figure 2, the zero modes delocalize from the string as m — g and must completely
disappear for m > pu, and so the worldsheet effective theory must fail. As is usual, the effective
theory signals its own demise through Wilson coefficients that become uncontrollably large.

So, far from a charge +1 axion string the theory (3.1) is well-described by the effec-

5There are only three independent Wilson coefficients that appear at each order in this multipole expansion.
This can be most easily seen by remembering that the irreducible tensors of SO(2) with weight ¢ are in
one-to-one correspondence with the two Fourier modes e*¢ and so, in general, correspond to two complex
(or four real) degrees of freedom, which we may denote as fr and f-,. Since the distribution is purely real,
these coefficients obey f; = f7,, and so the distribution is described by only two real degrees of freedom at
each weight £. To this, we must add the pure trace term at each ¢, e.g. I5', which increases the number of
moments at each order to three.
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tive action

1 a(f) ~
4 v 2 2 v
S = /d x {—4FWF“ +v°(00)° + 167T2FWF” + -
+ /d o |xilx + EJ” i+ Tlﬂ]aa(iFj)a - 4M2J“0 Fyo + 647T2M2J“3”(9Fap) +-
(5.13)
The first line describes the dynamics of the gauge field and axion, where the --- denote

interactions that are induced by, for instance, integrating out the scalar’s radial mode f and
the non-zero mode fluctuations of the fermions and include a potential for the axion 6. The
second line describes the chiral zero mode living on the string and its interactions with the
gauge field and axion. Here, the --- denote terms that are either subleading in the derivative
expansion or are nonlinear in the current 7%, the latter of which are also generated by the
long-wavelength expansion described above and in appendix B and upon integrating out
the heavy scalar and fermionic modes.

6 Conclusions

In this work, we revisited the superconductivity of string solutions in a simple model of
axion electrodynamics in which the U(1)pq, symmetry is explicitly broken by a mass term
for the fermions. When the PQ-breaking mass m is smaller than the asymptotic mass pu
acquired from the radial mode of the scalar whose phase is the axion, the fermionic zero
modes responsible for superconductivity persist. We demonstrated the existence of these zero
modes both by studying the asymptotic behavior of the equations of motion and by solving for
their profiles numerically. We also demonstrated how their existence can be understood from
anomaly inflow, with some modifications to the original arguments by Callan and Harvey.

For m > u, the zero modes cease to exist. As m approaches u, however, the zero modes
exhibit an interesting critical behavior, in which they delocalize from the core of the string
and propagate along a two-dimensional wedge.” We further studied the effective theory of
the zero modes on the worldsheet and their interactions with external gauge fields. As m
approaches its critical value, we demonstrated explicitly how this effective theory breaks
down as a result of the zero modes delocalizing.

While we have focused on a simple “minimal” model of axion superconductivity here,
there are several aspects which may be phenomenologically relevant in more realistic theories
that warrant further exploration. First, as mentioned in the introduction, DFSZ axion models
have multiple distinct, topologically stable string configurations and at least one of these (the
“Type-C strings” in [52]) has a scalar profile which does not restore electroweak symmetry
at the string core. It is possible that the nonzero vacuum expectation value at the core in
these configurations may play a similar role to the explicit PQ-breaking mass term we have

"Amusingly, this behavior is very similar to how light fermions behave in the presence of a magnetic
monopole [73], but in reverse. There, the light fermionic modes become more and more delocalized from the
monopole core as their mass decreases, ultimately explaining why the #-angle becomes a redundant parameter
for dyon physics once m = 0. Here, counterintuitively, the light fermionic modes delocalize as their mass

increases.
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considered, which helps explain how these solutions may still be superconducting (as anomaly
inflow arguments suggest they must be). This should be studied in more detail.

It is also worth recalling that in a high-temperature background, fermions acquire a
Debye mass ~ ¢1" which has the same effect as the explicit mass m. In an expanding universe,
if the initial temperature is large enough that the Debye mass is larger than the Yukawa
mass, a phase transition to the superconducting case may actually occur. It may thus be of
interest to study if the delocalization of the zero modes found in the simple model studied
here can have consequences for the evolution of string networks in cosmology.

Finally, we should emphasize that our numerical results were derived under the assumption
that the fermion amplitude is small. It would be worthwhile to understand how the profiles
of the zero modes change beyond the limit of small fluctuations. In the same vein, it would
be enlightening to understand the higher-order source terms in the worldsheet effective action
that we have dropped. We hope to return to some of these topics in the future.
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A Numerical techniques

We rely on Chebyshev interpolation to numerically solve the zero mode equations of mo-
tion (3.4). This method is one of several numerical approaches used for collocation: the
discretization of partial differential equations (PDEs) to transform them into matrix equations.
Here we give a brief introduction; more details can be found in [74, 75].

Chebyshev interpolation provides a method of approximating a smooth function f(¢) on
the interval ¢ € [-1, 1] using its values at a finite and discrete set of points. That is, given
the function f(¢) evaluated at the set of Cheybshev points,

B m(2k + 1) B
Ck—cos<2(N+1)>,, k=0,...,N (A1)

we may approximate it at any point in ¢ € [-1,1] via the interpolant

N

SN =D f(G)pe(C) (A.2)

k=0

where the functions pg(¢), defined such that pg(¢,) = Jkn, are the degree-N Lagrange
polynomials associated to the points (A.1). Importantly, the Lagrange polynomials can be
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reliably evaluated away from the interpolation points using the second barycentric form [75, 76],

pk(C) = Z = Cn (A.3)

where we introduce the Chebyshev weights

27k(N +2) + 7r>

TR k=0,...,N. (A.4)

W = sin <
The interpolant (A.2) then provides a degree-N polynomial approximation that exactly
agrees with f({) at the points (; and has an error which decays exponentially in N for
all other points on the interval.
The interpolant (A.2) allows us to represent the function f(¢) as a (N + 1)-component
vector f = {f(¢kx)}. We can similarly represent derivatives of this function working with the
derivative matrices p} (¢,) and p}((,), defined by [75, 77]

wk’/wn

n#k
/ _ Cn - Ck
pk((n)— —Zp%((n) n:k:’
k#n
, PhlGn) 49
i 23,(Cn)pn (Gn) — C —G " #k
PRI s i n=k
k#n

Any differential equation for f({) on the interval { € [-1, 1] can then be approximated by a
matrix equation for the function values {f((x)} by substituting (A.2) for f((), evaluating
the equation at each Chebshev point (;, and using (A.5) to convert differentiation into
matrix multiplication. This matrix equation can then be solved by any number of standard
numerical techniques.

For example, the equation

d2

dTQJrg(C) f(¢) =0, (A.6)

for any regular function ¢g(¢) on ¢ € [-1, 1] can be approximated by the matrix equation

N

Y (D2+G),, f(G) =0, (A7)

k=0
where (G)nk = 9(Ck)0nk, (D2)nk = p(Cn), which is defined in (A.5), and the number of
nodes is chosen to be N + 1. The solutions to (A.6) are then well-approximated by the
interpolant (A.2) constructed from the null space of the matrix (D2 + G). As long as N is

large enough, this interpolant then provides an approximate solution to (A.6) whose pointwise
error decays exponentially in N.
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When the equation we aim to solve is defined on the semi-infinite line r € [0, 00), we
must first map it to the interval ( € [-1,1] to apply Chebyshev interpolation. We find that
the simplest map, the linear fractional transformation

r—1L

¢(r) = L (A.8)
works well, where L is a tuneable parameter that broadly controls which r values are sampled
by the corresponding Chebyshev nodes (A.1). In practice, we take L to be an O(1) number
times the scale over which the solution varies naturally (set by p~' for the equations we are
interested in) though we ensure that our solutions do not depend on the precise choice of L.
For two-dimensional equations of motion like (3.4), we have a choice in how to apply
Chebyshev interpolation. The simplest approach is to expand in Fourier modes, as in
section 3.1, to reduce the problem to a system of coupled ordinary differential equations.

That is, we expand each spinor component into their lowest 2.J + 1 Fourier modes

Yal(r, 90) = Z wa’g(T) e!’? ) (A9>

le|<J

such that (3.4) reduces to a finite set of coupled equations (3.6) involving 2 x (2J + 1)
mode functions. We can then interpolate each radial function ¢, ¢(r) with N + 1 nodes
to convert (3.6) into a 2 x (2J 4+ 1) x (N + 1)-dimensional linear equation. The profiles
displayed in figure 2 were generated with J = 41 and N = 61, though our results are robust
to changing both J and N.

Another approach is to interpolate the spinor components v, (x,y) using a two-
dimensional Cartesian grid. This requires first mapping both z and y from (-oo,00) to
[-1,1]. We do so via two different maps

() = {arctan(xl/Lz) 0<m/pn<0.8 | (A.10)
tanh(z;/L;) 04 <m/u<0.95

depending on the value of m/u, where x; = {z,y}. Here, the parameters L; = {L;, Ly}
determine the relevant scales in the original z or y coordinate. These maps efficiently sample
small (z,y) values while avoiding numerical artifacts at large x and y. Since the solutions
elongate in the z-direction as m — u, we used L, ~ O(1) x 1/(u —m) and L, ~ O(1) x u L.
We find that with these ranges of L, and L,, our Cartesian results agree with each other
for overlapping m/u and that our solutions are independent of our specific choice. For
large numbers of nodes, N;, N, > 90, our results obtained with a Cartesian grid agree with
those obtained using a Fourier mode expansion, but formulating the problem in the Fourier
basis is significantly faster.

Finally, to compute the moments of our solutions and properly normalize them, we must
numerically evaluate integrals involving these profiles. We do so via quadrature, in which
the integral is approximated by a weighted sum of the function’s values on the Chebyshev
grid. Explicitly, an arbitrary integral of the density [1(r,)|> = |[¢o(r, ¢)|* + |[¢3(r, ¢)|?
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can be expressed as

Jeraowrar= 3 [ ac [T aerQanene e, (60

a,n, Ll (All)
=2 QkT’,(Ck)an(CkWa,e(CkW;,un(Ck)
a,k.ln
where .
o= [ dpi(c) (A12)
is the quadrature weight, which can be efficiently numerically evaluated, and
a(r,p) = Y an(G)pr(C)e™? (A.13)
[n|<Jk

is an arbitrary weight function, whose n’th Fourier mode has value a,({;) at r(x). For
instance, to normalize the profile functions in figure 2, we evaluate (A.11) with a(r,¢) =1,
while to compute the dipole (5.11) we choose a(r, ¢) o rcos and a(r,¢) o rsin @.

B Multipole moments

In this appendix we provide more details on the derivation of the worldsheet effective action
given in (5.8). We follow the method in [72], adapted to the case of a string. Our starting
point is the term in the action that couples the gauge field to the four-dimensional current
from (5.6), which is pointing along the axion string,

SEM = —/d4(ll j'uAM. (Bl)

As in the main text, we take u = 0,1,2,3, a = 0,3, and 4, j, k; = 1, 2.

Our goal is an effective action describing these interactions which is valid when the
wavelength of the gauge field is much larger than the characteristic size of the source. In this
regime, we can Taylor expand the gauge field about the string source at the origin,

<1
At T) = —ZO — gt [y, - Ok An] 4 1.0.0.2)" (B.2)
n

Since our source of interest points along the string (see (5.6)), we can drop the terms with
uw = 1,2. We are left with the action

S =3 /d% /dQT;'xkl-- n jo1, ) (O - O, Adl(t, 2). (B.3)
n=0 :

It is useful to rewrite the action in terms of gauge invariant quantities. We first consider
the A° term, and note that EF = FOk — Aki 4 Oy, AY. This allows us to exchange radial
derivatives of AY for time-derivatives of A¥ and terms involving the electric field, E. We find,

_ /dQO' /dZT jO [AO}(t, z) — Z % /dZU/dZT joxkl_ o gn [8k1 3 8]%71Ekn](t7z)
n=1""
+ nz::l % /d20/d2r GOk ghn [0k, - “akn,l/lk”}(t, 2)

(B.4)
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The last term in this expression can be combined with the A3 term of (B.3) to get a gauge
invariant term involving the magnetic field. To see this, we integrate by parts within the d2o
integral, and use current conservation: dyj® = —035. This allows us to rewrite,
|:/d27' Foxkr gk | By, By, Al = {/dzr (9353) k1. xk"] gy - - Op,_, AP
(B.5)

=— {/dzr j3zkr. .. mk”} Opy- -+ O, O3 AP,

where in the last equality we have integrated by parts again. With this replacement, the
sum of the last term of (B.4) and the A3 term from (B.3) is

> 1
Sp=— /dQO'/d2T j3 A5 — Z — /d20 /d2r FRakr gt oy - o, (93AF)
— n!
>0 1
- Z I /dga /d2r jiakr. ghngy Okpn—1(0k, As) (B.6)
n=1""
= /dza/dQT A=Y g/d?a /d% gk gk oy, 3By,
n=1""

where we have used 0;A3 — 034; = F3 = 3 Bj. Adding back the remaining terms in S 40
and relabeling indices, we obtain the full action

> 1
SEM:_/dQO_/dQT (j0A0+j3A3)—Zﬁ/d20 [/dgrjoxkl“'xk" Oy - Opy, B
n=1""

00 1 ]
— Z ﬁ /d20 l:/d27“ jg.%‘kl- . xk"] 6k2- N 8kne3kmBj,
n=1""

which can be written in terms of the field strength as

(B.7)

<1
Sen = — /d20 /d27‘ (59 Ag + j3A3) — Z o /d20 [/dQTjaxkl- xkr | Oy O, Fiya- (B.8)
n=1""

This action reduces to (5.8) using the current (5.6) and the normalization condition for
|F(r, o).
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