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ABSTRACT: Pseudo-Nambu-Goldstone (pNG) dark matter (DM) is a promising DM candidate
and able to explain the measured DM abundance by the thermal freeze-out mechanism evading
the stringent bound from DM direct detection experiments. We propose a new model providing
a pNG DM by introducing two Standard-Model-singlet complex scalars with the same charges
of a dark U(1) gauge symmetry. They are also charged under a U(1) global symmetry
corresponding to their relative phase rotations, which is explicitly broken by a soft-breaking
term in the scalar potential. The both U(1) symmetries are spontaneously broken by their
vacuum expectation values, giving rise to one real pNG boson. We also introduce a discrete
Zo symmetry exchanging the two scalars to stabilize the pNG boson as DM. It is shown that
this model reproduces the DM abundance consistently with the current bound from the direct
detection experiments. The model has a gauge kinetic mixing between the dark and U(1)y
gauge fields, which allows the dark gauge boson to decay even with a relatively light mass
and prevents it from being an additional DM component. The Landau pole is avoided thanks
to the small gauge coupling constant. In addition, a DM pair dominantly annihilates into a
pair of the dark gauge bosons if the gauge boson mass is lighter than the DM mass, and thus
its cross section has significantly different parameter dependence from other pNG DM models.
We also calculate the DM-nucleon scattering cross section at the loop level. It turns out that
it is necessary to probe region covered by the neutrino fog in order to test this model.
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1 Introduction

It has been a long-standing problem over decades to discover dark matter (DM) in our
universe and elucidate its nature. Among many theoretical models for DM, one of the most
promising frameworks is the weakly interacting massive particle (WIMP) scenario, in which
DM particles interact with the standard model (SM) particles and were in the thermal
bath made of them in the early universe. The interaction rate decreases as the universe



expands, and the interactions are eventually decoupled, resulting in the DM number density
per comoving volume being fixed (frozen out) as the thermal relic abundance. To explain the
measured value of the DM energy density [1] the annihilation cross section of the DM into
the SM particles is about (ov) ~ 10726 cm3s~! as the thermal averaged value. On the other
hand, the crossing symmetry of the Feynman diagrams implies that the elastic scatterings
between the DM and SM particles also happen. Such scattering processes have been tried to
be detected by the DM direct detection experiments. Nevertheless, there are no clear signals
of the scatterings yet, which imposes stringent upper bounds on the DM-nucleon scattering
cross section [2-4]. For the WIMP scenario to work, it is necessary to suppress the DM-SM
scattering process while keeping the DM annihilation cross section.

The pseudo-Nambu-Goldstone (pNG) DM models can easily explain the null result of
the direct detection experiments while keeping the desired annihilation cross section. The
original pNG DM model was proposed in ref. [5], in which an SM-singlet complex scalar is
introduced being charged under a softly-broken global U(1) symmetry. The symmetry is
spontaneously broken by a vacuum expectation value (VEV) of the new scalar giving rise
to a pNG boson, which obtains its mass from the soft-breaking term and can be regarded
as DM. The DM-nucleon scattering cross section is highly suppressed in the limit of zero
momentum transfer as a consequence of the NG low-energy theorem (soft pion theorem).

Although the suppression mechanism of the original pPNG DM model is quite simple and
works well, the model suffers from the domain wall (DW) problem and hence requires some
extension or needs the low-scale cosmic inflation to dilute the DWs. Besides the spurion-like
extension discussed in ref. [5], other pNG DM models have been also proposed [6-12] to
overcome this problem. (See also refs. [13-17].) As shown in table 1, they can be classified in
terms of several points: whether the DW problem arises or not, the DM is stable or decaying,
the DM is a real or complex scalar, and coupling constants remain perturbative until very
high-energy scale or not (i.e., the Landau pole). If the DM can decay, one must introduce
a much higher energy scale than the DM mass in order to make its lifetime longer than
the cosmic age. In addition, the appearance of the Landau pole indicates breakdown of the
model at a cutoff scale and the necessity of an ultraviolet (UV) completion. If the cutoff
scale is quite low, the model is not efficient as an effective theory and the predictive power
is limited. Indeed, the model in ref. [10] has a large dark gauge coupling constant, which
soon gets into a non-perturbative regime at a higher energy scale by the evolution of the
renormalization group. This requires a UV completion by, e.g., embedding the Abelian gauge
group into a non-Abelian gauge group as studied in ref. [12].

In this work, we propose a new pNG DM model, in which we introduce two SM-singlet
complex scalars, and they are charged under two U(1) symmetries: a dark gauge U(1)
symmetry corresponding to their simultaneous phase rotation and a global U(1) symmetry
which rotates their relative phases. The latter is explicitly broken by a mass-dimension-two
term in the scalar potential, where the other soft-breaking terms are forbidden thanks to
the gauge U(1) symmetry. We further introduce a discrete Zo symmetry corresponding to
the interchange of two scalars. After the two U(1) symmetries are spontaneously broken by
the VEVs of the scalars, a pNG boson arises from the (softly-broken) global U(1) symmetry
and obtains its mass from the soft-breaking term. We show that the DM-nucleon scattering



DW problem | stable/decaying | real/complex | Landau pole

[5] X stable real v

6, 7] v decaying real v
8, 9] v decaying real v
[11] v decaying real v
[10] v stable complex X
[12] v stable complex v
this work v stable real v

Table 1. Table for pNG DM models. The rows correspond to the proposed pNG DM models while
the columns correspond to the following items: whether the DW problem arises (x) or not (v'), DM
is stable or decaying, DM is a real or complex scalar, and coupling constants hit the Landau pole
soon (x) or not (v'). The last row corresponds to this work.

cross section vanishes at the tree level, while the model explains the correct value of the
DM relic abundance by the freeze-out mechanism.

The imposed exchange symmetry plays a role to make the setup simple because it
stabilizes the pNG DM without any other additional symmetries such as an unbroken U(1)
symmetry in refs. [10, 12], leading to the real DM instead of complex one. Therefore, this
model is the first example of a pNG DM model without the DW problem and with the real
and stable DM, as shown in table 1. Furthermore, a non-zero gauge kinetic mixing term
between the dark and SM gauge fields does not spoil the model because the DM is already
stabilized and the DM-nucleon scattering processes mediated by the gauge bosons are not
allowed at the tree level. This is a bonus of the exchange symmetry. This non-zero gauge
kinetic mixing has two benefits: Firstly, it makes the dark gauge boson unstable to decay
into the SM particles independently of the mass. Thus, the dark gauge coupling constant
can be small and does not meet the Landau pole until very high energy scale. Secondly, it
leads to different phenomenology compared to the conventional pNG DM models. Indeed,
the light dark gauge boson makes the annihilation cross section of a DM pair relatively large
in heavier DM mass regimes since the annihilation into them is kinematically allowed, which
results in a relatively large VEV in the dark sector and makes parameter space to explain
the DM abundance significantly different from other pNG DM models.

While the DM-nucleon scattering cross section is suppressed at the tree level, it is induced
at the loop level. We also calculate the loop-level spin-independent cross section in direct
detection experiments. It turns out that the signal will be hidden by the neutrino fog in
favorable parameter space.

This paper is organized as follows. In section 2, we introduce our model containing the
two complex scalars and the dark gauge boson with two U(1) symmetries and the exchange
symmetry. We discuss experimental and theoretical constraints on the model in section 3.
In section 4, we show that the DM relic abundance of this model as the thermal relic
abundance. In section 5, we discuss the loop effect for the DM direct detection experiments.
The details of the loop calculation are given in appendix D. Section 6 is devoted to the



discussion and conclusion. In appendix A, we discuss a relation between the model with the
previous model given in ref. [10]. In appendix B, we present a naive version of the pNG DM
model without the exchange symmetry and show that it leads to the sizable DM-nucleon
scattering cross section in general.

2 The model

2.1 Lagrangian

We introduce two complex scalars ¢; and ¢, which are SM singlets and transform under
a gauged U(1) rotation called U(1)y,

qbl — 6icx(z)¢1’ qbg — eia(z)ng s (21)

where a(z) is an arbitrary real-valued function. We also impose a softly-broken U(1) global
symmetry defined as

d1— €0P1,  Bo — e Vo, (2.2)

which is the relative phase rotation and is called the U(1), symmetry. Furthermore, we
introduce a discrete Zo symmetry under the exchange of the scalars,

¢1 4> @2 (2.3)
Under this exchange symmetry, the linear combination
$1 — P2
_= 2.4
¢ 7 (2.4)
flips the overall sign, while
$1 + P2
o4 = (2.5)

V2
and all other fields do not. This is nothing but the Zs symmetry that stabilizes particles
arising from ¢_.

The Lagrangian of our model is given as

sin €

1 17 v
L= £{SM w/o Higgs potential}+|D,LL¢1|2+‘D#¢2|2_1VM VNV_TVM Y,uZ/_V(H7 ¢17 ¢2) (2'6)
with the scalar potential

V(H, ¢1,¢2) = m} (|¢>1|2 + |¢>2|2) — (mfggb*{qﬁz + h.c.)

A1
t3 (|¢1|4 + |¢2|4) + sl é1)?] g2
— w4 H 2+ A H* 4 X [HP (|6 + |62 ]2) (2.7)
and the covariant derivatives

D, ¢i = (0 —igy V)i (i=1,2), (2.8)
where H is the Higgs doublet in the SM. Here V,, and Y),, are the field strengths of a dark
U(1)y gauge field V}, and the SM U(1)y gauge field Y},. In general, V), has a gauge kinetic
mixing with Y, proportional to the mixing parameter sine. The U(1), symmetry is explicitly
and softly broken only by the parameter m?2, in the scalar potential. Other soft-breaking
terms such as ¢1¢1 + ¢ade are forbidden by the U(1)y gauge symmetry.



2.2 VEVs and stationary condition
In the following, we assume the scalar fields to take VEVs as follows,

(H) = 1 <0> ;) = %, (p2) = %, (2.9)

v

which spontaneously break both the symmetries, U(1)y and U(1),. We have assumed that
the exchange symmetry (or equivalently, ¢+ — +¢+ symmetry) is not broken at the vacuum,
making the VEVs of ¢1 and ¢2 to be equal. Here one can take the VEVs as real without loss
of generality by redefining the fields. The NG boson from the spontaneous U(1)y symmetry
breaking is eaten by the gauge field V,,. On the other hand, the spontaneous breaking of
U(1), produces a NG boson denoted by a that acquires mass due to the explicit breaking
term proportional to m?2,, and hence can be used as the pNG dark matter as discussed below.
We obtain the following stationary conditions for the VEVs given in eq. (2.9):

m%{ = %)\Hlvg + )\HU2
Imm?, = (2.10)

m% = Rem%Q — %)\Hlvg — i)\lvz — i/\gvg
from which it follows that m?, should be real.

2.3 Scalar mass spectrum

There are four real scalar particles around the vacuum as

_1 0
H= N (U—l—a(m)) , (2.11)

¢1:\}§(3%+31<$)+ia%)>, qbz:\}i(:%Jrsz(x)—iM) , (2.12)

where we have taken the unitary gauge for the U(1)y gauge and the SM gauge symmetries.

The direction of a is orthogonal to U(1)y. Note that s; and s2 are not mass eigenstates
but mix with each other. In addition, due to the scalar portal couplings Mg, they mix
with o from the SM Higgs doublet.

To discuss the Zo charges of the particles, it is convenient to define new fields as

81 + S92 s 81— 82

S = y .
TR V2
From this, it is obvious that ¢4 and ¢_ defined by eqs. (2.4) and (2.5) are expressed as

(2.13)

_’U5+S+
o (2.14)

S_ +1a
V2 o

and hence s_ and a are Z-odd fields under the exchanging symmetry ¢1 <+ ¢2 (or ¢+ — +¢1)

o—

(2.15)

while s; and all the other particles are Zs-even.



Let us look at the scalar mass spectrum. Because a is not mixed with the other particles
thanks to the CP symmetry in the scalar sector, the mass of a is easily read off as

1
LD —miya®= _iszM a’. (2.16)

For the other scalars, we get the mass matrix

g
1
£o—3 (051 5 ) M2y | 54 (2.17)
S_
with
2)\HU2 )\Hlvvs 0
Meren = | Ag1vvs ()\1 + /\3)U3/2 0 . (218)
0 0 2m3y + (A — A3)v2/2

Note that s_ is not mixed with the other scalars thanks to the exchange symmetry. The
submatrix for sy and o is further diagonalized in terms of the mass eigenstates

h\ [ cos€ siné o
(h/) = (— sin & cosf) <s+> ’ (2.19)

where ¢ is the mixing angle. Thus we obtain

1 1 1
;C D) *im% h2 — §m%/ hl2 — §m§7 52_ (220)
with the mass eigenvalues
m% 0 _ cosé siné 2\ v? AH1VV cosé —siné (2.21)
0 m2, ) \—sin€ cos¢) \Agivvs (A1 + A3)v2/2) \sin€ cos€ )’ '
m? = 2miy + (A1 — A3)v2/2. (2.22)

We take the mass eigenstate h as the SM-like Higgs boson, and thus m; = 125 GeV.

Collecting the stationary conditions with respect to the VEVs and the definitions of
the mixing angle given above, we can express the parameters in the potential in terms of
the mass eigenvalues, mixing angle, and VEVs as

B m3 cos €2 + m3, sin £2

A\ 5.2 , (2.23)
2 _ 2 :
Nt — (mj, —mj,) cos§s1n§7 (2.24)
VU
2 i 2 2 2 2 2
_ mysing® +my, cos S Mg — Mpy
2 i 2 2 2 m2 —m?
Ny = T SINETF myy COSET Ty~ MMM (2.26)
Vg Vg
1 1 1 1
m% = §m2DM — 5)\}]12}2 - Z)\lvg - 1)\3'0?, (227)



1
m%{ = f)\Hlvg + Agv?, (2.28)

2

Imm?, =0, (2.29)
1

Rem?y = §m2DM. (2.30)

From this, one can see that s_ and a have degenerated masses if and only if \; = As,
where the exchange symmetry and the two U(1) symmetries are merged and extended into a
(softly-broken) global O(4) symmetry acting on (Re ¢1,Im ¢1, Re ¢2, Im ¢2), resulting in that
the model becomes equivalent to that in ref. [10]. See appendix A for more detail.

2.4 Stability of DM and gauge kinetic mixing

Since a and s_ have the odd charges under the exchange symmetry, the lighter one can
be a stable particle without introducing any other symmetries. Therefore, as far as taking
ms_ > mpy, we have the stable pNG DM a. Note that taking m, < mp,; makes s_ the
main DM component, and hence the model effectively reduces to a model with one real DM
s_ and two real scalar mediators (h and h' defined above). Such a model is easily excluded
by the direct detection experiments in most parameter space [18, 19].

In contrast to the model in ref. [10], the dark CP symmetry is not required to stabilize
the pNG DM, which allows the model to have the non-zero gauge kinetic mixing, sin e # 0.
It mixes the SM U(1)y gauge field Y, and the dark gauge field V,. It is convenient to

introduce a new basis
Y! 1 si Y,
m) = (CFRE) () (2.31)
Vu 0 cose Vi

which modifies the gauge kinetic terms into canonical forms,

1 sin € 1 1 1
_ZV“VV,UJ/ - TV'LLVYMV - ZY“VY’U'V — —ZV,'U‘VV!:V - ZY/#VY,L:V . (232)
In this new basis, the covariant derivatives for the scalars become
D.H = (8, —iZwoor — %Yy ¢ itan eV ) H (2.33)
K otgH 2 K 2 M)
o1 .
In the vacuum, the VEVs of the scalar fields give masses to the gauge bosons as
e 2 —cuwsw CwSwhe WS
Lo (WEYIVI) | —eusw % —shte v, | (2.35)
CwSwie _Sgute tzsgu + R2/C§ V,u/,

where R = 2gyvs/(g95v), 97 = \/924'9%/7 sw = sinby, = gy /9y, cw = cosby, = g/gy,
ce = cose, and t. = tane. We introduce the mass eigenbasis (Z,, A, ZL) as

Wj’ ce 0 s¢ Cw Sw 0 Zy, CcCw  CCSw 8¢ Zy,
Y, [=]10 10 —swcw 0| [Ap] =] —sw cw Of]|AL], (2.36)
Vi —s¢ 0 ¢ 0 01 Z, —8¢Cw —S¢Sw C¢ Z,



where ( satisfies

28¢CeSy
R?—1+s2(1+s3)

tan 2 = (2.37)

In this basis, the mass matrix in eq. (2.35) is diagonalized, and eq. (2.35) is given by

1 1
5m2Z Z, 7" + 5m2Z, z,Z" (2.38)
where
2.2 2
gzv : R
m% = Z4 (1 — tesy Sin2¢ + 87 (cg + 252 — 1)) : (2.39)
2,2 R2
m%, = % (1 + teSy sin 2¢ + cg (2 + 252 — 1)) . (2.40)
CE

Now we can express nine parameters in the scalar and the new gauge sectors
i, AL, A3, g1, mi, my, Remiy, gy, sine, (2.41)
in terms of the following physical parameters
v(= 246 GeV), mp(= 125GeV), vs, mpr, ms_, mpyp, My, sing, sine. (2.42)
2.5 Suppression of scattering cross section in direct detection

We here confirm that the spin-independent cross section of the pNG DM a with nucleons is
indeed suppressed in our model.! To see this, it is convenient to move on to the non-linear
representation,

¢ = \}5 (:}% + 81) exp [zZ‘:] , (2.43)
P2 = \2 (3‘% + 82) exp {—17;:] : (2.44)

in which 7, corresponds to a in the linear representation and we have taken the unitary
gauge again. In this representation, the vanishment of the cross section is caused by the
vanishment of the cubic couplings m,m,s1 and 7,m,ss instead of non-trivial cancellation
between different diagrams, as is studied in ref. [13].

To read off the cubic couplings, we substitute these expressions into the Lagrangian
and obtain

10,01|% + |0u¢2]* + miy (¢702 + h.c.) (2.45)
3| (Greo) + (Gew) | (%)
() (o) (2) e

In contrast to the other pNG DM models, the fact that the soft-breaking term has the mass dimension
two does not ensure the vanishment of the scattering cross section. Instead, the exchange symmetry of ¢1 and

D)

¢2 also plays a crucial role in the vanishment. One can check that it indeed does not vanish in general models
without the exchange symmetry. To suppress the cross section, one needs a fine-tuning for the VEVs of the
scalars ¢1 and ¢2 to be equal. See appendix B for the details.



from which we get the cubic couplings,

2
LD —i {(81 + s2) g (@ﬁ“ + m%M> Tq + T 0M' a0, (51 + 82)} ) (2.47)

US
In the direct detection experiments for the DM-nucleon scattering, the first term in eq. (2.47)
vanishes due to the on-shell condition for m,, (9,0* + m¥y)m, = 0, which results in that the
cubic couplings are proportional to the momentum of s; or so. Therefore, in the limit of the
zero momentum transfer, the DM-nucleon scattering cross section vanishes at the tree level
and is highly suppressed, which is consistent with the current null results.

Note that it is not difficult to show the suppression of the scattering cross section
in the linear representation, where one needs to calculate two diagrams mediated by two
mass eigenstates h and h’. The diagrams cancel with each other, which is equivalent to
the result shown above.

3 Constraints

In this section, we discuss constraints from the perturbative unitarity, the Higgs invisible
decay, and the scalar mixing angle.

3.1 Perturbative unitarity

One may obtain the constraints on the scalar and gauge couplings from the perturbative
unitarity (PU) bound [20]. Let us denote the matrix element in two-to-two scattering ¢ — f by

(2m)2W (P — P)My; (v/5,cos0) = (f| T i), (3.1)
where T is the interaction part of the S-matrix, S =1+ T, and 6 is the scattering angle. At
high-energy scattering s — 0o, My;(1/s, cos ) is expanded by partial waves as

My = 167 Z(% + 1) Py(cos G)aﬁci , (3.2)

¢

where Py is the Legendre polynomial. Since £ = 0 scattering typically gives the most stringent
bound, we hereafter focus on ¢ = 0. From the unitarity of the S-matrix SST = 1, we have
i(T — TT) + TTT = 0, and hence

i 0 0 \* 0 \x 0
5 ( i — (agf) ) + Z(ajf) a; <0 (3.3)

J

with j being all possible two-particle states. Here the inequality comes from the fact that the
left-hand side is underestimated by concentrating on the two-particle states as intermediate
states. The above inequality immediately gives

~Im A%+ |\°)? <0, (3.4)

for each eigenvalue \° of the matrix a®. Equation (3.4) means that each eigenvalue should
be inside a circle of a radius 1/2 whose center is at (Re A\, Im \°) = (0,1/2).

The above argument implies the perturbative unitarity that all eigenvalues should satisfy
at the tree-level the following inequality:

1
Re 0| < 5 for all eigenvalues A° of a®. (3.5)

We utilize this inequality to find the constraints on the scalar and gauge couplings.



3.1.1 Scalar quartic couplings

We consider the scalar two-to-two scattering processes ¢ — f for £ = 0. One can carry out
the calculation in the symmetric phase because of the high-energy scattering. For scatterings
between charge-neutral states, i.e., ¢ — f with i, f € {HlH}L, H2H2T,¢1¢I, qquﬁ;, ¢1¢;},
where Hy, Hy are the upper and lower components of the SM Higgs doublet H, the matrix
ag is expressed as

Ahg 2 g Mg A O
20 g 4 g A1 A1 O
Al At 22 A3 0], (3.6)
A1 A1 Az 221 0
0 0 0 0 A

from which we get the PU bound on the eigenvalues,

|Ag| < 4, (3.7)

|2/\1 — )\3‘ < 8m, (3 8)

|Ag] < 8, (3.9)

2M1 + A3+ 6Ag + 2\1 + A3 — 6Ap)2 + 1602, | < 167. 3.10
H1

In addition, we have also scattering modes between U(1)y charged states such as ¢1¢1 — @161
and ¢1H; — ¢1H;, which give the PU bound

I\i| < 8, (3.11)
’)\H1| < 8. (3.12)

We impose all the inequalities egs. (3.7)—(3.12) in our analysis.

3.1.2 Gauge coupling

We study V¢1 — V@1 scattering at high energy in the symmetric phase in order to find the
constraint on gy,. We find that the most stringent bound comes from ¢ = 0 scattering, given as

297
++ —— v
g Qg 167 (3.13)
where ++ and —— mean the helicities of the initial and final V' states. From this, we obtain

the PU bound for the dark gauge coupling constant as

gy < Var. (3.14)

3.2 Higgs invisible decay

If mpy < mp/2, the SM-like Higgs boson h can decay into a pair of the DM aa. The
decay width is given by

2
Yaah 1— 4mDM

I'(h — aa) = 327 "
h

O(mp, — 2mpyp) (3.15)

,10,



with 1
Jaah = VAH1 COSE + 508()\1 + /\3) sing. (3'16>

This process is the Higgs invisible decay and is being searched by the ATLAS and CMS
experiments. Currently, the ATLAS and CMS experiments obtain the upper bound on
the branching ratio as

PR < {0.107 (ATLAS [21]) 517)

0.15  (CMS [22])
at 95% CL.

3.3 Constraints on scalar mixing angle

One may get constraints on the scalar mixing angle £ as it decreases couplings of the SM-like
Higgs boson to the other SM particles with the factor cos¢. From the latest study on the
Higgs boson couplings [23], the most stringent lower bound is the vector boson coupling,
Ky 2 0.97 (95% CL), from which we can read off the bound on £ as sin¢ < 0.24.

3.4 Landau pole

Taking into account quantum effects, the running coupling constants depend on the renormal-
ization scale and evolve from the infrared (IR) to the UV scales as described by renormalization
group (RG) equations. In particular, the gauge and scalar quartic couplings in the dark
sector can grow up and might diverge at the UV scale by hitting the Landau pole when they
are sufficiently large at the IR scale. In this subsection, we write down the RG equations for
them. Since Ag is typically quite small compared to the other coupling constants, we ignore
it in the RG analysis. Note that the non-zero gauge kinetic mixing sin € is also negligible.
In the MS scheme, the one-loop RG equations are given as

o dA1(p)

(47)% By, = (47) ding = 102 +2)3 + 12g¢ — 12¢3 )y, (3.18)
dA

(47)2By, = (47)* dfn(‘;) = 402 4 8\ 3 + 128 — 12¢2 )3, (3.19)
dgy (1) _ 2

(47)28,,, = (47)? leTu = 393 (3.20)

with p being the renormalization scale. One can see that, when A\ = A3, 8\, = B\, holds
and hence the RG flow does not depart from the O(4) symmetric critical surface in the
three dimensional parameter space.

We investigate the energy scale ;x = A at which the coupling constants become non-
perturbative, that is, any of the inequalities eqs. (3.7)—(3.12) is violated. We adopt this scale
A as a practical criterion for the energy scale hitting the Landau pole.

3.5 Boundedness of potential

We here provide necessary and sufficient conditions for the scalar potential to be bounded
from below in an arbitrary direction with large field values. Since the quadratic terms

— 11 —



are irrelevant for the large field values, we concentrate on the quartic coupling constants
AL, A3, A, Amiin eq. (2.7). We obtain the conditions as follows:

A1 >0, Ag >0, A\ + A3 >0,

AL+ V22 A5 >0, Ag1+ 4/ ()\1 + )\3))\}[ > 0. (3.21)

The derivation is given in appendix C. We impose these conditions through the whole
parameter space investigated in the following sections.

3.6 Vacuum stability

The vacuum that we chose in eq. (2.9) is classically stable since the square of masses of the all
particles around the vacuum are positive. On the other hand, the vacuum cannot be stable
quantum mechanically if there is another minimum with lower potential energy. We also check
that such an additional minimum does not appear at the tree level in the following analysis.

4 Relic abundance

We here discuss the DM relic abundance. This model easily explains the correct relic
abundance by the thermal freeze-out mechanism, in which annihilation processes of aa into
the SM particles and their inverse ones are equilibrated in the high-temparature universe while
they are eventually decoupled by the cosmic expansion as the universe cools down. Then the
abundance of a is freezed out, which explains the DM relic abundance of the present universe.

The pair annihilation of a is mainly given by s-channel processes mediated by h and A’
into SM particles. The pair of DM particles also annihilates into pairs of hh/, W'k, and Z'Z’
if kinematically allowed. The annihilation into s_s_ is not effective because s_ is taken to
be heavier than a in order not to be the main DM component as stated above.

Note that, a production of ZZ is allowed for mpy; > m, through the gauge kinetic
mixing. Nevertheless, it cannot be significant because the cross section is proportional to
the fourth-power of the kinetic mixing parameter sine and is highly suppressed in most
parameter space of interest.

As stated in section 2, the dark gauge boson Z’ cannot be stable but easily decays into
SM particles thanks to the non-zero value of sin €, which allows us to take a relatively light
mass of Z’, say, m, = O(100) GeV. Therefore the annihilation channel into Z’'Z’ can be
easily open, which results in a relatively large annihilation cross section of aa for mpy; > m,.
This is a big difference compared with a previous model proposed in ref. [10], in which the
mass of the dark gauge boson must be at least twice as heavy as that of the pNG DM to
prevent Z' from becoming the main DM component.

As benchmark values, we take the parameters as siné = 0.1, sine = 1074, my = 300 GeV,
ms_ = 1.5mp), and m,, = 200 GeV. We use micrOMEGAs [24] to calculate the DM relic
abundance. Figure 1 shows the parameter region giving the correct relic abundance in mpy,-
(v/vs) plane. The blue thick line indicates the correct relic abundance Qpyh? = 0.12 [1].
The red region is excluded by the current bound from the Higgs invisible decay while the
purple region bounded by a dotted line is excluded by the PU bound for the scalar quartic
and dark gauge coupling, see section 3. We can see that there are two deep spikes for the
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Figure 1. Parameter space to explain the measured DM relic abundance. We take sin¢ = 0.1,
sine = 1074, my, = 300 GeV, m,_ = 1.5 mpy, and my, = 200 GeV. The blue thick line indicates the
correct relic abundance Qpyh? = 0.12. The red region is excluded by the current bound from the
Higgs invisible decay while the purple region bounded by dotted line is excluded by the PU bound for
the scalar quartic and dark gauge coupling, see section 3.

solid line, which correspond to the s-channel resonances of h and h’ at mpy; = 125/2 GeV
and 300/2 GeV, respectively. Furthermore, the bound from the Higgs invisible decay is
significant for light mass region while the PU bound seems insignificant in this model up
to mpy; = 10 TeV because Z’ is not so heavy that the gauge coupling g, saturates the PU
bound. We checked that the result is almost independent of the value of sine as long as

4 ¢ in the annihilation cross section as stated above.

sine < O(0.1) because sin € appears as sin

Figure 2 shows a comparison of the result of figure 1 (thick blue curve) to the parameter
space in the case that m,, is fixed as 3mp,, as in ref. [10] (dashed orange curve) and to a
nearly degenerate case with m,, = 1.1 mp),; (dotted red curve). The blue one significantly
deviates from the orange one for mpy; > m,, = 200 GeV, in which the annihilation of aa into
Z'Z' is a dominant process and hence gives the large cross section. For the red one, although
7' is slightly heavier than the DM a, this annihilation channel is still open around the freeze-
out temperature because the Boltzmann factor, exp(—(m, — mpy)/Ty) (T ~ mpy/25),
does not suppress the process for m,, ~ mp,;. Namely, this forbidden channel [25] is active
for mz = 1.1mpy. Consequently, the parameter space becomes intermediate of the two
curves. We checked that cases of m,, 2 1.2mp, are almost the same as that of m,, = 3mp),
and the prediction becomes independent of m .

In figure 3, we plot the value of the gauge coupling constant gy, versus mp); in the both
cases for the parameter space shown in figure 2. The purple region bounded by the dotted
line corresponds the PU bound only for the gauge coupling, g;, > v47. One can see that
the PU bound on gy, is violated in heavier mp); region in the cases of m, = 3mp,; and
1.1 mpy; while it is not in the case of m, = 200 GeV.

,13,



As the results of the RG analysis given in section 3, figure 4 shows parameter region
in which any of the running scalar quartic and gauge coupling constants grow up into
non-perturbative regime (hitting Landau pole) at the energy scale p = A. Practically, we
use the PU bound by replacing the coupling constants in eqs. (3.7)—(3.12) and (3.14) with
the running coupling constants, namely A\ (u), A3(p), and gy (p), and define A as a scale
at which the inequalities are violated. We take initial conditions of the RG equations at
[t = mpy; as to be the coupling constants calculated from eqs. (2.23)—(2.26), and (2.40). The
white region indicates A > 10'® GeV, which means that they do not hit the Landau pole
until the Planck scale, while the orange hatched and gray regions indicate A < 100 TeV and
100 TeV < A < 10'8 GeV, respectively. In the top, middle, and bottom panels, the blue thick,
dashed orange, and dotted red curves indicate the parameter space providing the correct DM
abundance and corresponds to the curves shown in figure 2. The parameters are taken as
mp = 300GeV, ms_ = 1.5mpy; sine=10"% sin& = 0.1, and m,, = 200 GeV (top panel),
m, = 3mpy, (middle panel), or m,, = 1.1mp,; (bottom panel). In the case of the middle
panel, in most parameter space, the model breaks down and requires some UV completion at
the cutoff scale around 100 TeV, which resembles the behavior of the model in ref. [10]. On
the other hand, in the case of the top panel, the model basically remains valid up to 100 TeV,
and in some parameter space as high as the Planck scale. This is a sharp contrast to the
model in ref. [10], and the benefit coming from the exchange symmetry introduced in this
model. In the bottom panel, the constraint by the Landau pole is slightly milder than the
middle one while it still requires some UV completion by 100 TeV for mpy = 800 GeV.

Let us give a comment on a case that s_ has an approximately degenerated mass with
the pNG DM a. In this case, co-annihilation processes, as_ — Z*(Z*) — ff, can happen.
In addition, the decay process s_ — aZ"™ is suppressed and s_ can be long-lived. As
stated in section 2, such a degeneracy is realized if and only if A\; >~ A3, which enlarges the
symmetries in the scalar potential to the global O(4) symmetry as presented in appendix A,
and hence the model reduces to the one studied in ref. [10], in which the pNG DM is given
as a complex scalar s_ + ia.

5 Loop induced spin-independent cross section

The DM direct detection experiments utilize a scattering of DM off a nucleon. The incoming
particles are non-relativistic, and thus, the momentum transfer is quite small. As discussed
in section 2.5, the amplitude of a pNG DM particle scattering off a nucleon is highly
suppressed by the small momentum transfer, and thus the spin-independent cross section
og; is essentially zero at the tree level analysis. This suppression is due to a property of
NG bosons. However, the DM candidate is not a NG boson but a pseudo-NG boson due
to the explicit global U(1) breaking by m3,. Hence, the suppression is not guaranteed at
the loop level in general. In fact, the spin-independent cross section is induced at the loop
level in other pNG models? [10, 26-28]. In this section, we investigate the loop effect on
the spin-independent cross section in our model.

2Loop effects in models similar to pNG DM models were studied in [16].
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Figure 2. Comparison of three cases of the masses of Z’ gauge boson. The blue thick, orange dashed,
and red dotted lines indicate the parameter space providing the measured DM relic abundance in the
cases of m,, =200GeV, m,, = 3mpym, and m,, = 1.1 mp,,, respectively. The other parameters are
the same as those in figure 1. The blue thick and the orange dashed ones have distinct asymptotic
behavior for heavier mp, which corresponds to whether the annihilation channel aa — Z’'Z’ is open
or not. In the case of m,, = 1.1 mp,,, this channel is partially allowed, resulting in the intermediate
behavior of the two lines.

siné = 0.1, sine =10"* mu = 300GeV, m, = 1.5mpy
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Figure 3. The value of the gauge coupling constant gy for the parameter space shown in figure 2.
The purple region bounded by dotted line is excluded by the PU bound only for the gauge coupling
constant gy > v4m.
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Figure 4. Parameter region in which the running coupling constants grow up into non-perturbative
regime (Landau pole) at the energy scale A < 100 TeV (orange hatched), 100 TeV < A < 10'® GeV
(gray), and A > 10'8 GeV (white). m, is taken as m,, = 200 GeV (top), m, = 3mp,; (middle),
and my, = 1.1mpy (bottom). The other parameters are the same as those in figure 1. The curves
correspond to those in figure 2.
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If the DM candidate were massless and a NG boson, the scattering amplitude would
be suppressed even at the loop level. This ensures that the loop-level scattering amplitude
vanishes in the limit of m$, — 0 in which the DM candidate becomes a massless NG
boson, namely,

lim Y M(miy) =0. (5.1)
mip—0 diagrams

Using this property, we can simplify our loop calculation [10]. The total scattering amplitude
can be rewritten as

S Mmd) = Y (M) - M(0)) (5:2)

diagrams diagrams

from which it follow that the diagrams independent of m?, cancel within the parenthesis
and do not contribute to the final expression of the scattering amplitude. We calculate only
the diagrams that have m?2, dependence, and subtract m?2, independent part. We find that
m3, dependence appears in m,, ms_, the vertices including s_, and the aamy,my,-coupling,
where 7, is the would-be NG boson that is eaten by Z’ .3 The expressions of the amplitude
for each diagram are given in appendix D.

Figure 5 shows the spin-independent cross section og; at the loop level. Here, we take
the same parameter set as in figure 2, but with vanishing kinetic mixing, namely ¢ = 0. We
find that the loop-induced values of og; typically drop into the neutrino fog. In some regions,
og are not hidden by the neutrino fog. However, the cutoff scale A estimated from the RG
running is below 100 TeV in those regions, see also figure 4. In the viewpoint of effective field
theories, higher dimensional operators can exist in the Lagrangian with coeflicients inversely
proportional to several powers of A. Such operators modify our prediction based on the
renormalizable model. Thus, the low cutoff scale is disfavored from the viewpoint of model
predictability and requires some UV completion. As a result, in order to probe the plausible
parameter space of the model, it is necessary to probe the region in the neutrino fog.

6 Discussion and conclusion

We have proposed the new pNG DM model with two SM-singlet complex scalars and a dark
U(1) gauge field. The model also has a global U(1) symmetry and a Zs symmetry under the
exchange of the two scalars. The global U(1) symmetry is broken explicitly and softly by
the mass-dimension-two term, where other soft-breaking terms are forbidden by the gauge
U(1) symmetry. The VEVs of the scalars spontaneously break the both U(1) symmetries,
giving rise to the pNG boson whose mass is originated from the soft-breaking parameter.
The exchange symmetry ensures the stability of the pNG DM a as well as the suppression of
the DM-nucleon scattering cross section. This model does not suffer from the DW problem.
The comparison with the other pPNG DM models are shown in table 1. We have discussed the
phenomenology of this model and shown that it can explain the correct DM relic abundance
at present universe within the theoretical and experimental constraints. Note that if m

3In this section, we ignore the kinetic mixing because its effect is negligible.
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is lighter than mp,,, the annihilation process aa — Z'Z’ is open and gives the relatively
large annihilation cross section. Consequently, the parameter dependence of the DM relic
abundance on v, and mp,; can be significantly different in heavier mp,; region from those in
the other pNG DM models, as shown in figure 1 and figure 2. This leads to the relatively
large VEV and small scalar and gauge coupling constants, and hence, the Landau pole can
be evaded until the high-energy scale as shown in figure 4. We have also calculated the
loop-induced spin-independent cross section og; with nucleons as shown in figure 5. We found
that the favorable parameter space of the model is basically covered by the neutrino fog.

We here comment on topological solitons appearing in this model. Because the vacuum
manifold in the dark sector has the non-trivial first homotopy group, the model admits
topologically stable vortex strings. When m,, is heavier than m,, the cross section of the
vortex solution is not axially symmetric but has a dipole-like structure consisting of two
half-quantized vortices connected by a domain wall, as studied in ref. [29] in the semilocal
model [30, 31] with an explicit breaking term. This non-trivial structure of the strings could
lead to their non-trivial dynamics and help us to probe this model in cosmological and
astrophysical observations. The detailed studies will be reported elsewhere.
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A The model with O(4) symmetry

When one takes A\ = Az in the model introduced in section 2, this model enjoys a (softly-
broken) global O(4) symmetry. Then s_ and a are degenerate in mass and form a complex
pNG boson of the O(4) symmetry breaking. This is made obvious in the following basis:

1
b1 = 55 (014 62) = 5 (04 5 imy) (A1)
6= 5 (61— da) = 5 (s +ia) (A.2)
Using A1 = A3 and
61]° + [dal* = |o 4 |* + oI, (A.3)

the potential in this new basis is written as
V(H, ¢4, 0-) = mi(|o+]” + [o-1*) — mPy (|64 — 60— %)
+ 2 (1042 + 16 7)
— w4 H 2+ A H* 4 i [HP (o4 2 + o 2) - (A-4)
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It is found that a, my,, and s_ are (p)NG bosons of this O(4) symmetry. While 7, is
eaten by the gauge field, the others get their masses 2m?2, due to the explicit breaking
term proportional to m?,.

If one introduces a complex doublet ¢,

_ (o~

A 2
V(H, ) = mi|]* + mholosp + T (1)
— w3 H P+ Au|H[* + A [H[* ]2, (A.6)

then the potential is rewritten as

which is invariant under the gauge transformation U(1)y
¢ — D, (A7)

and hence this model is equivalent to that in ref. [10]. In this case, the two real components
s— and a form a complex DM, which is denoted by x in ref. [10]. Therefore, the model
introduced in section 2 can be regarded as a model obtained by decomposing the complex
DM x into real and imaginary parts and splitting their masses.

B The model without exchange symmetry

We here discuss a model generalized by removing the exchange symmetry from the model
discussed above. The field contents are the same as those.

B.1 Lagrangian
Without the exchange symmetry between ¢; and ¢, the Lagrangian is given as
9 5 1 " sin e w
L = L{sM w/o Higgs potential} T|Dyu®1|"+|Dyud2| — 1V Vw5V Y=V (H,¢1,¢2) (B.1)
with the scalar potential
V(H, 61, ¢2) = mi|on[* + m3l ol — (miyeide + hic.)
A1 A2
+ §|¢1\4 + ?\¢2|4 + A3l ][ o
—mi[HP? + Au|H[* + A1 [H* |61 + A2 H?| o] . (B.2)

In general, ¢1 and ¢, take different VEVs as follows,

1 0 (%1} (%]
(H) = o) <v> ;1) = ok (¢2) = NG (B.3)

The four real scalar particles around the vacuum are given as

_ 1[0
H= V2 (v + 0(3:)) ’ (B.4)
o1 = \2 (v1 + s1(z) +ia(x)sinfB), ¢ = \}5 (vg + s2(x) — ia(x) cos ) , (B.5)
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with sin 8 = vg/vs, cos B = vy /vs and vs = \/v? + v3. Here one can take v; and vg as real
without loss of generality by redefinition of the fields. The fields o, s1, and sy are CP-even
real scalars while a is a CP-odd real scalar. We have taken the unitary gauge for the U(1)y
gauge and the SM gauge symmetries and have taken a as the direction orthogonal to U(1)y .

B.2 Scalar mass spectrum

Substituting the fields by the components in the potential, we obtain the stationary conditions

2 _
Immiy, =0 (B.6)
2 _ 2 1 2_1 2 _ 1y .2 ’
mi = Remiytan 8 — s Ag1v° — 5A107 — 5303
2 _ 2 1 1 2 _ 1y .2 _ 1y .2
my = Remiymg — g Am2v” — g A2v5 — 5 A301,

from which it follows that m?, should be real. Then we have the following mass terms

o
1 1
LD ~5 (a s1 52) vaen s1| — §M3a2 (B.7)
52
with
202 AH10V1 AH20V2
2
Me2ven = | Amivn mql)iglm + )\IU% A3v1v2 — m%z (B8)
2
/\HQUUQ )\3’01112 — m%Q L;ZUI + )\2?./%
and
2
m
M2 = 12 - B9
“~ Sinfcosf | PM (B.9)

We can move on to the mass eigenstates for the neutral CP-even scalars as

o hi2s
si|=R|[ m (B.10)
52 12

with the O(3) matrix R being described by the Euler angles as

1 0 0 cosf; 0 sinfy 1 0 0
R=|0cosfy —sinfy 0 1 0 0 cosf3 —sinfbs | , (B.11)
0 sinfy cosfs —sinfy 0 cos by 0 sinf3 cosfs

which is supposed to diagonlalize the mass matrix as

T ar2
R* M, even

R = diag (m3, m%l,mfn) . (B.12)
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B.3 Stability of pNG DM

When the gauge kinetic mixing parameter € is non-zero, the pNG DM a can decay via processes
with a vertex aV),s;) where the off-shell gauge boson V, and the scalar s;(;) eventually
decay into SM light particles, resulting in that a cannot be a stable DM. To avoid this in the
generalized model, we must impose a discrete symmetry under the dark CP conjugation

Vi— -V,
$1 — P] (B.13)
P2 — ¢
which leads to
sine=0. (B.14)

Thanks to this condition, the pNG a and V), have odd charges under this Zs transformation
while the others having even charges, and hence they cannot decay into SM particles. In
addition, by imposing the mass of V), to be heavier than a, the decay of a such as a — V), f f
is kinematically forbidden, making a stable.

B.4 Non-suppression of scattering cross section in direct detection

The most plausible feature of the original pNG DM model [5] is that the spin-independent
scattering cross section of the pNG DM with nucleons vanishes at the tree level with the
zero momentum transfer. This is due to, in the linear representation for the pNG boson, the
cancellation between two Feynman diagrams mediated by two neutral scalar particles. This
is also the case for similar models, such as models in refs. [8-12], in which the pNG boson
obtains its mass from explicit breaking terms with mass dimension two. On the other hand,
in other models containing explicit breaking terms with mass dimension one or three [14],
the cancellation does not work, leading to the sizable spin-independent cross section, unless
the masses of the mediating scalars are tuned to be degenerated.

Therefore, one may consider that the present model works well as a pNG DM model
since the explicit breaking term is given as the operator with mass dimension two, ¢j¢2 +h.c.
However, this is not the case. We here show that the spin-independent cross section of
the pNG DM a with nucleons is not suppressed in general. To see this, it is convenient to
move on to the non-linear representation,

b1 = \2(1}1 + s1) exp {z sinﬂZZ] , (B.15)
o — \}5(’02 + s9) exp {—z’ Cos 67;;1] , (B.16)

in which 7w, corresponds to a in the linear representation and we have taken the unitary
gauge again. In this representation, the vanishment of the cross section is caused by the
vanishment of the cubic couplings m,m,s1 and 7,m,s2 instead of non-trivial cancellation
between different diagrams, as is studied in ref. [13].
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To read off the cubic couplings, we substitute these expressions into the Lagrangian
and obtain

10,0117 + |0ug2|® + miy (d1¢2 + hoc.) (B.17)
D) % (v1 + 51)2 tan? 8 + (vg + 82)2m1112B] (8’;)?)2
- %m%M(UI + s1)(v2 + 82)73111 ﬁlcosﬁ (7;:)2 ) (B.18)
from which we get the cubic couplings,
LD 72%34 (sin2B 4 cos 28 + 1)(1 — tan ) (_C(;Sslﬁ + si?ﬂ) 72, (B.19)

where we have used that the momenta carried by s; and so are negligible in the direct
detection experiments and the on-shell condition for m,, (9,0" + mQDM)ﬂa = 0. Therefore,
these couplings between the pNG 7, and the scalars s; and sy do not vanish in general,
leading to a sizable spin-independent cross section with nucleons. This is not necessarily
inconsistent with the low energy theorem (soft pion theorem) since the above couplings
are proportional to mp); and hence vanish in the limit mp,; — 0, where the pNG DM 7,
becomes a true NG boson. From the above expression, it is obvious that the vanishment of
the couplings (and hence the cross section) requires a tuning of tan 8 — 1. In the model
introduced in section 2 with the exchange symmetry, tan 5 = 1 is naturally realized, and
hence the amplitude vanishes at the tree level as shown.

C Derivation of boundedness condition of potential

We here derive necessary and sufficient conditions (3.21) that the scalar potential is bounded
from below. Since they are irrelevant for the large field values, we ignore all quadratic terms
in the potential and concentrate on the quartic terms:

A
Vauart. = Au[H|* + 31 <!<Z51|4 + |¢2\4) + Aslon )@z + Ama|[H (|61 + |g2f?) . (C.1)

Because of the exchange symmetry in the quartic terms, we can take |¢1| > |p2| without
loss of generality.

Case of Ag1 > 0. Remark that the potential is rewritten as

2
[ A
VQuart. = )\H <|IJ|2 - ﬁ <|¢1|2 - |¢2’2>>

+ (v + V2R HHP (jon = 16217)

+ 20 [H [ g2]* + (A1 + A3) [61]?| 92 (C.2)

We first obtain necessary conditions for Vyart. to be non-negative with arbitrary directions
as follows. For a direction in which |¢1| = |¢2] and |H| = 0 in (C.2), we have

Vauart, = (A1 4+ A3)|@1%[d2]? = A + A3 > 0. (C.3)

— 23 —



For a direction in which |¢2| = 0 and |H| = 0 in (C.2), we have
Vauart, = %|¢1\4 = A1 > 0. (C.4)
For a direction in which |¢1] = 0 and |¢2] = 0 in (C.2), we have
Vauart. = Ag|H|* = A\g > 0. (C.5)
Thus, in the case of A > 0, we summarize the necessary conditions as
AM+A3>0, X\ >0, Ag>0. (C.6)

We can check these are also sufficient conditions as follows. Assuming these and |¢1] > |¢2],
it is obvious that all terms in the potential (C.2) are positive

unart. 2 07 (C7)

where the equality holds when

A
H = [55- (181F =162) . 1ol = |62l = 0. (C.8)

(We have also used A1 > 0.) Therefore we have found (C.6) to be necessary and sufficient
conditions for the case of Ag; > 0.

Case of A1 < 0. We rewrite the potential Viyare. as
2 | AH1 2 NE
unart. = Ay ’H| + % <|¢1| + |¢2’ )

)\1 )\2 2
+ (2 - MH{{) (I61* = le=) "+

Again, we obtain necessary conditions for Vuart. to be non-negative with arbitrary directions

)\2
A3+ AL — )\Hl] |b1]?[ 2] - (C.9)
H

as follows. For a direction in which |¢1] = |¢p2] = 0 in (C.9), we have
Vowart, = Ag|H|* = Ay > 0. (C.10)
For a direction in which |H|? = —/\,\%(Wlp + |¢2]?) and |¢1| = |p2|, we have
M 20, 12
unart. — )\3 + )\1 - T |¢1| |¢2‘ (Cll)
H
)\2
:>)\3—|-)\1—ﬂ>0 (C.12)

A

= —\/()\14-)\3))\}[ <A1 <0, A +A3>0. (C.13)
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For a direction in which |H|? = —’\)\—’?ﬂgbl]? + |¢2|?) and |¢o| = 0, we have

A A2 2
Vauart, = (2 - 4§I;> (Ie1P?) (C.14)
RN T (C.15)
2 Ay '
= —\/ 2)\1)\}[ < >\H1 < O, A1 > 0. (C.lﬁ)

Thus, in the case of A1 < 0, we summarize the necessary conditions as

AM+A3>0, A >0, Ag>0, Ag1+V2 g A1 >0, Ag1+ <)\1+)\3))\H > 0.
(C.17)

Again, it is obvious that these conditions are sufficient conditions because assuming
them, all terms in the potential (C.9) are non-negative. Therefore (C.17) are necessary and
sufficient conditions for Ag; < 0.

Since the conditions Ay +v2Ag A1 > 0 and Ay + /(A1 + A3)Ag > 0 are automatically
satisfied for A1 > 0, we can combine the two cases of A1 > 0 and Ag; < 0 to obtain the
necessary and sufficient conditions (3.21).

D Details of the loop calculation for og;

In this section, we calculate the diagrams that are relevant for the DM-nucleon scattering
process. We calculate all the diagrams with zero-momentum transfer. Note that the gauge
kinetic mixing is negligible. In the following, we denote h (k') as hy (hg), for simplicity.
We perform our calculation in the Landau gauge although the result is independent of the
gauge choice.

As discussed in section 5, we focus only on the diagrams that depend on the parameter
m2,, explicit breaking of the global U(1), symmetry. The m?2, dependence appears in m,,
ms_, the vertices including s_, and the aam my-coupling, where my, is the would-be NG
boson that is eaten by Z’. We list the diagrams in figures 6-10.

Some of these diagrams do not contribute to our final result. In fact, the diagrams
in figure 6 cancel each other. The diagrams in figure 7 depend on the gauge choice, but
they vanish in the Landau gauge with the dimensional regularization in the limit of the
zero momentum transfer. Also, 7 m h; coupling is proportional to aah; coupling, and
thus figure 7(a) vanishes even with other gauge choices. Hence, those shown in figures 6
and 7 do not contribute to og;.
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Figure 6. The diagrams that cancel each other.
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Figure 7. This diagram does not contribute to og;. See text.
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Figure 8. The diagrams that contain a in the loop.
Figure 8 shows the diagrams containing a in the loop. We find
Figure 8(a) = figure 8(b) = ungffh 2 Yaah,; hkgaathO(mg,v m¢217m}2z ), (D.1)
. Bo(m2,m2,m;21 )_BO(m2’m2’m% )
Flgure 8(C) = UU Z 9ffh; 2 9hjhiheYGaah, 2 2 ms — m2 2 2 ! 5
Jik,l hy he
(D.2)
where
m
gffh = Tf% (D.3)
m
grfn = —be‘g, (D.4)
m,
Jaah = S¢, (D5)
Vs
2
my,
Yaah! = h C¢, (DG)
Vs
2 2 2.3 3 (02 2
My CeSe + My ¢ )v + cz(my — my,)v
Jaahh = iy Cese %) 3 (i w) Ssg, (D.7)
VU3
(m32,c2 + mis2)v — cese(mi —m3,)vs
Gaahh! = £ £ 2 S¢Ce, (DS)
VU2
_ (mjc +mjcesi)o + sE(mi — mi)vs
Jaah'h' = 2 C¢, (Dg)
VU2
3m2 sv + v
e (D.10)
v Vs
2m? +m?2,
Ghhh = MS&C&(S&U — Cevs), (D.11)
VU
2 2
m; + 2m7,
Jhi'h = MSgC&(CgU + 3{”5)7 (D12)
VU
3m2, c3v — s2v
e 2, (D.13)
v Vs
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Figure 9. The diagrams that contain s in the loop.

and the definitions of the loop functions are the same as those given by Looptools [32].
Note that the contributions from figure 8 do not vanish in the limit of m%, — 0 unless
adding other diagrams that are independent of m%Z. Instead of adding them, we subtract
m?, independent part as stated in section 5,

Figure 9 shows the diagrams containing s_ in the loop. Among these diagrams, figure 9(d)
vanishes because 7y, m,h; coupling is proportional to aah; coupling. We calculate the rest
of the diagrams. We find

m2—m2 )2 1 1
Figure 9(a)+figure 9(b) ziﬁuﬂQMsgzg <m2_2> Bo(0,m? ,m? ),

(4m)2 v v3 yomy °
(D.14)
. 2 33
. i mg(mg—mg )" (1 1 0
F 9(c) = q | 2s¢ce————Bo(m?2,0,m>
igure 9(c) (47T)2uu - 3 (m% m,%,) Sicéamg_ 0(mg,0,m; ),
(D.15)
Figure 9(d) =0, (D.16)
: 2.2 \2
. i mg(mg—mi )* (1 1
F 9(e)+figure 9(f) =— —1t | — —— | 2s¢ce Bo(m2,0,m?
igure 9(e)+figure 9(f) (47r)2uu ” 3 (m% m%) seceBo(mg,0,m;_),
(D.17)
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Figure 9(g) =—
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Figure 9(h) =—2—— ~—Litusecce —2 (—)
(4m)? v ¢ v \mi mj,
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y { (~mrm?_+2m2) 2o B2 )
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T gy e )
2 212
m; —m
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m;_ —m
+SmQ“} (D.19)
v

Note that the amplitude from figure 9 vanishes in m2, — 0 limit. Thus we have

Mﬁgure 9(m12) Mﬁgure 9( ) = Mﬁgure Q(m%Q) . (D20)

One should also consider the gluon contribution with the heavy quarks in loop diagrams
shown in figure 10. Although it is the two-loop contribution, it contributes as much as
the one-loop diagrams discussed so far. The expression after subtracting m?, dependence
is given in ref. [10].

To obtain og;, it is convenient to consider the effective Lagrangian relevant for the
scattering process as given by

1
Lo = 5ch mqaz(jq—i— CS s a’G4, G (D.21)
T

where C;Ig and C’f are Wilson coefficients and can be read off from the scattering amplitudes
calculated so far. Using these Wilson coefficients, we calculate oy,

1 [punmpy
og1 = i

2

Z clfy —gcgng , (D.22)

q=u,d,s
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Figure 10. The 2-loop diagram that contains top loop in the blob.

where my and uy = mymg/(my + my,) are the nucleon mass and the reduced mass, respec-
tively. fév and ng are the matrix elements of the operators evaluated by the nucleon states,

fomn = (N|medq|N), (D.23)

8
—5fmy = (N %GZVG““” IN). (D.24)
Their approximate values are given as [33]

f2=0019, f2=0.027, f"=0013, f§=0.040, fP= f*=0.009, (D.25)

N =1—fN = = 1N+ 0(a). (D.26)
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