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1 Introduction

Axions and axion-like particles (ALPs) are omnipresent in extensions of the Standard Model
(SM). The strong CP problem and its axion solution is certainly the most famous example of
such an extension [1, 2]. But axion-like particles, that is, pseudo-scalars with shift-symmetric
couplings, are also predicted in many models that do not address the strong CP problem.
Whenever a theory involves a spontaneously broken global symmetry, the corresponding
pseudo-Goldstone boson is an axion-like particle.

The shift symmetry of the ALP Lagrangian implies that ALP couplings to fermions must
be proportional to the fermion mass. This common feature of all ALPs distinguishes them
from more general pseudo-scalars. ALP couplings to gauge bosons, as well as their relative
strength compared to fermion couplings, are very model-dependent [3, 4]. For example, in
DFSZ-like axion models [5, 6] couplings to gauge bosons are loop-induced by the fermion
couplings, while in KSVZ models [7, 8] fermion couplings are generally suppressed.

The flavor hierarchy of the ALP-fermion couplings gives the top quark a special role in
the phenomenology of ALPs. Since top quarks interact with all bosons of the Standard Model,
the strong ALP-top coupling affects the energy evolution of all other ALP couplings [9–12].
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Probing the ALP-top coupling at high energies informs us about possible effects at lower
energies. In particular, in models where the ALP-gauge couplings are induced by fermion
loops, probing the ALP-top coupling implies probing the ALP-gauge couplings.

In this work, we perform a detailed analysis of ALP effects in top-antitop production
at the LHC. Precisely measured top observables allow us to probe the ALP-top coupling
directly with resonant top quarks. Moreover, ALP effects in top-antitop production are
largely independent of the ALP mass, as long as it lies below the top-antitop threshold. This
makes our analysis applicable to a broad range of ALP models. Above threshold, resonance
searches in top-antitop production offer a high sensitivity, see e.g. [13–16]. Searches for
top-antitop production plus missing energy [17] or a pseudo-scalar resonance [18] can also
efficiently probe the ALP-top coupling, but require that the ALP is light enough to decay
invisibly or displaced. For light ALPs, observables with virtual top quarks like rare meson
decays [19–22] or Higgs decays [23] have a high sensitivity to the ALP-top coupling.

Partial effects of ALPs in top-antitop production have been previously explored [16,
17, 24, 25]. Our analysis goes beyond these studies in two ways: first, we perform a full
calculation of ALP effects in top-antitop production at tree level and one-loop level. Given
the precision in top observables, this is necessary to obtain robust predictions of the ALP
effects. Second, we investigate the impact of the ALP-gluon coupling, which enters the
amplitudes at tree level. We show how the sensitivity of top observables to the ALP-top
coupling depends on the magnitude and sign of the ALP-gluon coupling. This allows us to
probe a large class of ALPs and in particular DFSZ-like axion models, where the ALP-gluon
is induced by the ALP-top coupling.

This article is organized as follows. In section 2, we recapitulate the effective theory of
ALP interactions and set the stage for our analysis. In section 3, we describe our calculation of
the various ALP effects in top-antitop production in detail and present numerical predictions
of differential distributions. Analytic expressions are given in appendix A. In section 4, we
compare these predictions to LHC data and derive bounds on the ALP coupling to top
quarks and gluons. In section 5, we compare our results to other observables that probe
the ALP-top coupling. We conclude in section 6.

Shortly before finishing this work, ref. [26] appeared, which includes an analysis of ALP
effects in top-antitop production beyond tree level, as well as other top processes. Since the
setup and focus are different from ours, we do not attempt to perform a detailed comparison,
but refer the interested readers to the article.

2 ALP effective theory

ALPs, by definition, are pseudo-scalars whose interactions preserve a shift symmetry a → a+c,
where a is the ALP field and c is a constant. The leading shift-symmetric interactions are
of mass dimension 5, described by an effective field theory (EFT) with a cutoff scale Λ [27].
At energies µ below the cutoff scale, but above the weak scale, the effective Lagrangian for
ALP interactions relevant to top-antitop production reads

LI(µ) = 1
2 ∂µa ∂µa − m2

a

2 a2 − ∂µa

fa

∑
F =Q,U,D

F̄ cF γµF + cGG
a

fa

αs

4π
GA

µνG̃A,µν , (2.1)
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with the gluon field strength tensor GA
µν and its dual G̃A,µν = 1

2ϵµνρσGA
ρσ with SU(3)C gauge

indices A = 1, . . . 8. All parameters in this Lagrangian are defined at the scale µ. We
have adopted the notation of ref. [12], which sets Λ = 4πfa. Throughout this work, we set
fa = 1 TeV. For UV completions with Λ = fa, our results can be interpreted by simply
replacing fa → 4πfa. The ALP mass ma breaks the shift symmetry. We consider it as a
free parameter and do not speculate about its origin.

The shift symmetry of the ALP-fermion couplings is explicit through the partial derivative
∂µa. The symmetry imposes a particular structure on the 3 × 3 coupling matrix in flavor
space, cF , where F = Q, U, D denote electroweak doublet, up-type and down-type gauge
singlet quarks. In strong-interaction processes like top-antitop production, the ALP-fermion
vector current is conserved and only axial-vector couplings are observable. We define the
flavor-diagonal axial-vector couplings to up-type and down-type quarks as (i = 1, 2, 3)

c
(u)
ii = (cU )ii − (cQ)ii, c

(u)
33 ≡ ctt, (2.2)

c
(d)
ii = (cD)ii − (cQ)ii, c

(d)
33 ≡ cbb.

While the Lagrangian (2.1) makes the shift symmetry explicit, it can be (and in our case
will be) convenient to work in a different basis with Lagrangian

LII(µ) = 1
2 ∂µa ∂µa − m2

a

2 a2 − a

fa

(
QH̃ ỸU U + QH ỸD D + h.c.

)
(2.3)

+ c̃GG
a

fa

αs

4π
GA

µνG̃A,µν ,

where H̃ = iσ2H∗ with the Higgs doublet H . In what follows, we will refer to (2.1) and (2.3)
as Basis I and Basis II, respectively.

In Basis II, the ALP-fermion couplings are given by

ỸU = i (YU cU − cQYU ) , ỸD = i (YDcD − cQYD) , (2.4)

with the up-type and down-type Yukawa matrices YU and YD. In the basis where the
interaction and mass eigenstates of up-type quarks coindice, YU = ŶU is diagonal and
YD = VŶD, where V is the CKM matrix. Neglecting the light-quark Yukawa couplings, the
ALP-quark and ALP-gluon couplings in (2.1) and (2.3) are then related by (i, j, k = 1, 2, 3)

(ỸU )ij = i yt

(
(cU )ijδi3 − (cQ)ijδj3

)
(2.5)

(ỸD)ij = i yb

(
Vi3(cD)3j − (cQ)ikVk3δj3

)
c̃GG = cGG + 1

2
∑

i

(
(cU )ii + (cD)ii − 2(cQ)ii

)
.

These relations apply at all scales above the top mass scale. They can be used to translate
between the parameters in Basis I and Basis II.

Assuming that the ALP couples only to top quarks (and not to lighter quarks), at the
cutoff scale Λ the model parameters in Basis I and II are related as

(ỸU )33 = i yt ctt, c̃GG = cGG + ctt

2 . (2.6)
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In top-antitop production, this is a realistic simplification, since ALP couplings to on-shell up
and charm quarks are suppressed by the small quark masses. Flavor off-diagonal couplings
would leave traces in top observables, but we do not consider them in this work.

The ALP couplings ctt(µ) and c̃GG(µ) are scale-dependent quantities. Their evolution
with energy is described by a coupled set of renormalization group (RG) equations. At
leading order in perturbation theory, the solution of the RG evolution for scales µ < Λ is
approximately given by [12]

ctt(µ) =
[
1 − 9

2R(µ, Λ)
]

ctt(Λ) (2.7)

c̃GG(µ) = c̃GG(Λ) − R(µ, Λ) ctt(Λ),

with the evolution function

R(µ, Λ) = αt(µ)
αs(µ)

1 −
(

αs(Λ)
αs(µ)

) 1
7

 , αt(µ) = y2
t (µ)
4π

. (2.8)

Setting ctt(Λ) = 1 and c̃GG(Λ) = 0 at Λ = 4π TeV, we obtain the effective couplings at the
top mass scale µ = mt = 172.5 GeV as

ctt(mt) = 0.81, cbb(mt) = 0.10, c̃GG(mt) = −0.04. (2.9)

The RG evolution of ctt reduces the ALP-top coupling and induces an ALP-gluon coupling
at scales below the cutoff scale. The numerical values are consistent with (2.5); RG-induced
contributions of first- and second-generation quarks cancel in the sum. In our numerical
analysis, we take this effects into account. The effect of c̃GG(Λ) on the RG evolution of
ctt is suppressed as α2

s and will be neglected.
The main goal of this work is to derive a robust bound on the ALP-top coupling. In the

main part of our analysis, we will focus on the scenario where only top couplings are present
at the cutoff scale. In terms of the parameters from Basis I, we define

Benchmark I: cGG(Λ) = 0, ctt(Λ) = ctt. (2.10)

Using (2.6), this corresponds to c̃GG(Λ) = ctt/2 in Basis II.
Since Basis II is also often used in the literature, we define a second benchmark

Benchmark II: c̃GG(Λ) = 0, (ỸU )33(Λ) = i yt ctt. (2.11)

Such a scenario is realized in DFSZ-like axion models [5, 6], where the axion-fermion couplings
are Yukawa-like and couplings to SM gauge bosons are induced only through fermion loops.
Notice that the two benchmarks do not describe the same class of physics models. In what
follows, the parameters ctt, c̃GG and cGG are always defined at the cutoff scale Λ, unless
mentioned otherwise.

These two benchmarks serve as reference points for our analysis. In sections 3.3 and 4.3,
we extend the analysis to arbitrary ALP-gluon couplings. In this way, our results are applicable
to general UV completions with top and gluon couplings, interpreted in the 2-dimensional
parameter space of {ctt, cGG}.
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Figure 1. ALP contributions to top-antitop production at LO (upper left diagram) and at NLO from
virtual corrections (first and second row) and from real radiation (third row). Only representative
Feynman diagrams of each class are shown.

3 ALP effects in top-antitop production

One of the best processes to probe the ALP coupling to top quarks is top-antitop production
at the LHC. The resonant production of the top-antitop pair allows us to test the ALP-top
coupling directly, compared to observables like meson decays or Higgs decays, where the ALP
couples to virtual tops. The main kinematic distributions of hadronic top-antitop production
have been measured with a precision of a few percent. This makes them sensitive to subtle
effects of light new particles like ALPs.

Throughout this section, we work in Basis II from (2.3), which is better suited to
calculate ALP effects beyond tree level.

3.1 ALP contributions at LO and NLO

ALPs leave various effects in top-antitop production. Since ALP couplings to external light
quarks are suppressed as mq/fa, we neglect quark-induced processes and focus on the partonic
amplitude gg → tt̄. We include all ctt-induced ALP effects, as well as effects of c̃GG at tree
level. As we will see, this allows us to test all ALP scenarios with couplings |ctt| > αs|c̃GG|/4π

at the cutoff scale. In figure 1, we show representative Feynman diagrams for the various
ALP contributions to inclusive top-antitop production.

To classify these contributions, it is useful to distinguish between predictions in QCD
(“SM”) and predictions in QCD plus effective ALP interactions (“SM+ALP”). At leading
order (LO) in perturbation theory of the SM+ALP, ALP contributions to observables are
proportional to cttc̃GG. At next-to-leading order (NLO), ALP contributions through virtual
corrections and real radiation are proportional to c2

tt. In what follows, we will discuss the
ALP contributions at LO and NLO one by one.

LO contributions. The amplitude for gg → tt̄ in the SM+ALP is sensitive to the product
of couplings c̃GG(µ)ctt(µ)/f2

a . Even if the ALP-gluon coupling is absent at the cutoff scale,
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as in the benchmarks from (2.10) and (2.11), it can still be induced by the RG evolution of
the ALP-top coupling, see section 2. At scales µ < Λ, the RG-induced ALP-gluon coupling
is roughly given by

c̃GG(µ) ≈ αt

4π
ctt(Λ) ln

(
Λ2

µ2

)
. (3.1)

In Benchmark II with ctt(4πTeV) = 1, we find c̃GG(mt) ≈ −0.04 when resumming the
UV-sensitive logarithmic contributions to all orders. In the LO amplitude for gg → tt̄, the
RG-induced ALP-gluon coupling leads to an ALP effect of

O
(

c̃GG(µ)ctt(µ)
f2

a

)
∼ αt

4π

c2
tt(Λ)
f2

a

ln
(

Λ2

µ2

)
. (3.2)

We will denote LO contributions to tt̄ observables by σ(tt̄,0).

Virtual NLO contributions. At NLO in the SM+ALP, ALPs contribute to gg → tt̄

through virtual and real corrections, as shown in figure 1. The one-loop diagrams in the first
row are UV-finite. The diagrams in the second row (and topologically similar contributions)
are UV-divergent and require renormalization.

To absorb the UV divergences in the one-loop gg → tt̄ amplitude, we introduce counter-
terms for the top-antitop-gluon vertex and for the top-quark two-point function,

a

b

A igsδ1γµT A
ab

a b i
(
δ2/p − (δ2 + δm)mt

)
δab,

where gs is the strong coupling constant, T A
ab is a generator of SU(3)C , and p is the four-

momentum of the top quark. The parameters δm, δ1 and δ2 are the renormalization constants
for the top mass, the tt̄g vertex and the top field strength. Due to the Ward-Takahashi
identity, δ1 = δ2. The counterterms can thus be determined by imposing two renormalization
conditions.

For the top mass renormalization, we choose the on-shell scheme, which is appropriate
for amplitudes with on-shell tops. To renormalize the top field strength, we work in the
MS scheme. The two renormalization conditions read

Σ̂ab
t (/p = mt) = 0,

d

d/p
Σ̂ab

t (/p)
∣∣∣∣
div

= 0, (3.3)

where Σ̂ab
t (/p) is the renormalized two-point function of the top quark and ‘div’ refers to

the divergent part of its partial derivative.
Applying these conditions, the renormalized two-point function is given by

Σ̂ab
t (/p) = Σab

t (/p) + δab

(
δ2/p − (δ2 + δm)mt

)
, (3.4)
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with the two-point function before renormalization1

Σab
t (/p) = −δab

m2
t

16π2
c2

tt

f2
a

[
/pB1

(
p2, m2

t , m2
a

)
+ mtB0

(
p2, m2

t , m2
a

)]
, (3.5)

and the renormalization parameters set by (Σab
t = Σt δab)

δm = 1
mt

Σt(/p = mt) = − m2
t

16π2
c2

tt

f2
a

[
B1(m2

t , m2
t , m2

a) + B0(m2
t , m2

t , m2
a)
]

(3.6)

δ1 = δ2 = − 1
d/p

Σt(/p)
∣∣∣∣
div

= − m2
t

32π2
c2

tt

f2
a

(1
ϵ
− γE + ln (4π)

)
.

Using these results, it is straightforward to cancel the divergences in the amplitudes cor-
responding to the diagrams in figure 1. Analytic results for the renormalized virtual ALP
corrections to gg → tt̄ at O(c2

ttαs/4π) are given in appendix A. We will denote virtual NLO
contributions to tt̄ observables by σ(tt̄,1).

An alternative way to renormalize the amplitude is to use operators in the Standard Model
Effective Field Theory (SMEFT) as counterterms [24]. In this approach, the UV-divergent
ALP contributions act as source terms for the RG evolution of the SMEFT operators. We
have checked that the divergences we identify with the renormalization parameters δm and
δ2 agree with the corresponding ALP source terms in ref. [24]. In top-antitop production,
effects of the ALP-top coupling can be renormalized without using counterterms beyond the
Standard Model. It is therefore not necessary to work in the SMEFT. In appendix B, we
give more details about the SMEFT approach to ALP effects in top-antitop production.

Real radiation. The third class of ALP contributions to gg → tt̄ at NLO is the real
radiation of an ALP, as shown in the third row of figure 1. Since the radiation of a pseudo-
scalar exhibits neither soft nor collinear divergences, these contributions can be treated
separately from the virtual corrections. We will denote NLO contributions to observables due
to real ALP radiation as σ(tt̄a,0). We compute these contributions numerically, as described
in section 3.2.

3.2 Observables

For general ALP-top and ALP-gluon couplings, the total cross section and any un-normalized
kinematic distribution of top-antitop production at the LHC can be written as

σ(µ) = σSM + α2
s

4π

c̃GGctt

f2
a

σ
(tt̄,0)
a−SM + α2

s

(4π)2
c̃2

GGc2
tt

f4
a

σ
(tt̄,0)
a−a (3.7)

+ α2
s

4π

c2
tt

f2
a

σ
(tt̄,1)
a−SM + α2

s

4π

c2
tt

f2
a

σ
(tt̄a,0)
a−a + O

(
α3

s

(4π)2
c̃GGctt

f2
a

,
α4

s

(4π)3
c̃2

GG

f2
a

)
.

Here σSM is the Standard-Model prediction in QCD and σ
(tt̄,0)
a−SM and σ

(tt̄,1)
a−SM denote the

interference terms of ALP and QCD tt̄ amplitudes at LO and NLO in the SM+ALP. Due
to the group structure of QCD, the ALP amplitudes only interfere with the SM t- and
u-channel amplitudes.

1The loop functions B0 and B1 are defined as in ref. [28].
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The contributions σ
(tt̄,0)
a−a and σ

(tt̄a,0)
a−a denote ALP-ALP interference terms for tt̄ production

and for tt̄a production at tree level. They contribute to inclusive tt̄ production at NLO in
the SM+ALP. We include the ALP-ALP interference σ

(tt̄,0)
a−a , even though it has a quartic

dependence on the ALP couplings. The reason is that this contribution scales as m2
t s/f4

a

compared to the SM cross section [25, 29]. At high partonic center-of-mass energies
√

s ≳ fa,
it can therefore be numerically relevant despite the 1/f4

a scaling. ALP-ALP interference
terms not shown in (3.7) either do not feature this energy enhancement or are suppressed
by powers of αs/4π. We will neglect them in our analysis.

In (3.7), we have only included NLO contributions of O(c2
tt/f2

a ) and neglected NLO
contributions scaling with c̃GGctt/f2

a or c̃2
GG/f2

a . This is a good approximation of the full ALP
contributions as long as |ctt| > αs|c̃GG|/4π, i.e., in scenarios where the ALP-top coupling
is larger than the (loop-induced) ALP-gluon coupling. As we will see in section 4.3, this
requirement does not affect the bounds we set on the ctt − c̃GG parameter space.

In Benchmark I, we can obtain the cross section from (3.7) by setting c̃GG → ctt/2.
In this case, all ALP contributions scale as c2

tt/f2
a , except from the ALP-ALP interference

at LO, which scales as c4
tt/f4

a .
In Benchmark II, contributions of c̃GG only enter through the RG evolution. Using the

leading-log approximation for c̃GG(µ) from (3.1), the cross section is approximately given by2

σ(µ) = σSM + α2
s

4π

c2
tt(Λ)
f2

a

(
αt

4π
ln
(

Λ2

µ2

)
σ

(tt̄,0)
a−SM + σ

(tt̄,1)
a−SM + σ

(tt̄a,0)
a−a

)
(3.8)

+ α2
s

(4π)2
c4

tt(Λ)
f4

a

α2
t

(4π)2 ln2
(

Λ2

µ2

)
σ

(tt̄,0)
a−a + O

(
α3

s

(4π)2
αt

4π
ln
(

Λ2

µ2

)
c2

tt

f2
a

)
.

The LO contribution of ALP-SM interference, σ
(tt̄,0)
a−SM, is suppressed compared to the NLO

contributions. Also, the energy-enhanced ALP-ALP interference term, σ
(tt̄,0)
a−a , is suppressed

compared to the other contributions within the energy reach of the LHC. The dominant
ALP effects to top-antitop production are therefore due to virtual corrections, σ

(tt̄,1)
a−SM, and

real radiation, σ
(tt̄a,0)
a−a .

For the SM contribution to the total cross section at 13 TeV center-of-mass energy, we
use the NNLO QCD prediction σSM = 832+40

−46 pb, obtained using the program Top++ [30].
For the SM contributions to the differential distributions, we use NNLO QCD predictions
from ref. [31], referred to as ‘MATRIX’. We choose these predictions, because our numerical
analysis will be mostly based on the measurement of kinematic distributions by CMS, which
is published under the same reference.

To obtain predictions for the ALP contributions to top observables, we combine our
analytic results for the LO and virtual NLO corrections from section 3.1 with simulated
contributions of real ALP radiation. To compute the latter, we use MADGRAPH5_aMC@NLO
v.3.4.2 [32] and simulate 600,000 pp → tt̄a events for several values of ma and ctt/fa = 1/TeV
at parton level. We then scale these results with c2

tt/f2
a and interpolate between scenarios with

different ALP masses. In this way, we obtain predictions for arbitrary values of ctt/fa and ma.

2Here we have introduced σ to distinguish the contributions from σ in (3.7).
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For all ALP contributions, we use the NNPDF parton distribution functions (PDFs)
NNPDF31_nnlo_as_0118_notop [33, 34], with a corresponding input value of αs(mZ) = 0.118.
This PDF set excludes top data from the PDF fit, which is performed under the Standard
Model assumption. The top mass parameter is set to the pole mass mt = 172.5 GeV. Our
fixed-order calculation leaves us with a remnant dependence on the factorization scale µF

and renormalization scale µR. We set µ = µF = µR and choose a dynamical scale

µ = 1
2
∑

f=t,t̄

mT (f), m2
T (f) = m2

f + p2
T (f), (3.9)

where f = t, t̄ are top and antitop quarks at parton level and mT (f) is their transverse mass.
In particular, the ALP couplings ctt(µ) and c̃GG(µ), which enter the observables, should be
evaluated at this scale. By RG-evolving these couplings up to the cutoff scale using (2.7), we
obtain predictions of observables in terms of ALP couplings ctt = ctt(Λ) and c̃GG = c̃GG(Λ),
as made explicit in (3.8). This allows us to probe the ALP couplings directly at the cutoff
scale, where the ALP EFT can be matched onto a more complete theory.

We now present our numerical predictions for the total cross section and differential
distributions of top-antitop production in the two benchmark scenarios. We set the ALP
mass to ma = 10 GeV and fix the cutoff scale at Λ = 4πTeV. The impact of the ALP
mass and the ALP-gluon coupling on the observables will be addressed in section 3.3. The
dependence on the cutoff scale Λ enters through the RG evolution of the ALP couplings
and is moderate, see (2.9).

Total cross section. For Benchmark I (2.10) with cGG(Λ) = 0, the total cross section for
top-antitop production at the LHC with

√
s = 13 TeV is given by

σ
(I)
tt̄

[pb] = 832+c2
tt(Λ)

(TeV
fa

)2(
−(0.126)(tt̄,0)

a−SM−(0.239)(tt̄,1)
a−SM+(0.068)(tt̄a,0)

a−a

)
. (3.10)

For Benchmark II (2.11) with c̃GG(Λ) = 0, the total cross section reads

σ
(II)
tt̄

[pb] = 832+c2
tt(Λ)

(TeV
fa

)2(
(0.011)(tt̄,0)

a−SM−(0.239)(tt̄,1)
a−SM+(0.068)(tt̄a,0)

a−a

)
. (3.11)

The predictions include all relevant effects described by the cross section formula (3.7). In
both benchmarks, the dominant effect is due to virtual ALP contributions at NLO, σ

(tt̄,1)
a−SM.

These contributions are negative and deplete the total cross section, regardless of the sign of
ctt. The difference between both scenarios lies in the ALP-SM interference term at LO, σ

(tt̄,0)
a−SM,

which involves the ALP-gluon coupling. In Benchmark I, the LO contributions are comparable
to the NLO contributions; in Benchmark II they are RG-induced and sub-leading. The
ALP-ALP interference at LO, σ

(tt̄,0)
a−a , is comparably small and negligible. These observations

confirm the qualitative predictions that we made based on (3.8). The dependence on the
ALP mass is negligible within the range 0 < ma ≲ 200 GeV, so that (3.11) and (3.10) apply
to all mass scenarios within this range.

Top-quark kinematic distributions. Besides the total cross section, we study distribu-
tions in terms of four kinematic variables: the transverse momentum of the top, pT (t), the
invariant mass of the top-antitop pair, mtt̄, the top-quark rapidity, yt, and the (cosine of the)
angle between the top and the flight direction of the tt̄ system in the tt̄ center-of-mass frame,
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Figure 2. Kinematic distributions in top-antitop production in the SM (blue) and in the SM+ALP
for Benchmark I with ctt/fa = 20/TeV, cGG = 0 and ma = 10 GeV. Shown are distributions of the
top transverse momentum pT (t) (upper left), the tt̄ invariant mass mtt̄ (upper right), the absolute
value of the top rapidity yt (lower left) and the top angle θ∗ (lower right). The individual ALP effects
correspond to LO contributions from (negative) ALP-SM interference (plain rose) and ALP-ALP
interference (dashed rose); as well as NLO contributions from (negative) virtual corrections (plain
light blue) and ALP radiation (dashed light blue).

cos θ∗. We focus on Benchmark I, which includes effects from ALP-ALP interference at tree
level. Predictions of the four distributions are presented in figure 2 for ctt(Λ)/fa = 20/TeV,
cGG(Λ) = 0 and ma = 10 GeV.

The various ALP contributions deserve a detailed discussion. In Benchmark I, contribu-
tions from ALP-SM interference at LO and NLO are negative in all kinematic distributions.3

3RG-induced contributions from ALP-SM interference at LO are positive, but small, cf. (3.11).
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At energies close to the top-antitop production threshold, virtual NLO corrections dominate
the overall ALP effect, as observed in the pT (t) and mtt distributions in figure 5. ALP
radiation is suppressed close to threshold, where the phase space to produce extra particles
is suppressed. At higher energies, ALP radiation increases and eventually dominates over
virtual contributions.

ALP-ALP interference at LO plays a special role for the overall ALP effect. At high
energies, it is enhanced over the Standard Model with m2

t s/f4
a , as discussed above. In scenarios

with non-vanishing ALP-gluon couplings, this enhancement can dominate the overall ALP
effect in the tails of the pT (t) and mtt distributions. In Benchmark I, ALP-ALP interference
dominates the pT (t) distribution at high energies. In the mtt̄ distribution, the enhancement
of ALP-ALP interference is less pronounced and ALP radiation dominates at high energies.

The shape of the ALP contributions in the pT (t) and mtt distributions differs significantly
from the SM prediction. This indicates that differential distributions provide additional
sensitivity to ALPs beyond the total cross section. ALP effects on the rapidity (yt) and
angular (cos θ∗) distributions, however, have a very similar shape as the SM prediction and
are numerically small, see figure 5. This implies that the normalized distributions have
basically no sensitivity to ALPs. Moreover, the distributions are symmetric under yt ↔ −yt

and cos θ∗ ↔ − cos θ∗, due to the symmetric gluon-gluon initial state. This implies that
no top-antitop asymmetry is induced.

In what follows, we will focus our analysis on the pT (t) and mtt distributions, which
promise the highest sensitivity to ALPs. Observables like the transverse momentum of the
top-antitop pair might offer additional sensitivity, but are also highly sensitive to QCD
radiation. Top polarization observables are interesting, because they can measure spin flips
of the top quark, which are induced by the interaction with the ALP. Since polarization
observables such as spin correlations are measured through the angular distributions of the
top decay products, they require a dedicated analysis based on final-state particles. We
leave this interesting direction for future work.

3.3 Impact of the ALP mass and gluon coupling

In this section, we extend our analysis beyond the two benchmarks and study the impact
of the ALP mass and the ALP-gluon coupling on the observables. We focus on the pT (t)
distribution, where the effect of the ALP-gluon coupling is most pronounced. The ALP-top
coupling is fixed to ctt/fa = 20/TeV.

In figure 3, left, we show the normalized pT (t) distribution for various fixed ALP masses
in Benchmark I. For 0 < ma ≲ 200 GeV, the distribution is insensitive to the ALP mass.
For larger ALP masses, the ALP effect gets stronger as the mass approaches the top-antitop
threshold. We do not explore the resonance region, where effects of the ALP width matter
and introduce a model dependence. In this region, top-antitop resonance searches might
offer further sensitivity.

In figure 3, right, we fix the ALP mass to ma = 10 GeV and vary the ALP-gluon coupling.
The variation changes the LO contributions from ALP-SM and ALP-ALP interference
compared to the NLO contributions. The values cGG/fa = 0 and cGG/fa = −10/TeV
correspond to Benchmarks I and II, respectively. For cGG/fa = 10/TeV, the effective ALP-
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Figure 3. Normalized kinematic distributions of the top transverse momentum for different values of
the ALP mass ma (left) and the ALP-gluon coupling cGG (right). The ALP-top coupling is fixed to
ctt/fa = 20 TeV−1. In the left panel, the gluon coupling is cGG = 0, as in Benchmark I. In the right
panel, the ALP mass is fixed to ma = 10 GeV.

gluon coupling is c̃GG = cGG + ctt/2 = 20/TeV and the tail of the distribution is strongly
enhanced by ALP-ALP interference.

Qualitatively, these effects are similar for the mtt distribution.

3.4 Effective coupling approximation

Previous studies of ALP effects in top observables have used approximations of the full
NLO contribution [16, 17, 24, 25]. In particular, studies of the ALP-top coupling have only
included the second diagram in the first row of figure 1. The corresponding contribution to
top-antitop production is UV-finite [12, 16]. At high energies

√
s ≫ 2mt, the loop function

reduces to a constant and the vertex can be treated as an effective ALP-gluon coupling
c̃GG = cGG + ctt/2. We call the interference between the top-loop diagram from figure 1 and
the SM LO amplitude the effective coupling approximation of the full ALP effect at NLO.

In figure 4, we compare the normalized pT (t) and mtt distributions in the effective
coupling approximation (ECA) with the full NLO result from our calculation. It is apparent
that the ECA underestimates the ALP effects in both benchmark scenarios. Including the
full virtual corrections and real ALP radiation is numerically important to correctly predict
the ALP effects in top-antitop production.

4 Comparison with LHC data

To compare our predictions with data, we choose to work with measurements of normalized
differential distributions in top-antitop production by the CMS collaboration [31]. The
analysis is based on 137 fb−1 of LHC data collected at a center-of-mass (CM) energy of√

s = 13 TeV during Run II, using the lepton+jets final state with one leptonically and one
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Figure 4. Normalized kinematic distributions of pT (t) and mtt in the SM+ALP (plain) and in the
effective coupling approximation ECA (dashed). The distributions are shown for ctt/fa = 20/TeV and
ma = 10 GeV in Benchmark I (orange) and Benchmark II (green).

hadronically decaying top quark. The tops are reconstructed at parton level, and the analysis
provides the relevant information about experimental uncertainties and their correlations
between different observables, which is optimal for interpretation. For comparison, we also
perform a fit to ATLAS measurements of the same differential distributions [35] in the
lepton+jets channel, based on 36 fb−1 of 13-TeV LHC data. Since the statistical combination
of multiple measurements relies on experimental uncertainties that are not fully known to
us, we refrain from performing a global analysis of LHC data.

In figure 5, we show the four differential distributions discussed in section 3.2 for
Benchmark I in comparison with the CMS measurements. The distributions are normalized
to the total top-antitop cross section in the SM (blue) and in the SM+ALP (orange). The
ALP-top coupling is fixed to ctt/fa = 20/TeV to illustrate the effects. The ALP contributions
are the sum of all individual contributions from figure 2. From the figure, it is apparent that
the ALP contributions cause a significant shape variation in the pT (t) and mtt distributions.
The yt and θ∗ distributions, in turn, are essentially insensitive to ALP effects, as discussed in
section 3.2. In our fit to data, we will therefore focus on the pT (t) and mtt distributions.

In what follows, we perform a fit of our SM+ALP predictions from section 3.2 to data.
In section 4.1, we discuss the setup for our fit and its statistical interpretation. In section 4.2,
we derive bounds on the ALP-top coupling in Benchmarks I and II, assuming that no other
couplings are present at the cutoff scale. In section 4.3, we relax this assumption and derive
bounds on the ALP effective theory with arbitrary ALP-gluon and ALP-top couplings.

4.1 Fit setup

For the statistical interpretation of our fit, we employ a frequentist approach based on the
RFit scheme [36]. This allows us to account for theory uncertainties with a non-Gaussian
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Figure 5. Kinematic distributions in top-antitop production in the SM (blue) and in the SM+ALP
(orange) in Benchmark I with ctt(Λ)/fa = 20/TeV and ma = 10 GeV. Show are normalized distributions
of the transverse momentum of the (hadronically decaying) top pT (t) (upper left), the top-antitop
invariant mass mtt̄ (upper right), the top rapidity yt (lower left) and the top angle θ∗ (lower right).
The black dots correspond to CMS measurements [31]; the grey bands indicate the systematic and
statistical experimental uncertainties. The blue and orange error bars represent the SM uncertainty
δSM and the SM+ALP uncertainty δth, as explained in the text.
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distribution, while we assume that experimental uncertainties are Gaussian distributed. For
N measurements, the log-likelihood function is given by4

χ2(ctt, δth) = χ⃗T (ctt; δth) C−1 χ⃗(ctt; δth), (4.1)

where C is the N × N -dimensional covariance matrix including experimental uncertainties
and correlations between individual measurements, in our case bins of distributions. The
i = 1, . . . , N components of the vectors χ⃗ read χi = |xi − yi(ctt; δth)|, where xi is the
central value of measurement i and yi(ctt; δth) is the theory prediction of the corresponding
observable in the SM+ALP.

The theory prediction is a function of ctt and depends on an overall theory uncertainty
δth. For the theory uncertainties of the SM predictions, δSM, we adopt the values from
ref. [31] in each bin of the normalized kinematic distributions. To take account of the
fact that the ALP uncertainties might scale differently, we add an overall uncertainty of
δALP(ctt) = 0.1 ·σALP(ctt), where σALP(ctt) stands for the ALP contribution to the observable.
The total theory uncertainty is thus given by δth = δSM + δALP(ctt).

For fixed values of ctt, we find the minimum log-likelihood function χ2
min(ctt) by profiling

over the theory predictions within the interval [µi(ctt) − δth, µi(ctt) + δth], where µi(ctt) is
the central value of the theory prediction. Finally, we define our statistical measure as
the difference

∆χ2(ctt) = χ2
min(ctt) − χ2

bf , χ2
bf = min

ctt
χ2

min(ctt), (4.2)

where χ2
bf is the best fit with respect to ctt. Using ∆χ2(ctt) as a measure, rather than

χ2
min(ctt), reduces the dependence of the bound on ctt on a potential mismatch of the SM

predictions with the data. All in all, precision measurements of top-quark observables agree
well with precision predictions. However, discrepancies can arise from, for instance, mis-
modelled signal predictions or underestimated theory uncertainties. Since χ2

min(ctt) follows a
Gaussian distribution, we can use ∆χ2(ctt) directly to derive a bound on ctt with a certain
confidence level (CL). In our results, we quote the 95% CL bound on ctt, which corresponds
to ∆χ2(ctt) = 3.84.

4.2 Bounds on the ALP-top coupling

Using the fitting method described in section 4.1, we derive bounds on the ALP-top coupling
from the top-antitop total cross section and from the differential distributions. The results
of our fits are shown in table 1.

In a first step, we obtain bounds from the total cross section alone. By fitting our
predictions from (3.10) and (3.11) to four measurements at the LHC [31, 37–39], we obtain
95% C.L. upper bounds on the ALP-top coupling in both benchmark scenarios. To derive
bounds from differential distributions, we perform two separate fits of the pT (t) and mtt

distributions to CMS measurements unfolded to parton level [31]. We include all bins shown
in figure 5, respecting the bin-to-bin correlations reported in ref. [31]. We repeat the same

4For simplicity, we refer to the effective ALP-top coupling as ctt, keeping in mind that the quantity of
interest is ctt/fa.
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|ctt|/fa (TeV−1) σtt̄ pT (t) mtt

CMS ATLAS CMS ATLAS

Benchmark I 16.3 14.1 17.3 11.1 7.0
Benchmark II (DFSZ) 22.5 17.7 20.8 13.0 7.1

Table 1. 95% C.L. upper bounds on the ALP-top coupling |ctt|/fa (TeV−1) for ALP masses in the
range 0 < ma ≲ 200 GeV in the SM+ALP. The bounds are obtained from fits of the total top-antitop
cross section to four LHC measurements [31, 37–39] and from individual fits of the pT (t) and mtt

distributions to the measurements by CMS [31] and ATLAS [35].

procedure for the ATLAS measurements at parton level [35], using the SM predictions quoted
in the ATLAS publication.

The invariant mass distribution is most sensitive to ALPs in both benchmark scenarios.
Overall, the bounds in Benchmark I are stronger than in Benchmark II. This difference is
due to the impact of the effective ALP-gluon coupling, which induces significant tree-level
contributions in Benchmark I. Comparing CMS versus ATLAS, we observe that the fit to the
mtt distribution from ATLAS sets the strongest bounds on the ALP-top coupling. This result
is mostly due to a mismatch between the SM prediction and the measurement. In what follows,
we will therefore restrict ourselves to CMS data, in order to obtain conservative bounds.

To investigate the impact of the high-energy tails on the bound, we have repeated the
fits to CMS data for Benchmark I without the highest four bins of the distributions. From
the pT (t) and mtt fits, we find |ctt|/fa < 14.1/TeV and |ctt|/fa < 11.3/TeV, respectively.
This indicates that the bounds on the ALP-top coupling are determined by the low-energy
contributions. The energy-enhanced ALP-ALP interference starts dominating only for large
ALP-gluon couplings, which are however constrained by dijet distributions, see section 4.3.

Scenarios with Λ = fa = 1 TeV differ from our benchmark by the renormalization group
evolution of the ALP couplings from the cutoff scale down to the scales tested in experiments.
We have repeated our numerical analysis for Λ = fa = 1 TeV and found that ctt(mt) is 10%
larger than with Λ = 4π TeV. As a consequence, the bound on |ctt/fa| is strengthened to
7.8/TeV, instead of 11.1/TeV (for light ALPs and cGG = 0). However, this result should be
taken with care, as for Λ = fa = 1 TeV the cutoff scale lies in the range of the higher bins of the
pT and mtt̄ distributions. In this case, the results in the EFT should be interpreted with care.

All these results apply for ALPs with masses in the range 0 < ma ≲ 200 GeV, where
the observables are insensitive to the ALP mass, see figure 3. For heavier ALPs, the bounds
get stronger as the ALP mass approaches the top-antitop threshold. We will quantify this
effect in section 5.

4.3 Simultaneous bounds on the ALP-top and ALP-gluon couplings

Using our predictions from section 3.2 and our study from section 3.3, we explore the
ALP parameter space in the ctt − cGG plane. For concreteness, we set the ALP mass to
ma = 10 GeV, keeping in mind that the results will apply to the range 0 < ma ≲ 200 GeV.
As discussed in section 3.2, our predictions allow us to probe the parameter space for
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|ctt| > αs|c̃GG|/4π. ALP-gluon couplings |cGG|/fa ≳ 100/TeV are excluded by angular
correlations in dijet production at the LHC [25]. This means that our predictions apply as
long as |ctt|/fa ≳ 1/TeV. We will see that this is the case in all regions of the parameter
space top-antitop production is sensitive to.

To derive bounds on the ctt − cGG parameter space, we use the total cross section as
well as the normalized pT (t) and mtt distributions. To obtain optimal sensitivity to ALPs
throughout the parameter space, we perform two separate fits to data, including the total
cross section and either the pT (t) or the mtt distribution. We do these two separate fits,
rather than one combined fit, to avoid double-counting of data in the statistical analysis.
We use the same measurements of the total cross section [31, 37–39] and the pT (t) or mtt

distribution from CMS [31] as in section 4.2.
The results of our fit are shown in figure 6. The case cGG = 0 corresponds to Benchmark

I. For this scenario, the bounds on the ALP-top coupling can be read off from table 1.
Setting cGG = −ctt/2 or c̃GG = 0 corresponds to Benchmark II, i.e., to DFSZ-like ALPs.
For small ALP-gluon couplings, the mtt distribution dominates the sensitivity. Depending
on the sign, the presence of the ALP-gluon coupling at the cutoff scale can either enhance
or decrease the sensitivity to the ALP-top coupling. For large ALP-gluon couplings, the
pT (t) distribution is most sensitive, because of the energy-enhanced ALP-ALP interference
at LO, see section 3.2. In this regime, the sensitivity to the ALP-top coupling is significantly
enhanced by the presence of the ALP-gluon coupling. This means that in DFSZ-like scenarios
with no or a small ALP-gluon coupling at the cutoff scale larger ALP-top couplings are viable
compared to scenarios with a large ALP-gluon coupling.

Additional contributions at O(f−4
a ) could arise from higher-dimensional operators in the

ALP effective theory. They could modify the high-energy tails of distributions, similar to
ALP-ALP interference from dimension-5 operators. Once the experimental sensitivity in the
tails dominates in the fit, effects of higher-dimensional operators could become visible.

The total cross section is less sensitive to ALP effects than the distributions. In the
displayed parameter space, removing it from the fits has no visible effect on the bounds.

5 Comparison with other probes of the ALP-top coupling

In this section, we compare our results from top-antitop production with other collider
processes that probe the ALP-top coupling. We consider ALP effects in other top-quark
processes at the LHC (section 5.1), searches for light ALPs in rare B meson decays (section 5.2),
and bounds on exotic Higgs decays into ALPs (section 5.3). Most of these probes are limited
to a certain ALP mass range and/or require additional model assumptions. When comparing
their sensitivity with our largely model-independent bounds from top-antitop production,
the underlying assumptions should be kept in mind.

5.1 Other top-quark processes

Searches for ALP-associated top-antitop production are sensitive to resonant ALPs that
decay into various final states. For very light ALPs, the decay happens outside the detector
or at a displaced vertex. Heavier ALPs can be detected as promptly decaying resonances.

– 17 –



J
H
E
P
0
5
(
2
0
2
4
)
0
7
5

100 75 50 25 0 25 50 75 100
cGG/fa (TeV 1)

15

10

5

0

5

10

15

c t
t/f

a (
Te

V
1 )

c
G

G =
0

mtt distribution
pT(t) distribution

Figure 6. Bounds on the ALP parameter space in the ctt − cGG plane from top-antitop production.
The couplings are defined at the cutoff scale Λ = 4π TeV. The colored areas are excluded at 95% C.L.
by measurements of the pT (t) (green) and mtt (orange) distributions. The bounds apply for ALPs in
the mass range 0 < ma ≲ 200 GeV.

Top-antitop production plus missing energy. In ref. [17], the authors have re-interpreted
a search for pp → tt̄ /ET events with a SUSY stop-neutralino topology by ATLAS [40]. They
find a bound on collider-stable ALPs with top couplings |ctt|/fa < 1.8/TeV at the 95%
C.L. For ALPs that couple only to top quarks, collider stability can be assumed only for
ALP masses well below the di-muon threshold, ma < 200 MeV, see e.g. [18]. In this mass
region, missing energy searches can be more sensitive to the ALP-top coupling than inclusive
top-antitop production.

Top-antitop production with di-muon resonance. Searches for promptly decaying
pseudo-scalar resonances have been conducted in pp → tt̄a, a → µ+µ− by ATLAS and
CMS [41, 42]. The search region targets masses ma > 15 GeV. For ALPs which couple only
to tops, the branching ratio into muon pairs in this mass region is extremely small. The
searches are therefore only sensitive to the ALP-top coupling if the ALP branching ratio
into muons is sizeable. Alternatively, searches for hadronically decaying pseudo-scalars could
probe this mass region up to the Z resonance.

For lighter ALPs that couple only to top quarks, top-antitop production in association
with a displaced di-muon vertex is a promising signature. A dedicated analysis predicts that
ALPs with masses below the di-bottom threshold can be tested at the LHC [18]. With 150/fb
of Run-III data, top-associated displaced di-muon searches can probe ALP-top couplings
|ctt|/fa < 1/TeV; with 3/ab at the HL-LHC, the sensitivity increases to |ctt|/fa < 0.1/TeV.
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Four-top production. A serious competitor to top-antitop production is four-top pro-
duction at the LHC. ALPs can contribute to this process in multiple ways and through
many interfering amplitudes. In ref. [25], the authors find a bound on the ALP-top coupling,
|ctt|/fa ≲ 4/TeV, for ma = 300 MeV from tree-level simulations compared to LHC measure-
ments. Similarly to top-antitop production, the ALP mass dependence in four-top production
is supposedly small for ALP masses well below the top-antitop threshold. In ref. [26], the
authors find |ctt|/fa ≲ 6/TeV under somewhat different assumptions.

These bounds suggests that four-top production is more sensitive to the ALP-top coupling
than inclusive top-antitop production. However, making a sound prediction of ALP effects
in four-top production is a challenging task, due to the many contributions from individual
amplitudes. Moreover, the tree-level analysis of four-top production is subject to rather large
theoretical and experimental uncertainties. The resulting bound on the ALP-top coupling
should therefore be read with caution. We do not include it in figure 7.

5.2 Rare B meson decays

ALPs with top couplings can induce rare meson decays through flavor-changing neutral
currents at loop level. For ALP masses ma < mB − mK , ALPs can be resonantly produced
in B → K decays and searched for in visible and invisible final states. Heavier ALPs can still
affect rare meson decays through virtual effects. For ma ≳ mB − mK , the two-body decay
Bs → µ+µ− is most sensitive to ALPs with top couplings among the meson decays. The
RG evolution and matching of the ALP effective theory generates effective a b s̄ and a µ µ̄

couplings at the bottom-mass scale, which induce the decay [12]. Using the SM predictions
for B(Bs → µ+µ−) from ref. [43] and the ALP contributions from ref. [21], we derive bounds
on the ALP-top coupling from LHC measurements. In figure 7, we show the 95% C.L. upper
bound on ctt/fa obtained from the most recent measurement by the CMS collaboration [44].
We focus on ALP masses above 6 GeV, where resonant production is not possible. For lighter
ALPs, resonance searches in flavor processes lead to much stronger bounds, see e.g. [21, 22].

5.3 Higgs decays to ALPs

The ALP-top coupling induces the exotic Higgs decays h → aZ and h → aa at one-loop
level. The corresponding partial decay widths have been calculated in ref. [23]. The signature
of these decay modes strongly depends on the lifetime and mass of the ALP. Dedicated
searches for ALP-specific final states offer a high sensitivity, but would also require a separate
analysis in each part of the {ctt, ma} parameter space. Here we derive a conservative bound
on the ALP-top coupling, using a bound on un-tagged Higgs decays at the LHC during
Run 1, B(h → NP) < 20% at 95% C.L. [45]. To the best of our knowledge, this is the
only interpretation of Higgs measurements that does not rely on further assumptions on
the new-physics decay products “NP”. For ALP masses ma < mh − mZ , we interpret this
bound as B(h → NP) = B(h → aZ) +B(h → aa). For the Higgs branching ratios, we assume
that at the cutoff scale only the ALP-top coupling is non-zero. In particular, ALP-Higgs
and ALP-Higgs-Z couplings that could be induced at higher dimensions in the ALP effective
theory are absent. The 95% C.L. upper bound on the ALP-top coupling is shown in figure 7.
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Figure 7. Bounds on the effective ALP-top coupling |ctt|/fa, defined at the cutoff scale Λ = 4π TeV,
as a function of the ALP mass ma. Shown are bounds from virtual ALP effects in Bs → µ+µ− [21, 44]
(dark grey) and Higgs decays h → aa, Za [23, 45] (light grey), as well as our results from inclusive
top-antitop production (orange). The bounds apply to Benchmark I with cGG = 0.

From the comparison in figure 7, it is apparent that top-antitop kinematics dominate
the sensitivity to the ALP-top coupling for ALPs with masses above 60 GeV. Four-top
production offers an alternative and similarly sensitive probe. For lighter ALPs, Higgs decays
and rare meson decays through virtual tops dominate in sensitivity, but depend heavily on
the magnitude of additional ALP couplings. LHC searches for light prompt and displaced
resonances in top-antitop production can provide an alternative way to test the ALP-top
coupling with on-shell top quarks. They should be conducted for a wide range of masses
and in all possible final states.

6 Conclusions

In this work, we have investigated effects of axions and ALPs in top-antitop production. By
calculating all relevant ALP effects at LO and NLO, we have obtained sound predictions of
the total cross section and differential distributions. By comparing these predictions to LHC
data, we have derived upper bounds on the ALP-top coupling. These bounds apply for a
broad range of ALPs with masses below the top-antitop threshold. They constrain scenarios
where the ALP-top coupling dominates the phenomenology, such as DFSZ-like axion models.

In a second step, we have extended our analysis to ALPs with arbitrary top and gluon
couplings. The resulting bounds on the top-gluon parameter space from top-antitop production
constrain the strongly coupling sector of the ALP effective theory. Effects of light quarks
are typically suppressed by the small quark masses, due to the intrinsic shift symmetry of
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the ALP interactions. Therefore the bounds apply to any phenomenologically viable UV
completion of the ALP effective theory.

Besides giving valuable information about possible UV completions, bounds on the top
and gluon couplings at the cutoff scale limit RG-induced effects on other ALP couplings at
lower scales. This is important for the interpretation of low-energy observables, which usually
involve all ALP couplings through leading-order or loop-induced effects.

Top-antitop production leads in sensitivity for ALPs with masses from 60 GeV up to the
top-pair threshold, where searches for top-antitop resonances become available. Lighter ALPs
with top couplings have also been probed in Higgs and meson decays, which however rely
much more on assumptions on other ALP couplings. Four-top production offers additional
sensitivity to ALPs with top couplings across a wide mass range.

For future searches, polarization observables involving the top decay products are promis-
ing probes of the ALP-top coupling and definitely worth a study. For light ALPs, searches
for displaced vertices in association with top quarks are expected to enhance the sensitivity
to the ALP-top coupling compared to inclusive top-antitop production. They can and should
be performed at the LHC in all final states of the ALP.
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A Virtual ALP corrections to gg → tt̄

In this appendix, we give analytic results for the dominant virtual contributions of ALPs
to top-antitop production at NLO in the SM+ALP. We include only contributions that are
induced by the effective ALP-top coupling ctt/fa.

We present our results in terms of one-loop amplitudes M1(gg → tt̄). The leading
virtual contributions to observables can be obtained by interfering these amplitudes with
the tree-level SM amplitudes, which we list here for convenience. For a complete NLO
prediction of ALP effects in top-antitop production, these results have to be integrated over
the top-antitop phase space and combined with simulations of real ALP radiation, pp → tt̄a.

In what follows, we assign the four-momenta and SU(3)C indices of the involved par-
ticles as

ga(k1) + gb(k2) → ti(p1) + t̄j(p2), (A.1)

where k1,2 and p1,2 are the four-momenta of the incoming and outgoing particles, and where
a, b, c = {1, . . . 8} and i, j, m, n = {1, . . . 3} are color indices for gluons and quarks.

The gluon polarization vectors and the fermion spinors are abbreviated as

ε1 ≡ ε(k1) , ε2 ≡ ε(k2) , ū(p1) ≡ ū1 , v(p2) ≡ v2. (A.2)
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The tree-level amplitudes M0(gg → tt̄) in QCD corresponding to s-channel, t-channel and
u-channel Feynman diagrams read

g

g t̄

t

M0
s =

g2
s ifabcT c

ij

s

[
(ε1 · ε2) ū1/k1v2 − 2 (k1 · ε2) ū1/ε1v2

]
+ (k1 ↔ k2)

g

g t̄

t

M0
t =

g2
sT a

imT b
mj

m2
t − t

[
2 (p2 · ε2) ū1/ε1v2 − ū1/ε1/k2/ε2v2

]

g

g t̄

t

M0
u = M0

t (k1 ↔ k2)

Here gs is the strong coupling constant, T c
ij etc. are generators of SU(3)C and fabc is the

structure constant of SU(3)C . We use Einstein’s convention to sum over pairs of equal indices.
The letters s, t, u are the Mandelstam variables, defined as

s = (k1 + k2)2 = (p1 + p2)2

t = (k1 − p1)2 = (k2 − p2)2

u = (k1 − p2)2 = (k2 − p1)2. (A.3)

The NLO amplitudes for the virtual ALP contributions in the SM+ALP, M1(gg → tt̄),
are calculated from the loop diagrams in the first two rows of figure 1. The numerical
contributions of the box diagrams to the top observables considered in this work are about
an order of magnitude smaller than the total virtual corrections. We do not include the
analytic expressions for them here.

The remaining virtual contributions can be expressed as the sum of re-scaled SM tree-level
amplitudes M0 and a new structure ∆M that does not occur at tree level. The renormalized
amplitudes are given by

g

g t̄

t

a M1
s = c2

ttm
2
t

16π2f2
a

[
−c′00

(
s,m2

a

)
M0

s +c1k

(
s,m2

a

)
[∆Ms(k1,k2)+(k1 ↔ k2)]

]

g

g t̄

t

a
M1

t1
= c2

ttm
2
t

16π2f2
a

[
−c00

(
t,m2

a

)
M0

t +∆Mt(p2,k2)
]
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g

g t̄

t

a M1
u1

=M1
t1

(k1 ↔ k2)

g

g t̄

t

a M1
t2

=M1
t1

(k1 ↔ k2,p1 ↔ p2)

g

g t̄

t

a
M1

u2
=M1

t2
(k1 ↔ k2) =M1

u1
(p1 ↔ p2)

g

g t̄

t

a
t M1

a1
= g2

sc2
ttm

3
t

8π2f2
a (m2

a−s) δijδab iϵk1k2ε1ε2C0
(
0,s,0,m2

t ,m2
t ,m2

t

)
ū1γ̄5v2

t

g

g t̄

t

a M1
a2

=M1
a1

g

g t̄

t

a M1
t3

= c2
ttm

2
t

16π2f2
a

[
− m2

t

m2
t −t

b
(
t,m2

a

)
M0

t +g2
sT a

imT b
mj

mt

m2
t −t

b′
(
t,m2

a

)
ū1/ε1/ε2v2

]

g

g t̄

t

a M1
u3

=M1
t3

(k1 ↔ k2)

with the new kinematic structures

∆Ms(k1, k2) =
g2

s ifabcT c
ij

mts

[
4 (k1 · ε2)

(
2mtū1/ε1v2 + iū1σ(k1+k2)ε1v2

)
+ (ε1 · ε2) (t − u)ū1v2

]
∆Mt(p2, k2) =

g2
sT a

imT b
mj

mt(m2
t − t)

[
2 (p2 · ε2)

(
mtc0k

(
t, m2

a

)
ū1/ε1v2 − c22

(
t, m2

a

)
ū1/ε1/k2v2

)
+
(
m2

t − t
)

c2
(
t, m2

a

)
ū1/ε1/ε2v2

]
.

Here, the exchange of momenta k1 ↔ k2 and p1 ↔ p2 also exchanges the color indices of the
corresponding particles. We have used the shorthand notations

σ(k1+k2)ε1 ≡ σµν(k1 + k2)µεν
1 , ϵk1k2ε1ε2 ≡ ϵµνρσkµ

1 kν
2εµ

1 εν
2 . (A.4)

The loop functions are defined as

c′00

(
s, m2

a

)
=
[
2C00

(
m2

t , s, m2
t , m2

a, m2
t , m2

t

)
− m2

aC0
(
m2

t , m2
t , s, m2

t , m2
a, m2

t

)
− B0

(
s, m2

t , m2
t

) ]
fin
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c1k

(
s, m2

a

)
= m2

t

[
C11

(
m2

t , s, m2
t , m2

a, m2
t , m2

t

)
+ C12

(
m2

t , s, m2
t , m2

a, m2
t , m2

t

)]
c00
(
x, m2

a

)
=
[
−m2

aC0
(
0, m2

t , x, m2
t , m2

t , m2
a

)
+ 2C00

(
0, x, m2

t , m2
t , m2

t , m2
a

)
−B0

(
0, m2

t , m2
t

)
+
(
m2

t − x
)

C1
(
0, x, m2

t , m2
t , m2

t , m2
a

)]
fin

c2
(
x, m2

a

)
= m2

t

[
C0
(
0, m2

t , x, m2
t , m2

t , m2
a

)
+ C2

(
0, x, m2

t , m2
t , m2

t , m2
a

)]
c22
(
x, m2

a

)
= m2

t

[
C0
(
0, m2

t , x, m2
t , m2

t , m2
a

)
+ 2C2

(
0, x, m2

t , m2
t , m2

t , m2
a

)
+ C22

(
0, x, m2

t , m2
t , m2

t , m2
a

) ]
c0k

(
x, m2

a

)
= −B1

(
x, m2

a, m2
t

)
− m2

aC2
(
0, x, m2

t , m2
t , m2

t , m2
a

)
+ c00

(
x, m2

a

)
b
(
x, m2

a

)
=
[

m2
t − x

m2
t

B0
(
x, m2

a, m2
t

)
− m2

t + x

m2
t

B1
(
x, m2

a, m2
t

)
− 2B0

(
m2

t , m2
t , m2

a

)
− 2B1

(
m2

t , m2
t , m2

a

)]
fin

b′
(
x, m2

a

)
= B1(x, m2

a, m2
t ) + B1(m2

t , m2
t , m2

a) + B0(m2
t , m2

t , m2
a). (A.5)

The variable x stands for either of the Mandelstam variables t or u. The scalar loop functions
B and C are defined as in ref. [28].

In (A.5), the label |fin indicates that terms proportional to ∆ = 1/ϵ − γE + log 4π are
subtracted from the loop functions due to our renormalization procedure.

B Renormalization in the ALP-SMEFT

We present an alternative renormalization procedure using SMEFT counterterms, following
the strategy proposed in ref. [24]. In general, this approach renormalizes all one-loop
amplitudes that are sensitive to the ALP-top coupling ctt. In particular, it can be applied
to processes with ALP-top-Higgs couplings, which are not covered by the renormalization
procedure in section 3.1.

Our goal is to renormalize the one-loop gg → tt̄ amplitudes with ALPs that involve
the effective ALP-top coupling. Working in Basis II, the relevant part of the Lagrangian
reads (see (2.3))

LII(µ) ⊃ − a

fa

(
Q3H̃ (ỸU )33 U3 + h.c.

)
= − a

fa

(
(tL, bL)H̃ i ytctt tR + h.c.

)
. (B.1)

To perform the renormalization, it is convenient to work in a Green’s basis. Using the notation
from ref. [24], the relevant SMEFT Lagrangian in the Green’s basis is given by

LSMEFT ⊃ (Crs
uHQrs

uH + h.c.) + C̃
(1)rs
Hq Q̂

(1)rs
Hq + C̃rs

HuQ̂rs
Hu + C̃

(3)rs
Hq Q̂

(3)rs
Hq , (B.2)
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where r, s are flavor indices. The SMEFT operators are defined as

Qrs
uH = (H†H)(QrH̃Us) (B.3)

Q̂rs
Hu = (H†H)(U r

←→
i /D Us)

Q̂
(1)rs
Hq = (H†H)(Qr

←→
i /D Qs)

Q̂
(3)rs
Hq = (H†σiH)(Qr

←→
i /D σiQs),

with the SM covariant derivative Dµ and the Pauli matrices σi.
We use the SMEFT coefficients as counterterms to renormalize the two-point function of

the top quark in the SM+ALP. At one-loop order, the renormalized two-point function reads

Σ̂t(/p) = Σt(/p) + v2

2 C̃V /p + v2

2 C̃A /pγ5 + v3

2
√

2
C33

uH , (B.4)

where Σt(/p) is the unrenormalized two-point function and v = 246 GeV is the vacuum
expectation value of the Higgs field. The counterterms for the different Lorentz structures
are defined as

C̃V = C̃
(1)33
Hq − C̃

(3)33
Hq + C̃33

Hu (B.5)

C̃A = −C̃
(1)33
Hq + C̃

(3)33
Hq + C̃33

Hu.

They are related to the renormalization parameters δm and δ1 from (3.6) as

C̃V = − 2
v2

dΣt

d/p

∣∣∣∣∣
div

= 2
v2 δ1 (B.6)

C̃A = 0

C33
uH = −yt C̃V − 2

√
2

v3 Σt(/p = mt) = −2yt

v2 δ1 −
2
√

2 mt

v3 δm.

Due to the Ward identity δ1 = δ2, C̃V also renormalizes the top-antitop-gluon vertex.
Instead of the Green’s basis in (B.2), one can also perform the renormalization with

SMEFT operators in the Warsaw basis. In this case, the operator Qrs
uH from (B.3) is the only

possible counterterm to renormalize the gg → tt̄ amplitude. In particular, the counterterm
C̃V to renormalize the /p-dependent part of Σt(/p), as well as the vertex corrections, is absent.
The corresponding divergences are absorbed into the top field strength [46, 47]. We have
explicitly checked that the top field-strength counterterm δW

1 and the Wilson coefficient
C33,W

uH in the Warsaw basis are enough to cancel the UV divergences in gg → tt̄, with

C33,W
uH = −2

√
2 mt

v3 δm, δW
1 = δ1. (B.7)
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