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1 Introduction

High-order perturbative computations in quantum field theories are challenging because
of the rapid growth in the number of diagrams with the perturbative order as well as in
the complexity of the multi-dimensional integration. The availability of automatic tools
for the generation and simplification of Feynman diagrams mitigates the risk of errors, but
users are still required to have the technical knowledge and the computational time for
obtaining some results that might have already been computed by others. This obstacle has
an obvious impact on research, driving resources away from physics questions or discouraging
them in the first place. Conversely, when the results are shared in their raw data form,
they facilitate collaboration and encourage further scientific exploration. This was the
case for the multi-loop results for the scalar field theory with quartic interaction reported
by Nickel et al. in the unpublished ref. [1], and originally used in refs. [2, 3], that were
subsequently exploited in several other works. A non-exhaustive list includes the study
of the O(N)-symmetric model [4–6], the N -component model with cubic anisotropy [7],
randomly dilute spin models [8, 9], self-avoiding walks on a cubic lattice [10], the shift in
the Bose-Einstein condensation temperature [11], the finite temperature chiral transition in
QCD [12], and frustrated spin systems [13]. The study of such a wide variety of models within
fixed-dimensional field theory was accomplished by combining the values of the Feynman
diagrams shared by Nickel et al. with the corresponding symmetry factors obtained from
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the tensorial structure of the interaction vertices, obviating the necessity of time-consuming
multi-loop computations. In the same spirit, with the hope of avoiding long calculations
for others, we share in this work the individual results for the Feynman diagrams of the
Landau-Ginzburg-Wilson theory, together with the tools we developed for the computations
and for handling the data in ref. [14]. Our results include the values of the diagrams in
three dimensions for the zero, two, and four-point functions with up to eight vertices and
with zero external momenta, going beyond the six-loop results of ref. [1]. The N -component
Landau-Ginzburg-Wilson theory is defined by the Hamiltonian

H =
∫

ddx

[1
2 (∂µϕi)2 + 1

2m2
0ϕ2

i +
1
4!λijklϕiϕjϕkϕl

]
, (1.1)

describing N scalar fields ϕi, (i = 1, . . . , N) interacting via a generic quartic coupling λijkl.1

Perturbative calculations in the coupling λijkl can be factorized into the computation of
symmetry factors, multiplied by the integrals of scalar propagators that depend only on
the topology of the diagrams, allowing one to reuse the expensive and tedious numerical
computations for the study of many different theories.

This paper accompanies the Wolfram Mathematica [15] package Phi4tools [16] and
describes the computational strategies adopted. Phi4tools is an intuitive interface for
visualizing, simplifying, and manipulating Feynman diagrams for the Landau-Ginzburg-
Wilson theory. In more detail, it allows displaying detailed information about the diagrams,
including their Nickel indices, the integrands, and numerical results. It also provides the
symmetry factors for the O(N)-symmetric model and the N -component model with cubic
anisotropy. Diagrams with cubic vertices, described by a symmetry-broken version of (1.1)
with an added cubic interaction ηijkϕiϕjϕk, are also implemented but not computed.

Phi4tools is fundamentally different from other existing software, its main focus being on
providing user-friendly access to pre-computed quantities in scalar field theories, while, at the
same time, packing some general tools for the manipulation and computation of other diagrams,
possibly extending its own scope. It is not meant to substitute other widely used software for
Feynman diagrams, usually aimed at performing one specific task as efficiently as possible and
targeting general theories. Loosely speaking, this software can be divided into two groups:
one aimed at the generation of the diagrams (topologies, symmetry factors, and symbolic
expressions), which includes programs such as QGRAF [17], FORM [18], and feyngen [19]. The
other aimed at the (semi)automatic reduction, simplification and evaluation of these symbolic
expressions, which includes LiteRed [20], Reduze [21], FIRE [22, 23], Kira [24, 25], and
tapir [26] among the others. Some of the above programs can be used to generate input
files for Phi4tools or used in conjunction with it. We also mention the presence of the
online database Loopedia,2 which aims at collecting the ϵ-expansion results found in the
literature [27], and the impressive seven-loop ϵ-expansion computation of ref. [28].

The rest of the paper is organized as follows: in section 2 we present the details of the
computations, while in section 3 we utilize the results to generate the perturbative series
for the RG functions in the O(N) and cubic-symmetric models up to the eighth order. We
conclude in section 4. Five appendices complete the paper. In appendix A, we present

1Summation over repeated indices is implied.
2The database can be found at the following URL https://loopedia.mpp.mpg.de/.
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the conventions and the normalizations adopted. In appendix B, we report the analytical
expression for the effective vertices in three dimensions. In appendix C, we provide a brief
introduction to the Phi4tools paclet itself, with instructions on how to install it and some
basic examples. In appendices D and E, we report the explicit form of the perturbative series
up to the eighth order in the coupling for the β-function, η, and ν in the O(N) model and
β-function, η, and η2 for the N -component model with cubic anisotropy, respectively.

2 Fixed-dimensional perturbative computations

The evaluation of Feynman diagrams in super-renormalizable quantum field theories poses
some technical challenges that must be addressed in order to push the computation to
high orders. These challenges are two-fold: firstly, as the perturbative order increases,
the complexity escalates due to the proliferation of diagram topologies, each requiring the
calculation of symmetry factors. Secondly, the dimensionality of each integral grows with the
number of loops, posing significant computational challenges in achieving precise results for
the perturbative series. To address this issue, a possible strategy is to reduce the dimension
of the integration space by performing part of the integration analytically [29]. An effective
approach involves working in momentum space, identifying simple subdiagrams within the
Feynman diagrams, and replacing them with their analytical expressions [30]. This is the
central operation that we utilize to compute the perturbative series up to the eighth order.
However, there are several other measures that turned out to greatly reduce the computational
cost and improve the accuracy of our results. Our method follows the one reported in ref. [30],
with only slight differences: we have opted to separate each step of the computation and to
use different tools at each step. We have also introduced some new effective vertices (analytic
and numeric) to further simplify some topologies, but, on the other hand, we didn’t implement
some of their more sophisticated approaches for the parametrization of the amplitudes. The
final complexity of the computation is very similar. In the following, we summarize the main
steps of our computation, starting from the choice of the renormalization scheme.

2.1 Renormalization scheme

In d < 4, scalar field theories with quartic interactions described by the Hamiltonian eq. (1.1)
are superrenomalizable and the divergences can be absorbed with just a shift in the mass
parameter and a vacuum-energy renormalization constant that we neglect here. Indeed,
after the renormalization of the tadpole and the sunset diagrams, the theory is finite and,
therefore, amenable to fixed-dimension computations. From a practical point of view, it
is convenient to get rid of the divergences by performing a zero-momentum subtraction of
the divergent integrands [14, 30, 31]. In this scheme, labeled with the subscript I as in
refs. [14, 30], the mass counterterm δm2

I completely cancels the one-loop tadpole diagram and
removes the divergence coming from the sunset diagram in such a way that the regularized
sunset diagram is exactly zero at p = 0, namely

m2
I = m2

0 + δm2
I , (2.1)

δm2
I = −

(
+ p=0

)
. (2.2)
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The renormalization procedure then amounts to setting the tadpole subdiagrams to zero and
to substituting the sunset subdiagrams with their regularized versions. The above prescription
makes the theory finite for any generic coupling λijkl in d < 4 and provides a convenient
setup for the numerical evaluation of high-order diagrams in fixed dimensions [2, 3].3

2.2 Drawing and labeling the Feynman diagrams

After having chosen the renormalization scheme, the first step to compute the perturbative
series consists in the generation of all the Feynman diagrams at each given order, together
with their multiplicity factors. We leverage the already available feyngen program [19] to
generate all the one-particle-irreducible (1PI) diagrams for the zero, two, and four-point
functions with up to nine quartic vertices. The choice of a renormalization scheme in which
the regularized tadpole is zero greatly reduces the number of Feynman diagrams that one has
to compute since all the diagrams involving tadpoles vanish. These diagrams are completely
omitted in the Phi4tools package. We also generate the diagrams for the theory with
both quartic and cubic interactions with up to eight total vertices using a simple program
that, starting from the diagrams with only quartic vertices, repeatedly removes propagators,
accounts for the proper correction to the symmetry factor, and finally collects the resulting
diagrams based on their topology.

To systematize and categorize the diagrams, we adopt the commonly used Nickel index [1,
32, 33] to label them. For completeness, we briefly outline in what follows the labeling
algorithm, explaining the process of assigning an index to a given graph and how to interpret
it. Consider an arbitrary undirected connected graph with n internal vertices, already labeled
from 0 to n − 1, and with some external vertices all labeled “e”. The Nickel index for this
labeled graph GL is the sequence constructed in the following way

N (GL) = c(0)|c(1)| . . . |c(n − 1)| , (2.3)

where c(i) is the sequence of all the vertices connected to the vertex i whose label is j ≥ i,
repeated in case of multiple edges, and ordered in ascending order with the convention that “e”
goes first in the order, i.e. e < 0 < 1 < . . . < n−1. In this way, the sequence (2.3) corresponds
exactly to one graph, which can be directly reconstructed from the sequence. However, the
opposite is not yet true since the string (2.3) depends on the way we enumerated the vertices.
In order to overcome this ambiguity, we first establish a way to order different sequences: the
strings obtained as above are converted to a numeric field, interpreting each sequence as a
number with radix n + 2 with the following order to its digits e < “|” < 0 < 1 < . . . < n − 1.
The correct labeling of the vertices is then identified as the one that corresponds to the
sequence with the smallest number, the minimal graph descriptor. For example, in figure 1
we show three possible labelings of the same diagram. The central label is the minimal one,
hence the correct Nickel index associated with the diagram.

With a simple program, we assigned the Nickel indices to the Feynman diagrams at each
order and ordered them according to their graph descriptor. In ref. [16] we provide the text
files containing the list of the Feynman diagrams at each order, consisting in their Nickel
index, edge list (where the name of the vertices is already the one used by the Nickel index),

3The renormalization scheme adopted in [1] is different: the counterterm subtracts the whole two-point
subdiagrams at zero momenta instead of just the divergent tadpole and sunset diagrams.
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1122|e2|e| > e112|22|e| < e122|e22|| .

Figure 1. Different enumerations and their corresponding sequences. The first one is the biggest of
the three since its first digit is 1 and 1 > e and the central is smaller than the last since e11 < e12.
The central one is, hence, the smallest one, the minimal graph descriptor.

and weight factor. See appendix A for the definition of weight factor and the conventions used
in this work. The Phi4tools package allows easy access to the data, providing a convenient
interface for the visualization of the graphs and their Nickel indices, see appendix C.

2.3 Symmetry factors: O(N) model and cubic anisotropy

Once the topologies of the Feynman diagrams are known, it is not difficult to compute their
corresponding symmetry factors, given a tensorial structure for the quartic coupling λijkl in
the Hamiltonian of eq. (1.1). In this work, we do this for the N -component cubic-symmetric
theory, in which we have

λijkl =
u0
3 (δijδkl + δikδjl + δilδjk) + v0 δijδikδil . (2.4)

The symmety factors for the O(N)-symmetric models can be readily deduced by turning
off the coupling v0. With a simple program that assigns tensor factors to the vertices and
performs contractions, we computed the symmetry factors for these models for the zero,
two, and four-point functions up to order eight. In ref. [16] we provide those lists in text
files. We suggest Phi4tools package to quickly navigate through them. We refer once again
the reader to the appendix A for normalization and conventions and to appendix C for a
quick introduction to the package.

2.4 Substitutions of the effective vertices

The number of loops of a diagram is given by l = v4 + v3/2 − e/2 + 1, where v4 and v3
are the number of quartic and cubic vertices respectively and e is the number of external
lines. Employing spherical coordinates and leveraging the symmetries of the integrands,
the dimension D of the integration space (in d = 3 spatial dimensions) is D = 1 for l = 1
and D = 3l − 3 for l > 1. Directly expressing the integrands in momentum space and
performing the integrations would result in very demanding computations. To illustrate
the scale of this task, consider, for example, the two-point function with eight quartic
vertices, where each of the 1622 non-zero 1PI diagrams would require a 21-dimensional
numerical integration. Nevertheless, it is possible to substantially reduce the complexity
of the integration by substituting analytically known subdiagrams, as done long ago by
Baker, Nickel, Green, and Meiron in refs. [2, 3], where they used the analytically known
expressions for the one-loop subdiagrams [34] to compute the six-loop β-function. These
substitutions can be performed directly at the diagrammatic level, before writing the explicit
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form of the integrands. The approach involves identifying the cycles corresponding to known
subdiagrams within the graphs and then replacing the propagators that constitute these
cycles with complex vertices. The complex vertices are linked to the graph by new edges
that, differently from the propagators, do not contribute to the integrand and just represent
a bookkeeping device for the substituted topology. After the substitution, we get a simplified
graph corresponding to an effective diagram with a reduced number of loops ℓ. By applying
the same procedure to the sunset subdiagrams, we renormalize its divergent contribution,
making all the diagrams finite4 (remember that the diagrams with tadpoles are already set
to zero and removed from the diagram list). We summarize below the substitutions that we
have defined, showing the symbols we use to denote the effective vertices and the names of
the functions to which they correspond. To streamline this section, the analytical formulae
for the effective vertices have been consolidated into appendix B.

Renormalization of sunset subdiagrams. We identify the sunset subdiagrams and sub-
stitute them with analytical effective vertices.

Subdiagram Effective vertex Renormalized function

S(p)

One-loop subdiagrams: bubbles, triangles and squares. We identify three one-loop
insertions, corresponding to cycles of length 2, 3, and 4, called respectively bubble, triangle,
and square, and substitute them with effective vertices that correspond to the analytic
functions of the external momenta.

Subdiagram Effective vertex Analytic function

B(p)

T (p1, p2, p3)

Q(p1, p2, p3, p4,
|p⃗1 + p⃗2|, |p⃗2 + p⃗3|)

4The zero-point diagrams up to order three are divergent as well, we set them to zero following the
renormalization scheme presented in ref. [14].
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Carrying on with this same philosophy, we identify other specific structures in the diagrams
that are amenable for substitutions. These are momentum-independent subdiagrams, for
which we know the analytic value, and subdiagrams depending on a single external momentum
p⃗, that are substituted either with an analytic function or with a numeric approximation
constructed from a tabulation of its values as a function of the magnitude p ≡ |p⃗|.

Momentum independent subdiagrams. We identify two tadpole-like insertions that can
be integrated analytically and we add new effective tadpoles for them.

Subdiagram Effective vertex Analytic factor

tS

tT B

Numerical two-point subdiagrams. We identify some multi-loop subdiagrams that de-
pend just on one external momentum p and substitute them with new effective vertices.
We have constructed numeric functions for them, tabulating their value as a function of p.

Subdiagram Effective vertex Numeric function

Tbb(p)

Qbbb(p)

Qs(p)

Qsb(p)

Three and four-point subdiagrams with zero momentum flow through some legs.
We identify other two multi-loop subdiagrams that would in principle depend on more
than one external momenta, but we focus on the combination where all except one are
equal to zero. These substitutions affect the portions of the diagrams adjacent to the
external legs. We have analytical expressions for some of the combinations, while we
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resort again to numerical tabulations for the others. We report these substitutions below,
where we mark with a dotted line the external legs with zero momentum flow. The first
substitution is analytical, the other two are numerical.

Subdiagram Effective vertex Function

TbA(p)

TbN (p)

κ(p)

Clearly, for complex enough diagrams, there might be more than one possible set of substi-
tutions that could translate into different numerical performances. In our implementation
we choose to minimize the residual number of loops ℓ and, in case of parity, we prioritize
effective diagrams with a higher number of analytic substitutions. Nevertheless, it is not
uncommon to encounter situations where equivalent effective diagrams exist. Therefore,
we use an algorithm that allows us to favor specific substitutions over others through a
set of weights. These weights are determined based on our empirical experience, noticing
that on the one side, squares and triangles seem to produce better results since they reduce
the number of propagators left in the integrand, but on the other side, they have a more
complicated analytical form that depends on many scalar products that tend to produce more
cumbersome integrands which are slower to evaluate. In any case, the best combination of
substitutions is diagram dependent and, for the few integrals in which the automatic choice
of effective diagram does not produce precise enough results, we test the other equivalent
parametrizations to find the one with the best performance.

As an example of how much these substitutions help in reducing the computational cost,
we consider the example of the 1PI four-point function at zero external momenta Γ(4)(0)
with five quartic vertices (v4 = 5), consisting of 27 diagrams with four loops (corresponding
to D = 9 integrals) before the substitutions. After the substitutions, we get 5 diagrams
with zero residual loops (no integration left), 18 diagrams with one residual loop, and 4
diagrams with two residual loops. Therefore, we just have to perform 18 one-dimensional
integrals and 4 three-dimensional integrals. In table 1 we show two examples of six-loop
diagrams that, after the substitution of analytic and numeric effective vertices, result in a
zero-loop effective diagram and a two-loop effective diagram. With the Phi4tools package,
it is possible to draw the Feynman diagrams before and after the insertion of the first three
classes of effective vertices, e.g. see figure 3 in appendix C.
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Feynman diagram Effective diagram Effective integrand

B(0)2 tS T (0, 0, 0)

κ(q1)B(q2)
Q(q1, q2, q1, q2, |q⃗1 − q⃗2|, |q⃗1 +

q⃗2|)

Table 1. Examples of substitutions for two Feynman diagrams. In the first row, we show a four-point
diagram at order seven that results in a zero-loop effective diagram after the analytical substitutions of
two bubbles, one triangle, and one complex tadpole. In the second row, we show a two-point diagram
at order six that results in a two-loop effective diagram after the substitution of a bubble, a square,
and a numerical two-point subdiagram.

2.5 Momentum assignation: writing the integrands

We are now ready to write the integrands associated with the effective diagrams. It is quite
straightforward to automatically implement the momentum assignation at every internal
edge and then impose the conservation of total momenta at each (effective) vertex. A generic
diagram with ℓ effective loops then corresponds to an integral over the ℓ internal momenta
of a function of the form f(q⃗1, . . . , q⃗ℓ). Additionally, one can make use of the spherical
symmetry to reduce the number of integrations by placing the vector q1 along the axis
z and q2 along the plane x − z so that q1,θ = q1,ϕ = q2,ϕ = 0. There are however many
possible parametrizations depending on the choice of the momenta, some of which may
allow further simplifications and be numerically more stable than the others. In particular,
we notice that the scalar products of the momenta, appearing in the propagators and as
arguments of the effective vertices, have a sizable impact on the evaluation speed and final
precision of the computation, with the best results obtained for the integrands with fewer
scalar products due to the simpler structure which limits accidental cancellations. Moreover,
for the remaining scalar products it is better to prefer those expressed in terms of q⃗1 and
q⃗2 since, with our choice of coordinates, they depend on fewer angles. Furthermore, it is
important to select what functions have the scalar products as arguments, preferring the
bubbles and triangles to the propagators. Our implementation, available in the Phi4tools
package, takes into account all these considerations, scanning different linear combinations
of the internal momenta, and picking the best one.

In the case of Γ(2)′(p2 = 0), the momentum derivative of 1PI two-point function, there is
an additional step to write the integrand of a diagram because we need to take the derivative
with respect to the external momentum p⃗ before setting it to zero. We proceed as above
by assigning all the momenta, but this time also taking into account p⃗ and making sure it
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appears on the least amount of effective vertices and propagators. We then evaluate the
derivative of the resulting function f̃(p⃗, q⃗1, . . . , q⃗ℓ) with respect to p2 using the relation

∂

∂p2

(∫ ∏
i=1...ℓ

ddq⃗i f̃(p⃗, q⃗1, . . . , q⃗ℓ)
)∣∣∣∣∣

p=0

=
∫ ∏

i=1...ℓ

ddq⃗i

(
1
2d

∂

∂p⃗
· ∂

∂p⃗
f̃(p⃗, q⃗1, . . . , q⃗ℓ)

∣∣∣∣
p=0

)
.

(2.5)
At this point one can write the integral in spherical coordinates as explained above.

In ref. [16] we provide the text files containing precomputed lists of integrands for the
Feynman diagrams with up to eight quartic vertices. For each listed diagram, the entry
reports the Nickel index, the value of ℓ, and the function f . With the Phi4tools package, it
is possible to access the data, as well as to write down the integrands in the form f(q⃗1, . . . , q⃗ℓ)
for any of the other Feynman diagrams. Moreover, it allows one to explicitly print the
integrand as a function of the radial and angular components of the momenta in three
dimensions, e.g. see figure 4 in appendix.

2.6 Performing the integration

As the last step, we perform the integrations for the diagrams of the ϕ4 theory. While for
simple enough diagrams one can solve the integrals analytically [14, 29, 35], at higher loops
we resort to numerical integration. Different numbers of effective loops correspond to different
dimensions of integration, and we find that it is better to differentiate the programs used in
the different cases. The case ℓ = 0 already corresponds to integrated values. For ℓ = 1 we have
one-dimensional integrals that can be performed with arbitrary precision by Mathematica
(although a limitation is present when numerical functions are involved) in a matter of
fractions of seconds. For ℓ = 2 we have three-dimensional integrals that Mathematica can still
manage, this time to achieve a precision of at least 10 significative digits we need some hours,
so we run those integrals on the SISSA cluster Ulysses. For ℓ ≥ 3, corresponding to integrals
with D ≥ 6, we used the Monte Carlo VEGAS algorithm [36] from the python module
vegas. We run those integrals in part on the SISSA cluster Ulysses and in part on CINECA
cluster Marconi, each one of them for one or two days. The values for the computationally
most difficult diagrams have been cross-checked using different parametrizations of the
integrands and, in some instances, using the feyntrop computer program [37].5 The final
numeric uncertainties vary considerably among the different diagrams (as in the case of
ref. [1]), depending on the number of simplifications, on the type of substitutions and on
the parametrization of the integrands. The largest relative uncertainties for the two- and
four-point diagrams are of few parts in 105, while the largest relative uncertainties for the
derivative of the two-point diagrams reach few parts in 104.

The text files for each order containing the values of the Feynman diagrams can be found
in ref. [16], each row containing the Nickel index of a diagram, its value, and the related
uncertainty. The normalization that we adopted are presented in appendix A. With the
Phi4tools package, it is possible to quickly have the values of any of the diagrams of the
ϕ4 theory, e.g. see figures 3 and 6 in appendix.
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Figure 2. Comparison between this work and ref. [1] for the six-loop diagrams of the four-point
function that share the same renormalization (585 out of 660 diagrams). Left panel: compatibility
between each pair of diagrams measured in standard deviations σ. Right panel: distribution of the
uncertainties for the values normalized as explained in appendix A. For the values in ref. [1] we
assumed an uncertainty of ±5 on the last reported digit, but the real uncertainty might be larger
(see text). One diagram of ref. [1] has uncertainty equal to 2.6× 10−5 and lies outside the range of
the plot.

2.7 Numerical uncertainties and comparison with ref. [1]

The results up to six loops can be compared with ref. [1], providing, more than 45 years later,
an independent check of the unpublished results. Before turning to the comparison, we note
that in the tables of [1], the values of the diagrams reported correspond to the theory with a
different renormalization counterterm, that subtracts the whole two-point subdiagrams at
zero momenta instead of just the divergent tadpole and sunset diagrams. Instead, we have
chosen a minimal counterterm that only removes the divergences, and we listed the values of
the two-point function explicitly. In our opinion, this simpler and more direct presentation
will facilitate the reuse of the data. The result is that a small subset of the diagrams has
different values in the two schemes. In figure 2, we show the direct comparison for the six-loop
diagrams of the four-point function that share the same renormalization. In the left panel,
we report the compatibility between each pair of diagrams measured in standard deviations,
while in the right panel, we report the distribution of the uncertainties. We note that the
uncertainties in ref. [1] are not explicitly reported diagram by diagram, opting for a more
generic statement that “the errors are generally less than ±5 in the last digit quoted” and
that “in exceptional cases the error may run as high as ±20”. The comparison in figure 2 is
performed assuming an uncertainty of ±5 in their last digit quoted. We find a remarkable
accuracy of the results of ref. [1], with most of their values accurate even at the ±1 level
in their last digit quoted and only a few exceptions. Only one value is off by ∼ 20 in their
last digit quoted, appearing above σ = 4 in the left panel of figure 2 and corresponding to
the diagram with Nickel index ee12|e34|e56|456|56|6||. The distributions of the uncertainties
are reported in the right panel of figure 2. One could also compare the remaining subset by
explicitly carrying out the subtraction of the two-point subdiagrams. An indirect check of
Nickel’s values up to six loops is obtained in the following section, where we find agreement
between our series for the RG functions and the ones derived from his results.

5We thank the referee for suggesting this software to us.
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3 Series for RG functions in d = 3

The computation of the Feynman diagrams, detailed in the previous section, provided
the perturbative series for Γ(2), Γ(2)′ and Γ(4) at zero external momentum for the three-
dimensional O(N)-symmetric models and the N -component models with cubic-symmetric
quartic interaction. Moreover, the series for the two-point function with one mass insertion
can be obtained as Γ(1,2)

ij = ∂Γ(2)
ij /∂m2

I . In this section, we use them to write down the
perturbative expansion for the three-dimensional RG functions in the renormalization scheme
first proposed in [38]. The theory is renormalized by the zero-momentum conditions

Γ(2)
ij (p2 = 0) = δijm2Z−1 , Γ(2)′

ij (p2 = 0) = δijZ−1 , Γ(4)
ijkl(0) = mgijklZ

−2 ,

Γ(1,2)
ij (p2 = 0) = δijZ−1

ϕ2 ,
(3.1)

which define the renormalization constants Z, Zϕ2 and the renormalized parameters m2 and
gijkl. This scheme has been commonly adopted to study the critical behavior of Landau-
Ginzburg-Wilson theories within the fixed-dimensional perturbation theory [39]. We focus on
the cubic anisotropic theory, where the N scalar fields interact via two quartic couplings: the
first one preserving the O(N) invariance, while the second breaks it to a residual discrete
cubic symmetry given by the reflections and permutations of the fields. The renormalized
coupling gijkl is specified as

gijkl =
u

3 (δijδkl + δikδjl + δilδjk) + v δijδikδil , (3.2)

where u and v are related to the bare dimensionful parameters u0 and v0 of eq. (2.4) through

u0 = muZu(u, v)Z(u, v)−2 , v0 = mvZv(u, v)Z(u, v)−2 . (3.3)

Clearly, the O(N)-symmetric model can be readily obtained by switching off the symmetry-
breaking coupling v. Starting from the series for the 1PI functions in the intermediate
scheme and using the above conditions, we obtain the perturbative expansion for the RG
functions βu, βv, η, and ηϕ2 defined as

βu(u, v) = m
∂u

∂m

∣∣∣∣
u0,v0

, βv(u, v) = m
∂v

∂m

∣∣∣∣
u0,v0

, (3.4)

η(u, v) = m
∂ logZ

∂m

∣∣∣∣
u0,v0

, ηϕ2(u, v) = m
∂ logZϕ2

∂m

∣∣∣∣
u0,v0

, (3.5)

and we obtain the series for the RG function ν from the relation ν(u, v) = (ηϕ2(u, v)−η(u, v)+
2)−1. Following the convention of refs. [2, 3, 7], we rescale the couplings

ũ ≡ N + 8
48π

u , ṽ ≡ 3
16π

v , (3.6)

as well as the β-functions

βũ(ũ, ṽ) = N + 8
48π

βu(u, v) , βṽ(ũ, ṽ) = 3
16π

βv(u, v) . (3.7)
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We find the following series up to the eighth order, that extend the results in the literature [7]
by one order for βũ and βṽ and by two orders for η and ηϕ2 ,6

βũ(ũ, ṽ)=−ũ+ũ2+3
2 ũṽ− 4(41N+190)

27(N+8)2 ũ3− 400
81(N+8) ũ2ṽ− 92

729 ũṽ2+

+ũ
∑

i+j≥3
b

(u)
ij

( 9
N+8

)i

ũiṽi , (3.8)

βṽ(ũ, ṽ)=−ṽ+ṽ2+ 12
N+8 ũṽ− 308

729 ũ3− 832
81(N+8) ũ2ṽ− 4(23N+370)

27(N+8)2 ũṽ2+

+ṽ
∑

i+j≥3
b

(v)
ij

( 9
N+8

)i

ũiṽi , (3.9)

η(ũ, ṽ)= 8(N+2)
27(N+8)2 ũ2+ 16

8(N+8) ũṽ+ 8
729 ṽ3+

∑
i+j≥3

e
(ϕ)
ij

( 9
N+8

)i

ũiṽi , (3.10)

ηϕ2(ũ, ṽ)=−N+2
N+8 ũ− 1

3 ṽ+2(N+2)
(N+8)2 ũ2+ 4

3(N+8) ũṽ+ 2
27 ṽ2+

∑
i+j≥3

e
(ϕ2)
ij

( 9
N+8

)i

ũiṽi ,

(3.11)

where the coefficients b
(u)
ij , b

(v)
ij (3 ≤ i + j ≤ 7) and e

(ϕ)
ij , e

(ϕ2)
ij (3 ≤ i + j ≤ 8) are reported

in the tables in appendix E. We perform various consistency checks on our series, including
those reported in ref. [7], that involve non-trivial identities among the RG functions for N = 1
and N = 2. We also find agreement between our coefficients and those in ref. [7]. Setting
ṽ = 0 we get the series for the O(N)-symmetric models, explicitly reported in appendix D as
the series for βũ(ũ, 0), η(ũ, 0), and ν(ũ, 0). We have carefully checked these series, comparing
the coefficients for η and ηϕ2 up to order ũ7 for N = 0, 1, 2, and 3 with those computed
by Murray and Nickel and appearing in the appendix of ref. [5]. We also compared the
coefficients of β with those in ref. [3], finding agreement in all cases.

After resummation, the longer perturbative series are expected to deliver more precise
results for the fixed-dimensional estimates of the critical exponents, which could then be
compared with the estimates from ϵ-expansion [5, 7, 40, 41], Monte Carlo simulations [10, 42–
44] and Conformal Bootstrap [45–47]. We postpone such study to a future work.

4 Conclusions

With this work, we have provided a comprehensive collection of results for fixed-dimensional
perturbative computations for theories described by Landau-Ginzburg-Wilson Hamiltonians.
In particular, we have illustrated the steps of our computations and shared, for each of
them, the results and the tools developed. They range from the construction and labeling
of the Feynman diagrams, the computation of the symmetry factors for O(N) and cubic
anisotropic theories, the compilation of the integrands in momentum space, and finally to
their numerical evaluation in the specific case of three-dimensional quartic theories. The
fundamental operation that enabled us to push the computation to high orders was the

6We note that for the O(N) model the series were known up to order seven [5].
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identification and replacement of specific subdiagrams with their analytical expression. This
operation, done systematically at the diagrammatic level, allowed us to reduce the number of
loops of the Feynman diagrams and, in turn, the dimension of the integration space, leading
to the evaluation of all the Feynman diagrams with up to eight quartic vertices for the zero,
two, and four-point functions in the three-dimensional theory at zero external momentum.
All the results are available in text files in ref. [16], and can be accessed through Phi4tools,
a handy and easy-to-navigate Mathematica paclet with a comprehensive documentation
that is aimed at anyone who needs to consult a single source for information on this topic.
Our results constitute an independent check for the unpublished work of ref. [1]. We then
presented some applications of the computed diagrams, obtaining the perturbative series
for RG functions for the O(N) and the cubic anisotropic model to an unprecedented high
order. The resummation of the series, which will be carried out in a future work, will
give the state-of-the-art fixed-dimensional estimates of the critical exponents, that could
be benchmarked against other methods, similarly to what was done in ref. [48]. Moreover,
the perturbative series for other models can be easily implemented using the package by
specifying the appropriate symmetry factors for the diagrams. It is also possible to extend the
computations in various directions, with a number of diagrams already implemented but not
computed. The diagrams with nine quartic vertices are already present, with multiplicities
and integrands with the substitutions of the effective vertices in place. The same is valid for
the Feynman diagrams with cubic vertices with up to eight total vertices, cubic plus quartic.
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A Conventions and normalizations

This appendix is devoted to spelling out the conventions used in this work, in particular
for the normalization for the symmetry and multiplicity factors, the integrands, and the
values of the diagrams in three dimensions. These normalizations can also be found in the
documentation of the Phi4tools paclet, and the computation of the series for the β-function
can be found, step by step, in the Tech Notes.

Let’s consider a generic Feynman diagram G of an n-point function with v3 cubic vertices
and v4 quartic ones, G is identified by its Nickel index N (G). Its multiplicity factor MG is
equal to the number of Wick contractions leading to this same diagram. We define weight
factor WG as

WG = MG
v3!(3!)v3v4!(4!)v4

. (A.1)
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The integrand for G that can be obtained from the paclet is the product between the factors
coming from the propagators and the effective vertices and WG (thus without the usual integral
measure (2π)−d in d dimensions for every loop). The weight factor lacks the contribution
due to the number of different channels for a given diagram. We call it Mch(n) since it
depends only on the number of external legs. For the zero and two-point functions we have
Mch(0) = Mch(2) = 1, while for the four-point function we have Mch(4) = 3. Hence, for
example, the weight factor for the one-loop bubble diagram in the four-point function with
two quartic vertices, labeled by the Nickel index ee11|ee|, is given by W = 1

2 .
As explained in the main text, the paclet also provides the symmetry factors7 coming

from the tensorial structure of λijkl for the O(N) model and the anisotropic cubic model, see
eq. (2.4).8 We indicate with SG(N, X) the cubic symmetry factor for the diagram G where
we defined X = v0/u0. Thus, SG(N, 0) will be the one for the O(N) model. If G is a diagram
contributing to the two-point function (n = 2), the symmetry factors SG(N, X) correspond
to the coefficient of the tensorial structure δij . Instead, if G is a diagram contributing to
the four-point function (n = 4), the symmetry factors SG(N, X) correspond to the list of
the coefficients that multiply the four possible channels (δijδkl, δikδjl, δilδjk, δijδikδil); upon
symmetrization, we obtain Ssym

G (N, X) given by the list of the two coefficients of the tensorial
structures ((δijδkl + δikδjl + δilδjk) /3, δijδikδil), where the first coefficient is given simply by
the sum of the first three of SG(N, X). The operation of symmetrization instead acts as the
identity on the diagrams with n = 0 and n = 2, thus, in that case, Ssym

G (N, X) coincides
with SG(N, X). The symmetry factors are normalized so that for the Ising model they are
equal to 1, i.e., for every G, we have

Ssym
G (1, 0) = 1 for n = 0, 2 , (A.2)

Ssym
G (1, 0) = (1, 0) for n = 4 . (A.3)

As an example, we report below the symmetry factor for the diagram with the label ee11|ee|,
together with its symmetrized version,

S (N, X) =
(

N + 4 + 6X

9 ,
2
9 ,

2
9 ,

4X

3 + X2
)

, (A.4)

Ssym(N, X) =
(

N + 8 + 6X

9 ,
4X

3 + X2
)

. (A.5)

Let’s call VG the value of the Feynman diagram G in three dimensions in the renormal-
ization scheme of eq. (2.2). The quantity VG is calculated by integrating the integrand for G,
normalized as explained earlier, and multiplying the results by (16π)l, where l is the number
of loops of G. In this way, the values for most of the diagrams for the four-point function are
of order one.9 For our usual example with label ee11|ee|, the value is given by V = 1.

7Notice that in literature the term symmetry factor is sometimes used to indicate the inverse of what we
call the weight factor WG . In our conventions, the symmetry factor indicates the factor coming from the
tensorial structure of the ϕ4 interaction.

8We refer the reader to chapter 6 of ref. [49] for a more detailed treatment.
9Our normalization is similar to the one used in ref. [1]. For the diagrams not affected by the difference in

normalization scheme, we have that VG is equal to their value times what they call Z1 symmetry factor.
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Finally, let us show, as an example, how to write the perturbative series for 1PI n-point
functions at zero external momenta in the O(N) model. We have

Γ(n) = m
(3−n

2 )
I

∑
k

∑
G(k)

(−1)(k−1)Mch(n)(16π)−(k+1−n
2 ) Ssym

G(k)(N, 0)VG(k)

(
u0
mI

)k

, (A.6)

where G(k) indicates a Feynman diagram with v4 = k. We composed the symmetry factors10

and values, summed over all the diagrams at a given order p, and fixed the normalization: the
factors 16π are there to balance the normalization of VG(k) , and we have the factor Mch(n)
accounting for the number of channels. The series for the more general case of the cubic
anisotropic model can be obtained in a similar fashion.

B Effective vertices in d = 3

In this appendix, we report functions and analytic terms corresponding to the effective
vertices presented in section 2.4 in three dimensions. In order to make the expressions lighter,
we put mI = 1 in this appendix. The masses can be easily reinserted using dimensional
analysis. We refer the reader to ref. [29] for the formulas for one-loop subdiagrams with
propagators with different masses. We have for the bubble diagram

B(p) = arctan(p)
4πp

. (B.1)

For the sunset in our renormalization scheme, i.e. S(p = 0) = 0, we have

S(p) = − 1
32π2

(
log

(
p2

9 + 1
)
+

6arctan
(p

3
)

p
− 2

)
. (B.2)

The triangle diagram has three external legs, so it depends on (p⃗1, p⃗2, p⃗3). However, since
p⃗1 + p⃗2 + p⃗3 = 0, it will be a function of two vectors or three scalars.11 Hence, we can write

T (p1, p2, p3) =
arctan

(√
D3(p1,p2,p3)

p2
1+p2

2+p2
3

2 +4

)
8π
√
D3(p1, p2, p3)

, (B.3)

with

D3(p1,p2,p3)=
1
4
(
p2

1p2
2p2

3+(p1+p2−p3)(p1−p2+p3)(−p1+p2+p3)(p1+p2+p3)
)

. (B.4)

We can also write D3 as

D3(p1,p2,p3)=detD(3)(p1,p2,p3) with D(3)(p1,p2,p3)=


1 1+ p2

2
2 1+ p2

1
2

1+ p2
2
2 1 1+ p2

3
2

1+ p2
1
2 1+ p2

3
2 1

 . (B.5)

The square diagram has four external legs, so it depends on (p⃗1, p⃗2, p⃗3, p⃗4). However, since

10For n = 4, the symmetry factors Ssym
G(k) are actually a list of two values, one corresponding to the O(N)-

symmetric tensorial structure and the other corresponding to the O(N)-breaking tensorial structure. With
a slight abuse of notation, in the O(N) example of eq. (A.6), we assume we just take the first of the two
coefficients, the other being zero. In the more general case, one should instead take the sum of the two, each
multiplied by the corresponding tensorial structure.

11In our notation, p⃗ indicates the three-dimensional vector and p ≡ |p⃗| its magnitude.
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p⃗1 + p⃗2 + p⃗3 + p⃗4 = 0, it will be a function of three vectors or six scalars. Let us introduce

D(4)(p1, p2, p3, p4, |p⃗1 + p⃗2|, |p⃗2 + p⃗3|) =


1 1 + p2

1
2 1 + (p⃗1+p⃗2)2

2 1 + p2
4
2

1 + p2
1
2 1 1 + p2

2
2 1 + (p⃗2+p⃗3)2

2
1 + (p⃗1+p⃗2)2

2 1 + p2
2
2 1 1 + p2

3
2

1 + p2
4
2 1 + (p⃗2+p⃗3)2

2 1 + p2
3
2 1


(B.6)

and
D4 = detD(4) (p1, p2, p3, p4, |p⃗1 + p⃗2|, |p⃗2 + p⃗3|) . (B.7)

Let’s now define the principal minors D3,i obtained by eliminating the ith row and column
from D(4) and F4,i as the determinant of the 4× 4 matrix obtained from D(4) and replacing
the elements of the ith column by ones. Concretely, with our parametrization, we have

D3,1 ≡ D3(p2, p3, |p⃗2 + p⃗3|) , D3,2 ≡ D3(|p⃗1 + p⃗2|, p3, p4) , (B.8)
D3,3 ≡ D3(p1, |p⃗2 + p⃗3|, p4) , D3,4 ≡ D3(p1, p2, |p⃗1 + p⃗2|) . (B.9)

Let’s use the same labeling for the triangle functions, i.e.

T1 ≡ T (p2, p3, |p⃗2 + p⃗3|) , T2 ≡ T (|p⃗1 + p⃗2|, p3, p4) , (B.10)
T3 ≡ T (p1, |p⃗2 + p⃗3|, p4) , T4 ≡ T (p1, p2, |p⃗1 + p⃗2|) . (B.11)

Finally, we have

Q(p1, p2, p3, p4, |p⃗1 + p⃗2|, |p⃗2 + p⃗3|) =
1

2D4

4∑
i=1

F4,iTi . (B.12)

For the effective tadpoles, we have

tS = −
log

(
4
3

)
128π3 , tT B = 1

12288π2 . (B.13)

Lastly,

TbA(p) =
arctan

(p
3
)

32πp
. (B.14)

C The Phi4tools paclet

Phi4tools is a Mathematica paclet that extends the Wolfram System with new functionality
and includes Wolfram Language functions, documentation, and data files. It is published
in the Wolfram Paclet Repository12 and it can be installed in Mathematica by evaluating
the command

PacletInstall["GSberveglieri/Phi4tools"]

and then it can be loaded with the command

Needs["GSberveglieri`Phi4tools`"]
12https://resources.wolframcloud.com/PacletRepository/resources/GSberveglieri/Phi4tools.
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Figure 3. Example of input and output of the function InformationDiagram in Mathematica. The
chosen diagram has Nickel index e112|e3|333||. It is the third of those with 4 quartic vertices of Γ(2),
using the order explained in section 2.2 and excluding the diagrams with tadpoles. The options are
chosen so that the simplified diagrams, the relative integrand, and the symmetry factor are printed
out. The value refers to the three-dimensional theory. For more detailed information on symbols,
options, and normalization, we refer the reader to the documentation of the paclet.

After doing so, the new symbols and functions are integrated into the system together with
the related documentation, consisting of a guide page with the overview of the package, two
tutorials, and the documentation pages associated with each new symbol that can be accessed
from any notebook using the command Information (or simply “??”). The documentation
can also be consulted on the web from the Wolfram Paclet Repository. We refer the reader
to the guide page for a complete and comprehensive description of all functionalities, and
we report below just some basic examples. For more advanced examples with the usage of
multiple functions, we invite the reader to consult the Tech Notes of the paclet.

The function InformationDiagram[n, v3, v4, d] gives details about the d-th diagram of
the n-point function Γ(n) with v3 cubic vertices and v4 quartic vertices at zero external
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Figure 4. Example of input and output of the functions IntegrandDiagram and WriteExplicit
in Mathematica.

Figure 5. Example of input and output of the functions VisualizeDiagram for all the diagrams
with 2 cubic vertices and 2 quartic ones of Γ(2).

momentum. It works for zero, two, and four-point functions and provides, when computed,
the value of the diagram in three dimensions. InformationDiagram can take as input
alternatively the Nickel index or the graph associated with the desired diagram. In figure 3,
we report an example. With WriteExplicit[integrand], the integrand is written in the form
ready to be integrated in three dimensions. In figure 4, we report an example using the same
diagram of figure 3. The function VisualizeDiagram[n, v3, v4] draws all Feynman diagrams
of the n-point function Γ(n) with v3 cubic vertices and v4 quartic vertices. In figure 5, we
report an example. The function ValueDiagram[n, v3, v4] gives the list of three-dimensional
integrated values of the Feynman diagram for the n-point function Γ(n) with v3 cubic vertices
and v4 quartic vertices. In figure 6, we report an example.

D Series coefficients in the O(N) model

In this appendix, we report the perturbative series of the RG functions β, η, and ν for the
O(N) model at generic N , obtained setting ṽ = 0 as explained in the text. The numerical

– 19 –



J
H
E
P
0
5
(
2
0
2
4
)
0
7
3

Figure 6. Example of input and output of the functions ValueDiagram for all the diagrams with 0
cubic vertices and 5 quartic vertices of Γ(4). The values refer to the three-dimensional theory. For
more detailed information on the normalization, we refer the reader to the documentation of the
function in the paclet.

coefficients appearing without error have been computed to a higher accuracy and have
been truncated at 10−15.

β
ũ
(ũ, 0) = − ũ + ũ2 − ũ3

(N + 8)2
4(41N + 190)

27 + ũ4

(N + 8)3

[
1.348942760866478 N2

+ 54.940377049302200 N + 199.640417221105907
]

− ũ5

(N + 8)4

[
− 0.155645907585201 N3 + 35.82020347182(7)N2 + 602.5212285602(6)N

+ 1832.2067281779(14)
]

+ ũ6

(N + 8)5

[
0.051236212811530 N4 + 3.237874(11)N3 + 668.55456(24)N2

+ 7819.5673(20)N + 20770.183(5)
]

− ũ7

(N + 8)6

[
− 0.023424226049759 N5 − 1.07182(8)N4 + 265.8411(20)N3

+ 12669.295(24)N2 + 114181.79(13)N + 271300.61(28)
]

+ ũ8

(N + 8)7

[
0.012640642324067 N6 + 0.5433(5)N5 − 14.386(16)N4 + 8828.74(25)N3

+ (246972.5 ± 2.0)N2 + (1840997 ± 8)N + (3981620 ± 14)
]

.

η(ũ, 0) = ũ2

(N + 8)2
8(N + 2)

27 + ũ3

(N + 8)3

[
0.0246840009259343 (N2 + 10N + 16)

]
+ ũ4

(N + 8)4

[
− 0.004298563333341 N3 + 0.667985910868(20)N2 + 4.60922100685(3)N

+ 6.51210986356(18)
]

− ũ5

(N + 8)5

[
0.006550923035200 N4 − 0.13245107140(8)N3 + 1.891116(10)N2

+ 15.18794(6)N + 21.64700(9)
]

+ ũ6

(N + 8)6

[
− 0.005548920737435 N5 − 0.02039935040(31)N4 + 3.05407(7)N3

+ 64.0777(8)N2 + 300.7218(34)N + 369.714(4)
]

− ũ7

(N + 8)7

[
0.004390810855773 N6 + 0.0612032025(13)N5 − 1.2705(4)N4 + 35.311(7)N3

+ 751.79(5)N2 + 3345.53(18)N + 3988.40(21)
]

+ ũ8

(N + 8)8

[
− 0.003473417276666 N7 − 0.070431737(5)N6 + 0.151(3)N5 + 11.6(1)N4

+ (1111 ± 1.5)N3 + (13674 ± 9)N2 + (52140 ± 27)N + (58297 ± 30)
]

.
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(27N2 + 16N − 76)
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(N + 8)3

[
N3

16 + 0.357987483753229 N2

+ 2.20259658610878 N + 3.473243237204659
]

− ũ4

(N + 8)4

[
− N4

32 − 0.399474877149036 N3 + 0.609039560891(5)N2 + 14.977065564467(32)N

+ 24.82217386818(4)
]

+ ũ5

(N + 8)5

[
N5

64 + 0.333425900294786 N4 + 0.7393030(9)N3 + 27.122009(18)N2

+ 184.70641(11)N + 262.00439(15)
]

− ũ6

(N + 8)6

[
− N6

128 − 0.245952216148592 N5 − 1.875537(5)N4 + 0.87861(19)N3

+ 417.7907(19)N2 + 2385.941(7)N + 3130.387(8)
]

+ ũ7

(N + 8)7

[
N7

256 + 0.170195139781328 N6 + 2.298000(25)N5 + 0.1341(20)N4 + 328.511(29)N3

+ 7521.91(19)N2 + 35180.6(6)N + 42962.6(6)
]

− ũ8

(N + 8)8

[
− N8

512 − 0.113811144429731 N7 − 2.23349(12)N6 − 9.232(14)N5 − 116.02(24)N4

+ (9073.7 ± 2.2)N3 + (139051 ± 11)N2 + (567393 ± 30)N + (652860 ± 29)
]

.

E Series coefficients in the N -component model with cubic anisotropy

In this appendix, we report the coefficients for the series of the RG functions in eqs. (3.8), (3.9),
(3.10), and (3.11). The numerical coefficients appearing without error have been computed
to a higher accuracy and have been truncated at 10−15 (for the coefficients smaller than
10−5 we kept 11 significant digits instead).
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