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1 Introduction

A major challenge for accurate predictions of collision rates for processes involving many
colored patrons, is the treatment of the SU(𝑁) color space associated with QCD. This
challenge is typically addressed by expanding in color bases, often trace bases [1–12] or color-
flow bases [12–19], and sometimes accompanied by sampling of the color states [16, 18–20].

A problem with the trace and color-flow bases is that they are only orthogonal in the limit
𝑁 → ∞, and in fact overcomplete for many particles; for high multiplicities they are severely
overcomplete [21], with a dimension that scales as the factorial of the number of gluons
plus quark-antiquark pairs. If one does not want to exploit sampling over different color
structures,1 like done in for example the CVolver program [16, 18, 22], this gives rise to a major
bottle neck for the squaring of the color structure, which then scales as a factorial square.

It appears appealing to explore minimal orthogonal bases. This is accomplished by
multiplet bases [21, 23–33], which rely on the Clebsch-Gordan decomposition of the involved
particle representation for constructing orthogonal bases. Examples of multiplet bases can be
found in refs. [23–26], and a general construction in refs. [27, 32, 33].

However, it is possible to do better than that: any color structure can be decomposed into
a multiplet basis without explicitly constructing this basis, by making use of the group invariant
Wigner 6 𝑗 symbols (here 6 𝑗s for short, also known as 6 𝑗 coefficients, Racah coefficients,
or Racah 𝑊 coefficients, up to signs), along with Wigner 3 𝑗 coefficients and dimensions of
representations. The problem of decomposing the color structure is then essentially reduced

1Typically the sampling is also accompanied by detailed relations of color flows and kinematic quantities.

– 1 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
1

to the problem of finding a sufficient set of 6 𝑗 symbols for the color decomposition in question.
Some work in this direction has been pursued in refs. [21, 33], where symmetry is exploited
to recursively calculate a set of 6 𝑗 symbols applicable for processes with a limited number of
partons. Other recent work obtains SU(3) 6 𝑗 symbols numerically, by first calculating SU(3)
Clebsch-Gordan coefficients [34, 35]. For SU(2), the problem is addressed in ref. [36].

In a recent paper [37], we started to explore a third avenue, namely to recursively
derive 6 𝑗 symbols in terms of other 6 𝑗 symbols and dimensions of representations. We there
derived closed forms of a set of 6 𝑗 symbols characterized by having quarks (fundamental
representations) in opposing positions. In the present paper, we complete this set of 6 𝑗
symbols with symbols where two of the opposing representations are quarks or gluons
(adjoint representations), and 6 𝑗s where one vertex only contains fundamental and adjoint
representations, whereas the other representations are arbitrary. As we will see, this class of 6 𝑗s
defines a complete set for decomposing any color structure appearing in the standard model.

We lay out the basics of SU(𝑁) color calculations using the birdtrack method in section 2.
In section 3 we go through a general procedure for decomposing the color structure. This
allows us to identify a set of 6 𝑗 symbols that is sufficient to decompose any color structure
to any order in perturbation theory. While one of the necessary classes of 6 𝑗 symbols is
calculated in ref. [37], the remaining ones are calculated in section 5, after a careful discussion
on how to define vertices in section 4. Finally, we make concluding remarks in section 6.

2 Reducing SU(𝑵) color structure in birdtrack notation

In this section we briefly outline how to calculate SU(𝑁) invariants, using the birdtrack
method, and assuming knowledge of a sufficient set of Wigner 3 𝑗 ,2 and Wigner 6 𝑗 symbols.
It is worth remarking that while our discussion focuses on SU(𝑁), in particular SU(3), this
reduction method is applicable for any Lie group. For a full, comprehensive introduction to the
birdtrack formalism, we refer to ref. [38], a minimal introduction can be found in appendix A
of ref. [27], whereas a more pedagogical account is written up in ref. [39]. Examples of
birdtrack calculations for QCD can be found in refs. [28] and [21].

As we are interested in fully color summed (averaged) color structures, every color
structure can be seen as a fully connected graph of SU(𝑁) representations. While one may
treat each color structure coming from each possible Feynman diagram separately, resulting in
connected graphs with only (anti)triples and octets, processes with many partons are better
handled by having the color structure decomposed into a basis, for example as indicated in
figure 1, illustrating a general QCD color structure (including several loops) decomposed into
a multiplet basis [21, 27, 32, 33]. This is applicable whether one uses a fixed order perturbative
calculation, a full color parton shower or a more sophisticated resummation algorithm. The
color basis entails of course triplet and octet representations, but also the higher-dimensional
irreducible representations (irreps), used for constructing orthogonal basis vectors. Squaring
the color structure is trivial once it has been expanded in an orthogonal basis.

Generally (whether one uses a color basis or not), the squared color structure thus
consists of (sums of) fully connected birdtrack graphs with loops of various length. For

2We will later normalize the 3 𝑗s to 1.

– 2 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
1

〈
,

〉

=

Figure 1. Example of a scalar product between a basis vector, coming with a set of general
representations denoted by double lines, and a general color structure. Note that “bubbles”, in
green, can be contracted away using eq. (2.9), and that vertex corrections (in blue) can be removed
using eq. (2.5). To address the remaining color structure, the completeness relation eq. (2.2) is in
general needed.

example, we may encounter

, (2.1)

where the double lines denote any irrep of SU(𝑁), and in general should be supplied with
representation labels and arrow directions, which we suppress here for readability.

While short loops of length up to three can be immediately removed (see below), the
fall-back method to handle long loops is to split them up to shorter loops by repeated
insertion of the completeness relation

β

γ

=
∑︁
𝛿

𝑑𝛿

γ

β

δ

β

γ
δ

γ

β

, (2.2)

where 𝑑𝛿 denotes the dimension of the irrep 𝛿, appearing in the Clebsch-Gordan decomposition,
and where the denominator is a Wigner 3 𝑗 symbol.

Tracing both sides of this equation, and using

α

= 𝑑𝛼 , (2.3)

it is clear that the completeness relation implies 𝑑𝛽𝑑𝛾 =
∑
𝛿 𝑑𝛿, as anticipated.
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Applying the completeness relation (2.2) to two of the representations in eq. (2.1),
marked in red below, schematically results in

(2.2)
=======

∑︁
𝛼

𝑑𝛼
α , (2.4)

where we now have a “vertex correction” loop with three internal representations. This loop
can be removed using the Wigner 6 𝑗 symbols

α

ρσ

β γ

δ

=
∑︁
𝑎

1

σ

α

ρa a

δ

ρσ

β
γ

α

a

︸              ︷︷              ︸
Wigner-6 𝑗

α

ρσ a
. (2.5)

The sum above runs over instances 𝑎 of the irrep 𝜌 in 𝛼 ⊗ 𝜎, for example the two octets
in 8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27. In this paper, every encountered vertex will contain at
least one fundamental or adjoint representation, implying that most often there is only one
instance, but for 𝐴 ⊗ 𝜎, with 𝐴 being the adjoint representation for SU(𝑁), and 𝜎 being an
arbitrary irrep, there can be up to 𝑁 − 1 representations of type 𝜎 [27]. We will choose the
corresponding vertices to be mutually orthogonal, in the sense that〈

σ σ

a ,

σ σ

b

〉
=

σ

a b

σ

!
= 0 if 𝑎 ≠ 𝑏 . (2.6)

Furthermore, for the 6 𝑗 symbols that we derive, we choose to normalize our vertices
such that

a b

α

β
γ

≡ 𝛿𝑎𝑏 , for all non-vanishing vertices, (2.7)

i.e., the 3 𝑗 coefficients are normalized to one. This implies in particular that = 1,

in contrast to the standard QCD normalization = 1
2 (𝑁

2 − 1), for the generator nor-

malization tr[𝑡𝑎𝑡𝑏] = 1
2𝛿
𝑎𝑏. We explain in appendix D how to easily transform our results

to any desired normalization.
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Note that after having applied eq. (2.5) to eq. (2.4), we are left with a loop with one
representation less,

(2.2)
=======

∑︁
𝛼

𝑑𝛼
α

(2.5)
=======

∑︁
𝛼

𝑑𝛼
α .

(2.8)
Repeatedly applying this procedure to eq. (2.1), it is thus possible to reduce loops with any
number of internal representations down to loops of length three (removed using eq. (2.5))
or length two, removed using the “self energy” relation

α β
γ

δ

=
α

γ
δ

𝑑𝛼

α β
. (2.9)

In this way, assuming the knowledge of the 6 𝑗 symbols, it is possible to reduce any
fully connected graph to a number.

It should be noted that the required set of 6 𝑗s depends on how the contraction is
performed, and what basis vectors are (possibly) used. In the present paper, we consider
basis vectors of the form,

α1 α2 αn
, (2.10)

where we have a backbone chain of general representations 𝛼1, 𝛼2, · · · , 𝛼𝑛, denoted by double
lines with suppressed arrows, to which the external particle representations, octets, triplets
and antitriplets, denoted by single lines, are attached (also with suppressed arrows). To
the authors’ knowledge all multiplet bases in the literature are of this form. One could also
imagine bases where general irreps are contracted in vertices. Such bases will require 6 𝑗
symbols beyond those presented here, and are therefore beyond the scope of this paper. We
emphasize once more, that the philosophy underlying the present work is to avoid explicitly
constructing any bases, and instead achieve a decomposition using 6 𝑗s.

3 A sufficient set of 6 𝒋 symbols for decomposing color structure

In this section we identify a sufficient set of 6 𝑗 symbols for decomposing color structure into
the orthogonal basis vectors in eq. (2.10) to any order in perturbation theory. We start out
with considering tree-level color structures, and return to higher orders later.

Again, letting single lines schematically denote triplet, octet or singlet representations
(i.e. representations of the external particles) and letting double lines denote the general irreps

– 5 –
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encountered in the basis vectors, the fully connected graph for a tree-level color structure
contracted with a basis vector, will always contain at least two loops of the form

, (3.1)

where the characterizing feature is that there is only one vertex from the initial color structure
(the gray blob, representing a quark-gluon or triple-gluon vertex). Typically the color structure
will contain many color structures that are trivial to contract using eq. (2.5) and eq. (2.9),
but we here consider a worst, general case. To reduce loops of this type, the completeness
relation, eq. (2.2), and the vertex correction relation, eq. (2.5), can be applied to the two
red representations below

α

β
γ

=
∑︁
𝜓

𝑑𝜓

ψ
γ

α

β γγ

ψ
=

∑︁
𝜓,𝑎

𝑑𝜓

ψ
γ

δ

α
γ

β

a

α
ψa
a

α
γ

ψ

a

.

(3.2)
Repeating this procedure will eventually result in a vertex correction containing the gray
blob. (For the loop in the above example, this step would need to be repeated two more
times.) The vertex correction with the gray blob gives

α

γ
β

=
∑︁
𝑎

γ

β

α

a

γ

α
a a

γ
α

a
, (3.3)

for some representations 𝛼, 𝛽 and 𝛾. This last step removes two vertices, one gray blob, i.e., a
vertex from the initial color structure and one vertex between arbitrary representations in the
basis vector, eq. (2.10). As every contracted loop removes one vertex from the basis vector and
one from the color structure to be decomposed, the resulting graph is topologically equivalent
to a graph for a tree-level color structure with one less external patron. After a loop of the
form of eq. (3.1) has been contracted, there must thus exist at least two loops of the type in
eq. (3.1) in the resulting color structure by the above argument. Hence any tree-level color
structure can be completely contracted by repeatedly contracting loops of the form of eq. (3.1).

Only treating loops of the form of eq. (3.1) is thus sufficient for tree-level color structures.
We now address the situation where the color structure to be decomposed itself contains loops.
It is then not always possible to choose color loops of the form in eq. (2.10). At one-loop
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this happens for diagrams where all external partons form a single loop

. (3.4)

(For all other one-loop color structures there is at least one vertex with two uncontracted
indices, implying that a loop of the from in eq. (3.1) can be found, such that it is possible
to contract loops as in eq. (3.2).) For color structures of the form of eq. (3.4), there always
exists loops of the form

. (3.5)

Similarly to the loop in eq. (3.1), the steps detailed in eq. (3.2) remain valid. However, at
the end, instead of contracting a loop of the form in eq. (3.3), a loop with four vertices
is encountered,

α β γ

=
∑︁
𝜓

𝑑𝜓

ψ
β α

β β

ψ

γ

=
∑︁
𝜓,𝑎,𝑏

𝑑𝜓

ψ
β

ψ

β

α

a

ψ

α
a a

γ

β

ψ

b

ψ

γ
b b α

ψ

γ

a b
. (3.6)

Treating a loop like this removes two vertices from the color structure, and none from the
basis vector. Since a one-loop color structure has two vertices more than a tree-level color
structure for the same process, the number of vertices after the contraction matches a tree-
level structure. Since two legs which initially belonged to the loop of the color structure to be
decomposed (the upper legs in eq. (3.6)) now attach directly to the sequence of basis vector
representations, the topology after the contraction is equivalent to that of a tree-level color
structure. Note that a loop of the type in eq. (3.5), need not be the first loop to be contracted
(most one-loop diagrams contain no loop of the form in eq. (3.4)), but such loops may at some
point be encountered, and necessary to contract to continue the reduction. In this way, we
can thus contract any one-loop diagram. Color structures of arbitrary order in perturbation
theory can be decomposed by contracting loops similar to eq. (3.2) and eq. (3.6), possibly with
more than two (cf. eq. (3.6)) vertices from the initial color structure. The final steps in the
contraction would then proceed as in eq. (3.6), but with more completeness relations inserted.

– 7 –



J
H
E
P
0
5
(
2
0
2
4
)
0
5
1

𝑛𝑔 = 0 𝑛𝑔 = 1 𝑛𝑔 = 2 𝑛𝑔 = 3

γ

δ

β

α α

β

γ

γ

δ

β

α

γ

δ

β

α α

β

γ α

β

γ

case 0 case 1 | case 2 case 3 case 4

Table 1. The required set of 6 𝑗 symbols for color decomposition into multiplet bases of the form
in (2.10). The last two 6 𝑗s have the antisymmetric ( 𝑓 ) and symmetric (𝑑) triple-gluon vertices in the
middle respectively.

In the above color decomposition procedure, we can identify a minimal set of necessary
6 𝑗 symbols, namely those appearing in the different steps above, eqs. (3.2)–(3.3) and eq. (3.6).
Keeping in mind that the single lines above denote adjoint or fundamental representations,
we conclude that the 6 𝑗s we are after can be divided into the cases in table 1.

We note that the 6 𝑗s of type (0) in table 1 are known from ref. [37]. In this article
we address the computation of the remaining 6 𝑗s. Before taking on this task, we must,
however, be careful with how we define the vertices for the cases where we have more than
one vertex between the same set of representations, which can happen for vertices with
gluons, as discussed below eq. (2.5).

4 Vertex construction

In table 1 we sorted the 6 𝑗 symbols that we are going to study in this work according to the
number of gluon lines and according to the number of vertices with gluon lines that these 6 𝑗
symbols contain. Before we can evaluate the 6 𝑗 symbols, we have to construct all vertices
with at least one gluon line. When discussing how many vertices with a given set of irreps
there are, it is useful to think of the general irrep labels (for which we use Greek letters) as
Young diagrams. In fact, a systematic labeling of SU(𝑁) irreps applicable for arbitrary 𝑁

should rather be in terms of pairs of Young diagrams [33, 40]. However, if we allow for Young
diagrams with columns with an 𝑁-dependent number of boxes, we can replace each pair of
Young diagrams by a single Young diagram [33]. For instance, the adjoint representation is
then labeled by the Young diagram 𝐴 = , where, here and in what follows, a black column
always represents a column with 𝑁 − 1 boxes. Hence, in the following, we can always think of
irrep labels as single Young diagrams with, possibly, 𝑁-dependent column lengths.

We will normalize all our vertices such that all non-vanishing 3 𝑗 symbols are equal
to 1, as already mentioned following eq. (2.6). Readers who prefer to work with different
normalizations are referred to appendix D for a simple transformation rule.

For each instance of the irrep 𝛼 in the complete reduction of 𝛾 ⊗ 𝐴 we have to construct
a vertex

α γa
, (4.1)

– 8 –
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where 𝑎 thus runs from 1 to the multiplicity of 𝛼 in 𝛾 ⊗ 𝐴. Essentially, we construct these
vertices by splitting the gluon line into a 𝑞𝑞-pair. More precisely, we consider all diagrams

λj
α γ

, (4.2)

where 𝑗 enumerates admissible intermediate irreps according to a scheme to be explained
below, and construct the desired vertices as linear combinations of these diagrams. In general,
these vertices then take the form

α γa
=

∑︁
𝑗

𝐶
𝛼𝛾

𝑎 𝑗

λj
α γ

(4.3)

with coefficients 𝐶𝛼𝛾
𝑎 𝑗

∈ C, which will actually turn out to be real-valued functions of 𝑁. We
distinguish the two cases 𝛼 ≠ 𝛾 and 𝛼 = 𝛾.

If 𝛼 ≠ 𝛾 then there is only a non-zero vertex (4.1) if 𝛼 can be found in the Clebsch-Gordan
decomposition of 𝛾 ⊗ 𝐴. This means that we can obtain 𝛼 from 𝛾 by adding a box in one
row and subsequently removing a box in a different row (possibly after first adding a column
of length 𝑁) [27]. In this case there is a unique intermediate irrep 𝜆1 in diagram (4.2),
representing the intermediate step in this process after adding a box but before removing
the other box. Hence, for such 𝛼 ≠ 𝛾, we find

α γ1
= 𝐶

𝛼𝛾

11

λ1
α γ

, (4.4)

where the constant has to be chosen such that the normalization condition for the corre-
sponding 3 𝑗 symbol,〈

α γ1
,

α γ1

〉
=

α

γ
1 1

!
= 1 , (4.5)

is fulfilled. After a few steps, spelled out in appendix A, we get from eq. (A.8)

𝐶
𝛼𝛾

11 =

√︃
𝑑𝜆1 (𝑁2 − 1) for 𝛼 ≠ 𝛾 . (4.6)

For 𝛼 = 𝛾 there can be up to 𝑁 −1 vertices of type (4.1), cf. appendix B of ref. [27], i.e., if
the multiplicity of 𝛼 in the complete reduction of 𝛼 ⊗ 𝐴 is 𝐾, we have to construct the vertices

α αa
, 𝑎 = 1, . . . , 𝐾 . (4.7)

– 9 –
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In this case there exist 𝐾 + 1 different admissible irreps 𝜆 𝑗 rendering the diagrams

λj
α α

, 𝑗 = 1, . . . , 𝐾 + 1 , (4.8)

non-zero, as discussed in appendix A, where we also show that all vertices in eq. (4.7) are
linear combinations of theses diagrams, i.e.

α αa
=

∑︁
𝑗

𝐶𝛼𝛼𝑎 𝑗

λj
α α

. (4.9)

Hence, we can obtain a set of orthonormal vertices (4.7) by applying the Gram-Schmidt
algorithm to the set of diagrams (4.8) with admissible intermediate irreps 𝜆 𝑗 .

In order to obtain a unique result when carrying out Gram-Schmidt we have to decide
how to sort the diagrams (4.8). To this end, note that an admissible 𝜆 𝑗 is obtained by
adding an extra box to 𝛼. We say that

λj
α α

<

λk
α α

(4.10)

if in 𝜆𝑘 this extra box is added further down compared to where it was added in 𝜆 𝑗 . We
then sort the birdtrack diagrams (4.8) in increasing order. Hence, the first birdtrack diagram
in our list is always the diagram with intermediate irrep 𝜆1 which is obtained by adding
a box to the first row of 𝛼. In appendix A we show that the last diagram in this list is
always a linear combinations of the first 𝐾 diagrams and can thus be omitted. The sum
in eq. (4.9) hence runs from 1 to 𝐾.

In order to carry out Gram-Schmidt we only need to know the scalar products between
all diagrams (4.8), which are calculated in appendix A, eq. (A.6)–(A.8). We denote this

𝑠 𝑗𝑘 =

〈
λj

α α

,

λk
α α

〉
=

1
𝑁2 − 1

(
𝛿 𝑗𝑘

𝑑𝜆 𝑗

− 1
𝑁𝑑𝛼

)
. (4.11)

The scalar products 𝑠 𝑗𝑘 also depend on the irrep 𝛼 but we do not display this dependence
in our notation since in the following 𝑠 𝑗𝑘 for different irreps 𝛼 never appear alongside each
other in our equations.

We explicitly state the formulae for the first two vertices, which are the only vertices
in the physically relevant case 𝑁 = 3,

α α1
=

1
√
𝑠11

λ1
α α

(4.12)

– 10 –
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α α2
=

√︂
𝑠11

𝑠11𝑠22 − 𝑠122

©«
λ2

α α

− 𝑠12
𝑠11

λ1
α α ª®®®®¬

(4.13)

Further vertices, which only exist for 𝑁 > 3, are calculated by straightforwardly continuing
Gram-Schmidt. In appendix B we illustrate the explicit vertex construction with a few
examples.

5 Formulae for gluon 6 𝒋 symbols

We will now describe how the calculation of the different classes of 6 𝑗 symbols proceeds. Our
main tool will be the repeated insertion of vertex corrections, and the Fierz identity, eq. (A.7),
to decompose gluon lines. We will go through the basic idea and steps for the simpler cases
here, but defer the details of longer calculations to appendix C for the sake of readability.

Case 1: 6 𝒋s with a quark-gluon vertex. We here consider the 6 𝑗 symbol which contains
a 𝑞𝑞𝑔 vertex (in its center). We proceed to calculate this by expanding the gluon vertex
into a vertex correction

α

β

γ (4.4)
=======

√︃
𝑑𝜆1 (𝑁2 − 1) α

β

γ

λ1

(A.8)
=======

𝛿𝛽𝜆1√︁
𝑑𝛽 (𝑁2 − 1)

, (5.1)

where we have assumed 𝛼 ≠ 𝛾 and used eq. (A.8) from appendix A, which builds on the
Fierz identity, eq. (A.7).

In the case 𝛼 = 𝛾, again using eq. (A.8), for the first two vertices 𝑎 = 1, 2 we obtain

α

λk

α

1

(4.12)
========

𝑠1𝑘√
𝑠11

and (5.2)

α

λk

α

2

(4.13)
========

√︂
𝑠11

𝑠11𝑠22 − 𝑠122

(
𝑠2𝑘 −

𝑠12
𝑠11

𝑠1𝑘

)
. (5.3)

Note that the last expression vanishes for 𝑘 = 1. For 𝑁 > 3, there might, as described, be
more vertices which then are treated similarly.
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Case 2: 6 𝒋s with a gluon line opposing a quark line. In this case we have one
quark and one gluon line attaching to different vertices. Rewriting the gluon vertices in
terms of vertex corrections and invoking the Fierz identity, we then find, after a few steps
spelled out in appendix C,

γ

δ

β

α

b

a
=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2 − 1

©« µk

δ

λj

α

γ

µk

β

λj −
𝛿𝛼𝛽 𝛿𝛾𝛿

𝑁𝑑𝛼 𝑑𝛾

ª®®®®®®®®¬
, (5.4)

where the 6 𝑗 symbols with two quark lines are given in closed form in ref. [37].

Case 3: 6 𝒋s with two opposing gluon lines. Case 3 can be addressed with a similar
strategy as the other cases. Our result, for which we demonstrate all intermediate steps
in appendix C, reads

γ

δ

β

α

d b

c

a
=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2 − 1

©« α

δ

λj

µk

d

c
γ

β

µk

λj

d

c
−
𝛿𝛼𝛽 𝛿𝛾𝛿

𝑁𝑑𝛼 𝑑𝛾

ª®®®®®®®®¬
. (5.5)

Case 4: 6 𝒋s with three-gluon vertices. For the class of 6 𝑗 symbols with triple-gluon
vertices, we distinguish the case in which the triple-gluon vertex is proportional to 𝑖 𝑓 𝑎𝑏𝑐

from the case in which it is proportional to 𝑑𝑎𝑏𝑐. We will illustrate the case of 𝑖 𝑓 𝑎𝑏𝑐 first.
In particular, we use the definition of the 𝑖 𝑓 𝑎𝑏𝑐-vertex in terms of traces, and then insert
vertex corrections,

α

β

γ

a b

c

=
𝑁2 − 1
√

2𝑁

(
α

β

γ

a b

c

− α

β

γ

a b

c

)
. (5.6)

Using the Fierz identity, eq. (A.7), we can remove all internal gluon lines and the results are
expressed in terms of a number of different diagrams which reduce to 3 𝑗 symbols, dimensions
and traces over quark lines, see appendix C. A single non-trivial diagram remains, which
can be expressed as

α

β

γ

λj µk

ν`

=
∑︁
𝜎

𝑑𝜎
α

λj

β

σ

− µk

γ

β

σ

− ν`

α

γ

σ

−

−

, (5.7)
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where a minus sign next to a vertex indicates that the lines are connected to this vertex
in opposite order, i.e.

γ

β α−
=

γ

β α
, (5.8)

see also appendix C of ref. [37]. For the above vertices with quarks this only makes a difference
for the antisymmetic vertex of 𝑞 ⊗ 𝑞 see ref. [37] Our final result for the 𝑓 -vertex is

α

β

γ

a b

c

=
1

(𝑁2 − 1)2
1

√
2𝑁

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝑐∑︁
ℓ=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛾𝛽

𝑏𝑘
𝐶
𝛼𝛾

𝑐ℓ(
∑︁
𝜎

𝑑𝜎
α

λj

β

σ

− µk

γ

β

σ

− ν`

α

γ

σ

−

−

−
𝛿𝜆 𝑗𝜇𝑘 𝛿𝜆 𝑗𝜈ℓ

𝑑2
𝜆 𝑗

)
,

(5.9)
while we obtain for the 𝑑-vertex,

α

β

γ

a b

c

=
1

(𝑁2 − 1)2

√︄
𝑁

2(𝑁2 − 4)

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝑐∑︁
ℓ=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛾𝛽

𝑏𝑘
𝐶
𝛼𝛾

𝑐ℓ(
∑︁
𝜎

𝑑𝜎
α

λj

β

σ

− µk

γ

β

σ

− ν`

α

γ

σ

−

−

+
𝛿𝜆 𝑗𝜇𝑘 𝛿𝜆 𝑗𝜈ℓ

𝑑2
𝜆 𝑗

+ 4
𝑁2

𝛿𝛼𝛽 𝛿𝛼𝛾

𝑑2
𝛼

− 2
𝑁

(
𝛿𝛼𝛾 𝛿𝜆 𝑗𝜇𝑘

𝑑𝛼 𝑑𝜆 𝑗

+
𝛿𝛼𝛽 𝛿𝜇𝑘𝜈ℓ

𝑑𝛼 𝑑𝜇𝑘
+
𝛿𝛽𝛾 𝛿𝜆 𝑗𝜈ℓ

𝑑𝛽 𝑑𝜆 𝑗

)
)
. (5.10)

6 Conclusions and outlook

In the present paper we have shown how to calculate a set of Wigner 6 𝑗 coefficients with
adjoint representations. Together with a set of previously derived 6 𝑗s [37], this set constitutes
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a complete set of 6 𝑗s required to decompose any color structure, to any order into orthogonal
multiplet bases, cf. eq. (2.10).

This opens up for the usage of orthogonal representation theory based color bases also
for processes with high multiplicities, including the analysis of evolution equations in color
space [41].

We note, however, that the present work does not close the research area of representation
theory based treatment of color structure. In particular, more general 6 𝑗 symbols are required
for fully general multiplet bases (with vertices between general representations). We believe
that this can be addressed with similar methods.
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A Properties of vertex correction diagrams

We discuss some properties of the vertex correction diagrams in eq. (4.2), which we use for
the construction of vertices with at least one gluon. Let 𝐾 be the multiplicity of 𝛼 in the
complete reduction of 𝛼⊗ 𝐴, giving the number of vertices (4.7) to be constructed. In contrast,
the number of intermediate irreps 𝜆 𝑗 in eq. (4.8) is given by the multiplicity of 𝛼 in the
complete reduction of 𝛼 ⊗ ⊗ . The latter number is one higher than the former since due
to ⊗ = 𝐴 ⊗ • (where • denotes the trivial representation) we have 𝛼 ⊗ ⊗ = (𝛼 ⊗ 𝐴) ⊕ 𝛼.
Moreover, 𝐾 + 1 is also the number of terms in the complete reduction of 𝛼 ⊗ , i.e. the
number of ways in which we can add a box to the Young diagram 𝛼.

First we show that the diagrams in eq. (4.8) are linearly dependent. To this end, consider
the complete reduction of 𝛼 ⊗ ,

α
=

𝐾+1∑︁
𝑗=1

𝑑𝜆 𝑗

λjα α , (A.1)

multiply with a quark-gluon vertex (Lie algebra generators), and contract the quark and
antiquark lines, yielding

α

︸           ︷︷           ︸
=0

=

𝐾+1∑︁
𝑗=1

𝑑𝜆 𝑗

λj
α α

. (A.2)
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The l.h.s. vanishes since the SU(𝑁) generators are traceless, i.e. we have found a non-trivial
vanishing linear combination of the diagrams in eq. (4.8).

Next we show that all vertices in eq. (4.7) are linear combinations of the diagrams in
eq. (4.8). To this end, consider a gluon exchange between 𝛼 and a quark line, and insert
two completeness relations:

αα
a

=

𝐾+1∑︁
𝑗 ,𝑘=1

𝑑𝜆 𝑗
𝑑𝜆𝑘

λj λkα α α α

a

. (A.3)

Due to Schur’s Lemma the middle segment can only be non-zero if 𝜆 𝑗 and 𝜆𝑘 are equivalent.
If two irreps in the complete reduction of 𝛼 ⊗ are equivalent then they are the same, i.e.

λj λkα α

a

= 𝐶𝑎 𝑗 𝛿 𝑗𝑘
λj (A.4)

with some constant 𝐶𝑎 𝑗 . Substituting into eq. (A.3), multiplying with a quark-gluon vertex,
and contracting the quark and antiquark line we find

αα
a

=

𝐾+1∑︁
𝑗=1

𝐶𝑎 𝑗 𝑑
2
𝜆 𝑗

λj
α α

. (A.5)

The quark loop on the l.h.s. can be traded for a factor of (𝑁2 − 1)−1 (recall that we set
all 3 𝑗 symbols equal to 1), and by defining 𝐶𝛼𝛼

𝑎 𝑗
= 𝐶𝑎 𝑗 𝑑

2
𝜆 𝑗

(𝑁2 − 1) we obtain eq. (4.9), as
claimed in section 4.

Now we can even take advantage of the linear dependence (A.2) of the vertex correction
diagrams (4.8). Equation (A.2) tells us that any one of the 𝐾 + 1 diagrams (4.8) can be
expressed as a linear combination of the other 𝐾 diagrams, since none of the coefficients in
eq. (A.2) vanishes. In section 4 we order the diagrams in a unique way and determine the
orthonormal vertices in eq. (4.7) by means of the Gram-Schmidt algorithm. Since the last
vertex correction diagram is guaranteed to be a linear combination of the first 𝐾 diagrams,
we can always terminate Gram-Schmidt before using the last diagram, i.e the vertices (4.7)
are actually linear combinations of the first 𝐾 vertex correction diagrams (4.8).

Finally, we explicitly determine the scalar products between all vertex correction dia-
grams (4.2). The result is the main ingredient for the Gram-Schmidt process in section 4.
Consider 〈

βα γ

,

δα γ

〉
= α

β

γ

δ

. (A.6)

The square diagram can be evaluated by invoking the Fierz identity (or adjoint representation
projector, also equivalent to the completeness relation for 𝑞 ⊗ 𝑞), which with our unit 3 𝑗
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symbols takes the form

=
1

𝑁2 − 1

©«
− 1
𝑁

ª®®®®¬
. (A.7)

Inserting this gives for the scalar product

α

β

γ

δ

=
1

𝑁2 − 1

©«
α

β

γ

δ

− 1
𝑁

α

β

γ

δ ª®®®®®®®®¬
=

1
𝑁2 − 1

(
𝛿𝛽𝛿

𝑑𝛽
−
𝛿𝛼𝛾

𝑁𝑑𝛼

)
.

(A.8)

B Examples of vertex construction

We illustrate how to construct vertices of type (4.1) using methods and results from section 4.
First consider an example with 𝛼 ≠ 𝛾. For 𝛼 = and 𝛾 = the unique intermediate

irrep is 𝜆1 = . Then, using eq. (4.6) for normalization, the unique vertex with irreps
, and one gluon reads

1
= (𝑁2 − 1)

√︂
𝑁

3 . (B.1)

The Young diagram with the smallest number of boxes for which there is more than one
vertex is 𝛼 = 𝛾 = , i.e., the octet for 𝑁 = 3 (note that this is not the adjoint representation
for 𝑁 ≠ 3). The admissible intermediate irreps are 𝜆1 = and 𝜆2 = . Using eq. (4.13),
the orthonormal vertices become

1
= 𝑁 (𝑁2 − 1)

√︂
𝑁 + 2

5𝑁 − 6 and (B.2)

2
=
𝑁 (𝑁2 − 1)

6

√︂
5𝑁 − 6
𝑁 − 2

©«
+ 3 𝑁 + 2

5𝑁 − 6

ª®®®®¬
. (B.3)

For 𝛼 = 𝛾 = 𝐴 = (recall that the black column stands for a column with 𝑁 − 1 boxes)
we obtain three-gluon vertices for general 𝑁. The admissible intermediate irreps are then
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𝜆1 = and 𝜆2 = . Using eq. (4.13), our orthonormal vertices read

1
= (𝑁2 − 1)

√
𝑁 + 2 and (B.4)

2
=
𝑁 (𝑁2 − 1)

2
√
𝑁 − 2

©«
+ 𝑁 + 2

𝑁

ª®®®®¬
. (B.5)

Notice that for 𝑁 = 3 eqs. (B.2)/(B.3) and eqs. (B.4)/(B.5) coincide. Instead of the latter
vertices, one will likely want to use the much more common antisymmetric 𝑓 and symmetric
𝑑 vertices, to which our vertices are related by a unitary transformation, which we explicitly
state below. Like all other vertices in this article we normalize 𝑓 and 𝑑 such that the
corresponding 3 𝑗 symbols are equal to one, i.e.

=
𝑁2 − 1
√

2𝑁

©«
−

ª®®®®¬
and (B.6)

= (𝑁2 − 1)

√︄
𝑁

2(𝑁2 − 4)

©«
+

ª®®®®¬
, (B.7)

see appendix D for how to easily transform results to other normalizations. The vertices (B.4)
and (B.5) are related to 𝑓 and 𝑑 by a unitary transformation,

1
= −

√︂
𝑁 + 2
2𝑁 +

√︂
𝑁 − 2
2𝑁 , (B.8)

2
= −

√︂
𝑁 − 2
2𝑁 −

√︂
𝑁 + 2
2𝑁 , (B.9)

and vice versa,

= −
√︂
𝑁 + 2
2𝑁

1
−

√︂
𝑁 − 2
2𝑁

2
, (B.10)

=

√︂
𝑁 − 2
2𝑁

1
−

√︂
𝑁 + 2
2𝑁

2
, (B.11)

facilitating easy conversion.
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The coefficients of this unitary transformation are determined by scalar products between
the two sets of vertices, and these scalar products can be evaluated by calculations similar
to eqs. (A.6)–(A.8).

C Details of 6 𝒋 derivations

We here give, in full detail, the intermediate steps for the derivation in section 5.

Derivation for case 2. We here derive the form of the 6 𝑗 coefficients in eq. (5.4). In
essence the vertices involving gluons are expressed in terms of vertex corrections, after which
the Fierz identity, eq. (A.7), is applied, and vertex corrections are removed using eq. (2.5)

γ

δ

β

α

b

a

=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

γ

δ

β

α

λj

µk

=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2−1

©« γ

δ

β

α

λj

µk

− 1
𝑁

γ

δ

β

α

λj

µk

ª®®®®®®®®®®®¬
=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2−1

©« µk

δ

λj

α

γ

µk

β

λj −
𝛿𝛼𝛽 𝛿𝛾𝛿

𝑁𝑑𝛼 𝑑𝛾

ª®®®®®®®®¬
.

(C.1)

Derivation for case 3. The steps in the derivation of eq. (5.5) progress similarly to those
in the derivation of eq. (5.4),

γ

δ

β

α

d b

c

a

=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

γ

δ

β

α

λj

µk

d

c
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=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2−1

©« γ

δ

β

α

λj

µk

d

c

− 1
𝑁

γ

δ

β

α

λj

µk

d

c ª®®®®®®®®®®®¬
=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2−1

©« µk

δ

λj

α

d

c

γ

µk

β

λj

d

c

−
𝛿𝛼𝛽 𝛿𝛾𝛿

𝑁𝑑𝛼 𝑑𝛾

ª®®®®®®®¬
=

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛿𝛾

𝑏𝑘

𝑁2−1

©« α

δ

λj

µk

d

c
γ

β

µk

λj

d

c
−
𝛿𝛼𝛽 𝛿𝛾𝛿

𝑁𝑑𝛼 𝑑𝛾

ª®®®®®®®®¬
.

(C.2)

We remark that the result looks very similar to the result for case 2, but that it is now
expressed in terms of the 6 𝑗s from case 2.

Derivation for case 4. Again the gluon vertices are expressed in terms of vertex cor-
rections with quarks, both in the triple-gluon vertices and in the vertices with the general
representations. This gives for the antisymmetric ( 𝑓 ) triple-gluon vertex

α

β

γ

a b

c

=
𝑁2−1
√

2𝑁

(
α

β

γ

a b

c

− α

β

γ

a b

c

)
(C.3)

=
𝑁2−1
√

2𝑁

𝑎∑︁
𝑗=1

𝑏∑︁
𝑘=1

𝑐∑︁
ℓ=1

𝐶
𝛽𝛼

𝑎 𝑗
𝐶
𝛾𝛽

𝑏𝑘
𝐶
𝛼𝛾

𝑐ℓ

(
α

β

γ

λj µk

ν`

−
α

β

γ

λj µk

ν` )
and the symmetric (𝑑) vertex differs only by the sign of the second term.
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The second term above is calculated using the Fierz identity (A.7),

α

β

γ

λj µk

ν`

=
1

(𝑁2 − 1)3

[
α

β

γ

λj µk

ν`

− 1
𝑁

(
α

β

γ

λj µk

ν`

+
α

β

γ

λj µk

ν`

+
α

β

γ

λj µk

ν`
)

+ 3
𝑁2

α

β

γ

λj µk

ν`

− 1
𝑁3

α

β

γ

λj µk

ν` ]
, (C.4)

where the closed quark loop in the last diagram simply yields a factor of 𝑁, and the others
are easy to evaluate using the self energy relation, eq. (2.9), for example

α

β

γ

λj µk

ν`

=
𝛿𝜆 𝑗𝜇𝑘 𝛿𝜆 𝑗𝜈ℓ

𝑑2
𝜆 𝑗

. (C.5)

By identical steps, the first term in eq. (C.3) gives

α

β

γ

λj µk

ν`

=
1

(𝑁2 − 1)3

[
α

β

γ

λj µk

ν`

− 1
𝑁

(
α

β

γ

λj µk

ν`

+
α

β

γ

λj µk

ν`

+
α

β

γ

λj µk

ν` )
+ 3
𝑁2

α

β

γ

λj µk

ν`

− 1
𝑁3

α

β

γ

λj µk

ν` ]
. (C.6)
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Here the first term needs to be reduced using 6 𝑗 symbols,

α

β

γ

λj µk

ν`

=

α

β

γ

λj µk

ν`

− −

−−

=
∑︁
𝜎

𝑑𝜎

α

β β
σ

γ

λj µk

ν`

− −

−−

=
∑︁
𝜎

𝑑𝜎
α

λj

β

σ

− µk

γ

β

σ

−

α

σ

γ

ν`

− −

(C.7)

=
∑︁
𝜎

𝑑𝜎
α

λj

β

σ

− µk

γ

β

σ

− ν`

α

γ

σ

−

−

,

where a minus sign next to a vertex indicates that the lines are connected to this vertex in
opposite order, see eq. (5.8). The expressions calculated here are assembled in eq. (5.9) and
eq. (5.10) for the antisymmetric and symmetric vertices, respectively.

D Vertex normalizations leading to non-trivial 3 𝒋 symbols

All explicit formulae for Wigner 6 𝑗 symbols in this article, in particular the results in section 5,
are valid for vertices normalized such that all non-vanishing 3 𝑗 symbols are equal to 1. While
this normalization is convenient, it differs from normalizations typically applied in the context
of QCD. We therefore here give a simple rule for how to transform any of our 6 𝑗 symbols
when changing the normalization of any 3 𝑗 symbol.

Assume we have calculated the 6 𝑗 symbol

α

β

γ

, (D.1)

whereby we chose the normalization

α

β
γ = 1 . (D.2)
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If we prefer this 3 𝑗 symbol to be equal to 𝐶 ≠ 1 we define a vertex

β α

γ
=
√
𝐶

β α

γ
, (D.3)

which then satisfies

α

β
γ = 𝐶

α

β
γ = 𝐶 . (D.4)

Consequently,

α

β

γ

=
√
𝐶 α

β

γ

. (D.5)

In short: for each vertex whose 3 𝑗 symbol you normalize to a number ≠ 1 multiply our 6 𝑗
symbol by the square root of the value of your 3 𝑗 symbol in order to obtain the value of
the 6 𝑗 symbol with your normalization convention.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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