
J
H
E
P
0
5
(
2
0
2
4
)
0
1
8

Published for SISSA by Springer

Received: February 26, 2024
Revised: March 28, 2024
Accepted: April 2, 2024
Published: May 2, 2024

Field redefinitions and infinite field anomalous
dimensions

Aneesh V. Manohar ,a Julie Pagès a and Jasper Roosmale Nepveu b,c

aPhysics Department 0319, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093, U.S.A.

bInstitut für Physik, Humboldt-Universität zu Berlin,
Newtonstr. 15, 12489 Berlin, Germany

cDeutsches Elektronen-Synchrotron DESY,
Notkestr. 85, 22607 Hamburg, Germany

E-mail: amanohar@ucsd.edu, jcpages@ucsd.edu, jasperrn@physik.hu-berlin.de

Abstract: Field redefinitions are commonly used to reduce the number of operators in
the Lagrangian by removing redundant operators and transforming to a minimal operator
basis. We give a general argument that such field redefinitions, while leaving the S-matrix
invariant and consequently finite, lead not only to infinite Green’s functions, but also to
infinite field anomalous dimensions γϕ. These divergences cannot be removed by counterterms
without reintroducing redundant operators.

Keywords: Effective Field Theories, Renormalization Group

ArXiv ePrint: 2402.08715

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP05(2024)018

https://orcid.org/0009-0004-5497-8554
https://orcid.org/0000-0002-0656-3053
https://orcid.org/0000-0001-9001-6775
mailto:amanohar@ucsd.edu
mailto:jcpages@ucsd.edu
mailto:jasperrn@physik.hu-berlin.de
https://doi.org/10.48550/arXiv.2402.08715
https://doi.org/10.1007/JHEP05(2024)018


J
H
E
P
0
5
(
2
0
2
4
)
0
1
8

Contents

1 Introduction 1

2 Explicit demonstration in the O(N) EFT 3

3 General remarks 8

A Green’s basis results 10
A.1 Counterterms 10
A.2 β-functions and γϕ 11

B Physical basis results 12
B.1 Counterterms 12
B.2 β-functions and γϕ 13

1 Introduction

The S-matrix of quantum field theories is unchanged by field redefinitions [1–5], so that
Lagrangians related by field redefinitions are equivalent, and give the same physical theory.
While the S-matrix remains invariant under field redefinitions, Green’s functions can (and
do) change. Field redefinitions are often used to reduce the number of operators in the
Lagrangian, and their couplings, to a minimal basis. In general, working in a minimal basis
unavoidably leads to Green’s functions and field anomalous dimensions which are infinite
even after the addition of renormalization counterterms, even though the S-matrix is finite.
A classic example of this phenomenon occurs with the penguin diagrams in the low-energy
theory of weak interactions (see the discussion in [4, section 6]), where Green’s functions
are infinite starting at one-loop order. Green’s functions cannot be made finite by a simple
rescaling of the fields — any attempt to make them finite reintroduces the redundant operators
which were eliminated to obtain a minimal basis. This observation is relevant for theories
of inflation, where one computes fluctuations from correlation functions of quantum fields.
We also show that field anomalous dimensions are in general infinite starting at two-loop
order when redundant operators are removed by field redefinitions.

Start with an EFT Lagrangian including all allowed operators which contribute to the
action, i.e. all operators that are not total derivatives. This is equivalent to reducing the set
of operators by using only integration-by-parts identities. The resulting set of operators is
referred to as a Green’s basis in the literature. Only a subset of operators in the Green’s basis
is independent under field redefinitions. The choice of independent operators is arbitrary, but
the number of them is not. The independent operators (in some convention) are referred to
as “physical” operators Oi, and the remaining ones are referred to as “redundant” operators
Rj . The Green’s basis has both sets of operators {O,R}. The Lagrangian coefficients of
the physical operators are denoted by Ci and of the redundant operators by Dj . Field
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redefinitions can remove the redundant operators from the Lagrangian and modify the
coefficients from {C,D} → {C, 0}. The resulting Lagrangian and coefficients will be referred
to as being in the physical basis.

The Lagrangian in the Green’s basis is renormalized in the MS scheme. The Lagrangian
has counterterms which depend on {C,D}, and Green’s functions and S-matrices computed
with the renormalized Lagrangian are finite. The β-functions and field anomalous dimension
when ϵ → 0 are finite,

µ
dCi
dµ = βCi({C,D}) , µ

dDi

dµ = βDi({C,D}) , µ
dϕ
dµ = −γϕ({C,D})ϕ , (1.1)

and depend on all the parameters in the Lagrangian. After a transformation to the physical
basis, the β-functions and field anomalous dimensions have the form

µ
dCi
dµ = βCi

({C}) , µ
dϕ
dµ = −γϕ({C})ϕ , (1.2)

and depend only on the physical couplings. The β-functions are finite, but Green’s functions
and the field anomalous dimension γϕ are infinite, as was recently encountered in a specific
case in ref. [6].

Infinite Green’s functions and field anomalous dimensions generically arise from field
redefinitions. Start with the renormalized Lagrangian in the physical basis. Loop graphs
computed with insertions of only the physical operators O can still lead to divergences
which require counterterms with redundant operators R. These divergences induce non-
zero values for the redundant coefficients D which are 1/ϵk poles and generate β-functions
for the redundant couplings: µdDi/dµ ̸= 0. These are, however, obscured because the
theory is parametrized at the special point in theory space with D(µ̄) = 0. Nevertheless,
the β-functions of the physical couplings and the field anomalous dimension depend on the
counterterms of the redundant operators. An additional field redefinition is required to remove
the counterterms of the redundant operators, and thereby transform the Lagrangian back to
the physical basis, such that D(µ) = 0 for all µ, and the bare coupling of redundant operators
vanishes, Db = 0. This field redefinition is infinite, since it removes counterterm coefficients
of redundant operators. Since the S-matrix is invariant under field redefinitions, and remains
finite, this means that any resulting βCi

is finite if the Ci are physical parameters. (We
comment on the case in which the Ci are unphysical parameters below.) However, Green’s
functions are modified by this field redefinition, and become infinite, typically starting at
one-loop order. Likewise, the field anomalous dimension has 1/ϵ poles starting at two-loop
order when the scale dependence of the redundant couplings Di is ignored.

Finally, we remark that infinite fermion field anomalous dimensions and Yukawa coupling
β-functions were found recently in the Standard Model at three-loop order [7–9]. The origin
of the divergence is due to an infinite µ-dependent flavor rotation, and has a different origin
than the divergences studied in this paper. Ref. [9] showed that despite the occurence of
these divergences in the β-functions, the RG flow is finite. They also defined a preferred
choice of β-functions, the flavor-improved β-function, which are unambiguous and finite.

The divergence in refs. [7–9] arises because the fermion kinetic energy has the form
Zψ ijψi i /D ψj where i, j are flavor indices, and ψ = q, l, u, d, e are the Standard Model fields.
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The bare and renormalized fermion fields are related by ψb i = Aijψj where (Zψ)ij = (A†
ψAψ)ij .

Aψ is not uniquely defined, and one can make the unitary rotation Aψ → UψAψ without
changing Zψ. The unitary transformation Uψ is a flavor rotation, and rotates the Yukawa
couplings in the Lagrangian. A suitable choice of Uψ simultaneously makes the fermion field
anomalous dimensions and the Yukawa β-functions finite. They are generally infinite for
the hermitian choice Aψ = A†

ψ starting at three-loop order. In the Standard Model example
in ref. [7], the infinite rotation arises in the quark sector and depends on [YuY †

u , YdY
†
d ]. It

is non-trivial if the CKM matrix is non-trivial. The infinite flavor rotation leads to infinite
amplitudes if the S-matrix is labeled by flavor indices. However, there are no infinities if the
S-matrix is labeled by mass eigenstate indices (as is the usual convention), since the mass
eigenstates fix the directions in flavor space, i.e. the directions corresponding to d, s, b, etc.

We now demonstrate the above results with an explicit computation in the O(n) EFT
to two-loop order.

2 Explicit demonstration in the O(N) EFT

The example theory is the O(n) EFT to dimension six with Lagrangian

L= 1
2(∂µϕb ·∂

µϕb)−
1
2m

2
b(ϕb ·ϕb)−

1
4λb(ϕb ·ϕb)

2+C4,bO4,b+D4,bR4,b+C6,bO6,b+D2,bR2,b

= 1
2Zϕ(∂µϕ·∂

µϕ)− 1
2ZϕZm2m2(ϕ·ϕ)− 1

4µ
2ϵZ2

ϕZλλ(ϕ·ϕ)2

+µ2ϵZ2
ϕZC4C4O4+µ2ϵZ2

ϕZD4D4R4+µ4ϵZ3
ϕZC6C6O6+ZϕZD2D2R2 , (2.1)

where ϕ is an n-component real scalar field. The subscripts b refer to bare quantities. The
dimension six terms are

O4 = (∂µϕ · ∂µϕ)(ϕ · ϕ) , R4 = (ϕ · ∂µϕ)2 ,

O6 = (ϕ · ϕ)3 , R2 = (∂µ∂µϕ · ∂ν∂νϕ) ,
(2.2)

where we have divided the dimension-six operators into “physical” operators O4,6 and
“redundant” operators R4,2. The subscript denotes the number of fields in the operator. The
O(n) EFT has an expansion in a mass scale M , so the dimension-six coefficients C4, C6, D4, D2
are order 1/M2, and terms of higher order in 1/M are neglected in eq. (2.1). The physical
operator coefficients are denoted collectively by {C}, and the redundant operator coefficients
by {D}. We include the dimension-two mass term (ϕ·ϕ) and dimension-four (ϕ·ϕ)2 interaction
in the physical operators, and m2 and λ in the physical coefficients.

One can make a field redefinition in eq. (2.1) to eliminate two of the dimension-six
operators. Our choice in this paper is to eliminate R4,2 and retain O4,6, so that the minimal
basis of dimension-six operators is {O4,O6}. The choice of minimal operator basis is arbitrary,
but the number of minimal operators is the same in any basis. All dimension-six operators
{O4,O6,R4,R2} are included in the Green’s basis.

The Lagrangian eq. (2.1) in the Green’s basis can be renormalized in dimensional
regularization in the MS scheme. The counterterms to two-loop order and dimension-six
are given in appendix A.1, and the β-functions and field anomalous dimension are given
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in appendix A.2. The field anomalous dimension and β-functions are all finite, and are
functions of all the parameters in eq. (2.1). The ’t Hooft consistency conditions [10] for
the counterterms given in [11, section 6] are satisfied, which implies that the β-functions
and field anomalous dimensions are finite.

The field redefinition

ϕb → ϕb + f ϕb(ϕb · ϕb) + g ∂2ϕb , (2.3)

can be used to eliminate redundant operators in the Lagrangian. f and g are functions of
the bare couplings of order 1/M2, and independent of µ, so the field-redefinition eq. (2.3)
preserves µ-independence of the Lagrangian. The field redefinition

ϕb → hϕb , (2.4)

with h a function of the bare couplings corresponds to a simple rescaling of the bare field
and will modify Zϕ while keeping Z of the couplings unchanged. Equations (2.3) and (2.4)
comprise the most general field redefinition compatible with O(n) invariance to order 1/M2.

There are two independent terms in eq. (2.3), so we can eliminate at most two operators
from the Lagrangian, which have been chosen to be R4 and R2. The general form for f and
g must be compatible with the EFT power counting, so that the new Lagrangian retains the
1/M expansion. In addition, the dimensions of the terms must match in 4− 2ϵ dimensions,
where coupling constant dimensions can be fractional, e.g. λb has dimension 2ϵ. The allowed
redefinition to dimension-six is

ϕb = ϕ̂b + (a1D4,b + a2λbD2,b)ϕ̂b(ϕ̂b · ϕ̂b) + a3D2,b ∂
2ϕ̂b , (2.5)

in terms of bare fields where ai are numbers, or

ϕ = ϕ̂+ (a1ZD4D4 + a2ZD2ZλλD2)Zϕµ2ϵϕ̂(ϕ̂ · ϕ̂) + a3ZD2D2 ∂
2ϕ̂ , (2.6)

in terms of renormalized fields,1 and the Lagrangian becomes

L = 1
2
[
1 + 2a3m

2
bD2,b

]
(∂ϕ̂b · ∂ϕ̂b)−

1
2m

2
b(ϕ̂b · ϕ̂b)

− 1
4
[
λb + 4a1m

2
bD4,b + 4a2m

2
bλbD2,b)

]
(ϕ̂b · ϕ̂b)2

+ [C4,b + a1D4,b + (a2 + a3)λbD2,b)] (∂ϕ̂b · ∂ϕ̂b)(ϕ̂b · ϕ̂b)

+ [D4,b + 2a1D4,b + 2(a2 + a3)λbD2,b)] (ϕ̂b · ∂ϕ̂b)2

+
[
C6,b − a1λbD4,b − a2λ

2
bD2,b)

]
(ϕ̂b · ϕ̂b)3 + [1− a3]D2,b(∂2ϕ̂b · ∂2ϕ̂b) . (2.7)

In terms of renormalized couplings and fields, the Lagrangian is eq. (2.7) with Cb → ZCµ
fCϵC,

Db → ZDµ
fDϵD and ϕ̂b →

√
Zϕ ϕ̂, where fi = Fi − 2, and Fi is the number of fields in Oi,

which determines the fractional part of the classical scaling dimension of the operator in
4− 2ϵ dimensions. The field renormalization for ϕ̂ is then Z

ϕ̂
= (1 + 2a3Zm2ZD2m

2D2)Zϕ.

1An overall rescaling of the field is also allowed, which we include in eq. (2.8). We choose the same ai

in the field redefinitions eq. (2.5) and eq. (2.6), which gives the relation between ϕ̂b and ϕ̂ discussed below
eq. (2.7). Green’s functions of ϕ̂ are no longer finite.
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Note that the kinetic term in eq. (2.7) is no longer canonically normalized, not even
at tree level. The additional rescaling

ϕ̂b =
[
1− a3m

2
bD2,b

]
ϕ̃b , ϕ̂ =

[
1− a3ZD2Zm2m2D2

]
ϕ̃ , (2.8)

transforms the Lagrangian to

L = 1
2(∂ϕ̃b · ∂ϕ̃b)−

1
2m

2
b

[
1− 2a3m

2
bD2,b

]
(ϕ̃b · ϕ̃b)

− 1
4
[
λb + 4a1m

2
bD4,b + 4(a2 − a3)m2

bλbD2,b
]
(ϕ̃b · ϕ̃b)2

+ [C4,b + a1D4,b + (a2 + a3)λbD2,b] (∂ϕ̃b · ∂ϕ̃b)(ϕ̃b · ϕ̃b)

+ [D4,b + 2a1D4,b + 2(a2 + a3)λbD2,b] (ϕ̃b · ∂ϕ̃b)2

+
[
C6,b − a1λbD4,b − a2λ

2
bD2,b

]
(ϕ̃b · ϕ̃b)3 + [1− a3]D2,b(∂2ϕ̃b · ∂2ϕ̃b) , (2.9)

restoring canonical normalization of the kinetic energy term, and Zϕ̃ = Zϕ with the rescaling
choice eq. (2.8).

Comparing with the original Lagrangian in eq. (2.1) gives the transformed coefficients
(C̃, D̃)

m̃2
b = m2

b

[
1− 2a3m

2
bD2,b

]
,

λ̃b = λb + 4a1m
2
bD4,b + 4(a2 − a3)m2

bλbD2,b ,

C̃4,b = C4,b + a1D4,b + (a2 + a3)λbD2,b ,

C̃6,b = C6,b − a1λbD4,b − a2λ
2
bD2,b ,

D̃4,b = D4,b + 2a1D4,b + 2(a2 + a3)λbD2,b ,

D̃2,b = (1− a3)D2,b , (2.10)

which are functions of the original couplings and ai. The choice a1 = −1/2, a2 = −1, a3 = 1
gives D̃4,b = 0, D̃2,b = 0, so that the redundant operators are eliminated. The new bare
couplings in the physical basis (C,D) are functions of the original bare couplings,

m2
b = m2

b

[
1− 2m2

bD2,b
]
, λ̄b = λb − 2m2

bD4,b − 8m2
bλbD2,b ,

C4,b = C4,b −
1
2D4,b , C6,b = C6,b +

1
2λbD4,b + λ2

bD2,b ,

D4,b = 0 , D2,b = 0 , (2.11)

and are the values of (C̃, D̃) at a1 = −1/2, a2 = −1, a3 = 1.
In general, we have coefficients

C̃i,b = Fi({a}, {Cb}, {Db}) , D̃i,b = Gi({a}, {Cb}, {Db}) , (2.12)

which are functions of the field redefinition parameters {a} and the original coefficients
{Cb}, {Db}. To go to the physical basis, the parameters {a} are chosen to set D̃i,b = 0 giving

Ci,b = Fi({Cb}, {Db}) , Di,b = 0 , (2.13)
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Db

Cb

Field Redefinition

•

•

Figure 1. Field redefinitions lead to a set of equivalent theories with the same (finite) S-matrix,
shown by the green curves in the space of bare couplings. The coefficients C̃b and D̃b vary along the
field redefinition curves as the parameters {a} in the field redefinition are varied. The coefficients
Cb are the values of C̃b when the green curve intersects the Cb-axis and the redundant couplings Db

vanish. The bare couplings are infinite.

substituting the values for the parameters which set D̃ = 0 back in eq. (2.12). The trans-
formation is shown schematically in figure 1.

The original theory was parameterized by C and D. We can use eq. (2.13) to determine
C, and parameterize the theory instead by C and D. We still need to retain D so that
eq. (2.13) can be inverted to obtain the original couplings C and D from C and D. However,
we emphasize that it is arbitrary to keep C and D. For example, in the O(n) case we consider,
it also valid to parametrize the theory by C and C. In general, one has to retain as many
total parameters as in the original theory.

The new renormalized couplings are given by the same functions Fi of the original
renormalized couplings

Ci(µ) = Fi({C(µ)}, {D(µ)}) , Di(µ) = 0 , (2.14)

obtained by dropping the 1/ϵ terms in eq. (2.13). In the O(n) example, the relations are

m2(µ) = m2(µ)
[
1− 2m2(µ)D2(µ)

]
,

λ̄(µ) = λ(µ)− 2m2(µ)D4(µ)− 8m2(µ)λ(µ)D2(µ) ,

C4(µ) = C4(µ)−
1
2D4(µ) ,

C6,b = C6,b +
1
2λ(µ)D4(µ) + λ2(µ)D2(µ) ,

D4(µ) = 0 ,

D2(µ) = 0 . (2.15)

The renormalization for the field in eq. (2.9) at a1 = −1/2, a2 = −1, a3 = 1, denoted by ϕ̄ is

ϕ̄b =
√
Zϕ̄ ϕ̄ Zϕ̄ = Zϕ . (2.16)

– 6 –
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The overall field redefinition that has been performed is a combination of eq. (2.5) and
eq. (2.8), and is infinite, leading to infinite Green’s functions. The only way to restore finite
Green’s functions is to undo the field redefinition and reintroduce the redundant operators.
A simple rescaling of ϕ does not make the Green’s functions finite, since the transformation
eq. (2.5) is non-linear, and cannot be compensated for by a rescaling.

The new bare and renormalized couplings are related by

Ci,b µ
−fiϵ = Ci(µ) + Ci,c.t.(µ) = ZCi

Ci(µ) , (2.17)

where fi is defined below eq. (2.7). The counterterms for Ci to two-loop order are given in
appendix B.1, and the β-functions and field anomalous dimension are given in appendix B.2.
The β-functions for Ci depend only on the physical couplings m2, λ̄, C4 and C6, and are
finite. The field renormalization Zϕ̄ is a function of the physical couplings C as well as the
original redundant couplings D before the field redefinition. The field anomalous dimension
γϕ̄ computed from the logarithmic derivative of Zϕ̄,

γϕ̄ ≡ 1
2Z

−1
ϕ̄
Żϕ̄ = 1

2Z
−1
ϕ̄

∑
i

∂Zϕ̄

∂Ci
Ċi +

∑
j

∂Zϕ̄
∂Dj

Ḋj

 , (2.18)

where Ċ ≡ µ dC/dµ, is given in eq. (B.8). It is finite, provided one includes both the C and
D terms in eq. (2.18). Setting the {D} to zero in Zϕ̄ before taking the derivative w.r.t. to D
in (2.18) leads to a violation of the field anomalous dimension consistency condition given
in [11, section 6] and generates an infinite piece for γϕ̄ at two loop,

1
2ϵ

∑
i

∂γ
(0)
ϕ̄

∂Di
βDi (2.19)

where γ(0)
ϕ̄

is the field anomalous dimension at one loop, which is finite.
In order to remove the dependence of Zϕ̄ on D, we can perform an additional rescaling

of the field

ϕ̄ = [1 + a4D2 + a5D4] ϕ̌ , (2.20)

giving Zϕ̌ = Zϕ̄ [1 + 2a4D2 + 2a5D4], with2

a4 =(n+2)λ̄2m2
{1
ϵ

}
2

a5 =−1
2(n+2)m2

{1
ϵ

}
1
+7
4(n+2)m2λ̄

{1
ϵ

}
2
− 1
2(n+2)(n+5)m2λ̄

{ 1
ϵ2

}
2

(2.21)

which removes the D2 and D4 dependence from Zϕ. Since the Lagrangian in the physical
basis depended on D2 and D4 only through Zϕ, this completely removes the redundant
couplings from the Lagrangian. This shows that when working in the physical basis, i.e.
setting D2(µ) = 0 and D4(µ) = 0, we are implicitly making the infinite field redefinition

2The notation {}1,2 denote the one and two-loop terms, and must be multiplied by 1/(16π2) and
1/(16π2)2, respectively.
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D

C

RG flow

Field Redefinition

• •

µ2

µ1

Figure 2. Field redefinitions and RG flow lead to a set of equivalent theories with the same (finite)
S-matrix, shown by the green and red curves respectively in the space of renormalized couplings.
The coefficients C̃ and D̃ vary along the field redefinition curves as the parameters {a} in the field
redefinition are varied. The coefficients C are the values of C̃ when the green curve intersects the
C-axis. The renormalized couplings are finite. Starting from vanishing redundant couplings D(µ1) = 0
can still lead to non-zero redundant couplings D(µ2) ̸= 0 at a different value of µ.

eq. (2.20) and using the field ϕ̌. The anomalous dimension of ϕ̌ given in eq. (B.9) is infinite,
because the logarithmic derivative of 1 + a4D2 + a5D4 does not vanish even at D2,4 = 0 since
the β-functions of D2,4 do not vanish at that point, and a4 and a5 are infinite.

As noted before, it is equally valid to parametrize the theory by, for example,
{C6, C4, C4, D2} instead of {C6, C4, D4, D2}. This affects only the form of Zϕ̄, leaving
Z of the physical couplings unchanged. Moreover, the field anomalous dimension (both the
finite and infinite part) depends on the calculation, and not only on the final choice of physical
basis. For example in the O(n) model, one can use the physical basis B1 = {O4,O6} or
B2 = {R4,O6}. The field anomalous dimension computed in basis B2 is different from that
computed in basis B1 and then converted to basis B2 by an additional field redefinition for
both the finite and infinite pieces. However the S-matrix computed in the two methods agrees.

3 General remarks

Given that the field anomalous dimension is infinite starting at two-loop order, one can
abandon attempts to renormalize the field, and simply use the bare field to compute S-matrix
elements. In this case γϕ = 0. However, now the two point function ⟨ϕ(x)ϕ(y)⟩ is infinite,
and the (infinite) wavefunction factor has to be included in the S-matrix computation to
obtain a finite S-matrix, which makes the computation more involved.

Figure 2 shows the renormalized coupling constant space for the theory. (Figure 1 showed
the bare coupling constant space.) In the space of renormalized couplings, we have two
different flows. There is a flow due to field redefinitions, analogous to that in figure 1. Along
these flow lines, the S-matrix is invariant. In addition, we have a flow due to a change in
µ which also leaves the S-matrix invariant.3 Since the S-matrix is invariant under both

3The renormalized couplings change, but the S-matrix remains invariant because the coupling constant
dependence is canceled by log µ2/s terms in the formulæ for S-matrix elements, where s is a kinematic invariant
with mass-squared dimension.
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flows, the two are compatible. A point on the field-redefinition curve at µ = µ1 flows to
some point on the field redefinition curve at µ = µ2.

Suppose we compute loop corrections in the Green’s basis starting with a renormalized
Lagrangian with D(µ) = 0 at µ = µ1. Even though the renormalized coupling vanishes,
D(µ1) = 0, loop corrections can generate counterterms for D(µ) which depend on the non-zero
physical couplings C(µ). Thus RG evolution induces non-zero couplings D(µ) as µ evolves
from µ1 to µ2. This flow is shown by the orange arrow in figure 2. One then needs to do a
field redefinition at µ2 to make D(µ2) = 0, shown by the blue arrow in figure 2. RG evolution
in the EFT with only physical couplings is equivalent to a combination of RG evolution
and field redefinitions in the Green’s basis. Performing the field redefinition to all orders in
the counterterms is the same as the transformation using bare couplings discussed earlier.
During all the transformations, the S-matrix is invariant, and remains finite. The S-matrix is
determined by the physical couplings (and vice-versa), so they remain finite as well, and the
RG flow for the physical couplings is finite. The evolution of the physical couplings (the black
dot in figure 2) is determined by the intersection of the field-redefinition invariance curve with
the C axis; it does not depend on the starting point on the curve, i.e. the field-redefinition
curves flow to other field-redefinition curves under a change in µ. As a result, the β-functions
for C(µ) are finite, and only depend on C(µ). The key point is that they do not depend on D.

In the above analysis, we have made use of (a) the invariance of the S-matrix under
field redefinitions and (b) a one-to-one relation between the physical couplings and the
S-matrix. These conditions do not apply to the quantum field ϕ. Green’s functions are not
invariant under field redefinitions, and the field anomalous dimension is generally infinite.
The infinity arises due to the additional rescaling eq. (2.20) to remove D dependence in Zϕ,
or equivalently, dropping the D derivative in eq. (2.18).

The field transformations made in this paper are µ-independent, so the renormalization
group equations (RGE) remain valid. The S-matrix RGE involves finite S-matrix elements
and β-functions, and does not involve γϕ. The RGE for Green’s functions G(n) and one-
particle irreducible functions Γ(n) remain valid, but involve γϕ. The correlation functions
G(n), Γ(n) and γϕ which enter the RGE all contain 1/ϵ poles. If one wants to keep Green’s
functions and field anomalous dimensions finite, redundant operators cannot be ignored and
one has to use the full Green’s basis at all steps in the computations.
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A Green’s basis results

The counterterms, β-functions and field anomalous dimension of the O(n) theory to two-loop
order in the Green’s basis of eq. (2.1) are listed below, where

µ
dCi
dµ ≡ −ϵfiCi + βCi (A.1)

in 4 − 2ϵ dimensions, with fi defined below eq. (2.7), and

µ
dϕ
dµ = −γϕ ϕ . (A.2)

A.1 Counterterms

The renormalization factors for the Lagrangian eq. (2.1) are:

Zϕ=1+


1
C4
C6
D4
D2



⊺
0 −1

2(n+2)λ2 0
2m2n −(n+2)λm2 2(n+1)(n+2)λm2

0 0 0
2m2 −(n+2)λm2 4(n+2)λm2

0 6(n+2)λ2m2 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.3)

Zm2 =1+


1
C4
C6
D4
D2



⊺
(n+2)λ −5

2(n+2)λ2 (n+2)(n+5)λ2

−4nm2 7(n+2)λm2 −2(n+2)(7n+6)λm2

0 0 −6(n+2)(n+4)m2

−4m2 7(n+2)λm2 −26(n+2)λm2

−6(n+2)λm2 36(n+2)λ2m2 −18(n+2)(n+5)λ2m2



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.4)

Zλλ=λ+


1
C4
C6
D4
D2



⊺
(n+8)λ2 −3(3n+14)λ3 (n+8)2λ3

−4(3n+4)λm2 2(29n+154)λ2m2 −12(n+3)(3n+14)λ2m2

−12(n+4)m2 144(n+4)λm2 −36(n+4)(n+10)λm2

−28λm2 2(37n+146)λ2m2 −48(3n+14)λ2m2

−12(n+8)λ2m2 4(67n+302)λ3m2 −12(3n2+52n+188)λ3m2



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2


(A.5)

ZC4C4 =C4+


1
C4
C6
D4
D2



⊺
0 0 0

(n+6)λ −(9n+16)λ2 (
n2+12n+44

)
λ2

0 6(n+4)λ 0
λ 1

2(5n−4)λ2 2(n+5)λ2

0 (5n+22)λ3 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.6)

ZC6C6 =C6+


1
C4
C6
D4
D2



⊺
0 0 0

(n+8)λ2 −3(5n+58)λ3 (
3n2+47n+274

)
λ3

3(n+14)λ −3
2(53n+394)λ2 3(n+14)(2n+25)λ2

9λ2 −(23n+166)λ3 4(8n+73)λ3

(n+26)λ3 −(61n+506)λ4 3(n+11)(n+26)λ4



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.7)
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ZD4D4 =D4+


1
C4
C6
D4
D2



⊺
0 0 0

−2(n−2)λ −(n−2)λ2 −4(n−2)(n+5)λ2

0 12(n+4)λ 0
2(n+3)λ −7

2(n+6)λ2 (
3n2+22n+44

)
λ2

0 2(5n+22)λ3 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.8)

ZD2D2 =D2+


1
C4
C6
D4
D2



⊺
0 0 0
0 1

6(n+2)λ 0
0 0 0
0 1

6(n+2)λ 0
0 1

2(n+2)λ2 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (A.9)

A.2 β-functions and γϕ

The β-functions and field anomalous dimensions computed from the counterterms are

βm2 =
{
2(n+2)λm2−8nm4C4−8m4D4−12(n+2)λm4D2

}
1

+
{
−10(n+2)λ2m2+28(n+2)λm4C4+28(n+2)λm4D4+144(n+2)λ2m4D2

}
2

βλ=
{
2(n+8)λ2−8(3n+4)λm2C4−24(n+4)m2C6−56λm2D4

−24(n+8)λ2m2D2
}

1

+
{
−12(3n+14)λ3+8(29n+154)λ2m2C4+576(n+4)λm2C6

+8(37n+146)λ2m2D4+16(67n+302)λ3m2D2
}

2

βC4 =
{
2(n+6)λC4+2λD4

}
1

+
{
−4(9n+16)λ2C4+24(n+4)λC6+2(5n−4)λ2D4+4(5n+22)λ3D2

}
2

βC6 =
{
2(n+8)λ2C4+6(n+14)λC6+18λ2D4+2(n+26)λ3D2

}
1

−
{
12(5n+58)λ3C4+6(53n+394)λ2C6+4(23n+166)λ3D4+4(61n+506)λ4D2

}
2

βD4 =
{
−4(n−2)λC4+4(n+3)λD4

}
1

+
{
−4(n−2)λ2C4+48(n+4)λC6−14(n+6)λ2D4+8(5n+22)λ3D2

}
2

βD2 =
{2
3(n+2)λC4+

2
3(n+2)λD4+2(n+2)λ2D2

}
2

(A.10)

γϕ=
{
−2nm2C4−2m2D4

}
1

+
{
(n+2)λ2+2(n+2)λm2C4+2(n+2)λm2D4−12(n+2)λ2m2D2

}
2

(A.11)
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B Physical basis results

The counterterms, β-functions, and field anomalous dimension in the physical basis with
physical couplings C and redundant couplings D = 0 are listed below. Note that the
wavefunction renormalization Zϕ̄ depends on the redundant couplings D, which parametrized
the Lagrangian before the field redefinition.

B.1 Counterterms

The renormalization factors for the Lagrangian eq. (2.9) for a1 = −1/2, a2 = −1, a3 = 1
and the field eq. (2.16) are:

Zϕ̄=1+


1
C4
C6
D4
D2



⊺
0 −1

2(n+2)λ̄2 0
2nm2 −(n+2)λ̄m2 2(n+1)(n+2)λ̄m2

0 0 0
(n+2)m2 −7

2(n+2)λ̄m2 (n+2)(n+5)λ̄m2

0 −2(n+2)λ̄2m2 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (B.1)

Zm2 =1+


1
C4
C6
D4
D2



⊺
(n+2)λ̄ −5

2(n+2)λ̄2 (n+2)(n+5)λ̄2

−4nm2 20
3 (n+2)λ̄m2 −2(n+2)(7n+6)λ̄m2

0 0 −6(n+2)(n+4)m2

0 0 0
0 0 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (B.2)

Zλ̄λ̄= λ̄+


1
C4
C6
D4
D2



⊺
(n+8)λ̄2 −3(3n+14)λ̄3 (n+8)2λ̄3

−8(n+3)λ̄m2 8
3(22n+113)λ̄2m2 −12

(
2n2+21n+50

)
λ̄2m2

−12(n+4)m2 120(n+4)λ̄m2 −36(n+4)(n+10)λ̄m2

0 0 0
0 0 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2


(B.3)

ZC4
C4 =C4+


1
C4
C6
D4
D2



⊺
0 0 0

2(n+2)λ̄ −17
2 (n+2)λ̄2 3(n+2)(n+4)λ̄2

0 0 0
0 0 0
0 0 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (B.4)

ZC6
C6 =C6+


1
C4
C6
D4
D2



⊺
0 0 0

10λ̄2 −2
3(23n+259)λ̄3 5(7n+62)λ̄3

3(n+14)λ̄ −21
2 (7n+54)λ̄2 3(n+14)(2n+25)λ̄2

0 0 0
0 0 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (B.5)
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The additional field redefintion to ϕ̌ in eq. (2.20) leaves the coupling renormalization
factors unchanged, but changes the field renormalization factor to

Zϕ̌ = 1 +


1
C4
C6
D4
D2



⊺ 
0 −1

2(n+ 2)λ̄2 0
2nm2 −(n+ 2)λ̄m2 2(n+ 1)(n+ 2)λ̄m2

0 0 0
0 0 0
0 0 0



{

1
ϵ

}
1{

1
ϵ

}
2{

1
ϵ2

}
2

 (B.6)

B.2 β-functions and γϕ

The β-functions computed from the counterterms in the physical basis are

βm2 =
{
2(n+2)λ̄m2−8nm4C4

}
1
+
{
−10(n+2)λ̄2m2+80

3 (n+2)λ̄m4C4
}

2

βλ̄=
{
2(n+8)λ̄2−16(n+3)λ̄m2C4−24(n+4)m2C6

}
1

+
{
−12(3n+14)λ̄3+32

3 (22n+113)λ̄2m2C4+480(n+4)λ̄m2C6
}

2

βC4
=

{
4(n+2)λ̄C4

}
1
+
{
−34(n+2)λ̄2C4

}
2

βC6
=

{
20λ̄2C4+6(n+14)λ̄C6

}
1
−
{8
3(23n+259)λ̄3C4+42(7n+54)λ̄2C6

}
2

(B.7)

The field anomalous dimension γϕ̄ from eq. (2.16) and eq. (2.18) including the derivatives
w.r.t. D4 and D2 is

γϕ̄ =
{
− 2nm2C4 − (n+ 2)m2D4

}
1

+
{
(n+ 2)λ̄2 + 2(n+ 2)λ̄m2C4 + 7(n+ 2)λ̄m2D4 + 4(n+ 2)λ̄2m2D2

}
2

. (B.8)

The field anomalous dimension of ϕ̌ in eq. (2.20) is

γϕ̌ =
{
− 2nm2C4

}
1
+

{
(n+ 2)λ̄2 + 2(n+ 2)λ̄m2C4

}
2
+ 1
ϵ

{
2
(
n2 − 4

)
λ̄m2C4

}
2

(B.9)

and is infinite. This is the same result as computing γϕ̄ using eq. (2.18) but omitting the
D term.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.S.R. Chisholm, Change of variables in quantum field theories, Nucl. Phys. 26 (1961) 469
[INSPIRE].

[2] H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0029-5582(61)90106-7
https://inspirehep.net/literature/1392085
https://doi.org/10.1016/0550-3213(80)90172-8
https://inspirehep.net/literature/152727


J
H
E
P
0
5
(
2
0
2
4
)
0
1
8

[3] C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230]
[INSPIRE].

[4] A.V. Manohar, Introduction to Effective Field Theories, in the proocedings of the Les Houches
summer school: EFT in Particle Physics and Cosmology Les Houches (Chamonix Valley), France,
July 3–28, 2017 [DOI:10.1093/oso/9780198855743.003.0002] [arXiv:1804.05863] [INSPIRE].

[5] J.C. Criado and M. Pérez-Victoria, Field redefinitions in effective theories at higher orders,
JHEP 03 (2019) 038 [arXiv:1811.09413] [INSPIRE].

[6] E.E. Jenkins, A.V. Manohar, L. Naterop and J. Pagès, Two loop renormalization of scalar
theories using a geometric approach, JHEP 02 (2024) 131 [arXiv:2310.19883] [INSPIRE].

[7] A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop SM beta-functions for matrix
Yukawa couplings, Phys. Lett. B 737 (2014) 129 [arXiv:1406.7171] [INSPIRE].

[8] F. Herren, L. Mihaila and M. Steinhauser, Gauge and Yukawa coupling beta functions of
two-Higgs-doublet models to three-loop order, Phys. Rev. D 97 (2018) 015016 [Erratum ibid. 101
(2020) 079903] [arXiv:1712.06614] [INSPIRE].

[9] F. Herren and A.E. Thomsen, On ambiguities and divergences in perturbative renormalization
group functions, JHEP 06 (2021) 116 [arXiv:2104.07037] [INSPIRE].

[10] G. ’t Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973)
455 [INSPIRE].

[11] E.E. Jenkins, A.V. Manohar, L. Naterop and J. Pagès, An algebraic formula for two loop
renormalization of scalar quantum field theory, JHEP 12 (2023) 165 [arXiv:2308.06315]
[INSPIRE].

[12] F. Herzog and B. Ruijl, The R∗-operation for Feynman graphs with generic numerators, JHEP
05 (2017) 037 [arXiv:1703.03776] [INSPIRE].

[13] W. Cao, F. Herzog, T. Melia and J.R. Nepveu, Renormalization and non-renormalization of
scalar EFTs at higher orders, JHEP 09 (2021) 014 [arXiv:2105.12742] [INSPIRE].

– 14 –

https://doi.org/10.1016/0370-2693(94)01419-D
https://arxiv.org/abs/hep-ph/9304230
https://inspirehep.net/literature/34632
https://doi.org/10.1093/oso/9780198855743.003.0002
https://arxiv.org/abs/1804.05863
https://inspirehep.net/literature/1668143
https://doi.org/10.1007/JHEP03(2019)038
https://arxiv.org/abs/1811.09413
https://inspirehep.net/literature/1704723
https://doi.org/10.1007/JHEP02(2024)131
https://arxiv.org/abs/2310.19883
https://inspirehep.net/literature/2715861
https://doi.org/10.1016/j.physletb.2014.08.049
https://arxiv.org/abs/1406.7171
https://inspirehep.net/literature/1303551
https://doi.org/10.1103/PhysRevD.97.015016
https://arxiv.org/abs/1712.06614
https://inspirehep.net/literature/1644110
https://doi.org/10.1007/JHEP06(2021)116
https://arxiv.org/abs/2104.07037
https://inspirehep.net/literature/1858424
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1016/0550-3213(73)90376-3
https://inspirehep.net/literature/85150
https://doi.org/10.1007/JHEP12(2023)165
https://arxiv.org/abs/2308.06315
https://inspirehep.net/literature/2687814
https://doi.org/10.1007/JHEP05(2017)037
https://doi.org/10.1007/JHEP05(2017)037
https://arxiv.org/abs/1703.03776
https://inspirehep.net/literature/1516935
https://doi.org/10.1007/JHEP09(2021)014
https://arxiv.org/abs/2105.12742
https://inspirehep.net/literature/1865791

	Introduction
	Explicit demonstration in the O(N) EFT
	General remarks
	Green's basis results
	Counterterms
	beta-functions and gamma(phi)

	Physical basis results
	Counterterms
	beta-functions and gamma(phi)


