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1 Introduction

The black hole information paradox [1] has seen fascinating progress over the last few years:
in this context it is perhaps best to regard this, not as a detailed understanding of black hole
microstates, but as the tension between the apparent unbounded growth of entanglement
entropy of Hawking radiation [2] outside the black hole and the quantum mechanics expectation
that entanglement entropy must become small at late times to recover purity of the original
matter state (see e.g. [3, 4], which review various aspects of the information paradox). This
falling Page curve [5, 6], reflecting the original purity, can be recovered when nontrivial,
spatially disconnected, island saddles for quantum extremal surfaces are included [7–11].

Quantum extremal surfaces are extrema of the generalized gravitational entropy [12, 13]
obtained from the classical area of the entangling RT/HRT surface [14–17] after incorporating
the bulk entanglement entropy of matter. Effective 2-dimensional models allow explicit
calculation, where 2-dim CFT techniques enable detailed analysis of the bulk entanglement
entropy. The island, arising as a nontrivial solution to extremization (near the black hole
horizon, and only at late times), reflects new replica wormhole saddles [10, 11] and serves to
purify the early Hawking radiation thereby lowering the entanglement entropy. There is a
large body of literature on various aspects of these issues, reviewed in e.g. [18–20]: see e.g. [21–
122] for a partial list of investigations on black holes in various theories, and also cosmological
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Figure 1. The Penrose diagram of a Schwarzschild de Sitter black hole, with radiation region near the
future boundary I+. Depicted are the radiation regions (blue lines) in the static patches, which are
analytically continued to the radiation region R ≡ [b′+, b′−] at I+ and the late time island I ≡ [a′

−, a′
+]

on both sides.

contexts. It is important to note that several of these investigations are simply applications of
the island proposal, which appears to be self-consistent, even if it cannot be rigorously derived
in those contexts (see e.g. [19] for an overall critical perspective, as well as [64, 65] and [66]).

This paper continues the study in [92] of “small” Schwarzschild de Sitter black holes,
with the black hole mass m small compared with the de Sitter scale l, but large enough that
a quasi-static approximation to the geometry is valid. The de Sitter temperature is very low
compared with that of the black hole so the ambient de Sitter space is approximated as a
frozen classical background. For calculational purposes, we consider an effective 2-dim dilaton
gravity model obtained by dimensional reduction, with the bulk matter representing the black
hole Hawking radiation modelled as a 2-dim CFT propagating on this 2-dim space: this is
reasonable under the assumption that the s-wave Hawking modes are dominant. We imagine
that the black hole has formed from initial matter in a pure state which is a reasonable
approximation since the de Sitter temperature is very low (more generally, the bulk matter
CFT is in a thermal state at the de Sitter temperature). In [92], we focussed on one black
hole coordinate patch in the Penrose diagram (roughly a line of alternating Schwarzschild
and de Sitter patches, see figure 1) and considered observers in the static diamond patches far
outside the black hole but within the cosmological horizons. While the entanglement entropy
of the radiation region exhibits unbounded growth, reflecting the information paradox for
the black hole (which has finite entropy), including appropriate island contributions recovers
finiteness of entanglement, and thereby expectations on the Page curve. The island emerges
at late times a little outside the black hole horizon semiclassically.

The Hawking radiation from the black hole is expected to cross the cosmological horizon
and eventually reach the future boundary where it is collected (figure 1). In this paper, we
consider the point of view of these future boundary (meta)observers, and look for semiclassical
island resolutions of the black hole information paradox with regard to a radiation region
at the future boundary. The future boundary is in a sense better defined (compared to the
static diamond) as a place where gravity is manifestly weak, the space expanding indefinitely.
The radiation region taken as an interval with length labelled by X (alongwith spheres) on
the future boundary can be parametrized via Kruskal coordinates T, X, defined by analytic
continuation from the static diamond coordinates. We find that the entanglement entropy
of Hawking radiation exhibits unbounded growth in the spatial length X along the future
boundary, inconsistent with the finiteness of black hole entropy, and reflecting the information
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paradox. Using the island rule in the extremization of the generalized entropy shows islands
emerging for large values of X a little inside the black hole horizon semiclassically: including
the island contributions recovers expectations on the Page curve. This future boundary
radiation region is entangled with island regions around the horizons of black hole regions
on both left and right cosmological horizons (figure 1): this is expected since the future
boundary receives Hawking modes from both left and right black holes. Our analysis has
some parallels with the island studies in [89] for dS2 arising under reductions from Nariai
limits of higher dim Schwarzschild de Sitter. One might expect timelike separated quantum
extremal surfaces for the future boundary resulting in complex-valued entropies as are known
in pure de Sitter (see [68] for dS2, and [86] for reductions of higher dimensional Poincare dS;
see also [123–127] for classical RT/HRT surfaces anchored at the future boundary). However
Schwarzschild de Sitter has a “sufficiently wide” Penrose diagram so spacelike separated
islands do exist here in accordance with physical expectations for the black hole Page curve
(thus we discard timelike separated ones here).

In section 2, we review the Schwarzschild de Sitter geometry and discuss parametrizations
in various coordinate patches in section 2.1. Section 3 discusses the entanglement entropy
without islands (details in appendix B), while section 4 discusses the island calculation (details
in appendix C). Appendix A is a brief review of the analysis in [92] for radiation entropy
with islands from the point of view of the static diamond observers. Appendix D.1–D.2
discuss inconsistencies in other potential island solutions, while appendix E discusses timelike
separated quantum extremal surface solutions for future boundary observers. Section 5
contains a Discussion on various aspects of our study.

2 Small Schwarzschild de sitter black holes → 2-dim

The Schwarzschild de Sitter black hole spacetime in 3 + 1-dimensions has the metric

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
2 , f(r) = 1 − 2m

r
− r2

l2
. (2.1)

This is a Schwarzschild black hole in de Sitter space [128] with an “outer” cosmological (de
Sitter) horizon and an “inner” Schwarzschild horizon. The general d + 1-dimensional SdS
spacetime is of similar form but with f(r) = 1 − 2m

l ( l
r )d−2 − r2

l2 , and will have qualitative
parallels. We are focussing on the 4-dim case SdS4 here: the function f(r) is a cubic and the
zeroes of f(r), i.e. solutions to f(r) = 0, give the horizon locations. We parametrize this as

f(r) = 1− 2m

r
− r2

l2
= 1

l2 r
(rD−r)(r−rS)(r+rS +rD) ,

rDrS(rD +rS) = 2ml2 , r2
D +rDrS +r2

S = l2 ; 0≤ rS ≤ rD ≤ l ; m

l
≤ 1

3
√

3
. (2.2)

We will take the roots rS and rD to label the Schwarzschild black hole and de Sitter
(cosmological) horizons respectively. (The third zero −(rD + rS) does not correspond to
a physical horizon.) The roots rS , rD are constrained as above. The case with m = 0, or
rS = 0, rD = l, is pure de Sitter space, while the flat space Schwarzschild black hole has
rS = 2m, rD = l, l → ∞.
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The surface gravity at both horizons are generically distinct: Euclidean continuations
removing a conical singularity can be defined at each horizon separately but not simultaneously
at both [129] (see also [130, 131]). The only (degenerate) exception is in an extremal, or
Nariai, limit [132] where both periodicities of Euclidean time match: the spacetime develops
a nearly dS2 throat in this extremal limit [129]. More on the nearly dS2 limit and the
wavefunction of the universe appears in [133]. Related discussions with some relevance to this
paper also appears in [134]. In more detail, it can be seen that the above horizon structure is
valid for m

l < 1
3
√

3 , beyond which there are no horizons [128]. The limit m
l = 1

3
√

3 with the
cosmological and Schwarzschild horizon values coinciding, has rS = rD = r0 = l√

3 from (2.2):
this extremal, or Nariai, limit has a near horizon dS2 × S2 throat. Overall the range of
physically interesting rS , rD satisfies 0 < rS < r0 < rD for generic values. The cosmological
horizon is “outside” the Schwarzschild one since rS < rD. The black hole interior has r < rS

with r → 0 the singularity. The region rD < r ≤ ∞ describes the future and past de Sitter
universes, with r → ∞ the future boundary I+ (or past, I−). The maximally extended
Penrose diagram in figure 1 shows an infinitely repeating pattern of Schwarzschild coordinate
patches or “unit-cells” containing Schwarzschild black hole horizons cloaking interior regions:
these patches are bounded by cosmological horizons on the left and right, with future/past
universes beyond the cosmological horizons.

As in [92], we are considering the limit of a “small” black hole in de Sitter with

m ≪ l , l → large ⇒ rD ≫ rS . (2.3)

The horizon locations can then be found perturbatively to be rS ≃ 2m , rD ≃ l − m ≫ rS ,
from (2.2). This is a small black hole in a large accelerating universe, so the ambient cosmology
is effectively a frozen classical background while the black hole Hawking evaporates. The
black hole temperature is much larger than the Gibbons-Hawking de Sitter temperature:
from [130, 131] (see also [135]) the surface gravities κBH,dS = 1

2
√

f(ml2)

∣∣ df
dr

∣∣
rS ,rD

become
1

2βS,D

1√
1−3(m/l)2/3

, with βS,D in (2.7). Then the temperatures T = κ
2π in the limit (2.3) become

TBH ∼ 1
8πm

, TdS ∼ 1
2πl

; TdS ≪ TBH . (2.4)

The limit of asymptotically flat space is rD ∼ l → ∞, rD
l → 1, rS → 2m and TdS → 0 so

the ambient de Sitter temperature vanishes. Our discussions in this paper also pertain to
these small Schwarzschild de Sitter black holes.

2.1 Coordinate parametrizations in various coordinate patches

We will describe various coordinate parametrizations in the various coordinate choices in
the Schwarzschild de Sitter spacetime, involving Kruskal variables around the black hole
horizon and around the cosmological horizon.

In [92], we considered the radiation region to be in the static diamond bounded by
the black hole and cosmological horizons in the Schwarzschild de Sitter background: this
static patch is parametrized by certain Kruskal coordinates [136] in the vicinity of the black
hole horizon. For our present purposes, we would like to analytically extend the Kruskal
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coordinates (UD, VD) defined in the static patch in the vicinity of the cosmological horizon
and (US , VS) near the black hole horizon to a new set of Kruskal coordinates (U ′

D, V ′
D) lying

within the future universe, near the future boundary, and (U ′
S , V ′

S) in the interior of black
hole (inside the horizon) respectively. We will first define the set of coordinates in the static
patch and then analytically extend them beyond both horizons.

We will first recast the Schwarzschild de Sitter metric (2.1) in the static patch in terms of
the Kruskal coordinates which are regular at the cosmological horizon (but not in the vicinity
of the black hole horizon). Towards this, we define the tortoise coordinate following [136]:

r∗ =
∫ 1

f(r) dr =
∫ 1

1 − 2m
r − r2

l2

dr =
∫

l2r

(rD − r)(r − rS)(r + rS + rD) dr . (2.5)

Taking f(r) > 0 in the region rS < r < rD, this gives

er∗ = (rD − r)−βD (r − rS)βs(r + rD + rS)βM , (2.6)

with the parameters (which simplify dr∗/dr to 1/f(r), and satisfy βM + βS = βD)

βD = l2rD

(rD−rS)(2rD +rS) , βS = l2rS

(rD−rS)(2rS +rD) , βM = l2(rD +rS)
(2rD +rS)(2rS +rD) . (2.7)

The SdS4 metric (2.1) is recast as ds2 = f(r)(−dt2 + dr∗2) + r2dΩ2
2 . We label the spacetime

coordinates in the left and right regions in the vicinity of the cosmological horizon as

b+ : (t, r) = (tb, b) , b− : (t, r) =
(
−tb + iβ

2 , b

)
; β = 2π

αD
. (2.8)

This choice of β is simply a convenient way of incorporating the relative minus signs in the
Kruskal coordinates in the left and right regions through eiβαD/2 = eiπ = −1. In the static
patch, in the vicinity of the cosmological horizon, these cosmological Kruskal coordinates
UD, VD, and the Schwarzschild de Sitter metric become

b+ : UD+ = eαD(tb−r∗) , VD+ = −e−αD(tb+r∗) ,

αD = 1
2βD

; UD+VD+ = −e−2αDr∗ ,
UD+

VD+
= −e2αDtb ; ds2 = −

dUD+dVD+

Wb
2 + r2dΩ2 ,

Wb =
√

r l αD(rD − r)−
(1−2αDβD)

2 (r − rS)−
(1+2αDβS)

2 (r + rS + rD)−
(1+2αDβM )

2 . (2.9)

The value of αD here ensures regularity at the cosmological horizon. (βM + βS = βD ensures
that W has dimensions of inverse length.) With this parametrization of the left and right
time coordinates, we conveniently use the expressions in (2.9), with β automatically doing
the left-right book-keeping.

We are now considering an interval at the future boundary I+ where the Hawking
radiation from the black hole is expected to be collected. Towards parametrizing this
future boundary radiation region, we will analytically continue the cosmological Kruskal
coordinates defined above in the static patch to the region beyond the cosmological horizon
(i.e. the future universe) keeping invariant, as usual, the metric expressed in terms of the
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new cosmological Kruskal coordinates beyond the cosmological horizon. Let us consider the
analytic continuation in (tb, rb

∗) coordinates as

(tb, rb
∗) →

(
Xb′ = αD

(
tb −

iπ

2αD

)
, Tb′ = αD

(
rb

∗ − iπ

2αD

))
. (2.10)

Thus the new cosmological Kruskal coordinates at both ends b′+ and b′− of the future boundary
radiation region are defined as (U ′

D+
, V ′

D+
) and (U ′

D−
, V ′

D−
) respectively and the Schwarzschild

de Sitter metric in terms of (Xb′ , Tb′) coordinates becomes

b′+ : U ′
D+ = e(Xb′−Tb′ ) , V ′

D+ = e−(Xb′+Tb′ ),

b′− : U ′
D− = e−(Xb′+Tb′ ) , V ′

D− = e(Xb′−Tb′ ),

U ′
D±V ′

D± = e−2Tb′ ,
U ′

D±

V ′
D±

= e±2Xb′ ; ds2 = 1
α2

D

|f(r)|
(
− dT 2

b′ + dX2
b′
)

+ r2dΩ2,

|f(r)| = 1
l2r

(r − rD)(r − rS)(r + rS + rD) . (2.11)

The Schwarzschild de Sitter metric now becomes

ds2 = −
dU ′

D±
dV ′

D±

Wb′
2 + r2dΩ2 ,

Wb′ =
√

r l αD(r − rD)−
(1−2αDβD)

2 (r − rS)−
(1+2αDβS)

2 (r + rS + rD)−
(1+2αDβM )

2 . (2.12)

For our purposes, it is a reasonable approximation to look at the s-wave sector of the
black hole and consider the bulk matter as a 2-dim CFT: this enables the use of 2-dim
CFT tools to study the entanglement entropy of bulk matter. So, we will consider the same
dimensional reduction of the 4-dim Schwarzschild de Sitter spacetime to a 2-dim background,
as in [92] (see the general reviews [137–139], and [140] for related discussions, as well as [141]
for certain families of 2-dim cosmologies).

Recalling from [92], the reduction ansatz ds2
(4) = g

(2)
µν dxµdxν + λ−2ϕ dΩ2

2 alongwith a
Weyl transformation gµν = ϕ1/2 g

(2)
µν to absorb the dilaton kinetic term gives the 2-dim dilaton

gravity theory 1
16πG2

∫
d2x

√
−g (ϕR− 6

l2 ϕ1/2 + 2λ2ϕ−1/2). The lengthscale λ−1 makes the
dilaton ϕ dimensionless, which then maps to the 4-dim transverse area of 2-spheres 4πϕ

λ2 .
With GN the 4-dim Newton constant, G2 = G

N
V2

and V2 = 4π
λ2 , the 2-dim theory has area

term ϕ
4G2

= 4π r2

4G
N

equivalent to the 4-dim one. Our discussion is entirely gravitational so it
is reasonable to take the Planck length as the natural UV scale with λ−1 ∼ ϵUV ∼ lP . So
finally, the dilaton is ϕ = r2λ2 and the 2-dim metric is

ds2 = −λ r
dU ′

D±
dV ′

D±

Wb′
2 ≡ −

dU ′
D±

dV ′
D±

(W ′
b′)2 , (2.13)

where W ′
b′ = Wb′√

λ r
= αDe−Tb′√

λ r|f(r)|
and Wb′ is the conformal factor given in (2.12).

Next, we define a new set of Kruskal coordinates for the location of the island boundary
(the location of the quantum extremal surface): this turns out be in the black hole interior
for the future boundary radiation region, so we require coordinate parametrizations within

– 6 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
6

the black hole horizon. Towards this, we will again first recast the Schwarzschild de Sitter
metric (2.1) in the static patch in terms of Kruskal coordinates regular at the black hole
horizon. So we define the tortoise coordinate r∗ in terms of the parameters βD, βS and βM

in the same way as in (2.5), (2.6) and (2.7) in the static patch, in the vicinity of the black
hole horizon, with the SdS4 metric recast as ds2 = f(r)(−dt2 + dr∗2) + r2dΩ2

2 . We label the
spacetime coordinates in the left and right regions in the vicinity of the black hole horizon as

a+ : (t, r) = (ta, a) , a− : (t, r) =
(
−ta + iβ

2 , a

)
; β = 2π

αS
. (2.14)

Here also β takes care of the relative minus signs in the Kruskal coordinates in the left and
right regions through eiβαS/2 = eiπ = −1. In the static patch around the black hole horizon,
the Kruskal coordinates US , VS and the Schwarzschild de Sitter metric become

a+ : US+ = −e−αS(ta−r∗) , VS+ = eαS(ta+r∗),

αS = 1
2βS

; US+VS+ = −e2αSr∗ ,
US+

VS+
= −e−2αSta ; ds2 = −

dUS+dVS+

Wa
2 + r2dΩ2 ,

Wa =
√

r l αS(rD − r)−
(1+2αSβD)

2 (r − rS)
(2αSβS−1)

2 (r + rS + rD)
(2αSβM−1)

2 . (2.15)

The value of αS here ensures regularity at the black hole horizon. (noting βM + βS = βD we
see that W has dimensions of inverse length.) With this parametrization of the left and right
time coordinates, we use the expressions in (2.15) with β doing the left-right book-keeping.

Towards parametrizing the island boundary inside the black hole horizon, we will
analytically continue the spacetime coordinates defined in the static patch near the black hole
horizon keeping invariant the metric in terms of the black hole interior Kruskal coordinates.
Let us consider the analytic continuation in (ta, ra

∗) coordinates as

(ta, ra
∗) →

(
Xa′ = αS

(
ta − iπ

2αS

)
, Ta′ = αS

(
ra

∗ + iπ

2αS

))
. (2.16)

Thus the new set of Kruskal coordinates at both the island boundaries a′
+ and a′

− are defined
as (U ′

S+
, V ′

S+
) and (U ′

S−
, V ′

S−
) respectively and the Schwarzschild de Sitter metric in terms

of (Xa′ , Ta′) coordinates becomes

a′
+ : U ′

S+ = e−(Xa′−Ta′ ) , V ′
S+ = e(Xa′+Ta′ ),

a′
− : U ′

S− = e(Xa′+Ta′ ) , V ′
S− = e−(Xa′−Ta′ ),

U ′
S±V ′

S± = e2Ta′ ,
U ′

S±

V ′
S±

= e∓2Xa′ ; ds2 = 1
α2

S

|f(r)|
(
− dT 2

a′ + dX2
a′
)

+ r2dΩ2,

|f(r)| = 1
l2r

(rD − r)(rS − r)(r + rS + rD) . (2.17)

The Schwarzschild de Sitter metric in terms of Kruskal coordinates becomes

ds2 = −
dU ′

S±
dV ′

S±

Wa′2
+ r2dΩ2 ,

Wa′ =
√

r l αS(rD − r)−
(1+2αSβD)

2 (rS − r)
(2αSβS−1)

2 (r + rS + rD)
(2αSβM−1)

2 . (2.18)
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Here also after the same dimensional reduction, as in [92], the 2-dim metric beyond the
black hole horizon becomes

ds2 = −λ r
dU ′

S±
dV ′

S±

Wa′2
≡ −

dU ′
S±

dV ′
S±

(W ′
a′)2 , (2.19)

where W ′
a′ = Wa′√

λ r
= αSeTa′√

λ r|f(r)|
and Wa′ is the conformal factor given in (2.18).

3 Entanglement entropy: no island

In this section, we will evaluate the entanglement entropy of the radiation at late times in
the absence of any island. Here we have the radiation region R within the interval b′+ and b′−
as shown in figure 1. We have chosen the bulk matter to be within the above stated interval
in some fixed T slice near the future boundary. The entropy of the Hawking radiation is

Smatter = S(R) . (3.1)

We calculate the bulk entropy technically using 2-dimensional techniques where we approxi-
mate the bulk matter by a 2-dim CFT propagating in the 2-dim background. In the 2-dim
CFT, the matter entanglement entropy for a single interval A = [x, y] is obtained from the
replica formulation [142, 143] after also incorporating in d[x, y] the conformal transformation
to a curved space [8], stemming from the W ′-factor in the 2-dim metric (2.13),

SA = c

3 log d[x, y] = c

6 log
(
−∆US∆VS

W ′|x W ′|y

)
. (3.2)

So, we obtain the entropy of the bulk matter CFT of the radiation region as

Smatter = c

3 log [d(b′+, b′−)] . (3.3)

Then we evaluate the bulk matter entropy near the future boundary in the Schwarzschild de
Sitter geometry (2.13) to obtain (suppressing 1/ϵ2

UV inside the logarithm, ϵUV the UV cutoff)

Smatter = c

6 log

(U ′
D−

− U ′
D+

)(V ′
D+

− V ′
D−

)
W ′

b′+
W ′

b′−

 . (3.4)

Using the Kruskal coordinates (2.11), the bulk matter entanglement entropy then becomes

S = c

6 log
[
16λβ2

D (b′ − rD) (b′ − rS)(b′ + rS + rD)
l2

sinh2(Xb′)
]

. (3.5)

Alongwith ϵ2
UV and the discussions around (2.13), it can be seen that the logarithm argument

is dimensionless (noting from (2.7) that βD has dimensions of length). The details of the
calculation are shown in appendix B. The late time approximation is done by considering
large Xb′ , which means we are considering the entire constant T slice: the above result
then approximates as

S ≈ const + c

3 Xb′ . (3.6)
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This linear growth of the bulk matter entropy with length Xb′ means that the entropy of
the radiation will eventually be infinitely larger than the Bekenstein-Hawking entropy of the
black hole for large Xb′ . This inconsistency is the reflection of the black hole information
paradox from the future boundary point of view. See [89] for similar observations in dS2.

To gain some intuition for this linear growth with “length” at the future boundary relative
to linear growth in ordinary time, it is useful to compare the present situation with [92] where
we studied the evolution of the entanglement entropy of radiation collected by observers
labelled by b± in the left/right static diamond patches (see figure 1) at late times i.e. for
large |tb|. In our present context, the future boundary radiation region (b′+, b′−) is defined
by spacetime coordinates (X ′

b, T ′
b) obtained by analytic continuation (2.10) of the spacetime

coordinates (tb, rb
∗) defined in the static diamond patches. Geometrically, using figure 1,

we see that points in the left and right static diamonds can be mapped to points near the
future boundary I+ by drawing out light rays from b+ to b′+ and b− to b′−. In the late limit
with |tb| large, the points b± in the left/right static diamonds (left/right ends of the blue
radiation regions) move towards the top end of the green lines (observer worldlines just
inside the cosmological horizon). The corresponding lightrays map this to points near the
left/right ends of the future boundary, giving large lengths |Xb′ |, consistent with the analytic
continuation (2.10). In other words, the points b′± approach the ends of the future boundary.
This is consistent with the picture of Hawking radiation from the black hole eventually crossing
the cosmological horizons and reaching the future boundary, so that late times for static patch
observers map to large lengths for future boundary (meta)observers. Our future boundary
(meta)observers perspective here is reminiscent of the “census-taker” who looks back into the
past and collect data [144]: it would be fascinating to make this precise and develop further.

4 Late time entanglement entropy with island

The Hawking radiation from the black hole will eventually cross the cosmological horizon
and reach the future boundary (see figure 1), where we imagine it is collected by appropriate
(meta)observers. In this section, we will evaluate the entanglement entropy of the bulk matter
near the future boundary after including appropriate islands. The island proposal [9] for
the fine-grained entropy of the Hawking radiation is

S(R) = min
{

ext
[Area(∂I)

4GN

+ Smatter(R ∪ I)
]}

(4.1)

where R is the region far from the black hole where the radiation is collected by distant
observers and I is a spatially disconnected island around the horizon that is entangled with R.
The intuition here is that after about half the black hole has evaporated, the outgoing Hawking
radiation (roughly I) begins to purify the early radiation (roughly R). This purification by
the late Hawking radiation of the early radiation reflects the entanglement between the two
parts, stemming from the picture of Hawking radiation as production of entangled particle
pairs near the horizon (taken as vacuum). Thus R ∪ I purifies over time, its entanglement
decreasing. The decreasing area of the slowly evaporating (approximately quasistatic) black
hole then leads to S(R) decreasing in time, recovering the falling Page curve expected from
unitarity of the original approximately pure state.
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In the current case, the future boundary receives Hawking radiation from both the left
and right black hole horizons so we expect islands on both left and right. Each island almost
entirely covers the corresponding black hole interior: the island boundaries are at a′

+ and a′
−

(figure 1). The islands in question turn out to emerge just inside the black hole horizon, so

b′ − rD ≫ rS − a′ ∼ 0 . (4.2)

Including an island I at late times i.e. for large Xb′ and Xa′ , the effective radiation region
becomes Σrad∪I. Now we make the assumption that the global vacuum state is approximately
pure: this is not strictly true since the bulk matter CFT is expected to be at finite dS

temperature in the ambient de Sitter space. However in the limit of a small mass black hole
in a very large dS space with correspondingly very low dS temperature, one can take the
bulk matter to be at nearly zero temperature and correspondingly in a global pure state.
With this assumption, one instead computes the entanglement entropy of the complementary
region (Σrad ∪ I)c, which comprises the two intervals [a′

+, b′+] and [b′−, a′
−], which turns out

to be self-consistent.
The entanglement entropy for multiple disjoint intervals

A = [x1, y1] ∪ [x2, y2] ∪ . . . ∪ [xN , yN ] (4.3)

is more complicated, arising from the multi-point correlation functions of twist operators: so
it depends on not just the central charge but detailed CFT information. In the limit where the
intervals are well-separated, expanding the twist operator products yields [142, 143, 145, 146]

SA = c

3 log
∏

i,j d[xj , yi]∏
i<j d[xj , xi]

∏
i<j d[yj , yi]

(4.4)

For two intervals [x1, y1] ∪ [x2, y2], this is a limit where the cross ratio x is small, i.e. x ≪ 1,
with x = d[x1,y1] d[x2,y2]

d[x1,x2] d[y1,y2] , and we use the Kruskal distances in (3.2) in constructing the
cross-ratio. In 2-dim CFTs with a holographic dual, this is the situation where the two
intervals A, B are well-separated and their mutual information exhibits a disentangling
transition [147] with I[A, B] = S[A] + S[B] − S[A ∪ B] → 0, i.e. the disconnected surface
Sdis = S[A] + S[B] has lower area than the connected surface Sconn = S[A ∪ B]. Assuming
an approximate global pure state, we are considering the complementary region as the
2-interval region (Σrad ∪ I)c = [a′

+, b′+] ∪ [b′−, a′
−]. When the future boundary interval [b′+, b′−]

is large approaching the entire future boundary, the two intervals are well-separated (as
seen from figure 1), so the cross-ratio above is indeed small, justifying the use of (4.4) for
our purposes (we have 1 − x = d[a′

+,a′
−] d[b′+,b′−]

d[a′
+,b′−] d[a′

−,b′+] ∼ 1 here). In this limit of approaching the
entire future boundary, we have large b′±, amounting to the assumption (4.2) here. Note
that there is no holography here: we are simply applying the island rule in the 2-dim
background obtained from reduction of the SdS4 geometry and looking for self-consistent
island configurations, assuming an approximate global pure state in the very low de Sitter
temperature limit. It is also worth noting that while the complementary 2-interval region is
unambiguously defined, the 3-interval region is more ambiguous. For instance, in figure 1, one
might imagine defining a global Cauchy slice as the spacelike slice passing through the points
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{ (a′
−+a′

+)
L

2 , a′
+, b′+, b′−, a′

−,
(a′

−+a′
+)

R

2
}
, where the left/right endpoints are the approximate

midpoints of the left/right islands (and this “unit cell” repeats indefinitely along the Penrose
diagram). Then the 2-interval subregion (Σrad ∪ I)c = [a′

+, b′+]∪ [b′−, a′
−] is complementary to

the 3-interval subregion Σrad ∪ I = [ (a′
−+a′

+)
L

2 , a′
+] ∪ [b′+, b′−] ∪ [a′

−,
(a′

−+a′
+)

R

2 ] on this Cauchy
slice. It would appear that there is nothing sacrosanct in choosing these midpoints (a′

−+a′
+)

L,R

2
to define the slice, whereas the 2-interval complement is well-defined via the radiation region
and island endpoints. It would be interesting to understand this more elaborately.

In light of the above, the entanglement entropy for the complementary 2-interval region
[a′

+, b′+] ∪ [b′−, a′
−] using (4.4) is

Smatter = c

3 log
d[a′

+, a′
−] d[b′+, b′−] d[a′

+, b′+] d[a′
−, b′−]

d[a′
+, b′−] d[a′

−, b′+] . (4.5)

In detail, using the Kruskal coordinates (2.11), (2.17), the total generalized entropy (4.5)
becomes

Stotal = 2πa′2

GN

+ c

6 log
[

24λ2

α2
Dα2

S

(rS − a′)(b′ − rS)
(

rD − a′

l

)(
b′ − rD

l

)
·

(
a′ + rS + rD

l

)(
b′ + rS + rD

l

)
sinh2 Xa′ sinh2 Xb′

]

+ c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ + Xb′)

]

− c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
, (4.6)

where we have added the area term, and C(a′) is defined as

C(a′) = (b′ − rs)αDβS (a′ + rS + rD)αSβM (b′ + rS + rD)αDβM

(rD − a′)αSβD
. (4.7)

(Note from (2.7) that C(a′) is dimensionless.) See appendix C for details of this calculation.
Extremizing (4.6) with respect to the location of the island boundary a′ as ∂Stotal

∂a′ = 0 gives

4πa′

GN

+ c

6

[
− 1

rS − a′ −
1

rD − a′ + 1
a′ + rS + rD

]

− c

3
C(a′)√

b′ − rD

√
rS − a′

[
− 1 + 2(rS − a′)

(
αSβM

a′ + rS + rD
+ αSβD

rD − a′

)]
·

[
cosh(Xa′ + Xb′)

1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ + Xb′)

− cosh(Xa′ − Xb′)
1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
= 0 . (4.8)
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Here, since rD is large, the terms scaling as O( 1
rD

) can be ignored: thus the 1
a′+rS+rD

and 1
rD−a′ are suppressed relative to 1

rS−a′ . With these approximations, (4.8) becomes

4πa′

GN

− c

6
1

rS − a′ + c

3
C(a′)√

b′ − rD

√
rS − a′ ·

[
cosh(Xa′ + Xb′)

1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ + Xb′)

− cosh(Xa′ − Xb′)
1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
= 0 . (4.9)

Next, extremizing (4.6) with respect to Xa′ as ∂Stotal
∂Xa′

= 0 gives

coth Xa′ = 2
√

rS − a′

b′ − rD
C(a′) ·

[
sinh(Xa′ + Xb′)

1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ + Xb′)

− sinh(Xa′ − Xb′)
1 − 2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
(4.10)

We will consider all possible conditions between Xa′ and Xb′ in the extremization equations
to look for consistent solutions to the location of island boundary, i.e. the value of a′ and Xa′ .

We will first consider, Xa′ = Xb′ ⇒ Xa′ − Xb′ = 0 and Xa′ + Xb′ = 2Xa′ for large
Xa′ and Xb′ . Then (4.10) becomes

1 − 2
√

rS − a′

b′ − rD
C(a′) cosh 2Xa′ = 2

√
rS − a′

b′ − rD
C(a′)sinh 2Xa′

coth Xa′
(4.11)

Putting this condition (4.11) back in (4.9) gives

4πa′

GN

− c

6
1

rS − a′ + c

3
C(a′)√

b′ − rD

√
rS − a′

[
cosh(2Xa′)

2 (rS−a′)αSβS

(b′−rD)αDβD
C(a′) sinh 2Xa′

coth Xa′

− 1
]

= 0

⇒ 4πa′

GN

− c

3
C(a′)√

b′ − rD

√
rS − a′ −

c

6
1

rS − a′

(
1 − coth Xa′

tanh 2Xa′

)
= 0 . (4.12)

For large Xa′ and Xb′ , the third term in (4.12) is small compared to the second term. So
we can ignore the third term and (4.12) becomes

a′ ≃ 1√
rS − a′

GN c

12π

1√
b′ − rD

C(a′) . (4.13)

Now we recall that we are in the semiclassical regime where

0 ≪ c ≪ 1
GN

, (4.14)

so that the classical area term in the generalized entropy is dominant but the bulk matter
makes nontrivial subleading contributions (which are not so large as to cause significant
backreaction on the classical geometry).

We are looking for an island with boundary a′ ∼ rS near the black hole horizon: this
corroborates with the fact that since the entire right hand side in (4.13) is O(GN c), in
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the classical limit GN c = 0 we obtain a′√rs − a′ ≃ O(GN c) ∼ 0 giving a′ = rS , i.e. the
quantum extremal surface localizes on the black hole horizon. Thus we can solve the above
extremization equation in perturbation theory setting a′ ∼ rS at leading order to find the
first order correction in GN c ≪ 1 : then schematically we have

rS − a′ ≃ K2

r2
S

1
b′ − rD

, K = GN c

12π
C(rS) . (4.15)

Thus, we finally obtain (with C(rS) from (4.7) setting a′ = rS)

a′ ≃ rS − (GN c)2

144π2r2
S(b′ − rD)

C(rS)2. (4.16)

Solving now for Xa′ from (4.10), we obtain

cosh 2Xa′ = 6π

GN c

rS(b′ − rD)
C(rS)2

coth Xa′

tanh 2Xa′ + coth Xa′
. (4.17)

This is a large Xa′ value with e2Xa′ scaling approximately as O( 1
G

N
c). Considering Xa′ ∼ −Xb′

does not yield consistent island solutions: see appendix D.2. Further, considering potential
island solutions just outside the horizon turns out to be inconsistent: see appendix D.1.
Thus (4.16), (4.17), with Xa′ ∼ Xb′ , encode the correct island solution for the future boundary
radiation region. The condition Xa′ = Xb′ is consistent with the expectation that the island
location lies on the same Cauchy slice as the radiation region location (along the same lines
as the condition ta = tb within the static diamond in [92])). This amounts to the requirement
of spacelike separation in considering the island and radiation as an effectively single entity
which purifies so the fact that we recover this is not surprising. The fact that islands outside
the horizon are inconsistent is due to causality: the entanglement wedge cannot lie within
the causal wedge (we explain this further in the Discussion section 5).

With the value of a′ in (4.16) and Xa′ in (4.17), the total on-shell entanglement entropy
in (4.6) becomes

So.s = 2πr2
S

GN

− c2GN

36πrS(b′−rD) C(rS)2 (4.18)

+ c

6 log
[

16λ2β2
s β2

D(b′−rD)2

l4
(rD−rS)1+2αSβD

(b′−rS)2αSβD−1(2rS +rD)2αSβM−1(b′+rS +rD)2αSβM−1

]
.

which is independent of length Xa′ and Xb′ , stemming from the presence of the island. The
leading first (area) term is twice the Bekenstein-Hawking entropy of the black hole, while
the subleading second and third terms arising from the bulk entropy of the radiation region
purified by the island are constant terms not growing in length. This recovers the expectations
on the Page curve for the entropy of the bulk matter or Hawking radiation considered near
the future boundary. The bulk matter at the future boundary radiation region is entangled
with the island-like region located just inside the black hole interior in these semiclassical
approximations at very low ambient de Sitter temperature.

Comparing the entanglement entropy without the island (3.6) and that with the is-
land (4.18) provides the critical length XPage at which the island transition occurs: we obtain

c

3XPage ∼ 2SBH ⇒ XPage ∼
6πrS

2

GN c
. (4.19)
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The entropy with the island alongwith the associated purification is lower and dominates
over the no-island configuration beyond this critical length XPage. Note that here the critical
Page length XPage is a dimensionless quantity, using (2.10). This then corresponds to a
Page time tP ∼ βDXPage which using (2.7) and the approximations (2.3) gives the large
value tP ∼ lSBH (note that this uses the cosmological Kruskal coordinates, distinct from
the black hole Kruskal coordinates in [92]). It is however important to note that this Page
length is much smaller than another potentially relevant quantity XdS

P
∼ SdS controlled

by the entropy SdS of the cosmological horizon. In the small black hole limit (2.3) we are
considering, SdS ∼ l2

G
N

≫ SBH ∼ r2
S

G
N

, and we do not see any effects above, stemming
from the ambient de Sitter space which is just a frozen background. So our critical Page
length (4.19) controlled by black hole entropy alone is consistent with the separation of
scales in the limit (2.3). Away from this limit, the black hole horizon shrinks while the
cosmological horizon absorbs and grows, resulting in a nontrivial nonequilibrium system.
It would of course be interesting to understand de Sitter horizon physics, but this appears
substantially more challenging within our framework.

Finally, it is worth noting that there are also timelike separated quantum extremal surface
solutions following from the extremization of the generalized entropy with respect to the future
boundary observer: we discuss these solutions in appendix E. The timelike separation implies
that the on-shell generalized entropy becomes complex valued. While complex entropies
are known in investigations in pure de Sitter space (which does not have a sufficiently wide
Penrose diagram) and suggest new objects [123–127], it is consistent to ignore them in the
Schwarzschild de Sitter context where spacelike separated quantum extremal surfaces do exist
in accord with physical Page curve expectations for the black hole information paradox.

5 Discussion

We have studied small 4-dim Schwarzschild de Sitter black holes in the limit of very low de
Sitter temperature, building further on previous work [92] for observers within the static
diamond far from the black hole horizon. In the present work, we have been considering
the black hole Hawking radiation in a radiation region interval at the future boundary
(see figure 1). The black hole mass is adequately large that quasistatic approximations to
the evaporating black hole in semiclassical gravity are valid. We assume the black hole
radiation approximated as a 2-dim CFT at nearly zero temperature propagating in a 2-dim
dilaton gravity background (2.13) obtained by dimensional reduction of the 4-dim spacetime.
Including appropriate island contributions, we find that the generalized entropy satisfies
expectations from the Page curve for the evolution of bulk matter near the future boundary.
Our analysis has parallels with [89] which studied island resolutions for dS2 JT gravity with
regard to the future boundary. Our setup here is somewhat more complicated since the
assumption of an approximate global pure state is only reasonable, if at all, at very low
de Sitter temperature. The fact that these approximate calculations vindicate the island
paradigm perhaps suggests the existence of better, more fundamental ways to formulate the
information paradox in such nontrivial gravitational backgrounds and of deeper insights into
replica wormholes in these sorts of quasistatic gravitational backgrounds.
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The Schwarzschild de Sitter (SdS) black hole is unstable and thus somewhat different
from the AdS black hole. In our small black hole limit (2.3) the ambient de Sitter space
effectively remains a frozen background reservoir. In a quasistatic approximation, the black
hole evaporates away slowly, and our analysis using the eternal SdS black hole shows the
radiation entanglement entropy including the island becoming saturated at some finite
value (4.18), approximately 2SBH (so the Page curve saturates rather than falls). As the
black hole evaporates, its entropy decreases so the saturation value of the radiation entropy
decreases leading to the black hole Page curve falling slowly in accord with the approximately
pure state that the black hole formed from. Strictly speaking, the ambient de Sitter space
temperature (albeit much lower than that of the black hole) implies that the pure state
consideration is just an approximation. It would be interesting to study the SdS black hole
modelling the bulk matter CFT in the thermal state at finite de Sitter temperature.

We recall that in [92], the radiation region was within the static diamond (with endpoints
b+ or b− in the left or right static diamond, in figure 1). The late time island location was
then found to be within the static diamond, just outside the black hole horizon in that case.
As we have seen, the island location we have found currently is just inside the black hole
horizon, which at first sight might seem contradictory. However this is in fact consistent in the
current case. First, the future boundary interval (b′+, b′−) in the present case receives Hawking
radiation from both the left and right black hole patches, propagating past the left and right
cosmological horizons bounding the left and right static diamonds. So this setup is physically
distinct from the previous case of a single static diamond. Secondly, in obtaining the island
locations we have been considering the limit of large Xa′ , Xb′ , in the extremization equations.
In this limit the future boundary interval (b′+, b′−) approaches the entire future boundary, i.e.
the points b′± approach the endpoints of I+. Note that the left and right static diamonds
are now within the causal wedge of this interval. It would then be causally inconsistent
for the entanglement wedge to be within the causal wedge of the radiation interval. The
entanglement wedge of the radiation region is the domain of dependence, or bulk causal
diamond of the spacelike surface between the boundary of the radiation region and the island
boundary (location of quantum extremal surface). As it stands, the island boundary is just
inside the black hole horizon so it lies outside the causal wedge, nicely avoiding inconsistency.

The black hole interior island solution is ultimately supported by the calculational fact
that other possibilities lead to inconsistencies: for instance, blindly looking for island solutions
outside the horizon in the present case exhibits inconsistency in the extremization equations.
We carried out this exercise by performing the calculation of section 4 using static diamond
Kruskal coordinates for the potential island lying just outside the black hole horizon in the
static diamond (a′ ≳ rs in this case, somewhat akin to the parametrizations in [92] reviewed
in appendix A). The analog of (4.6) in this case leads to extremization equations similar
to (4.8) and (4.10): however there are subtle differences which ensure that the analogs of (4.11)
and (4.12) together do not give consistent island solutions (see appendix D.1). Further, as
we also noted after (4.17), potential island solutions with Xa′ = −Xb′ (instead of Xa′ = Xb′)
also lead to inconsistencies (appendix D.2). Thus overall, our semiclassical island solution
in (4.16) and (4.17) should be regarded as nontrivial. Perhaps the self-consistency of these
calculations (in particular using the complementary 2-interval bulk matter entropy) also
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vindicates the assumption of approximate purity of the initial matter that made the black
hole in this very low temperature de Sitter ambience. It would be interesting to explore
this in more detail, as discussed around (4.4).

The separation of scales in the small black hole limit (2.3) ensures that black holes can be
regarded as localized subsystems analyzable by distinct classes of observers (or metaobservers).
Then, abstracting away from our technical analysis in Schwarzschild de Sitter black holes
vindicates some general lessons for the black hole information paradox here as well. Islands
appear to emerge self-consistently evading paradoxes with (i) unitarity as encapsulated by
the Page curve (late static patch times and large future boundary lengths), (ii) causality
(the island boundary does not lie within the causal wedge), (iii) overcounting (the purifying
island is spacelike separated from the radiation, lying on the same Cauchy slice). In this light,
de Sitter space itself and cosmological horizons appear exotic: extremal surfaces anchored
at the future boundary involve timelike separations (e.g. [68, 86], for quantum extremal
surfaces, and [123–127] for classical RT/HRT surfaces). So de Sitter space, and perhaps
cosmology more generally, require new insights.

Our discussions of Schwarzschild de Sitter are entirely within the bulk framework of
semiclassical gravity, with no holography per se (except in the broad sense of gravity being
intrinsically holographic). The future boundary is well-defined as a place where gravity is
manifestly weak: however we have simply applied the island formulation in these relatively
complicated higher dimensional models under various assumptions and approximations
without rigorous justification. So this appears to stretch the regimes of validity of the original
island proposals, although it corroborates the general expectations laid out in [18]. It would be
nice to better understand in more fundamental ways the deeper underpinnings of semiclassical
gravity that encode these self-consistent island formulations of the black hole information
paradox. In this regard it might be interesting to understand the interplay between the
generalized entropy and its extremization and gravity actions (see e.g. [89, 148–150]) in
the context of the general 2-dim dilaton gravity theories (2.13) we consider here arising
from reduction of SdS4.
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A Review: static patch radiation entropy with islands

In this section, we briefly review the calculation in [92] of the island resolution of the black
hole information paradox in Schwarzschild de Sitter black holes in the limit of small black
hole mass and very low de Sitter temperature. This has close parallels with islands in
flat space Schwarzschild black holes [26]. Considering the radiation region in the static
patch, far from the black hole horizon but within the cosmological horizon, the entanglement
entropy of the bulk matter can be shown to increase unboundedly. Including an island region
I ≡ [a−, a+] straddling across the black hole horizon, we consider the entanglement entropy
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of the interval R− ∪ I ∪ R+. Strictly speaking, the bulk matter should be approximated as
a CFT at finite temperature corresponding to the de Sitter temperature: however in the
limit of very low de Sitter temperature and a small mass black hole, we can approximate
the bulk theory to be in an approximately pure state. Then calculating the complementary
interval entropy and appending the area term (from the island boundary area) gives the
total entanglement entropy [92]

Stotal = 2πa2

GN

+ c

6 log
[

28r4
S

( rD−rS
l )4(2rS+rD

l )4 (a − rS)(b − rS)
(

a − rD

l

)(
b − rD

l

)
·

(
a + rS + rD

l

)(
b + rS + rD

l

)
cosh2 ta

2βS
cosh2 tb

2βS

]

+ c

3 log
[
1 − 2(a − rS)αSβS

(b − rS)αSβS
C(a) cosh

(
αS(ta − tb)

)]

− c

3 log
[
1 + 2(a − rS)αSβS

(b − rS)αSβS
C(a) cosh

(
αS(ta + tb)

)]
, (A.1)

where C(a) is

C(a) = (rD − b)αSβD (a + rS + rD)αSβM

(rD − a)αSβD (b + rS + rD)αSβM
. (A.2)

Extremizing Stotal in (A.1) with respect to the location of the island boundary a gives

4πa

GN

+ c

6
1

a − rS
− c

3
C(a)√

b − rS
√

a − rS

[
cosh(αS(ta − tb))

1 − 2 (a−rS)αSβS

(b−rS)αSβS
C(a) cosh (αS(ta − tb))

+ cosh (αS(ta + tb)))
1 + 2 (a−rS)αSβS

(b−rS)αSβS
C(a) cosh (αS(ta + tb))

]
= 0 . (A.3)

Next, extremizing Stotal from (A.1) with respect to ta gives

tanh (αSta) = 2
√

a − rS

b − rS
C(a)αS

[
sinh(αS(ta − tb))

1 − 2 (a−rS)αSβS

(b−rS)αSβS
C(a) cosh (αS(ta − tb))

+ sinh(αS(ta + tb))
1 + 2 (a−rS)αSβS

(b−rS)αSβS
C(a) cosh (αS(ta + tb))

]
(A.4)

First consider ta = tb so ta − tb = 0 and ta + tb = 2ta for large ta, tb. Then (A.4) becomes

1 + 2
√

a − rS

b − rS
C(a) cosh (αS · 2tb) = 2

√
a − rS

b − rS
C(a)sinh (αS · 2tb)

tanh (αStb)
(A.5)

Next, putting this condition (A.5) back in (A.3) gives

4πa

GN

+ c

6
1

a − rS
− c

3
C(a)√

b − rS
√

a − rS

1 + cosh (αS · 2tb)
2 (a−rS)αSβS

(b−rS)αSβS
C(a) sinh (αS ·2tb)

tanh (αStb)

 = 0

⇒ 4πa

GN

− c

3
C(a)√

b − rS
√

a − rS
+ c

6
1

a − rS

(
1 − tanh (αStb)

tanh (αS · 2tb)

)
= 0 . (A.6)

– 17 –



J
H
E
P
0
5
(
2
0
2
4
)
0
1
6

For large ta and tb, the third term in (A.6) is small relative to the second term. So we can
ignore the third term and (A.6) becomes

a ≃ 1√
a − rS

GN c

12π

1√
b − rS

C(a) . (A.7)

Thus solving this in perturbation theory for the first order correction in GN c ≪ 1 gives

a ≃ rS + (GN c)2

144π2r2
S(b − rS)

C(rS)2 , (A.8)

setting a ∼ rS in C(a) etc. Solving for ta from (A.4), we obtain

cosh (αS · 2ta) = 6π

GN c

rS(b − rS)
C(rS)2

tanh (αSta)
tanh (αS · 2ta) − tanh (αStb)

(A.9)

Equations (A.8), (A.9), at late times ta = tb, recover the result in [92]. (Considering ta = −tb

i.e. ta + tb = 0 and ta − tb = 2ta for large ta and tb, the above analysis can be seen to give
physically inconsistent solutions.) The island is a little outside the horizon. The late time
generalized entropy including the island contribution is finite, approximately twice the black
hole entropy upto small corrections from the bulk matter.

B Details: entropy in the no-island case

This section contains some details on the calculations of entanglement entropy in the absence of
the island in section 3. Using (2.11) and calculating each part of Smatter in (3.4) separately gives

U ′
D−−U ′

D+ =−e−Tb′ ·2sinhXb′ , V ′
D+−V ′

D− =−e−Tb′ ·2sinhXb′ , (B.1)

Wb′+
= Wb′−

=
√

b′ lαD (b′−rD)−
1−2αDβD

2 (b′−rS)−
1+2αDβS

2 (b′+rS +rD)−
1+2αDβM

2 , (B.2)

Wb′+
Wb′−

= b′ l2 α2
D(b′−rD)−(1−2αDβD)(b′+rS +rD)−(1+2αDβM )(b′−rS)−(1+2αDβS)

= α2
D

λb′|f(b′)|e
−2Tb′ . (B.3)

Plugging all these into (3.4) gives Smatter = c
6 log[ λb′

α2
D

e2Tb′ |f(b′)|e−2Tb′4 sinh2 Xb′ ], i.e.

Smatter = c

6 log
[

λ

l2α2
D

(b′ − rS) (b′ − rD)(b′ + rS + rD) 4 sinh2 Xb′

]
. (B.4)

Thus finally, we obtain (3.5).

C Details: late-time entropy with island

Here we give details on section 4. We are looking to calculate (4.5), i.e.

Smatter = c

3 log
d(a′

+, a′
−)d(b′+, b′−)d(a′

+, b′+)d(a′
−, b′−)

d(a′
+, b′−)d(a′

−, b′+) . (C.1)
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Now calculating each part in Smatter separately

log[d(a′
+, a′

−)] = 1
2 log

[(U ′
S−

− U ′
S+

)(V ′
S+

− V ′
S−

)]
W ′

a′
+

W ′
a′
−

(C.2)

with Wa′ as in (2.18). Then we have

U ′
S− − U ′

S+ = eTa′ · 2 sinh Xa′ , V ′
S+ − V ′

S− = eTa′ · 2 sinh Xa′ , (C.3)

Wa′
+

Wa′
−

= a′l2α2
S(rD − a′)−(1+2αSβD)(a′ + rS + rD)(2αSβM−1)(rS − a′)(2αSβS−1)

= α2
S

λa′|f(a′)|e
2Ta′ . (C.4)

Putting all these expressions together in (C.2) gives

log[d(a′
+, a′

−)] = 1
2 log

[
λa′

α2
S

e−2Ta′ |f(a′)|e2Ta′4 sinh2 Xa′

]

= 1
2 log

[
λ

l2α2
S

(rD − a′)(rS − a′)(a′ + rS + rD) · 4 sinh2 Xa′

]
. (C.5)

Similarly we obtain

log[d(b′+, b′−)] = 1
2 log

[
λ

l2α2
D

(b′ − rD)(b′ − rS)(b′ + rS + rD) · 4 sinh2 Xb′

]
. (C.6)

Now, putting (C.5) and (C.6) together gives

c

3 log[d(a′
+,a′

−)d(b′+, b′−)] = c

6 log
[

24λ2

α2
Dα2

S

(rS−a′)(b′−rS)
(

rD−a′

l

)(
b′−rD

l

)

·
(

a′+rS +rD

l

)(
b′+rS +rD

l

)
sinh2 Xa′ sinh2 Xb′

]
. (C.7)

We next calculate other relevant contributions using (2.11) and (2.17): we have

U ′
D+ − U ′

S+ = e(Xb′−Tb′ ) − e−(Xa′−Ta′ ), V ′
S+ − V ′

D+ = e(Xa′+Ta′ ) − e−(Xb′+Tb′ ) ,

U ′
D− − U ′

S− = e−(Xb′+Tb′ ) − e(Xa′+Ta′ ), V ′
S− − V ′

D− = e−(Xa′−Ta′ ) − e(Xb′−Tb′ ) ,

so

d(a′
+, b′+) = 1√

W ′
a′

+
W ′

b′+

[
(U ′

D+ − U ′
S+)(V ′

S+ − V ′
D+)

] 1
2

= 1√
W ′

a′
+

W ′
b′+

[
e(Ta′−Tb′ ) ·

(
2 cosh (Xa′ + Xb′) − 2 cosh (Ta′ + Tb′)

)] 1
2

, (C.8)

d(a′
−, b′−) = 1√

W ′
a′
−

W ′
b′−

[
(U ′

D− − U ′
S−)(V ′

S− − V ′
D−)

] 1
2

= 1√
W ′

a′
−

W ′
b′−

[
e(Ta′−Tb′ ) ·

(
2 cosh (Xa′ + Xb′) − 2 cosh (Ta′ + Tb′)

)] 1
2

. (C.9)
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Now, putting (C.8) and (C.9) together

d(a′
+, b′+)d(a′

−, b′−) = 1√
W ′

a′
+

W ′
b′+

W ′
a′
−

W ′
b′−

[
e(Ta′−Tb′ ) ·

(
2cosh(Xa′ +Xb′)−2cosh(Ta′ +Tb′)

)]
.

(C.10)

Similarly, we have

U ′
D− − U ′

S+ = e−(Xb′+Tb′ ) − e−(Xa′−Ta′ ), V ′
S+ − V ′

D− = e(Xa′+Ta′ ) − e(Xb′−Tb′ ) ,

U ′
D+ − U ′

S− = e(Xb′−Tb′ ) − e(Xa′+Ta′ ), V ′
S− − V ′

D+ = e−(Xa′−Ta′ ) − e−(Xb′+Tb′ ) ,

so

d(a′
+, b′−) = 1√

W ′
a′

+
W ′

b′−

[
(U ′

D− − U ′
S+)(V ′

S+ − V ′
D−)

] 1
2

= 1√
W ′

a′
+

W ′
b′−

[
e(Ta′−Tb′ ) ·

(
2 cosh (Xa′ − Xb′) − 2 cosh (Ta′ + Tb′)

)] 1
2

, (C.11)

d(a′
−, b′+) = 1√

W ′
a′
−

W ′
b′+

[
(U ′

D+ − U ′
S−)(V ′

S− − V ′
D+)

] 1
2

= 1√
W ′

a′
−

W ′
b′+

[
e(Ta′−Tb′ ) ·

(
2 cosh (Xa′ − Xb′) − 2 cosh (Ta′ + Tb′)

)] 1
2

. (C.12)

Now, putting (C.11) and (C.12) together

d(a′
+, b′−)d(a′

−, b′+) = 1√
W ′

a′
+

W ′
b′−

W ′
a′
−

W ′
b′+

[
e(Ta′−Tb′ ) ·

(
2cosh(Xa′−Xb′)−2cosh(Ta′ +Tb′)

)]
.

(C.13)

Putting (C.10) and (C.13) together we get

c

3 log
d(a′

+, b′+)d(a′
−, b′−)

d(a′
+, b′−)d(a′

−, b′+) = c

3 log
[2 cosh (Ta′ + Tb′) − 2 cosh (Xa′ + Xb′)

2 cosh (Ta′ + Tb′) − 2 cosh (Xa′ − Xb′)

]
. (C.14)

Here

2 cosh (Ta′ + Tb′) = 1
2

[
(rS − a′)αSβS (a′ + rD + rS)αSβM (b′ − rS)αDβS (b′ + rD + rS)αDβM

(rD − a′)αSβD (b′ − rD)αDβD

+ (rD − a′)αSβD (b′ − rD)αDβD

(b′ + rD + rS)αDβM (b′ − rS)αDβS (rS − a′)αSβS (a′ + rD + rS)αSβM

]

∼ 1
2

(b′ − rD)αDβD

(rS − a′)αSβS

1
C(a′) , (C.15)
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using the approximation (4.2), and (4.7). Thus we obtain

c

3 log
d(a+, b′+)d(a−, b′−)
d(a+, b′−)d(a−, b′+) = c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ + Xb′)

]

− c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
. (C.16)

The total bulk matter entanglement entropy thus is (C.7) plus (C.16), along with the area
term. Thus at large values of X ′

a and X ′
b, after adding the area term the total entanglement

entropy Stotal becomes (4.6) i.e.

Stotal ∼
2πa′2

GN

+ 2c

6 log
[

22λ

αDαS

√
(rS − a′)(b′ − rS)·√

(rD − a′)
l

(b′ − rD)
l

(a′ + rS + rD)
l

(b′ + rS + rD)
l

sinh Xa′ sinh Xb′

]

+ c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ + Xb′)

]

− c

3 log
[
1 − 2 (rS − a′)αSβS

(b′ − rD)αDβD
C(a′) cosh (Xa′ − Xb′)

]
. (C.17)

D Inconsistencies in other island solutions

In this section, we briefly describe inconsistencies in other potential island solutions.

D.1 Island outside the black hole horizon

We discuss a potential island with boundary just outside the black hole horizon i.e. in the
static diamond, similar to the results in [92] reviewed in section A. Here we use the static
diamond Kruskal coordinates (2.15) redefined as Xa = αSta and Ta = αSr∗a for the location
of the island boundary. The calculation now gives the total generalized entropy as

Stotal = 2πa2

GN

+ c

6 log
[

24λ2

α2
Dα2

S

(a − rS)(b′ − rS)
(

rD − a

l

)(
b′ − rD

l

)
·

(
a + rS + rD

l

)(
b + rS + rD

l

)
cosh2 Xa sinh2 Xb′

]

+ c

3 log
[
1 + 2 (a − rS)αSβS

(b′ − rD)αDβD
C(a) sinh (Xa + Xb′)

]

− c

3 log
[
1 + 2 (a − rS)αSβS

(b′ − rD)αDβD
C(a) sinh (Xa − Xb′)

]
. (D.1)
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Extremizing (D.1) with the island boundary a as ∂Stotal
∂a = 0 gives

4πa

GN

+ c

6
1

a − rS
+ c

3
C(a)√

b′ − rD
√

a − rS
·
[

sinh(Xa + Xb′)
1 + 2 (a−rS)αSβS

(b′−rD)αDβD
C(a) sinh (Xa + Xb′)

− sinh(Xa − Xb′)
1 + 2 (a−rS)αSβS

(b′−rD)αDβD
C(a) sinh (Xa − Xb′)

]
= 0 . (D.2)

Next, extremizing (D.1) with respect to Xa as ∂Stotal
∂Xa

= 0 gives

tanh Xa = 2
√

a − rS

b′ − rD
C(a) ·

[
cosh(Xa − Xb′)

1 + 2 (a−rS)αSβS

(b′−rD)αDβD
C(a) sinh (Xa − Xb′)

− cosh(Xa + Xb′)
1 + 2 (a−rS)αSβS

(b′−rD)αDβD
C(a) sinh (Xa + Xb′)

]
(D.3)

Considering Xa = Xb′ , (D.3) becomes

1 + 2
√

a − rS

b′ − rD
C(a) sinh 2Xa = 2

√
a − rS

b′ − rD
C(a) 1

tanh Xa

·
[
1 + 2

√
a − rS

b′ − rD
C(a) sinh 2Xa − cosh 2Xa

]
. (D.4)

Putting this condition (D.4) back in (D.2) for large Xa (with a − rS small) gives

a + GN c

24π

1
a − rS

(
1 − tanh Xa

coth 2Xa

)
= 0 . (D.5)

It can be seen that tanh Xa
coth 2Xa

< 1 always so that all terms are positive here: thus there is
no solution with a > rS . Thus these extremization equations (D.2) and (D.3) together do
not give reasonable island solutions.

Similarly, if we consider Xa = −Xb′ , (D.3) becomes

1 + 2
√

a − rS

b′ − rD
C(a) sinh 2Xa = 2

√
a − rS

b′ − rD
C(a) 1

tanh Xa

·
[
−1 − 2

√
a − rS

b′ − rD
C(a) sinh 2Xa + cosh 2Xa

]
. (D.6)

Putting this condition (D.6) back in (D.2) for large Xa gives (D.5) again.

D.2 Island inside the black hole: another possibility

Recalling section 4 and the extremization equations (4.9), (4.10). Instead of Xa′ = Xb′

considered there, let us consider Xa′ = −Xb′ : then Xa′ + Xb′ = 0 and Xa′ − Xb′ = 2Xa′ .
Then (4.10) gives for large Xa′ and Xb′ :

1 − 2
√

rS − a′

b′ − rD
C(a′) cosh 2Xa′ = −2

√
rS − a′

b′ − rD
C(a′)sinh 2Xa′

coth Xa′
. (D.7)

The minus sign on the right hand side leads to trouble when this is put back in (4.9), giving
no semiclassical a′ ≲ rS near horizon island solution.
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E Future boundary, timelike separated QES

In this section, we exhibit other quantum extremal surface solutions which are timelike
separated from the radiation region near the future boundary. We will use several technical
details from [134].

The Schwarzschild de Sitter metric (2.1), after the redefinitions τ = l
r , ω = t

l , becomes

ds2 = l2

τ2

(
− dτ2

f(τ) +f(τ)dω2+dΩ2
2

)
, f(τ) = 1−τ2+ 2m

l
τ3 = (1−a1τ)(1−a2τ)(1+(a1+a2)τ),

a1a2(a1+a2) = 2m

l
, a2

1+a1a2+a2
2 = 1; 0 < a2 < a1 < 1; m

l
≤ 1

3
√

3
. (E.1)

In the above, τc = 1
a1

and τs = 1
a2

are the cosmological (de Sitter) and Schwarzschild horizons.
(The third zero does not correspond to a physical horizon.)

For SdS4 with f(τ) in (E.1), the tortoise coordinate y =
∫ dτ

f(τ) can be defined as

y =
∫

dτ

1 − τ2 + 2m
l τ3 = −β1 log(1 − a1τ) + β2 log(1 − a2τ) + β3 log(1 + (a1 + a2)τ) . (E.2)

With the parameters

β1 = a1
3a2

1 − 1
, β2 = − a2

3a2
2 − 1

, β3 = a1 + a2
3a1a2 + 2 (E.3)

the SdS4 metric becomes

ds2 = l2
( 1

τ2 − 1 + 2m

l
τ

)
(dω2 − dy2) + l2

τ2 dΩ2
2 . (E.4)

Now, we consider the same reduction ansatz from [92] to perform dimentional reduction of
the SdS4 background to 2-dimensions. The 2-dim metric and dilaton become

ds2
2 = λl3

τ

( 1
τ2 − 1 + 2m

l
τ

)
(dω2 − dy2), ϕ = ϕr

λ2l2

τ2 . (E.5)

In the reduced 2-dim Schwarzschild de sitter spacetime,the Kruskal coordinates around the
cosmological horizon are then defined as U, V and the metric becomes

U = e
ω−y
2β1 , V = −e

−ω+y
2β1 ; UV = −e

− y
β1 ,

U

V
= −e

ω
β1 ;

UV = (a1τ − 1)(1 − a2τ)−
β2
β1 (1 + (a1 + a2)τ)−

β3
β1 , (E.6)

ds2
2 = 4β2

1g(U, V )
UV

dUdV . (E.7)

Using (E.5), the generalized entropy for a future boundary observer at (ω, τ) = (ω0, τ0) in
the 2-dim SdS4 spacetime becomes (with P (τ0) = 1

τ2
0
− 1 + 2m

l τ0)

Sgen = ϕr

4G

l2

τ2 + c

12 log
[

1
ϵ4
uv

((ω − ω0)2 − (y − y0)2)2 λ2l6

ττ0
P (τ0)

( 1
τ2 − 1 + 2m

l
τ

)]
. (E.8)
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This expression for Sgen should be regarded as a smooth function of U, V , with respect to
which we will extremize to find quantum extremal surfaces. However the nature of the
QES here can be gleaned by simply noting that the only place the spatial future boundary
coordinate ω enters is through the spacetime interval ∆2 = (ω − ω0)2 − (y − y0)2 inside the
logarithm. Thus we expect ∂Sgen

∂ω = c
3

ω−ω0
∆2 = 0, so that ω = ω0, i.e. the QES is timelike

separated from the future boundary observer.
Analysing more carefully, extremizing (E.8) with Kruskal U , V , as

∂Sgen
∂U

= ∂Sgen
∂τ

∂τ

∂U
+ ∂Sgen

∂ω

∂ω

∂U
= 0 ,

∂Sgen
∂V

= ∂Sgen
∂τ

∂τ

∂V
+ ∂Sgen

∂ω

∂ω

∂V
= 0 , (E.9)

and, from (E.8), (E.6), (E.7), noting that

∂Sgen
∂τ

= − ϕr

2G

l2

τ3 + c

12
1

f(τ)

[
−4(y − y0)

∆2 + τ

(
1 − 3

τ2

)]
,

∂Sgen
∂ω

= c

3
ω − ω0

∆2 ; (E.10)

we find the extremization conditions become[
− ϕr

2G

l2

τ3 + c

12
1

f(τ)

(
−4(y − y0)

∆2 + τ

(
1 − 3

τ2

))]
A(τ)

U
+ c

3
ω − ω0

∆2
β1
U

= 0 , (E.11)

and[
− ϕr

2G

l2

τ3 + c

12
1

f(τ)

(
−4(y − y0)

∆2 + τ

(
1 − 3

τ2

))]
A(τ)

V
+ c

3
ω − ω0

∆2

(
−β1

V

)
= 0 . (E.12)

Subtracting as (E.11)–(E.12) gives 2c
3

ω−ω0
∆2 β1 = 0. Thus,

ω = ω0 , (E.13)

giving timelike separated QES with respect to the future boundary observer. The timelike
separation implies that the generalized entropy becomes complex-valued, with log(−|∆2|)
giving rise to log(−1) = iπ, as in pure de Sitter.

Now, by putting ω = ω0 in (E.11) gives

− ϕr

2G

l2

τ3 + c

12
1

f(τ)

( 4
y − y0

+ τ

(
1 − 3

τ2

))
= 0 (E.14)

The future boundary observer has r = ∞ and τ0 = 0 so y0 = 0. Further considering τ = 1− ϵ,
where ϵ ≪ 1, and noting 1 ≪ c ≪ 1

G , we simplify (E.14) ignoring appropriate terms and obtain

2c

log
[

(1−a2(1−ϵ))β2 (1+(a1+a2)(1−ϵ))β3

(1−a1(1−ϵ))β1

] ≈ 3ϕr

G
l2
[

ϵ(2 − ϵ)
(1 − ϵ)3 + 2m

l

]
(E.15)

Now, considering a1 and a2 perturbatively as a1 ≃ 1 − m
l , a2 ≃ 2m

l , and 0 < a2 < a1 < 1, we
can obtain the parameters β1, β2, β3 using (E.3) perturbatively as well. This finally gives

c ≈ 3ϕr

2G
l2
(

ϵ + m

l

)
log
(

2
ϵ + m

l

)
(E.16)

which is a consistency condition on the central charge (number of degrees of freedom) of the
2-dim CFT matter for the timelike extremal surface to exist (pure dS corresponds to m = 0).
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