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1 Introduction

Moduli, which originate from the geometry of the compact extra space, naturally appear
in the low-energy effective theory of higher-dimensional gravity. In order to construct a
realistic model, all the moduli must be fixed to finite values by some mechanism. Since
couplings of matter fields and the spacetime evolution will depend on the dynamics of
moduli, they will give impacts on several aspects of particle physics and cosmology.

In the conventional approach, the dynamics of the moduli is described in the framework
of four-dimensional (4D) effective field theories (EFT). This is because they generically
do not have potentials and are massless at the classical level. However, if they couple to a
scalar field whose mass is m, some of the moduli are stabilized with the masses of O(m).
In this case, m is the mass scale of the moduli stabilization. If this scale is the same order
of or larger than the mass of the first Kaluza-Klein (KK) excitation mode m(1)

KK, the moduli
stabilization has to be discussed in the context of the higher-dimensional gravitational
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theory, rather than 4D EFT. Since m(1)
KK is determined by the stabilized value for the size

modulus of the compact space, such a situation can occur when the stabilized size of the
compact space is large compared to m−1.1 Although this possibility is not disfavored by
any specific reasons, it has not been discussed in most works about the moduli stabilization.
Thus, in this paper, we will consider such a situation (i.e., m & m

(1)
KK), and discuss the time

evolution of the universe.
As a simple setup for our purpose, we consider the so-called Salam-Sezgin model [1],

which is based on a gauged six-dimensional (6D) supergravity [2, 3] compactified on a sphere
with a U(1) magnetic flux. The original work for this model discussed a static background.
Its time-dependent extension was discussed in ref. [4] in the radiation-dominated universe,
which is described by the hypermultiplets and/or the vector multiplets.2 Since there is
a flat direction in the moduli space of the original Salam-Sezgin model, we introduce a
dilaton potential so that all the moduli are completely fixed.3 Then, the moduli oscillate
around their stabilized values in the evolution of the universe. In the 4D EFT approach,
it is well-known that the energy density of the moduli oscillation rapidly dominates over
that of the radiation, and the expanding space behaves like the 4D matter-dominated
universe [6–10]. However, this is not the case when the moduli stabilization procedure
cannot be described in the 4D EFT. In our previous work [11], we investigated the evolution
of the background spacetime during the moduli stabilization process that is assumed to
occur in the radiation dominated era. It was numerically found that when m & m

(1)
KK, the

radiation contribution to the total energy density remains non-negligible for a long time in
contrast to the conventional 4D EFT analysis. However, this numerical analysis is available
for only a limited range of the time and the parameters, and it will be difficult to see the
transition from 6D to 4D explicitly. The purpose of this paper is to analytically investigate
effects of the radiation and the moduli oscillation on the spacetime evolution, especially
focusing on a parameter region in which one cannot use the 4D EFT analysis. Our findings
are summarized as follows:

• The radiation remains non-negligible for a long time when the moduli stabilization
procedure cannot be described in the framework of 4D EFT, namely m & m

(1)
KK.

• In such a case, for lower initial temperatures, the universe never experiences the moduli-
dominated era if the moduli decay before the dominance of the moduli oscillation.

• Even if the moduli are set at the stabilized values, they start to oscillate due to the
pressure in the extra space S2 in some parameter spaces.

For our purpose, we develop a procedure to compute various quantities at late times that
enables us to pursue the transition from 6D to 4D.

1In principle, the stabilized value of the size modulus is independent of the scale m. In our model, the
former is determined by σ∗ in (2.2), which is independent of m.

2Note that the cancellation of 6D gravitational anomalies requires the existence of hypermultiplets and/or
vector multiplets [5].

3In this paper, we include the dilaton in the moduli since it has a mass mixing with the size modulus
of S2.
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The paper is organized as follows. In the next section, we provide a brief review of the
model used in our previous work [11]. In section 3, we explain how to compute various
quantities at later times. In section 4, we discuss the conditions that the radiation dominates
the total energy density. Section 5 is devoted to the summary. In the appendices, we
provide brief derivations of some formulae used in the text, and show the conservation law
of the energy-momentum tensor.

2 Setup

In this section, we briefly review the model we considered in our previous work [11].
The whole spacetime is 6D, and a 2D subspace is compactified on a sphere S2. The
indices M,N = 0, 1, 2, · · · , 5 denote the 6D coordinate ones, µ, ν = 0, 1, 2, 3 denote the 4D
ones for the non-compact space, and m,n = 4, 5 are the 2D ones for the compact space. As
the coordinates on S2, we choose the spherical ones (x4, x5) = (θ, φ), where θ and φ are the
polar and the azimuthal angles, respectively.

2.1 Model inspired by 6D supergravity on a sphere

The model is given by4

S =
∫
d6x

√
−g(6)

{
−1

2R
(6) − 1

2∂
Mσ∂Mσ −

g2eσ

4 FMNFMN − V (σ)
}
, (2.1)

where R(6) denotes the 6D Ricci scalar, σ is a real scalar (dilaton), FMN ≡ ∂MAN − ∂NAM
is the field strength of the U(1) gauge field AM , and g is the gauge coupling constant. The
scalar potential V (σ) is given by

V (σ) = 2e−σ + m2

2 (σ − σ∗)2, (2.2)

where m and σ∗ are positive constants.
This is basically the bosonic part of the gauged 6D N = (1, 0) SUGRA [2, 3], except

for the following two points. First, we drop the self-dual antisymmetric tensor field BMN

because it is irrelevant to the following discussions. Second, we add the second term in (2.2)
to the scalar potential in order to stabilize the moduli completely.

The equations of motion are

R
(6)
MN −

1
2gMNR

(6) − Tmatter
MN = 0,

1√
−g(6)

∂M

(√
−g(6)∂Mσ

)
− g2eσ

4 FMNFMN − V ′(σ) = 0,

∂M

(√
−g(6)eσFMN

)
= 0, (2.3)

where the energy-momentum tensor Tmatter
MN is

Tmatter
MN = −∂Mσ∂Nσ + 1

2gMN∂
Lσ∂Lσ − g2eσFMLF

L
N + g2eσ

4 gMNF
PQFPQ + gMNV (σ).

(2.4)
4We work in the unit of the 6D Planck mass.
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In the absence of the second term in (2.2), this model has the following static back-
ground [1].

gµν = ηµν = diag (−1, 1, 1, 1),
g44 = b2, g45 = g54 = 0, g55 = b2 sin2 θ,

Fµν = Fµm = 0,

F45 = −F54 = sin θ
2g , F44 = F55 = 0,

σ = ln(4b2), (2.5)

where ηµν is the 4D Minkowski metric, and b is a positive constant. In this case, the
constant b is a free parameter, and the size of the compact space S2 remains to be unfixed.

In the presence of the second term in (2.2), the background (2.5) remains to be a
solution, but now σ is fixed to the constant σ∗. Hence the constant b is also fixed as

b = b∗ ≡
eσ∗/2

2 . (2.6)

In addition to the above field content, we also introduce the radiation contribution.
In the context of the 6D N = 1 SUGRA, the number of hypermultiplets nH and that of
vector multiplets nV are constrained by the anomaly cancellation condition nH − nV =
244 [3, 5, 12].5 This indicates that a large number of hypermultiplets must exist in a
consistent theory. We assume that scalars in such hypermultiplets do not have nontrivial
background values, but they contribute to the radiation that fills in the whole 5D space.
Then, the energy-momentum tensor appearing in the Einstein equation must include the
radiation contribution:

(
T rad

) N

M
=


ρrad

−prad
3 13

−prad
2
−prad

2 sin2 θ

 , (2.7)

where ρrad, prad
3 and prad

2 are the radiation energy density, the pressures in the non-compact
3D space and in the compact 2D space, respectively, whose explicit forms are listed in
appendix A. In the presence of the radiation, the static background (2.5) and (2.6) no
longer a solution of the equations of motion, and the universe continues to expand. Thus
we make the following ansatz for the background.

gMN =


−1

a2(t)13
b2(t)

b2(t) sin2 θ

 ,
Fµν = Fµm = 0,

5The number of tensor multiplet is assumed to be one, otherwise the theory cannot be described by
the Lagrangian.
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F45 = −F54 = sin θ
2g , F44 = F55 = 0,

σ = σ(t), (2.8)

where a(t) and b(t) are the scale factors for the non-compact 3D space and the compact 2D
space, respectively.

2.2 Evolution equations

Under the background ansatz (2.8), the equations of motion in (2.3) become

3ȧ2

a2 + ḃ2

b2
+ 6ȧḃ

ab
+ 1
b2
− 1

2 σ̇
2 − eσ

8b4 − V (σ)− ρrad = 0,

2ä
a

+ ȧ2

a2 + 2b̈
b

+ ḃ2

b2
+ 4ȧḃ

ab
+ 1
b2

+ 1
2 σ̇

2 − eσ

8b4 − V (σ) + prad
3 = 0,

3ä
a

+ 3ȧ2

a2 + b̈

b
+ 3ȧḃ

ab
+ 1

2 σ̇
2 + eσ

8b4 − V (σ) + prad
2 = 0,

σ̈ +
(

3ȧ
a

+ 2ḃ
b

)
σ̇ + eσ

8b4 + V ′(σ) = 0, (2.9)

where the dot denotes the time derivative. The first equation is the (t, t)-component of the
Einstein equation. Since this does not contain the second order t-derivatives, it is regarded
as a constraint on the initial conditions of the time evolution. The second and the third
equations come from the diagonal components for the 3D non-compact space and the 2D
compact space, respectively. The other components of the Einstein equation vanish. The
last equation is the dilaton field equation. In addition to these, we can obtain the evolution
equation for the inverse temperature β from the conservation law, as shown in appendix B.

In the following, we assume that the chemical potential µ is negligible, i.e., βµ � 1.
Then, if we redefine the scale factors as

A ≡ ln a, B ≡ ln b, (2.10)

the above equations are rewritten as

Ä = −9
4Ȧ

2 + 1
4Ḃ

2 − 1
2ȦḂ −

1
8 σ̇

2 + 1
2

(
e−

σ
2 − e

σ
2−2B

4

)(
e−

σ
2 + 3eσ2−2B

4

)

+ m2

8 (σ − σ∗)2 + prad
3 − 2prad

2
4 ,

B̈ = 3
4Ȧ

2 − 7
4Ḃ

2 − 3
2ȦḂ −

1
8 σ̇

2 + 1
2

(
e−

σ
2 − e

σ
2−2B

4

)(
e−

σ
2 − 5eσ2−2B

4

)

+ m2

8 (σ − σ∗)2 − 3prad
3 − 2prad

2
4 ,

σ̈ = −
(
3Ȧ+ 2Ḃ

)
σ̇ + 2

(
e−

σ
2 − e

σ
2−2B

4

)(
e−

σ
2 + e

σ
2−2B

4

)
−m2 (σ − σ∗) , (2.11)
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with the constraint:6

3Ȧ2 + Ḃ2 + 6ȦḂ − 1
2 σ̇

2 = 2
(
e−

σ
2 − e

σ
2−2B

4

)2

+ m2

2 (σ − σ∗)2 + ρrad

≡ ρ̂tot. (2.12)

Using (2.12) and (A.11), the second equation in (2.11) can be rewritten as

B̈ = −
(
3Ȧ+ 2Ḃ

)
Ḃ +

(
e−

σ
2 − e

σ
2−2B

4

)(
e−

σ
2 − 3eσ2−2B

4

)
+ m2

4 (σ − σ∗)2 + prad
2 .

(2.13)

The energy density and the pressures are expressed as (see appendix A)

ρrad = gdofe
−2B

8π3β4 {±6Li4(±1) + 3Q1 +Q2} ,

prad
3 = gdofe

−2B

8π3β4 {±2Li4(±1) +Q1} ,

prad
2 = gdofe

−2B

16π3β4 Q2, (2.14)

where gdof is the degrees of freedom for 6D relativistic particles, β is the inverse temperature,
the functions Qi(x) (i = 1, 2, 3) are defined in (A.6), (A.8) and (B.6), and their arguments
are β/b = βe−B. The upper (lower) signs represent the case that the radiation consists of
the bosons (fermions). The evolution equation for β is obtained from (B.5) as

β̇

β
= 3Ȧ {±8Li4(±1) + 4Q1 +Q2}+ Ḃ (2Q2 +Q3)

±24Li4(±1) + 12Q1 + 5Q2 +Q3
. (2.15)

The equations (2.11) and (2.15) with the constraint (2.12) are the evolution equations
for the expanding 5D space. Note that

Li4(1) = ζ(4), Li4(−1) = −7
8ζ(4). (2.16)

In the following, we consider a case that the radiation consists of only the bosonic particles
to simplify the discussion. Hence the upper signs in (2.14) and (2.15) are applied.

For numerical computation, we choose the initial conditions at t = 0 as

a(0) = 1, b(0) = bI, σ(0) = σI, β(0) = βI,

ȧ(0) =

√
ρ̂tot(0)

3 , ḃ(0) = σ̇(0) = 0, (2.17)

where bI, σI and βI are positive constants. The value of ȧ(0) is determined by the con-
straint (2.12).

6This ρ̂tot is related to the 6D total energy density ρtot defined in (B.2) as ρ̂tot = ρtot − 1
2 σ̇

2 − e−2B ,
where the last term corresponds to the curvature of S2.
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Here, one comment is in order. In (2.8), we have assumed that the background values
do not depend on the space coordinates. The independence of the 3D coordinates ~x comes
from the cosmological principle for our observed universe. As for the extra-dimensional
coordinates (θ, φ), we need to be careful. Since we are interested in the case that the
typical energy or the temperature exceeds the KK scale, the KK modes are supposed to
be produced at early times. Thus it seems that the dependence on (θ, φ) should be taken
into account. However, in our setup, the universe is filled with the radiation, which is
in thermal equilibrium, at the initial time. So we assume that the inhomogeneity on the
compact space S2 is negligible at the initial time. Since the system is spherically symmetric,
solutions of the evolution equations are independent of (θ, φ) if the initial configurations do
not have their dependence.

3 Transition from 5D to 3D spaces

3.1 Late-time behavior

We focus on a situation that the standard 4D cosmology is realized at late times. Namely,
the S2 size modulus b and the dilaton σ are expected to be stabilized. In such a case,
Ḃ = ḃ/b and σ̇ become negligible, and (2.9) is reduced to

3ȧ2

a2 + 1
b2
− eσ

8b4 − V (σ)− ρrad ' 0,

2ä
a

+ ȧ2

a2 + 1
b2
− eσ

8b4 − V (σ) + prad
3 ' 0,

3ä
a

+ 3ȧ2

a2 + eσ

8b4 − V (σ) + prad
2 ' 0,

eσ

8b4 + V ′(σ) ' 0. (3.1)

Note that terms 1/b2 and −eσ/(8b4) come from the curvature of S2 and the background
flux of the U(1) gauge field, respectively. If they are cancelled with the potential term V (σ),
we obtain the standard 4D Friedmann equations. This condition is written as

Vmdl(b, σ) ≡ − 1
b2

+ eσ

8b4 + V (σ)

= 2
(
e−

σ
2 − eσ/2

4b2

)2

+ m2

2 (σ − σ∗)2 = 0. (3.2)

Namely, this is equivalent to the minimization condition of the moduli potential. From this
condition, the stabilized moduli values are given by

σ = σ∗, b = b∗ = eσ∗/2

2 . (3.3)

Then the Kaluza-Klein masses for a 6D massless field are given by

m
(l)
KK =

√
l(l + 1)
b∗

, (3.4)

where l = 0, 1, 2, · · · . In particular, m(1)
KK =

√
2/b∗ is regarded as the cutoff energy scale of

the 4D EFT.
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As derived in appendix C, the mass eigenstates φ1 and φ2 are mixtures of δB ≡ B−B∗
(B∗ ≡ ln b∗) and δσ ≡ σ − σ∗, and their mass eigenvalues m1 and m2 are given by (C.7).
When m� m

(1)
KK, φ1 ∼ 3δB + δσ has a mass m1 '

√
2
5m, and the other mode has a mass

of O(m(1)
KK).7 When m� m

(1)
KK, the size modulus δB is almost a mas eigenstate with the

mass m1 '
√

3m(1)
KK and the other mode has a mass of O(m).

After the moduli are stabilized, the first two equations in (3.1) are reduced to the 4D
Friedmann equations.8

ȧ2

a2 '
ρrad

3 ,
ä

a
' −1

2

(
ȧ2

a2 + prad
3

)
' −1

6
(
ρrad + 3prad

3

)
. (3.5)

The third equation becomes

3ä
a

+ 3ȧ2

a2 + prad
2 ' 0. (3.6)

Using (3.5), the l.h.s. is rewritten as

3ä
a

+ 3ȧ2

a2 + prad
2 ' −1

2
(
ρrad + 3prad

3

)
+ ρrad + prad

2

= 1
2
(
ρrad − 3prad

3

)
+ prad

2 = 2prad
2 . (3.7)

At the last step, we have used the relation (A.11). From (2.14) and figure 10 in appendix A,
we find that prad

2 ' 0 at late times. Thus, (3.6) holds at late times. In this case, the
relation (A.11) becomes ρrad ' 3prad

3 , which indicates that the 4D universe is radiation-
dominated. The last equation in (3.1) holds trivially with the values in (3.3).

Since the functions Qi(x) (i = 1, 2, 3) are damped to zero for large x (see figure 10),
the evolution equation for the inverse temperature (2.15) becomes

β̇

β
' Ȧ = ȧ

a
, (3.8)

at late times. This indicates that β ∝ a, which agrees with the relation in the 4D radiation-
dominated era.

In the following, we focus on the spacetime evolution during the moduli stabilization
process before it settles into the above 4D evolution.

7Note that δB is not canonically normalized.
8Precisely, we should note that the energy density and the pressure in the 4D spacetime are given by

ρ4D ≡ ρradV2 and P4D ≡ prad
3 V2, respectively, where V2 ≡ 4πb2

∗ is the stabilized S2 volume. Besides, the 4D
Planck mass is MPl ≡

√
V2 since we have chosen the 6D Planck unit. Thus (3.5) should be expressed as

ȧ2

a2 '
ρ4D

3M2
Pl
,

ä

a
' − 1

6M2
Pl

(ρ4D + 3P4D) ,

as the 4D Friedmann equations.
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3.2 Relation between a and β

As we have seen, our model realizes the 4D radiation-dominated universe at late times if the
moduli are stabilized to the values in (3.3). However, as shown in our previous work [11],
the behaviors of the 3D scale factor a and the (inverse) temperature β at early times can
be different from those of the 4D universe.

We can see that Ȧ � |Ḃ| during the moduli stabilization process. Thus (2.15) is
approximated as

β̇

β
= vβ

(
β

b∗

)
ȧ

a
, (3.9)

where

vβ(x) = 24ζ(4) + 12Q1(x) + 3Q2(x)
24ζ(4) + 12Q1(x) + 5Q2(x) +Q3(x) . (3.10)

The profile of vβ(x) is shown in figure 1 (blue dashed line). As the plot shows, vβ(x) ' 1
for x ≥ 10. For smaller values of x, vβ(x) has a nontrivial profile. We approximate it by a
piecewise-linear function for 0 < x ≤ 10. Namely, we divide this interval into (J + 1) small
intervals xj < x ≤ xj+1 (j = 0, 1, 2, · · · , J), where xj ≡ j∆ (∆ ≡ 10/J), and define the
approximated function:

vap
β (x) ≡

c
(j)
1 x+ c

(j)
2 (xj < x ≤ xj+1 ≤ xJ = 10)

1 (x > 10)
, (3.11)

where the constants c(j)
1 and c(j)

2 are determined so that vap
β (xj) = vβ(xj) and vap

β (xj+1) =
vβ(xj+1), i.e.,

c
(j)
1 ≡

vβ(xj+1)− vβ(xj)
∆ , c

(j)
2 ≡

xj+1vβ(xj)− xjvβ(xj+1)
∆ . (3.12)

In the following, we choose ∆ = 0.5 (or J = 20). As shown in figure 1, vap
β (x) well

approximates vβ(x) in this case. In section 3.4, we will set a reference time tref so that the
evolution equations for B̃ ≡ B −B∗ and σ̃ ≡ σ − σ∗ can be approximated as homogeneous
second-order linear differential equations for t ≥ tref . For this reference time, we define the
integer k so that xk < β(tref)/b∗ ≤ xk+1. Then, by solving (3.9), the 3D scale factor a is
expressed as

a(x) =



arefKk(xref)
Kk(x) (xref ≤ x ≤ xk+1)

arefKk(xref)Kk+1(xk+1) · · ·Kj(xj)
1

Kj(x) (xj < x ≤ xj+1 ≤ xJ = 10)
arefx

10 Kk(xref)Kk+1(xk+1) · · ·KJ−1(xJ−1) (x > 10)

,

(3.13)

where x ≡ β/b∗, aref ≡ a(tref), xref ≡ β(tref)/b∗, and the function Kj(x) is defined by (D.9).
The detail derivation is listed in appendix D.
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Figure 1. The profiles of vβ(x) (blue dashed) and vap
β (x) (red solid) in the case of ∆ = 0.5.

In the case that xref ≤ x1 = ∆, i.e., k = 0, the expression of a(β) becomes simple. Since

0 < c
(0)
1 � 1, c

(0)
2 ' 3

5 , (3.14)

K0(x) is approximated as

K0(x) '
(
x1
x

)5/3
. (3.15)

From (D.10), we have

a(x) = arefK0(xref)
K0(x) = aref

(
x

xref

)5/3
. (3.16)

Hence, the relation between a and β in this case is obtained as

β(a) ' βref

(
a

aref

)3/5
, (3.17)

for aref ≤ a ≤ a1.

3.3 Radiation energy density

During the moduli-stabilization process, the modulus b takes values around b∗. Thus, the
radiation energy density (2.14) is expressed as

ρrad ' gdof
8π3β6 vρ

(
β

b∗

)
, (3.18)

where

vρ(x) ≡ x2 {6ζ(4) + 3Q1(x) +Q2(x)} . (3.19)

Note that the contributions of Q1(x) and Q2(x) are exponentially suppressed and negligible
for x > 10. Thus, just like the treatment for vβ(x) in (3.9), we approximate vρ(x) by

vap
ρ (x) ≡

d
(j)
1 x+ d

(j)
2 (xj < x ≤ xj+1 ≤ 10)

6ζ(4)x2 (x > 10)
, (3.20)
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Figure 2. The profiles of vρ(x) (blue dashed) and vap
ρ (x) (red solid) in the case of ∆ = 0.5.

where

d
(j)
1 ≡

vρ(xj+1)− vρ(xj)
∆ , d

(j)
2 ≡

xj+1vρ(xj)− xjvρ(xj+1)
∆ . (3.21)

As shown in figure 2, vap
ρ (x) well approximates vρ(x).

In particular, when β < b∗∆, (3.17) can be used and

vρ

(
β

b∗

)
' 80, (3.22)

since

d
(0)
1 = 1.27� d

(0)
2 ' 80. (3.23)

Hence, in this case, ρrad can be expressed as the following simple function of a.

ρrad ' 10gdof
π3β6 '

10gdof
π3β6

ref

(
a

aref

)− 18
5
. (3.24)

At the second step, we have used the relation (3.17). This can also be derived directly
from (2.14). In fact, when β < b∗∆, the functions Qi (i = 1, 2, 3) are approximated as

Q1

(
β

b∗

)
' 16b2∗

β2 , Q2

(
β

b∗

)
' 32b2∗

β2 , Q3

(
β

b∗

)
' 128b2∗

β2 , (3.25)

which lead to

ρrad ' gdof
8π3b2∗β

4

{
6ζ(4) + 48b2∗

β2 + 32b2∗
β2

}
' 10gdof

π3β6 '
10gdof
π3β6

ref

(
a

aref

)− 18
5
,

prad
3 ' gdof

8π3b2∗β
4

{
2ζ(4) + 16b2∗

β2

}
' 2gdof
π3β6 '

2gdof
π3β6

ref

(
a

aref

)− 18
5
,

prad
2 ' gdof

16π3b2∗β
4 ·

32b2∗
β2 = 2gdof

π3β6 '
2gdof
π3β6

ref

(
a

aref

)− 18
5
. (3.26)

Note that the pressure becomes isotropic prad
3 ' prad

2 in this case because the radiation
does not feel the size of the compact space S2. In fact, the above pressures are (almost)
independent of b∗.
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3.4 Moduli oscillation

Here we discuss the moduli oscillation around their stabilized values in (3.3). We divide B
and σ as

B = B∗ + B̃, σ = σ∗ + σ̃, (3.27)

where

B∗ ≡ ln b∗ = σ∗
2 − ln 2. (3.28)

Then the evolution equations in (2.11) and (2.13) are written as

Ä = −9
4Ȧ

2 − 1
2Ȧ

˙̃B + 2e−σ∗
(
−σ̃ + 2B̃

)
+ prad

3 − 2prad
2

4 + · · · ,
¨̃B = −3Ȧ ˙̃B − 2e−σ∗

(
−σ̃ + 2B̃

)
+ prad

2 + · · · ,

¨̃σ = −3Ȧ ˙̃σ + 4e−σ∗
(
−σ̃ + 2B̃

)
−m2σ̃ + · · · , (3.29)

and the constraint (2.12) becomes

3Ȧ2 + ˙̃B2 + 6Ȧ ˙̃B − 1
2

˙̃σ2 = 2e−σ∗
(
σ̃ − 2B̃

)2
+ m2

2 σ̃2 + ρrad + · · · , (3.30)

where the ellipses denote higher-order terms in B̃ or σ̃.
We introduce the reference time tref so that the last term in the second equation of (3.29)

becomes negligible for t ≥ tref . In the following, we choose it as tref = 10000 (in the 6D
Planck unit). Then, from the first equation in (3.29) and (3.30), we find that

Ä = O(B̃, σ̃) (3.31)

Thus, the second and the third equations in (3.29) can be rewritten as(
2 ¨̂
B
¨̂σ

)
= −

(
4e−σ∗ −4e−σ∗

−4e−σ∗ 4e−σ∗ +m2

)(
2B̂
σ̂

)
+ · · · , (3.32)

where

B̂ ≡ e
3
2AB̃, σ̂ ≡ e

3
2Aσ̃. (3.33)

Diagonalizing this, we have (
ϕ̈1
ϕ̈2

)
= −

(
λ1

λ2

)(
ϕ1
ϕ2

)
+ · · · , (3.34)

where

λ1 ≡
1
2
(
8e−σ∗ +m2 −

√
64e−2σ∗ +m4

)
= 1

2

(
m

(1)2
KK +m2 −

√
m

(1)4
KK +m4

)
,

λ2 ≡
1
2
(
8e−σ∗ +m2 +

√
64e−2σ∗ +m4

)
= 1

2

(
m

(1)2
KK +m2 +

√
m

(1)4
KK +m4

)
, (3.35)
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and

ϕ1 ≡ cos θ · 2B̂ + sin θ · σ̂,
ϕ2 ≡ − sin θ · 2B̂ + cos θ · σ̂, (3.36)

with

θ ≡ tan−1 8e−σ∗

m2 +
√

64e−2σ∗ +m4
= tan−1 m

(1)2
KK

m2 +
√
m

(1)4
KK +m4

. (3.37)

Solving (3.34), we have

ϕ1(t) = χ10√
λ1

sin
(√

λ1(t− tref)
)

+ ϕ10 cos
(√

λ1(t− tref)
)
,

ϕ2(t) = χ20√
λ2

sin
(√

λ2(t− tref)
)

+ ϕ20 cos
(√

λ2(t− tref)
)
, (3.38)

where

ϕ10 ≡ e
3
2A(tref)

{
2 cos θB̃(tref) + sin θσ̃(tref)

}
,

ϕ20 ≡ e
3
2A(tref)

{
−2 sin θB̃(tref) + cos θσ̃(tref)

}
,

χ10 ≡ e
3
2A(tref)

{
2 cos θ ˙̃B(tref) + sin θ ˙̃σ(tref)

}
+ 3

2Ȧ(tref)ϕ10,

χ20 ≡ e
3
2A(tref)

{
−2 sin θ ˙̃B(tref) + cos θ ˙̃σ(tref)

}
+ 3

2Ȧ(tref)ϕ20. (3.39)

In terms of ϕ1 and ϕ2, (the displacement of) the moduli B̃ and σ̃ are expressed as

B̃(t) = e−
3
2A(t)

2 {cos θϕ1(t)− sin θϕ2(t)} ,

σ̃(t) = e−
3
2A(t) {sin θϕ1(t) + cos θϕ2(t)} . (3.40)

Since A(t)� |B̃(t)|, we can replace A(t) in the exponents with Ā(t) ≡ A(t) + B̃(t). In the
next subsection, we will show that Ā(t) has a nice property to calculate its approximate
expression. Therefore, we express B̃ and σ̃ as

B̃(t) = e−
3
2 Ā(t)

2 {cos θϕ1(t)− sin θϕ2(t)} ,

σ̃(t) = e−
3
2 Ā(t) {sin θϕ1(t) + cos θϕ2(t)} . (3.41)

Figure 3 shows the full numerical solutions and the approximate solutions in (3.41) for B̃(t)
and σ̃(t). Here Ā(t) is computed by the method explained in section 3.6. The parameters
are chosen as

m = 0.01, σ∗ = 14
(
⇔ m

(1)
KK = 0.00258

)
,

bI = b∗, σI = σ∗, βI = 20. (3.42)

We can see that the latters well agree with the formers for t ≥ tref .
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Figure 3. The profiles of B̃(t) (left) and σ̃(t) (right) in the case of tref = 10000. The blue solid lines
are the full numerical solutions, and the red dashed lines are the approximate solutions in (3.41),
where Ā(t) is computed by the method in section 3.6. The parameters are chosen as (3.42).

3.5 Smoothing the oscillation of the 3D scale factor

Now we derive an approximate expression for the 3D scale factor a(t) (or A(t)). For this
purpose, it is convenient to define

Ā(t) ≡ A(t) + B̃(t). (3.43)

Then, its evolution is determined by

3 ˙̄A2 = 2Ḃ2 + 1
2 σ̇

2 + 2
(
e−

σ
2 − e

σ
2−2B

4

)2

+ m2

2 (σ − σ∗)2 + ρrad

= 2Ḃ2 + 1
2 σ̇

2 + ρ̂tot ≡ ρ̃tot, (3.44)

which is obtained from the constraint (3.30). During the moduli stabilization process, the
r.h.s. is approximated as

3 ˙̄A2 ' 2 ˙̃B2 + 1
2

˙̃σ2 + 2e−σ∗
(
σ̃ − 2B̃

)2
+ m2

2 σ̃2 + ρrad + · · ·

' e−3Ā

2

{
cos θϕ̇1 − sin θϕ̇2 −

3
2

˙̄A (cos θϕ1 − sin θϕ2)
}2

+ e−3Ā

2

{
sin θϕ̇1 + cos θϕ̇2 −

3
2

˙̄A (sin θϕ1 + cos θϕ2)
}2

+ 2e−3Ā−σ∗ {(sin θ − cos θ)ϕ1 + (cos θ + sin θ)ϕ2}2

+ m2

2 e−3Ā (sin θϕ1 + cos θϕ2)2 + ρrad + · · · , (3.45)

where the ellipses denote higher order terms in B̃ or σ̃ (or ϕ1,2). At the second step, we
have used (3.41). The solutions in (3.38) are rewritten as

ϕ1 =
√
χ2

10
λ1

+ ϕ2
10 sin

(√
λ1(t− tref) + δ1

)
,

ϕ2 =
√
χ2

20
λ2

+ ϕ2
20 sin

(√
λ2(t− tref) + δ2

)
, (3.46)
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where

δ1 ≡ tan−1
(
ϕ10
χ10

√
λ10

)
, δ2 ≡ tan−1

(
ϕ20
χ20

√
λ20

)
. (3.47)

Here note

˙̄A2 � λ1, λ2 � 1, (3.48)

for t ≥ tref . Then, (3.45) is simplified as

3 ˙̄A ' e−3Ā

2

[
ϕ̇2

1 + ϕ̇2
2 +

{
4e−σ∗ (sin θ − cos θ)2 +m2 sin2 θ

}
ϕ2

1

+
{

8e−σ∗
(
sin2 θ − cos2 θ

)
+ 2 sin θ cos θ

}
ϕ1ϕ2

+
{

4e−σ∗ (cos θ + sin θ)2 +m2 cos2 θ
}
ϕ2

2

]
+ ρrad + · · ·

= e−3Ā

2
(
ϕ̇2

1 + ϕ̇2
2 + λ1ϕ

2
1 + λ2ϕ

2
2

)
+ ρrad + · · ·

= C1e
−3Ā + ρrad + · · · , (3.49)

where we have used that

4e−σ∗ (sin θ − cos θ)2 +m2 sin2 θ = λ1,

8e−σ∗
(
sin2 θ − cos2 θ

)
+ 2 sin θ cos θ = 0,

4e−σ∗ (cos θ + sin θ)2 +m2 cos2 θ = λ2, (3.50)

and the constant C1 is defined as

C1 ≡
1
2
(
χ2

10 + λ1ϕ
2
10 + χ2

20 + λ2ϕ
2
20

)
. (3.51)

At the last step, we used (3.46). Recalling that ρrad is a function of A, the r.h.s. of (3.49)
is almost a function of only Ā, and its explicit t-dependence is negligible. In fact, as we
can see from figure 4, the oscillating behavior of Ȧ is almost cancelled by adding ˙̃B. Hence
we have9

˙̄A '
√

1
3
(
C1e−3Ā + ρrad

)
. (3.52)

From this, we obtain

t− tref =
∫ Ā

Ā(tref)
dA

√
3

C1e−3A + ρrad(A) . (3.53)

By taking the inverse function of this, the 3D scale factor a ' eĀ is obtained as a function of t.
9We are interested in only the expanding-universe solution ( ˙̄A > 0).
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Figure 4. The profile of Ȧ(t) (blue solid) and ˙̄A(t) = Ȧ(t) + Ḃ(t) (red dashed) in the left plot.
Those of (t− t0)Ȧ(t) (blue solid) and (t− t0) ˙̄A(t) (red dashed) in the right plot. The constant t0
and the reference time are chosen as t0 = −1300 and tref = 10000, respectively. The parameters are
chosen as (3.42).

In the standard 4D cosmology, the 3D scale factor a(t) behaves as

a(t) ∝ (t− t0)p, (t0: constant) (3.54)

where p = 1/2 in the radiation-dominated era and p = 2/3 in the matter-dominated era. If
a(t) behaves as (3.54), the power p is calculated as

p ≡ (t− t0) ȧ
a

= (t− t0)Ȧ, (3.55)

where the constant t0 is chosen so that p becomes independent of t. In our setup, this
quantity oscillates in time. Thus, it is convenient to use Ā instead of A in order to define
“effective power” p (see the right plot of figure 4). In fact, we can easily calculate this power
in the radiation-dominated universe, and it turns out to be that p = 1/2 in the 3D space
while p = 5/9 in the 5D space. In our setup, the universe eventually approaches to a 3D
space in which the moduli oscillation dominates the energy density. In such a case, p takes
2/3, which is the same value as the matter-dominated 3D universe.

3.6 Evolution of 3D space

The expression (3.53) can be rewritten as

t− tref '
∫ x

xref
dx̃

dĀ

dx
(x̃)
√

3
C1e−3Ā(x̃) + ρrad(x̃)

, (3.56)

where10

ρrad(x) = gdof
8π3b6∗x

6 v
ap
ρ (x). (3.57)

10Precisely, ρrad(x) should be written as ρrad(Ā(x)).
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Figure 5. The time evolution of the ratio ρrad/ρ̃tot. The blue solid and the red dashed lines
represent the full numerical calculations and the approximate ones, respectively. The lines from
bottom to top correspond to βI = 10, 12.5, 15 (left plot) and βI = 15, 17.5, 20 (right plot). The other
parameters are chosen as (3.42). The reference time is chosen as tref = 10000.

From (D.7), dĀ/dx is given by

dĀ

dx
(x) =


1
c

(j)
2

(
1
x
− c

(j)
1

c
(j)
1 x+ c

(j)
2

)
(xj < x ≤ xj+1 ≤ 10)

x−1 (x > 10)
, (3.58)

and from (D.10)–(D.13), e−3Ā(x) is given by

e−3Ā(x) =



(
Kk(x)

arefKk(xref)

)3
(xref ≤ x ≤ xk+1)(

Kj(x)
arefKk(xref)Kk+1(xk+1) · · ·Kj(xj)

)3

(xj < x ≤ xj+1)(
arefx

10 Kk(xref)Kk+1(xk+1) · · ·KJ−1(xJ−1)
)−3

(x > 10)

. (3.59)

From these expressions, we can numerically compute the 3D scale factor a ' eĀ at
an arbitrary time through the auxiliary variable x, which is the (normalized) inverse
temperature. This approximation makes it easier to compute a at a much later time than
t = tref , which cannot practically be obtained by the full numerical computation.

Here we check the validity of these approximation by comparing with the results of the
full numerical computation. For t ≥ tref , the total energy density ρ̃tot is expressed as

ρ̃tot ≡ C1e
−3Ā + ρrad(Ā). (3.60)

Figure 5 shows the ratio of the radiation energy density to the total energy density ρrad/ρ̃tot

as a function of t. The blue solid lines represent the full numerical results and the red
dashed lines represent the approximate ones obtained by using (3.57) and (3.59). The
constant C1 defined in (3.51) is determined by numerically calculating the time evolution
of the moduli up to t = tref . We can see that our approximation well reproduces the full
numerical results.
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Figure 6. The effective power p defined in (3.55) (left plot) and the reciprocal of wrad defined
in (3.62) (right plot) as functions of t. The (purple) solid, (blue) dashed, (green) dotted and (red)
dotdashed lines represent the cases of βI = 10, 12.5, 15 and 20, respectively. The constant t0 in (3.55)
is chosen as t0 = −146,−306,−548 and −1332 for those cases. The other parameters are chosen
as (3.42) with bI = b∗ and σI = σ∗.

Using our approximate expressions, we can see how the time evolution of various
quantities become the usual 4D ones. For example, the “effective power” p defined in (3.55)
is calculated as

p = (t− t0) ˙̄A ' {t(x)− t0}
dĀ

dx
(x)

{
dt

dx
(x)
}−1

=
{
tref − t0 +

∫ x

xref
dx̃

dĀ

dx
(x̃)
√

3
C1e−3A(x̃) + ρrad(x̃)

}√
C1e−3A(x) + ρrad(x)

3 . (3.61)

Combining this and (3.56), we obtain p as a function of t. The constant t0 is chosen so that
p is almost independent of t at earlier times t ≤ tref . Similarly we can obtain the equation
of state:

wrad ≡
prad

3
ρrad (3.62)

as a function of t. Notice that its reciprocal w−1
rad measures the effective space dimensions

that the radiation feels. Figure 6 shows the time evolutions of p and w−1
rad computed by

the above approximations. In the case of βI = 10, we can see that p changes from 5/9,
which corresponds to the radiation-dominated 5D universe, to 2/3, which corresponds to
the oscillating-moduli-dominated 3D universe, as expected. For lower initial temperatures,
p once decreases and approaches to 1/2, which corresponds to the radiation-dominated 3D
universe, then turns to increase due to the dominance of the moduli oscillation. From the
right plot of figure 6, we can see that the effective space dimensions decreases from 5 to 3
during the period 106 < t < 108. The number of the effective dimensions are reduced to 3
at later times for lower initial temperatures.
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Figure 7. The ratio ρrad/ρ̃tot at t = tref as functions of BI − B∗ with σI = σ∗ (left plots) and
σI − σ∗ with BI = B∗ (right plots). The upper plots are in the case of m/m(1)

KK = 10 (σ∗ = 15.9),
and the lower plots are in the case of m/m(1)

KK = 0.1 (σ∗ = 6.6). The red solid, the orange dashed,
the green dotted, the blue dotdashed and purple solid lines correspond to βI = 10, 12.5, 15, 20 and
30, respectively.

4 Conditions for radiation dominance

4.1 Dependence on initial displacements of moduli

In this subsection, we discuss the dependence of the initial displacement of the moduli ∆BI ≡
BI −B∗ and ∆σI ≡ σI − σ∗ on the evolution of the universe. As shown in figure 6, it takes
long time until the moduli oscillation dominates the total energy density of the universe
when the radiation dominates at t = tref . In such a case, if the moduli decays before
the oscillation energy dominates, the universe does not experience the moduli-oscillation-
dominated era. This never happens when the moduli stabilization procedure is described
in the 4D EFT (i.e., b∗, β � m−1). Thus, in this section, we aim to clarify in what case
such unusual situations occur. Notice that the time evolution of the 3D scale factor a is
determined by the total energy density ρ̃tot. Hence if the ratio ρrad/ρ̃tot is close to one at
t = tref , the radiation-dominated era lasts for a long time. Figure 7 shows this ratio at
t = tref . In the case that m/m(1)

KK = 0.1 (lower plots) and the initial temperature is low,
the ratio is close to one only when ∆BI = ∆σI = 0, which corresponds to the case that the
moduli have already been stabilized at t = 0. Even small displacements from the stabilized
values lead to the dominance of the moduli oscillation. This is consistent with the analysis
in the 4D EFT. In contrast, in the case that m/m(1)

KK = 10 (upper plots), the radiation
contribution is still non-negligible at t = tref also for non-zero displacements. Note that the
moduli stabilization cannot be described in the context of the 4D EFT in this case.
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We should also note that even if the moduli have been stabilized at t = 0 (i.e.,
∆BI = ∆σI = 0), the contribution of the moduli oscillation becomes non-negligible at
t = tref when m/m

(1)
KK � 1 and the initial temperature is high. This indicates that the

moduli starts to oscillate due to the pressure in the extra compact space prad
2 . We will

discuss this issue in the next subsection.

4.2 Effects of the pressure prad
2

If no radiation exists, the radiation, the moduli are safely stabilized for any initial values BI
and σI. In the presence of the radiation, however, this becomes nontrivial since the pressure
in the S2 space prad

2 pushes the moduli from the stabilized values. This effect is relevant
only at early times because prad

2 is rapidly damped to zero. Still, it gives a significant effect
on the evolution of the moduli in some cases, as we have seen in the upper plots of figure 7.
In this subsection, we analyze the moduli evolution equations focusing on early times and
keeping the prad

2 term, which was neglected in section 3.4.
When β � b∗ (i.e., the temperature is much higher than m

(1)
KK), the pressure in the

compact space prad
2 is almost independent of the moduli,

ρrad ' 10gdof
π3β6 , prad

2 ' 2gdof
π3β6 . (4.1)

In this case, the moduli evolution equations become inhomogeneous differential equations.
Including prad

2 , the evolution equation (3.34) is modified as(
ϕ̈1
ϕ̈2

)
= −

(
λ1

λ2

)(
ϕ1
ϕ2

)
+ 2e

3
2Aprad

2

(
cos θ
− sin θ

)
+ · · · , (4.2)

where λ1,2, ϕ1,2 and θ are defined in (3.35), (3.36) and (3.37). We have neglected terms
involving Ä. From (3.9) and the fact that vβ(x) ' 3/5 for x� 1, we can express the inverse
temperature as β ' βIa

3/5, and thus obtain

ρrad ' 10gdof
π3β6

I
e−

18
5 Ā ≡ C2e

− 18
5 Ā,

prad
2 ' 2gdof

π3β6
I
e−

18
5 Ā = C2

5 e−
18
5 Ā. (4.3)

If we assume that ˙̄A(t) ≤ ˙̄A(0)� λ1, (3.45) can be approximated as (3.49). Thus the
energy density of the moduli oscillation is estimated as

ρosc ≡ ρ̃tot − ρrad = e−3Ā

2
(
ϕ̇2

1 + ϕ̇2
2 + λ1ϕ

2
1 + λ2ϕ

2
2

)
. (4.4)

Here we assume that

C1I ≡
1
2
(
ϕ̇2

1 + ϕ̇2
2 + λ1ϕ

2
1 + λ2ϕ

2
2

)
(4.5)

is almost independent of the time t. Then, similarly to (3.52), we can express ˙̄A as

˙̄A '
√

1
3
(
C1Ie−3Ā + C2e

− 18
5 Ā
)
, (4.6)
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which leads to

t '
∫ Ā

1
dz

√
3

C1Ie−3z + C2e
− 18

5 z
'


2√

3C1I

(
e

3
2 Ā − 1

)
for C1I � C2

5
3
√

3C2

(
e

9
5 Ā − 1

)
for C1Ie

3
5 Ā � C2

. (4.7)

By taking the inverse function, the 3D scale factor is expressed as

a(t) = eA(t) '



(
1 +
√

3C1I
2 t

)2/3

for C1I � C2(
1 + 3

√
3C2
5 t

)5/9

for C1Ie
3
5 Ā � C2

. (4.8)

Therefore, we find the time dependence of the inhomogeneous term in (4.2) as

2e
3
2Aprad

2 ' 4gdof
π3β6

I
e−

21
10 Ā(t) '


2C2

5

(
1 +
√

3C1I
2 t

)− 7
5

for C1I � C2

2C2
5

(
1 + 3

√
3C2
5 t

)− 7
6

for C1Ie
3
5 Ā � C2

. (4.9)

To illustrate the situation, we roughly approximate this as

2e
3
2Aprad

2 ∼ 2C2
5 (1 + αt)−1 , (4.10)

where α ∼
√
C1I for C1I � C2, and α ∼

√
C2 for C1I ≤ C1Ie

3Ā/5 � C2. Then (4.2) can be
solved as

ϕ1(t) = ϕ1I

{
cos

(√
λ1t
)

+ 3HI
2
√
λ1

sin
(√

λ1t
)}
− 2C2 cos θ

5α
√
λ1
G
(√

λ1t;
√
λ1
α

)
,

ϕ2(t) = ϕ2I

{
cos

(√
λ2t
)

+ 3HI
2
√
λ2

sin
(√

λ2t
)}

+ 2C2 sin θ
5α
√
λ2
G
(√

λ2t;
√
λ2
α

)
, (4.11)

where

G(z; c) ≡ {Si(z + c)− Si(c)} cos(z + c)− {Ci(z + c)− Ci(c)} sin(z + c). (4.12)

The functions Si(z) and Ci(z) are trigonometric integrals defined by

Si(z) ≡
∫ z

0
dw

sinw
w

, Ci(z) ≡ −
∫ ∞
z

dw
cosw
w

. (4.13)

We have used the initial conditions,

ϕ1(0) = ϕ1I ≡ 2∆BI cos θ + ∆σI sin θ, ϕ̇1(0) = 3
2Ȧ(0)ϕ1I,

ϕ2(0) = ϕ2I ≡ −2∆BI sin θ + ∆σI cos θ, ϕ̇2(0) = 3
2Ȧ(0)ϕ2I,

Ȧ(0) =
√

1
3

{
2e−σI

(
1− e∆σI−∆BI

)2 + m2

2 (∆σI)2 + C2

}
≡ HI, (4.14)

where ∆BI ≡ BI −B∗ and ∆σI ≡ σI − σ∗.
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Figure 8. The profiles of H(z; c). In the left plot, the parameter c is chosen as c =
10−4, 10−2, 1, 102, 104 from top to bottom. The right plot shows the first peak value of H(z; c)
as a function of γ ≡ ln10 c.

In order to see the impact of prad
2 on the spacetime evolution at early times, we focus

on the case of ∆BI = ∆σI = 0. Namely, the moduli have already been stabilized at
the beginning of the radiation-dominated era. Then the energy density of the moduli
oscillation (4.4) is estimated as

ρosc = 2C2
2

25α2 e
−3Ā(t)

{
cos2 θH

(√
λ1t;
√
λ1
α

)
+ sin2 θH

(√
λ2t;
√
λ2
α

)}
, (4.15)

where

H(z; c) ≡ G2(z; c) +
{
G′(z; c)

}2

= {Ci (z + c)− Ci (c)}2 + {Si (z + c)− Si (c)}2 . (4.16)

Figure 8 shows the profiles of the function H(z; c). As we can see from the left plot, H(z; c)
is almost independent of z when c � 1. In that case, H(z; c) ' ln2 c (see the right plot).
When c > 1 (γ > 0), H(z; c) is an oscillating function around 1/c2, whose first peak is
around z = 3 and H(3; c) ' 4/c2.

Here let us assume that

C1I � C2. (4.17)

Then, since α ∼
√
C2, (4.15) becomes

ρosc(t) ∼ 2C2
25 e−3Ā(t)

{
cos2 θH

(√
λ1t;

√
λ1
C2

)
+ sin2 θH

(√
λ2t;

√
λ2
C2

)}
. (4.18)

Thus if

ρosc(tref) ∼
2C2e

−3Ā(tref)

25

{
cos2 θH

(√
λ1tref ;

√
λ1
C2

)
+ sin2 θH

(√
λ2tref ;

√
λ2
C2

)}
� ρrad(tref) ' C2e

− 18
5 Ā(tref) (4.19)
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Figure 9. R as a function of βI. The (purple) solid, (blue) dashed, (green) dotted, and (red)
dotdashed lines correspond to m = 0.1, 0.01, 0.001 and 0.0001, respectively.

holds, the assumption (4.17) is justified. This condition is rewritten as

R � 1, (4.20)

where11

R ≡ 2
25
(
1 +

√
C2tref

)1/3
{

cos2 θH
(√

λ1tref ;
√
λ1
C2

)
+ sin2 θH

(√
λ2tref ;

√
λ2
C2

)}
.

(4.21)

In this case, the radiation energy is dominated at t = tref . If (4.21) does not hold, the
contribution of the moduli oscillation to the total energy density cannot be negligible, and
it will dominate after t = tref . Note that λ1, λ2 and θ are function of m and σ∗ (or m(1)

KK),
and C2 is a function of βI.

Figure 9 shows R as a function of the initial (inverse) temperature βI for various values
of m and σ∗ (or m(1)

KK). The other parameters are chosen as gdof = 100 and tref = 10000.
We can see that the (blue) dashed lines in the upper left and the lower right plots are
consistent with the result shown in figure 7. In the case of m = 0.01 and m(1)

KK = 0.001, the
11We have used the approximate expression in (4.8), and 3

√
3/5 ' 1.
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contribution of the moduli oscillation becomes non-negligible for β ∼ 10 even when the
initial moduli values are set at the stabilized values. In contrast, in the case of m = 0.01
and m(1)

KK = 0.1, the radiation contribution always dominates.
When m� m

(1)
KK, λ1 ' m(1)2

KK , λ2 ' m2 and tan θ � 1 (see (3.35) and (3.37)). In this
case, (4.21) reduces to

R ' 2
25

(
1 +

√
10gdof
π3

tref
β3

I

)1/3

H

m(1)
KKtref ;

√
π3

10gdof
m

(1)
KKβ

3
I

 , (4.22)

and is almost independent of λ2 ' m2. Recalling the behavior of H(z; c) (see the right plot
in figure 8), R is estimated as

R ∼


ln2
(
m

(1)
KKβ

3
I

) (
m

(1)
KKβ

3
I � 1

)
1

m
(1)2
KK β

6
I
� 1

(
m

(1)
KKβ

3
I � 1

) . (4.23)

We have assumed that the factor in front of H is O(1). Therefore, the moduli oscillation
dominates the total energy density when m(1)

KKβ
3
I � 1, while the its contribution is negligible

when m(1)
KKβ

3
I � 1. We can see these properties from the upper plots in figure 9.

Before concluding, we rewrite various mass scales using the 4D Planck mass MPl. In
order to count the mass dimension, we revive the 6D Planck mass M6 in the expressions.
Since the physical volume of S2 is12

V2 = 4π2b2∗M
−2
6 = π2eσ∗M−2

6 , (4.24)

the 4D Planck mass MPl is related to the 6D Planck mass M6 through

M2
Pl = V2M

4
6 = π2eσ∗M2

6 . (4.25)

Thus, we have

M6 = e−σ∗/2

π
MPl. (4.26)

The KK mass scale m(1)
KK is expressed as

m
(1)
KK =

√
2
b∗
M6 = 2

√
2e−σ∗/2M6 = 2

√
2e−σ∗/2 · e

−σ∗/2

π
MPl = 2

√
2

π
e−σ∗MPl. (4.27)

For example, M6 = 7.0× 1014 GeV and m(1)
KK = 1.8× 1012 GeV for σ∗ = 14.

The condition that the moduli oscillation dominates the total energy density m(1)
KKβ

3
I � 1

is expressed as

TI �
(
m

(1)
KK

)1/3
M

2/3
6 =

(
2
√

2
π

e−σ∗MPl

)1/3(
e−σ∗/2

π
MPl

)2/3

=
(

2
√

2
π

)1/3

e−2σ∗/3MPl > m
(1)
KK, (4.28)

where TI ≡ β−1
I is the initial temperature. We have used (4.27) at the last inequality,

12We regard b∗ and σ∗ as dimensionless constants.
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5 Summary

We analyze spacetime evolution during the moduli oscillation in a 6D model compactified
on S2 in the presence of the radiation. In our previous work [11], we studied the model
by numerically solve the field equations, and found that the radiation contribution to the
total energy density remains non-negligible for a long time in a situation that the moduli
stabilization dynamics cannot be described in the context of 4D EFT. This is in contrast
to the result obtained by the conventional 4D EFT approach. However, such a numerical
approach is available for only a limited range of the time. In fact, it is practically difficult to
pursue the evolution until the spacetime behaves like 4D. In the current work, we develop
a procedure to compute it for large t, and see the transition from 6D to 4D explicitly.

The evolution of the 3D scale factor is characterized by the power p defined in (3.55).
When the initial temperature is high enough, p monotonically increases up to 2/3, which
corresponds to the moduli-oscillation-dominated 4D universe. For lower initial temperatures,
it first decreases and approaches to 1/2, which corresponds to the radiation-dominated 4D
universe, and then turns to increase. This indicates that the radiation feels the decrease
of the effective space dimensions before the moduli oscillation dominates the total energy
density. In such a case, the universe never experiences the moduli-oscillation-dominated era
if the moduli decay before the dominance of the moduli oscillation.

We also study the conditions that the radiation remains to give a dominant contribution
to the total energy density for a long time. We found that such a situation occurs when the
moduli stabilization dynamics cannot be described in the context of 4D EFT.

Another important result we obtained is that even if the moduli have already been
stabilized at the beginning of the radiation-dominated era, the pressure in the extra compact
space prad

2 pushes the stabilized moduli and they start to oscillate again in some cases. This
occurs when the KK mass scale m(1)

KK and the initial temperature TI satisfy m � m
(1)
KK

and (4.28), respectively. In the case that the moduli stabilization is described in the context
of 4D EFT, this never happens because prad

2 is negligible in such a case.
In this work, we have neglected the decay of the moduli, which is essential to the

study of realistic scenarios. When m� m
(1)
KK, the (longer) lifetime of the moduli is roughly

estimated as

τmdl ∼
M2

6

m
(1)3
KK

=
(
eσ∗/2

2
√

2

)3

M−1
6 . (5.1)

For example, this is 6× 107 in the unit of M−1
6 for σ∗ = 14. Thus, we can see from figure 6

that the moduli decay before the moduli oscillation dominates the total energy density in
this case. Using (4.26), the lifetime (5.1) is rewritten as

τmdl ∼
(
eσ∗/2

2
√

2

)3

· πe
σ∗/2

MPl
= πe2σ∗

16
√

2MPl
. (5.2)

Thus, τmdl ∼ 5.5 × 10−32 s for σ∗ = 14 (m(1)
KK = 1.8 × 1012 GeV), and the moduli decay

much before the Big Bang Nucleosynthesis. Of course, this is just a rough estimation,
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and we need to specify the matter content and their interactions to the standard model
particles for the proper estimation. In the subsequent papers, we will take it into account
and investigate a full thermal history of the universe, incorporating the Standard Model
sector localized on a codimension-two brane [13–19].
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A Thermodynamic quantities

The dispersion relation of a 6D relativistic or massless particle is

kMkM = −k2
0 + 1

a2
~k2 + 1

b2
k2
θ + 1

b2 sin2 θ
k2
φ = 0. (A.1)

Thus the energy of the particle with the 3D momentum ~k = (k1, k2, k3) and the angular
momentum l on S2 is given by

Ek,l = k0 =

√
k2

a2 + l(l + 1)
b2

, (A.2)

where k ≡
√
~k2. Since each one-particle state is specified by ~k, l and the ‘magnetic quantum

number’ m = −l, · · · , l, we have (2l + 1) degenerate energy eigenstates for each ~k and l.
Hence the grand potential is expressed as

J(β, µ,V3,V2) = ±
∞∑
l=0

gdof(2l + 1)
2π2β

∫ ∞
0

dk k2 ln
(
1∓ e−β(Ek,l−µ)

)
= ∓gdofV3

π2β4 Li4(±eβµ)±
∞∑
l=1

gdof(2l + 1)V3
2π2β4

∫ ∞
0

dq q2 ln
(
1∓ e−

√
q2+c2

l
+βµ

)
,

(A.3)

where gdof denotes the degrees of freedom for the 6D relativistic particles, β is the inverse
temperature, µ is the chemical potential, and V3 ≡ a3 and V2 ≡ 4πb2 are the comoving
volume for the 3D space and the physical volume of S2, respectively. The upper (lower)
signs correspond to the case of bosons (fermions). At the second equality, we have rescaled
the integration variable and the KK masses as

q ≡ β

a
k, cl ≡ β

√
4πl(l + 1)
V2

= β
√
l(l + 1)
b

. (A.4)

The function Li4(z) in the second line of (A.3) is the polylogarithmic function. In the
following, we consider a situation in which e−cl+βµ � 1 for l ≥ 1. Then the grand potential
can be approximated as

J(β, µ,V3,V2) ' −gdofV3
2π2β4

{
±2Li(±eβµ) + eβµQ1

(
β

√
4π
V2

)}
, (A.5)
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where

Q1(x) ≡
∞∑
l=1

x2l(l + 1)(2l + 1)K2

(
x
√
l(l + 1)

)
. (A.6)

Here K2(z) is the modified Bessel function of the second kind.
From (A.3), various thermodynamic quantities are calculated as follows. The upper

(lower) signs represent the case of bosons (fermions).

Radiation energy density

ρrad = 1
V3V2

(
∂β −

µ

β
∂µ

)
(βJ)

' gdof
2π2β4V2

{
±6Li4(±eβµ) + eβµ (3Q1 +Q2)

}
, (A.7)

where

Q2(x) ≡ −xQ′1(x) =
∞∑
l=1

x3l3/2(l + 1)3/2(2l + 1)K1

(
x
√
l(l + 1)

)
. (A.8)

3D pressure

prad
3 = − 1

V2

∂J

∂V3
' gdof

2π2β4V2

{
±2Li4(±eβµ) + eβµQ1

}
. (A.9)

2D pressure

prad
2 = − 1

V3

∂J

∂V2
' gdofe

βµ

4π2β4V2
Q2. (A.10)

The arguments of the functions Q1 and Q2 are understood as β
√

4π/V2 = β/b.
We should note that

ρrad = 3prad
3 + 2prad

2 . (A.11)

The profiles of the functions x2Qi(x) (i = 1, 2, 3) are shown in figure 10.

B Conservation law

Including the radiation contribution, the energy-momentum conservation law is

∇MTMN ≡ ∂MTMN + ΓMMLT
L
N − ΓLMNT

M
L = 0, (B.1)

where

T tt = 1
2 σ̇

2 + eσ

8b4 + V (σ) + ρrad ≡ ρtot,

T ij = δi j

{
−1

2 σ̇
2 + eσ

8b4 + V (σ)− prad
3

}
≡ −δi jptot

3 ,

T 4
4 = T 5

5 = −1
2 σ̇

2 − eσ

8b4 + V (σ)− prad
2 ≡ −ptot

2 . (B.2)
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Figure 10. The profiles of x2Qi(x) (i = 1, 2, 3).

From (B.1) with N = t, we have

ρ̇tot + 3ȧ
a

(
ρtot + ptot

3

)
+ 2ḃ

b

(
ρtot + ptot

2

)
= 0, (B.3)

where the dot denotes the time derivative. The other components hold trivially. By using
the dilaton field equation in (2.9), the conservation law (B.3) is reduced to

ρ̇rad +
(

3ȧ
a

+ 2ḃ
b

)
ρrad + 3ȧ

a
prad

3 + 2ḃ
b
prad

2 = 0. (B.4)

Plugging (A.7), (A.9) and (A.10) into this, we obtain

β̇

β

{
±24Li4(±eβµ) + eβµ (12Q1 + 5Q2 +Q3)

−βµ
(
±6Li3(±eβµ) + eβµ (3Q1 +Q2)

)}
= 3ȧ

a

{
±8Li4(±eβµ) + eβµ (4Q1 +Q2)

}
+ ḃ

b
eβµ (2Q2 +Q3) , (B.5)

where

Q3(x) ≡ 2Q2(x)− xQ′2(x)

=
∞∑
l=1

x4l2(l + 1)2(2l + 1)K0

(
x
√
l(l + 1)

)
. (B.6)

The arguments of Q1,2,3 are understood as β/b.
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C Moduli masses

Here, we derive the mass eigenvalues for the moduli. The kinetic terms for b comes from
the Einstein-Hilbert term. Since

R = −6ä
a
− 6ȧ2

a2 −
4b̈
b
− 2ḃ2

b2
− 12ȧḃ

ab
− 2
b2

+ · · ·

= −6ä
a
− 6ȧ2

a2 − 4B̈ − 6Ḃ2 − 12ȧ
a
Ḃ − 2e−2B + · · · , (C.1)

where the ellipsis denotes terms involving the space derivatives, the Lagrangian terms for
the moduli are

L = −1
2R

(6) − 1
2∂

Mσ∂Mσ −
g2eσ

4 FMNFMN − 2e−σ − m2

2 (σ − σ∗)2

= (3Ḃ2 + e−2B) + 1
2 σ̇

2 − eσ−4B

8 − 2e−σ − m2

2 (σ − σ∗)2 + · · · . (C.2)

We have dropped total derivatives and terms involving ȧ or ä, which will be negligible at
late times. Using the stabilized values in (3.3), the moduli potential (3.2) is expanded as

Vmdl = 2
(
e−

σ
2 − e

σ
2−2B

4

)2

+ m2

2 (σ − σ∗)2

= 1
2 (δB, δσ)

(
16e−σ∗ −8e−σ∗

−8e−σ∗ m2 + 4e−σ∗

)(
δB

δσ

)
+ · · · , (C.3)

where δB ≡ B −B∗ and δσ ≡ σ − σ∗ are the fluctuation around the stabilized values, and
the ellipsis denotes higher order terms in them. Thus, after canonically normalizing the
moduli fluctuation modes, the quadratic terms in them are written as

L = 1
2(∂tδ̃B)2 + 1

2(∂tσ)2 − 1
2
(
δ̃B, δσ

) 8
3e
−σ∗ − 8√

6e
−σ∗

− 8√
6e
−σ∗ m2 + 4e−σ∗

(δ̃B
δσ

)
+ · · · , (C.4)

where

δ̃B ≡
√

6δB. (C.5)

We can diagonalize the mass matrix by the redefinition of the moduli (fluctuation) as

L = 1
2(∂tφ1)2 + 1

2(∂tφ2)2 + m2
1

2 φ2
1 + m2

2
2 φ2

2 + · · · , (C.6)

where the mass eigenvalues are

m2
1 ≡

1
6
(
3m2 + 20e−σ∗ −

√
9m4 + 24m2e−σ∗ + 400e−2σ∗

)
= m2

2 + 5
12m

(1)2
KK −

1
6

√
9m4 + 3m2m

(1)2
KK + 25

4 m
(1)4
KK ,

m2
2 ≡

1
6
(
3m2 + 20e−σ∗ +

√
9m4 + 24m2e−σ∗ + 400e−2σ∗

)
= m2

2 + 5
12m

(1)2
KK + 1

6

√
9m4 + 3m2m

(1)2
KK + 25

4 m
(1)4
KK , (C.7)
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and the redefined fields are

φ1 ≡
(
3m2

2 − 8e−σ∗
)
δ̃B + 4

√
6e−σ∗δσ√

9m4
2 − 48m2

2e
−σ∗ + 160e−2σ∗

=

(
6m2

2 − 2m(1)2
KK

)
δB +m

(1)2
KK δσ√

6m4
2 − 4m2

2m
(1)2
KK + 5m(1)4

KK /3
,

φ2 ≡
(
3m2

1 − 8e−σ∗
)
δ̃B + 4

√
6e−σ∗δσ√

9m4
1 − 48m2

1e
−σ∗ + 160e−2σ∗

=

(
6m2

1 − 2m(1)2
KK

)
δB +m

(1)2
KK δσ√

6m4
1 − 4m2

1m
(1)2
KK + 5m(1)4

KK /3
. (C.8)

When m� m
(1)
KK, they reduce to

m1 '
√

2
5m, m2 '

√
5
6m

(1)
KK, (C.9)

and

φ1 '
√

2
5 (3δB + δσ) , φ2 '

√
3
5 (−2δB + δσ) . (C.10)

When m� m
(1)
KK, the above expressions are approximated as

m1 '
√

3m(1)
KK, m2 ' m, (C.11)

and

φ1 '
√

6δB, φ2 '
√

3
131 (16δB + δσ) . (C.12)

Therefore, we cannot discuss the stabilization of the size modulus in the context of 4D EFT
in this case.

D Derivation of (3.13)

From (3.9), we obtain ∫ βj+1

β

dβ̃

β̃vap
β (β̃/b∗)

=
∫ aj+1

a

dã

ã
= ln aj+1

a
, (D.1)

where aj ≡ a(βj), for xj < β/b∗ ≤ xj+1(≤ 10). The l.h.s. of (D.1) is calculated as∫ xj+1

β/b∗

dx

xvap
β (x) =

[
1
c

(j)
2

ln x

c
(j)
1 x+ c

(j)
2

]xj+1

β/b∗

= 1
c

(j)
2

ln
(
Bj
c

(j)
1 β + c

(j)
2 b∗

β

)
, (D.2)

where

Bj ≡
xj+1

c
(j)
1 xj+1 + c

(j)
2

= (j + 1)∆
c

(j)
1 (j + 1)∆ + c

(j)
2
. (D.3)

Thus, we can express a as a function of β as

a(β) = aj+1

(
1
Bj

β

c
(j)
1 β + c

(j)
2 b∗

)1/c(j)
2

, (D.4)

for xj < β/b∗ ≤ xj+1(≤ 10).
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For β > 10b∗, the corresponding equation to (D.1) is

ln a

aJ
=
∫ β/b∗

10

dx

x
= ln β

10b∗
, (D.5)

which leads to

a(β) = aJβ

10b∗
. (D.6)

From (D.4) and (D.6), we have

A(x) =


Aj+1 −

1
c

(j)
2

ln
(
Bj
c

(j)
1 x+ c

(j)
2

x

)
(xj < x ≤ xj+1 ≤ 10)

AJ + ln x

10 (x > 10)
, (D.7)

where x ≡ β/b∗ and Aj ≡ ln aj .
For the reference time tref , we define the integer k so that xk < β(tref)/b∗ ≤ xk+1.

Then, from (D.4), we obtain

aref = ak+1
Kk(xref)

, (D.8)

where aref ≡ a(tref), xref ≡ β(tref)/b∗, and

Kj(x) ≡
(
Bj
c

(j)
1 x+ c

(j)
2

x

)1/c(j)
2

=
(

xj+1

c
(j)
1 xj+1 + c

(j)
2
· c

(j)
1 x+ c

(j)
2

x

)1/c(j)
2

. (D.9)

Therefore, using (D.4) repeatedly, we have

a(x) = ak+1
Kk(x) = arefKk(xref)

Kk(x) , (D.10)

for xref ≤ x ≤ xk+1,

a(x) = ak+2
Kk+1(x) = ak+1Kk+1(xk+1)

Kk+1(x) = arefKk(xref)Kk+1(xk+1)
Kk+1(x) , (D.11)

for xk+1 ≤ x ≤ xk+2,

a(x) = aj+1
Kj(x) = ajKj(xj)

1
Kj(x) = aj−1Kj−1(xj−1)Kj(xj)

1
Kj(x)

= · · · = ak+1Kk+1(xk+1) · · ·Kj(xj)
1

Kj(x)

= arefKk(xref)Kk+1(xk+1) · · ·Kj(xj)
1

Kj(x) , (D.12)

for xj < x ≤ xj+1 ≤ xJ = 10, and (D.6) is expressed as

a(x) = aref
x

10Kk(xref)Kk+1(xk+1) · · ·KJ−1(xJ−1), (D.13)

for x > 10.
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