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1 Introduction

One of the striking features of the original AdS/CFT correspondence [1–3] is that a theory
of gravitation is mapped into a theory of entirely non-gravitational quantum fields. This
mapping is formulated by imposing the Dirichlet boundary condition for the bulk metric
and by taking the boundary metric as a non-dynamical source term for boundary quantum
fields. Afterward, the role of boundary conditions in AdS/CFT correspondence has been
studied in more detail and it turned out that modifications of the boundary conditions
correspond to various deformations of boundary CFTs. A number of possible deformations
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of AdS/CFT correspondence have been considered, such as the inclusion of multi-trace
interactions and some dynamical fields on the boundary [4]. An interesting study along this
line is the proposal by Compere and Marolf [5], in which the boundary metric is promoted
to a dynamical field induced by the boundary CFTs. This is done by adding certain
boundary counter-terms to the action, the prescription of which essentially corresponds to
changing the boundary conditions for the bulk gravity and has been applied to, for instance,
cosmology in semiclassical regime [6], as well as holographic superconductors [7].1 It is of
considerable interest to further study dynamical gravity coupled with quantum fields in the
context of deformed AdS/CFT correspondence.

The main purpose of this paper is to present a general scheme to formulate the
semiclassical Einstein equations on the AdS conformal boundary, following the idea of [5],
and discuss possible uses of such holographic semiclassical equations, providing some simple
example. In order to treat the boundary metric as a dynamical variable that satisfies the
Einstein equations with the source of vacuum expectation value for strongly interacting
CFT stress-energy tensor, the bulk metric is required to satisfy general (mixed-)boundary
conditions, rather than the Dirichlet boundary condition at the AdS boundary. Changing
boundary conditions can be achieved by adding the Einstein-Hilbert term to the boundary
CFT action. In other words, the semiclassical Einstein equations for the boundary metric
plays the role of mixed-boundary conditions for the bulk Einstein equations. We explicitly
describe our prescription for obtaining holographic semiclassical Einstein equations in the
case that the bulk and boundary geometries are given by the d+ 1 and d-dimensional AdS
metrics with boundary CFTs being in the conformal vacuum state. By inspecting bulk and
boundary perturbations, we find that the following dimensionless parameter [see eq. (2.35)
below] controls the contribution from d-dimensional boundary CFT:

γd := GdL

πGd+1

(
L

`

)d−2
, (1.1)

where Gd+1, Gd, and L, `, denote the bulk and boundary gravitational couplings and
corresponding curvature radius, respectively. This is the universal parameter, common
to all our geometrical settings, that represents the ratio of the strength of the boundary
quantum stress-energy 〈Tµν〉 with respect to that of the boundary cosmological constant
Λd, and that specifies boundary dynamics, e.g., stability property and phase transition. As
a concrete example of the application of our scheme, we study linear perturbations of the
4-dimensional AdS bulk with the BTZ boundary metric and demonstrate that the BTZ
black hole with vanishing expectation value of the stress-energy tensor becomes unstable
due to the backreaction of boundary quantum stress-energy, when the parameter (1.1)
exceeds a certain critical value.

This paper is organized as follows. In the next section, we will provide a general
prescription for constructing semiclassical problems including the derivation of semiclassical
Maxwell equations coupled with R-current, as well as semiclassical Einstein equations

1In [7], instead of gravity, boundary Maxwell fields are promoted to dynamical fields satisfying semiclassical
Maxwell equation coupled to boundary U(1) current. See also [8] for boundary dynamical gauge fields with
mixed boundary conditions, and [9] for an application to heavy ion physics.
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coupled with boundary CFTs. To be concrete we in particular apply the prescription
to derive the semiclassical Einstein equations in d-dimensional AdS boundary and study
perturbations thereof. We find the universal parameter γd. Then, in section 3, we consider
the case in which the boundary geometry is described by BTZ metric and show that due to
the backreaction from boundary CFT stress-energy, BTZ black hole becomes unstable when
our universal parameter exceeds the critical value. Section 4 is devoted to summary and
discussions. As an application of our holographic semiclassical formulations, we show how
to calculate permittivity and permeability by using the holographic semiclassical Maxwell
theory at finite temperature in appendix A. In appendix B, we provide concrete expression
of the vacuum expectation value of CFT stress-energy tensor. Appendix C provides some
detailed formulas for perturbations of the holographic semiclassical Einstein equations.

2 Holographic semiclassical problems

In this section, we describe how to formulate semiclassical problems in the context of
holography. Our main interest is in the boundary Einstein gravity sourced by the expectation
values of CFT’s stress-energy tensor, but the prescription works for a broader class of
semiclassical problems.

2.1 Notation and conventions

We are concerned with (d+1)-dimensional AdS bulk spacetime (M,GMN ) and its conformal
completion with d-dimensional conformal boundary ∂M . We consider, inside the bulk, a
set of d-dimensional hypersurfaces Σz, parametrized by z ∈ R+ with induced metrics gµν
which foliate (a part of) M and admit the limit hypersurface Σ0 := limz→0 Σz on (a part
of) the conformal boundary ∂M . We also introduce, on each Σz, a d-dimensional metric
g̃µν = Ω2gµν with an appropriate function Ω so that the limit Gµν := limz→0 g̃µν provides a
regular metric on Σ0 ⊂ ∂M . See figure 1. Our primal interest is this metric Gµν , which is
promoted to be a boundary dynamical field. As already done above, we express tensors
in (d+ 1)-dimensions with upper case latin indices M,N, . . . and those in d-dimensional
hypersurfaces with greek indices. So, for example, a vector field in the bulk is denoted by
AM , whose pull-back to Σz is by Aµ, whereas the corresponding vector field on Σ0 ⊂ ∂M
by Aµ. When we need to distinguish which metrics, either Gµν , gµν , or g̃µν , tensors under
consideration are associated with, we will explicitly write them as the argument so that for
instance, the curvature tensor on the conformal boundary is expressed by Rµνρσ = Rµνρσ[G].

In a neighborhood of given Σz one can always take, at least locally, a coordinate system
XM = (z, xµ) in which

ds2
d+1 = GMN dX

MdXN

= Ω−2(z) dz2 + gµν(x, z) dxµdxν

= Ω−2(z)
{
dz2 + g̃µν(x, z) dxµdxν

}
. (2.1)

In this coordinate system, the metric on the conformal boundary is

Gµν(x) = lim
z→0

Ω2(z)gµν(x, z) = lim
z→0

(
z

L

)2
gµν(x, z) , (2.2)
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AdS Bulk 

Figure 1. In the (d+1)-dimensional bulk M , we consider a foliation by d-dimensional hypersurfaces
{Σz}, which has the limit Σ0 on the AdS conformal boundary ∂M .

metric & index covariant derivative curvature length scale
bulk M GMN ∇M RKLMN [G ] L

boundary Σ0 ⊂ ∂M Gµν Dµ Rµνρσ := Rµνρσ[G ] `

hypersurface Σz gµν Dµ Rµνρσ[ g ]
hypersurface Σz g̃µν D̃µ R̃µνρσ := Rµνρσ[ g̃ ]

Table 1. A summary of notation.

and the extrinsic curvature Kµν of Σz is defined by

Kµν = −1
2Ω∂zgµν . (2.3)

It is sometime more convenient to use the conformally rescaled metric, g̃µν = Ω2 gµν

with the conformal factor behaving as Ω(z) z→0−−−→ z/L, and the corresponding extrinsic
curvature,

K̃µν := −1
2 ∂z g̃µν = ΩKµν − gµν Ω Ω′(z) . (2.4)

Here and hereafter the prime “ ′ ” denotes the derivative by z, and the indices of tensors
with “ ˜ ” are raised and lowered by g̃µν , g̃µν . For later convenience, we summarize our
notation and conventions in the table 1.

2.2 Holographic semiclassical Maxwell equations

Before going into the semiclassical Einstein equations, to illustrate our basic idea in a
simpler example, we first consider the semiclassical problem of a 3-dimensional U(1) gauge
field Aµ coupled with R-current 〈 J µ 〉, studied in [7].2 Our starting point is the effective

2Note that although R-symmetry is a global symmetry, it is promoted to a local symmetry when it
couples with Aµ [10].
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action Seff, obtained from the partition function Z[A ] of the boundary gauge field Aµ as

Seff = − 1
4 e2

∫
d3x FµνFµν − i lnZ[A ] , (2.5)

where e denotes the U(1) coupling constant. The partition function gives rise to the
expectation value of the current as

〈 J µ 〉 := −i δ lnZ[A ]
δAµ

. (2.6)

Applying variational principle to Seff, we obtain the semiclassical Maxwell equations for the
gauge field,

1
e2 ∂νF

µν = 〈 J µ 〉 . (2.7)

It is in general difficult to evaluate Z[A ] as a functional of Aµ, but the AdS/CFT corre-
spondence makes it possible to compute Z[A ] in terms of the classical solutions of the bulk
U(1) gauge field AM in the asymptotically AdS4 as follows:3

−i lnZ[A ] = Son-shell
bulk [A ] , (2.8a)

Sbulk[A ] = − 1
4 g2

∫
M
d4X

√
−G FMNFMN , (2.8b)

where the classical solution AM is supposed to satisfy the Dirichlet boundary condition
Aµ
∣∣
Σ0

= Aµ at the boundary Σ0.4
In general, when the source term for some field of interest has a gravitational dual in

the holographic context, one can expect to formulate the semiclassical problem of the field
by adding the self-action and by applying the variational principle. To see this is indeed
the case, let us consider, instead of (2.5), the following effective action,

Seff =
∫
d3x

(
− 1

4 e2 F
µνFµν + J µextAµ

)
+ Son-shell

bulk [A ]

=
∫

Σ0
d3x

(
− 1

4 e2 F
µνFµν + J µextAµ

)
− 1

4 g2

∫
M
d4X

√
−G FMNFMN . (2.9)

Note that for later convenience, we have added the extra term J µext which describes all
contributions to the current other than that from the dual field theory. Taking the variation
of this action will provide the desired semiclassical equations of motion for Aµ. In the
variation, one does not need to impose the Dirichlet condition at the AdS boundary. Instead,
the semiclassical equations of motion take the place of the boundary conditions.

Let us see, in more detail, the above formulation of the semiclassical problem (2.9) in
a concrete setting. Consider a 4-dimensional asymptotically AdS bulk geometry, whose
metric takes the asymptotic form in the Poincaré chart XM = (z, xµ), xµ = (t, x, y) as

ds2
4
z→0−−−→

(
L

z

)2 (
dz2 + ηµν dx

µdxν
)
. (2.10)

3Note that for R-current in AdS4/CFT3, counter terms are not needed.
4AM should also satisfy certain boundary or regularity conditions inside the bulk.
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With variations of AM and Aµ, the action (2.9) changes as

δSeff = 1
e2

∫
Σ0
d3x ∂ν

(
Fµν δAµ

)
+
∫

Σ0
d3x

(
−∂νF

µν

e2 + J µext + ηµν

g2 Fzν

)
δAµ

+ 1
2 g2

∫
M
d4X

√
−G

(
∇MFMN) δAN , (2.11)

where the contribution to δSon-shell
bulk is assumed to stem only from Σ0.5 Since, according to

the AdS/CFT correspondence, the expectation value of the R-current is given by

〈 J µ 〉 := δ

δAµ
Son-shell
bulk [A ] = ηµν

g2 Fzν
∣∣
z=0 , (2.12)

when ∇NFMN = 0 holds in the bulk, eq. (2.11) becomes

δSeff = 1
e2

∫
Σ0
d3x ∂ν

(
Fµν δAµ

)
+
∫

Σ0
d3x

(
−∂νF

µν

e2 + J µext + 〈 J µ 〉
)
δAµ . (2.13)

In this way, applying the variational principle to eq. (2.9) and noting δAµ 6= 0, we obtain
the bulk equations of motion ∇NFMN = 0 and the boundary semiclassical Maxwell
equations (2.7). As a consequence, the semiclassical problem (2.7) in the holographic
context reduces to the problem of solving the following set of the bulk classical Maxwell
equations and the boundary semiclassical Maxwell equations,

0 = ∇NFMN , (2.14a)

0 = ∂νFµν −
e2

g2 η
µνFzν

∣∣
z=0 − e

2 J µext , (2.14b)

under appropriate boundary conditions, if needed, in the bulk. Note that setting e2 → 0
corresponds to the Dirichlet boundary condition, since in this limit, the (finite) self-action
for Aµ decouples from the bulk action in (2.9), and thus can be regarded as a background
field. On the other hand, the limit e2 →∞ corresponds to the Neumann conditions [11]
(see also [12]), since in this case, with setting Jext = 0, one finds Fzµ|bdy = 0. A simple
application of the above set of equations is given in appendix A.

2.3 Holographic semiclassical Einstein equations

The prescription for the holographic semiclassical problem illustrated in section 2.2 applies
to the derivation of semiclassical Einstein equations. Our effective action for boundary
semiclassical problem is now the following:

Seff =
∫

Σ0

ddx
√
−G

16πGd
(R− 2 Λd) + Sbulk[G ] , (2.15)

with Gd, Λd being the d-dimensional gravitational constant and cosmological constant,
respectively. Here Sbulk presents the action for the gravity dual used in the standard

5This is equivalent to assuming that Son-shell
bulk be a functional only of the boundary field Aµ.
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AdS/CFT correspondence.6 For purely gravitational case, our bulk action Sbulk is given by

Sbulk[G ] = SEH+GH[G ] + Sct[ g ] , (2.16a)

SEH+GH[G ] =
∫
M

dd+1X
√
−G

16πGd+1

{
R[G ] + d (d− 1)

L2

}
+
∫

Σ0

ddx
√
−g

8πGd+1
K , (2.16b)

Sct[ g ] = −
∫

Σ0

ddx
√
−g

16πGd+1

{
2 d− 1

L
+ L

d− 2 R[ g ] + · · ·
}
, (2.16c)

where Gd+1 and L denote, respectively, the (d + 1)-dimensional gravitational coupling
and the curvature length,7 and where in Sct, we have expressed, for simplicity, only terms
which are required in d ≤ 3. Note that as is often the case, we first evaluate the on-shell
value of each term in eq. (2.16a) on a certain “cutoff hypersurface” and then take the limit
toward the conformal boundary, accordingly K is also evaluated as the trace of the extrinsic
curvature of the cutoff hypersurface and taken the boundary limit. Now let us apply the
variational principle to Seff (2.15). When Sbulk is given by eq. (2.16), the variation of Seff
reduces to

δSeff =
∫

Σ0
ddx ∂µ

( √
−G

16πGd
· · ·
)
−
∫

Σ0

ddx
√
−G

16πGd

(
Rµν−R2 G

µν+ΛdGµν
)
δGµν

−
∫
M

dd+1X
√
−G

16πGd+1

(
EinMN [G ]+Λd+1G

MN
)
δGMN+

∫
Σ0
ddx

δSon-shell
bulk [G ]
δGµν

δGµν

(2.17)

where EinMN denotes the Einstein tensor with respect to the bulk metric GMN . Note
that the last term has come from Sbulk and where we have considered the boundary term
contribution only from Σ0. Now, applying the variational principle with the condition
δGµν 6= 0, we obtain from (2.17) the following set of the bulk Einstein equations and
boundary semiclassical Einstein equations

EinMN [G ] + Λd+1G
MN = 0 , (2.18a)

Rµν − R2 G
µν + Λd Gµν = 8πGd 〈 T µν 〉 , (2.18b)

where the expectation value of the stress-energy 〈 T µν 〉 is given in terms of the on-shell
value of Sbulk, by

〈 T µν 〉 = 2√
−G

δSon-shell
bulk [G ]
δGµν

. (2.19)

Remarks:

1) When our boundary of interest Σ0 is a proper subset of ∂M , we need to impose
appropriate boundary conditions (i) at the rest of the conformal boundary ∂M \ Σ0,

6As can be seen in eqs. (2.16), in this paper, by “bulk action” Sbulk we mean the action which includes
counter-terms Sct so that Sbulk is already regularized and therefore its on-shell value is a functional of the
boundary dual Gµν .

7The corresponding cosmological constant is 2 Λd+1 = −d(d− 1)/L2.
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as well as (ii) at the corner ∂Σ0, and (iii) at inner boundaries (e.g., horizons), if exist,
inside the bulk.8 One might think of the asymptotic condition (2.2) as the imposition
of the Dirichlet boundary condition at Σ0. However, Gµν is now a dynamical variable
on Σ0 to be determined so as to satisfy eq. (2.18b). Therefore, (i)–(iii) are the places
to impose boundary conditions, in order to solve the whole system of eqs. (2.18). We
can, in principle, impose the Dirichlet boundary conditions9 there at (i)–(iii).

2) Similar to the case of semiclassical problem for Maxwell fields (2.14), setting Gd → 0
corresponds to the Dirichlet boundary condition for the bulk metric, while Gd →∞
to the Neumann boundary condition.

3) One way of solving the boundary value problem (2.18) is to use the shooting method
by transforming (2.18) into an “initial value problem” as follows. The right-hand side
of eq. (2.18b), or (2.19), is expressed as

δSon-shell
bulk [G ]
δGµν

= lim
z→0

L2

z2
δSon-shell

bulk [ g ]
δgµν

= lim
z→0

L2

z2

(
πµν + δSct

δgµν

)
, (2.20a)

πµν :=
δSon-shell

EH+GH
δgµν

=
√
−g

16πGd+1
(−Kµν + gµν K) , (2.20b)

where πµν denotes the momentum canonically conjugate to gµν , evaluated on a cutoff-
surface via eq. (2.18b). Then, one tries to find solutions of eq. (2.18) as a sort of initial
value problem of eq. (2.18a) by evolving toward inside the bulk from the initial data
(gµν , πµν) given (on a cutoff-hypersurface) by eq. (2.18b), until the solution eventually
matches the boundary conditions at (i)–(iii).

4) As we show in appendix B, 〈 Tµν 〉 given in (2.19) can be expressed in terms of the
conformally rescaled g̃µν , K̃µν — which have the regular boundary limits (see eq. (2.4)
for the definition)—as

〈 Tµν 〉= lim
z→0

1
8πGd+1L

[
L2 Einµν [G ]+Λd+1Gµν

(d−2)Ωd−2 +L2 2K̃K̃µν−g̃µν (K̃ρσK̃ρσ+K̃2)
2(d−2)Ωd−2

−Lg̃νρ
(
LΩ
d−2

∂

∂z
+1
)
K̃µ

ρ−δµρ K̃
Ωd−1

+ d−1
d−2

g̃µν
Ωd

{
L2 Ω2

(Ω′
Ω

)′
+1− d−2

2
(
1−LΩ′

)2}+· · ·
]
.

(2.21)

The first term of the right-hand side of eq. (2.21) vanishes due to bulk equation of
motion (2.18a) if there are no matter fields. For the case of asymptotically AdS4 (d = 3)

8For example, when studying, via eqs. (2.18), boundary dynamical gravity coupled with thermal CFTs,
one may consider an asymptotically AdS black hole spacetime as the dual bulk. In such a case, one needs to
impose some regularity condition at the horizon of the bulk black hole, in order to solve eq. (2.18a).

9Depending upon what kind of holographic setting one wants to consider, it may also be possible to
impose mixed boundary conditions as a further deformation of the AdS/CFT correspondence.
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bulk spacetime, eq. (2.21) is expressed in a simple form. In fact, in this case the
metric g̃µν has the following fall-off behavior toward the boundary z → 0 [13]:

g̃µν ∼
{
Gµν + g̃(2)

µν

(
z

L

)2
+ · · ·

}
+
{
g̃(3)
µν

(
z

L

)3
+ · · ·

}
. (2.22)

The two curly brackets describe, respectively, two linearly independent solutions of
eq. (2.18a) evaluated locally near z = 0, so that g̃(2)

µν is determined by Gµν , while g̃(3)
µν

is independent of Gµν (as far as the boundary conditions (iii) are not imposed). In
what follows, we call the first bracket slow mode and the second fast mode. Then, if
LΩ(z)/z can be Taylor-expanded as LΩ/z = 1 +O(z2), eq. (2.21) reduces to:

〈 Tµν 〉d=3 = 3
16πG4 L

(
g̃(3)
µν − Gµν g̃(3)

ρ
ρ
)
. (2.23)

2.4 Perturbation analysis of the holographic semiclassical problem

We study boundary dynamics by considering linear perturbations of the holographic semi-
classical Einstein equations (2.18) for AdS gravity coupled to CFTs.

2.4.1 Background

Let us consider, as our background geometry, AdSd+1 bulk with the curvature radius L,
which satisfies the bulk Einstein equation (2.18a), and AdSd boundary with the curvature
radius `. In this background, it is convenient to take the following coordinate system,

d̄s
2
d+1 = Ω−2(z)

(
dz2 + ḡµν(x) dxµdxν

)
(0 < z/` < π) , (2.24a)

Ω(z) = `

L
sin z

`
. (2.24b)

where ḡµν(x) denotes the background AdSd metric with the curvature length `. In what
follows, we express background quantities with “ ¯ ” so that, e.g., the covariant derivative
compatible with the background metric ḡµν is denoted by D̄µ. Note that in the limit
of either z → 0, or z/` → π, the metric (2.24a) approaches AdSd boundary, and in the
following, we take, without loss of generality, the limit z = 0 to consider our boundary
semiclassical Einstein equations. As we did already above, we denote background quantities
with bar, throughout our analysis.

We note that since each z=const. hypersurface Σ̄z with the background induced
metric ḡµν is totally geodesic, having the vanishing extrinsic curvature K̄µν = 0, eq. (2.21)
reduces to

〈 T̄µν 〉 = lim
z→0

−(d− 1)
4πGd+1 L

{
ḡµν

(
L

2 `

)d
sin4−d z

2 ` + · · ·
}
. (2.25)

This implies that when d is odd, without anomaly, conformal fields in pure AdSd boundary
is in the conformal vacuum state, satisfying the semiclassical Einstein equations (2.18b). In
particular, for d = 3, 〈 T̄µν 〉 = 0.
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2.4.2 Linear perturbations of the holographic semiclassical Einstein equations

On this background (2.24) with Ω(z) given by (2.24b), we consider metric perturbations
δGMN under the radial gauge δGzM = 0, so that the nontrivial part of the perturbations
are expressed as δGµν = Ω−2(z)hµν(x, z), or equivalently the whole metric becomes

ds2
d+1 = Ω−2(z)

[
dz2 + g̃µν(x, z)dxµdxν

]
=
(
`

L
sin z

`

)−2 [
dz2 + {ḡµν(x) + hµν(x, z)} dxµdxν

]
. (2.26)

In our background, each z = constant hypersurface Σ̄ is maximally symmetric with
the AdSd metric ḡµν , and can be used to decompose the perturbation variables hµν into
three types a la cosmological perturbations [14]: the tensor-type h(2)

T µν satisfying D̄νh
(2)
T µν =

h
(2)
T µ

µ = 0, the vector-type h(1)
T µ = 0 satisfying D̄µh

(1)
T µ = 0, and the scalar-type (hL, h(0)

T ),
with respect to hypersurfaces Σ̄, so that the perturbation variables are described as

hµν = hL ḡµν + P̄µν h
(0)
T + 2D̄(µh

(1)
T ν) + h

(2)
T µν , (2.27)

where we have introduced the traceless projection operator:

P̄µν := D̄(µD̄ν) −
1
d
ḡµν D̄

2 . (2.28)

Here and hereafter, the indices are raised and lowered by the background metric ḡµν and
ḡµν , and h := hµ

µ denotes the trace.
Note that on a compact Riemannian Einstein manifold, any second-rank symmetric

tensor field can uniquely be decomposed in this way [15]. However, such a tensor de-
composition result, in particular, the uniqueness, would not be the case for our present
setting with (Σ̄, ḡµν) now being a Lorentzian submanifold. In this paper we proceed our
analysis by assuming that the tensor decomposition results (2.27) hold. For convenience, the
perturbation quantities appearing in our holographic semiclassical Einstein equations (2.18)
are summarized in appendix C.2 [see eqs. (C.4)–(C.8)].

In what follows, we consider each tensorial type of perturbations separately. Since we
will apply the following perturbation formulas to the d = 3 case in the subsequent sections,
for convenience, we provide them by setting d = 3 below. Generalizing the formulas to the
general d case should be straightforward (Some of the key formulas are given in general
dimension d in appendix C).

Tensor-type perturbation h
(2)
Tµν . The bulk Einstein equations (2.18a) and the mixed

boundary condition (2.18b) reduce, respectively, to

∂2
zh

(2)
T µν − 2 Ω′

Ω ∂zh
(2)
T µν +

(
D̄2 + 2

`2

)
h

(2)
T µν = 0 , (2.29a)

and

− 1
π

(
L

`

)3 (
`2 D̄2 + 2

)
h

(2)
T µν

∣∣∣∣
z → 0

= γ3 ×
L∂zh

(2)
T µν

Ω2

∣∣∣∣
fast mode

, (2.29b)
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where the right-hand side of (2.29b) should be evaluated in terms only of the fast mode
of (2.22), and also where only terms relevant in d < 4 are expressed. Here we have introduced
the following dimensionless parameter:

γ3 := G3
G4

L2

π`
. (2.30)

Note that as we will see later, γ3 express how large the effect of dual CFT energy-stress
〈 Tµν 〉 is with respect to that of boundary cosmological constant Λ3/(8πG3).

Vector-type perturbation h
(1)
T µ. The bulk Einstein equations (2.18a) and the mixed

boundary condition (2.18b) reduce, respectively, to

0 =
(
D̄2 − 2

`2

)
∂zh

(1)
T µ , (2.31a)

0 = ∂

∂z

(
∂zD̄(µh

(1)
T ν)

Ω2

)
, (2.31b)

and

0 =
L∂zD̄(µh

(1)
T ν)

Ω2 . (2.31c)

Scalar-type perturbation (hL, h
(0)
T ). In terms of the gauge-invariant variable, which

is analogous to the cosmological curvature perturbation [14]

Φ := hL −
1
3 D̄

2 h
(0)
T , (2.32)

the bulk Einstein equations (2.18a) and the mixed boundary condition (2.18b) can be
expressed, respectively, as

0 = ∂

∂z

(
∂zhL

Ω

)
, (2.33a)

0 = D̄µ∂z

(
Φ + 1

`2
h

(0)
T

)
, (2.33b)

0 =
(
D̄2 − 3

`2

)
∂z

( Φ
Ω′
)
, (2.33c)

0 = P̄µν

{
∂2
z − 2 Ω′

Ω ∂z −
1
`2

}
Φ , (2.33d)

and (
D̄2 − 3

`2

)
Φ
∣∣∣∣
slow mode

= 0 , (2.33e)

1
3π

(
L

`

)3
P̄µν Φ

∣∣∣∣
slow mode

= γ3 × P̄µν
L∂zΦ

Ω2

∣∣∣∣
fast mode

. (2.33f)

Note that eq. (2.33d) can be rewritten as

0 = ∂

∂z

Ω′2
Ω2

∂

∂z

P̄µν Φ
Ω′ . (2.34)

– 11 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
2

2.4.3 The dimensionless parameter γd that controls boundary dynamics

As can be seen from eqs. (2.29b) and (2.33f), perturbations of the bulk Einstein equations
involve the dimensionless parameter γ3 defined by (2.30). This parameter can be generalized
to the case of general dimension d as

γd := Gd L

πGd+1

(
L

`

)d−2
, (2.35)

and can be derived from the following holographic consideration. Suppose that the bound-
ary conformal field theory has Ndof “degrees of freedom.”Since the boundary curvature
length scale is `, we can estimate 〈 Tµν 〉 ∼ Ndof/`

d. Then, the semiclassical Einstein
equations (2.18b) relate R ∼ 1/`2 and Gd 〈 Tµν 〉 ∼ GdNdof/`

d, implying 1/`2 ∼ GdNdof/`
d,

and therefore should involve a dimensionless parameter γd ∼ GdNdof/`
d−2. From the

AdS/CFT correspondence, we can also estimate that Ndof ∼ Ld−1/Gd+1 and hence obtain
the dimensionless parameter γd ∼ GdNdof/`

d−2 from the relation

Gd
`d−2

Ld−1

Gd+1
= Gd L

Gd+1

(
L

`

)d−2
= π γd . (2.36)

Note that if the d-dimensional boundary contains, e.g., a black hole with the mass
M , then we can introduce another dimensionless parameter GdM/`d−3 ∼ (r+/`)d−3, or
γBH := ` TBH ∼ r+/`. In such a case, the dimensionless parameter γBH specifies the
Hawking-Page phase transition on the boundary. The parameter γd ∼ GdNdof/`

d−2 is
involved even when a holographic system under consideration has zero-temperature.

One can also see that the parameter γd represents the ratio of the strength of the
boundary quantum stress-energy 〈Tµν〉 with respect to that of the boundary cosmological
constant Λd/(8πGd) = −4πGd(d− 2)(d− 1)/(8πGd`2). From eq. (C.7), one can estimate
δ〈 Tµν 〉 roughly as

δ〈 T 〉 ∼ 1
Gd+1 L

L∂zh

Ωd−1

∣∣∣∣
fast mode

∼ h(f)

Gd+1 L

(
L

`

)d
, (2.37)

where we denote hµν(x, z) ∼ δGµν(x) (1 + · · · ) + h
(f)
µν (x) (z/L)d (1 + · · · ). Then, on one

hand, the response K of the dual quantum field 〈 Tµν 〉 against the perturbations of the
boundary metric δGρσ can be estimated roughly as

K ∼ δ〈 T 〉
δG

∼ 1
Gd+1 L

(
L

`

)d h(f)

δG
. (2.38)

On the other hand, the contribution to the CFT stress-energy tensor from the cosmological
constant Λd = −(d− 1) (d− 2)/(2 `2) is estimated as T Λ

µν = −Λd Gµν/(8πGd), and thus its
response KΛ is

KΛ ∼ δ〈 T Λ 〉
δG

∼ Λd
Gd
∼ 1
Gd `2

. (2.39)

Therefore, assuming h(f)/δG = O(1), one can find the strength of 〈 Tµν 〉 compared with
Λd becomes

K
KΛ ∼

Gd `
2

Gd+1 L

(
L

`

)d h(f)

δG
∼ Gd L

Gd+1

(
L

`

)d−2
= π γd . (2.40)
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3 Semiclassical dynamics in 3-dimensional black holes

In this section, we study perturbative dynamics of 3-dimensional boundary gravity as an
application of our holographic semiclassical Einstein equations (2.18). As a solution of the
4-dimensional vacuum bulk Einstein equations (2.18a),

RMN = − 3
L2 GMN , (3.1)

we start with the AdS4 bulk with AdS3 boundary as our background geometry,

ds2
4 = Ω−2(z)

{
dz2 + ḡµν(x)dxµdxν

}
, Ω = `

L
sin
(
z

`

)
,

d̄s
2
3 = ḡµν(x)dxµdxν = −

(
r2

`2
−M

)
dt2 + dr2

r2

`2
−M

+ r2dϕ2 . (3.2)

Note that in the above expression of the AdS3 metric, we adopt the coordinates xµ = (t, r, ϕ)
so that d̄s2

3 = ḡµνdx
µdxν can manifestly be seen as the covering space of the static BTZ

black hole [16] with the length scale `. Our boundary metric ḡµν satisfies (2.18b) with
〈Tµν〉 = 0, namely,

Rµν = − 2
`2
ḡµν , (3.3)

and accordingly we refer to our background boundary AdS3 as the BTZ black hole with
vanishing expectation value of the stress-energy tensor. In this respect, our bulk metric ds2

4
can be viewed as the metric for (the covering space of) AdS black string.

3.1 Perturbed semiclassical Einstein equations

Now let us consider perturbation of the solution (3.2). We restrict our attention to the
tensor-type perturbation, h(2)

Tµν , which satisfies the transverse-traceless condition

D̄µh
(2)
Tµν = ḡµνh

(2)
Tµν = 0 . (3.4)

Then, from the Einstein equations (3.1), we obtain (2.29a), i.e.,

h(2)′′
Tµν + D̄2h

(2)
Tµν − 2Ω′

Ω h(2)′
Tµν + 2

`2
h

(2)
Tµν = 0 , (3.5)

where here and in the following the prime denotes the derivative with respect to z. By
making the following ansatz for separation of variables

h
(2)
Tµν(x, z) = ξ̂(z)Hµν(x) , (3.6)

we decompose eq. (3.5) into the 3-dimensional part

D̄2Hµν + 2
`2
Hµν = m2Hµν , (3.7)
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and the radial part

0 =
(
d2

dz2 − 2 Ω′(z)
Ω

d

dz
+m2

)
ξ̂ =

(
d2

dz2 −
2

` tan(z/`)
d

dz
+m2

)
ξ̂ , (3.8)

with a separation constant m2.
For convenience, we introduce the following coordinate w,

z = w

(
1− 1

12`2w
2 + 1

80`4w
4 + · · ·

)
, (3.9)

so that the metric reduces to the Fefferman-Graham form

ds2
4 = L2

w2 (dw2 + g̃µν(x,w)dxµdxν),

g̃µν(x,w) = g(0)µν(x) + w2g(2)µν(x) + w3g(3)µν(x) + · · · . (3.10)

Note that even if we expand g̃µν in terms of z instead of w, we still obtain the same
coefficients g(0)µν(x), . . . , until at O(z3) due to eq. (3.9).

As shown in [17], the coefficient g(2)µν is given by

g(2)µν = −Rµν + 1
4Rg(0)µν , (3.11)

where Rµν and R are the Ricci tensor and Ricci scalar for the boundary metric g(0)µν . Since
the perturbation of Rµν is written as

δRµν = −1
2

(
D̄2 + 6

`2

)
δg(0)µν = −

(
m2

2 + 2
`2

)
δg(0)µν , (3.12)

under the condition (3.7), we obtain

δR = ḡµν(0)δRµν = 0 ,

δRµν = −δg(2)µν −
3

2`2 δg(0)µν , (3.13)

where we have used the fact that

δg(n)
µ
µ = δg(n)µν ḡ

(0)µν = 0 , (3.14)

at any order n for the linearized perturbations under our metric ansatz (3.6), and eqs. (3.11)
and (3.12). Then, we can reduce the linearized semiclassical Einstein equations (2.18b) to

−δg(2)µν +
δg(0)µν

2`2 = 8πG3δ 〈 Tµν 〉 = 3
2π`γ3δg(3)µν , (3.15)

where we have used the formula [17]

〈 Tµν 〉 = 3L2

16πG4
g(3)µν . (3.16)
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Now note that under our ansatz (3.6), both δg(0)µν and δg(3)µν are proportional to
Hµν(x). Then, by expanding the solution of (3.8) as

ξ̂ = a0 + a1z + a2z
2 + a3z

3 + · · · , (3.17)

and using eqs. (3.9) and (3.10), we can reduce eq. (3.15) to the following simple relation,

a3 = − m2

3π`γ3
a0 . (3.18)

Under the coordinate transformation, η := (1− cos(z/`))/2, eq. (3.8) becomes

η (1− η) d
2ξ̂

dη2 +
(
−1

2 + η

)
dξ̂

dη
+ m̂2 ξ̂ = 0 , (3.19)

where here and hereafter
m̂2 := m2`2 . (3.20)

The solution is given in terms of the hypergeometric function as

ξ̂ = c1 F

(
−1 + p, −1− p, −1

2 ; 1− η
)

+ c2 (1− η)3/2 F

(1
2 + p,

1
2 − p,

5
2 ; 1− η

)
,

(3.21a)

p :=
√

1 + m̂2 . (3.21b)

We need to impose boundary conditions at the rest of the AdS boundary ∂M \Σ0, depicted
in figure 1, which in the present coordinates correspond to η = 1 (z = π`). We choose the
Dirichlet condition ξ̂ = 0 at η = 1 (z = π`), and thus c1 should be zero. By using Gaussian
transform formula,

F (a, b, c; 1− η) = Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) ηc−a−bF (c− a, c− b, c− a− b+ 1; η)

+ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b, a+ b− c+ 1; η) , (3.22)

the asymptotic behavior of ξ at the AdS boundary z = 0 becomes

ξ̂

c2
= (1− η)3/2 ×

{ Γ(5/2) Γ(−3/2)
Γ(1/2− p) Γ(1/2 + p) η

3/2 F
(
2 + p, 2− p, 5

2 ; η
)

+ Γ(5/2) Γ(3/2)
Γ(2 + p) Γ(2− p) F

(1
2 − p,

1
2 + p, −1

2 ; η
)}

∼ −3 sin(π p)
8 p (p2 − 1)

{
1 + p2 − 1

2
z2

`2
− p (p2 − 1)

3 tan(π p)
z3

`3
+ · · ·

}
. (3.23)

From eq. (3.18), one obtains

γ3 = tan π
√

1 + m̂2

π
√

1 + m̂2
. (3.24)

When m̂2 > 0, there is an infinite number of solutions, m̂ satisfying eq. (3.24) for any
γ3 > 0. On the other hand, when m̂2 < 0, the solution m̂ should be bounded from below
by −1 < m̂2, otherwise, the BF bound [18, 19] on the boundary is violated, as shown in
the next section. In the range of −3/4 ≤ m̂2 ≤ 0, there is no solution for any positive γ3.
As a result, there is only one solution, m̂ in the range −1 < m̂2 < −3/4 for any γ3 > 1.
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3.2 Perturbed solutions

In this subsection, we first construct analytic solutions of eq. (3.7) with (3.24) by considering
static perturbations. We also discuss physical implication of the dimensionless parameter
γ3 given by eq. (3.24) above. Then, we derive formulas for time-dependent perturbations,
which will be used subsequently to discuss boundary dynamics.

3.2.1 Static perturbations

Having our background metric (3.2), we find it more convenient to use the following
Eddington-Finkelstein form for the boundary metric:

ds2
3 = −f(1− εHvv(r))dv2 + 2(1 + εHvr(r))dvdr

+ εHrr(r)dr2 + r2(1 + εHϕϕ(r))dϕ2, f = r2

`2
−M , (3.25)

where ε is an infinitesimally small parameter. From eqs. (3.7) and (3.25), we find that Hvv
can be regarded as our master variable, by which Hϕϕ,Hvr, and Hrr are expressed as

Hϕϕ = −2Hvr − fHrr , Hvr = −Hvv , Hrr = `2

r2
h

(1 + m̂2)uHvv + 2u3H′vv
1 + m̂2(1− u) ,

(3.26)

and that Hvv obeys

(1− u)[1 + m̂2(1− u)]H′′vv − [2 + m̂2(1− u)]H′vv −
m̂2

4u2 [1 + 2u+ m̂2(1− u)]Hvv = 0 ,
(3.27)

where we have introduced the new variable u := r2
h/r

2 with rh := `
√
M being the background

horizon radius, and here and hereafter the prime denotes the derivative with respect to u.
The asymptotic behavior of Hvv in eq. (3.27) is given by

Hvv ' c1u
(1−p)/2 + c2u

(1+p)/2 . (3.28)

This asymptotic behavior is the same as that of a massive scalar field φ with mass-squared
m2 on the background of AdS3. We are not interested in any unstable solution with
m̂2 < −1, which violates the BF bound [18, 19], and therefore we will focus on the case
−1 ≤ m̂2 (and hence p ≥ 0). When m̂2 = 0 (p = 1), a logarithmic mode appears, but it
is not permitted by eq. (3.24) unless γ3 = 0 (G3 = 0). When −1 < m̂2 < 0 (0 < p < 1),
there are two normalizable modes. Such a scalar field model is effectively derived from
3-dimensional massless conformal scalar field in the background of asymptotically AdS3
spacetime. The effective negative mass-squared becomes m̂2 = −3/4, and there is an exact
static black hole solution which includes two normalizable modes [20]. So, we do not impose
any particular boundary condition in the mass range, −1 < m̂2 < 0. When m̂2 > 0 (1 < p),
we choose the Dirichlet boundary condition, c1 = 0 so that the perturbed field does not
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diverge at the AdS boundary. We also impose the regularity condition at the horizon, u = 1.
By eq. (3.27), it is given by

H′vv(1) = −3m̂2

8 Hvv(1) . (3.29)

Now, under our holographic setting given in the previous subsection 3.1, we obtain the
following theorem.

Theorem. There is no static, regular asymptotically AdS3 boundary black hole as a solution
to the holographic perturbed semiclassical Einstein equations with non-vanishing stress-energy
tensor, when γ3 < 1.

Proof. First, let us consider the case m̂2 > 0 (p > 1). Since eq. (3.27) is a linear equation,
we can take Hvv(1) = 1 without loss of generality. From the asymptotic boundary condition,
c1 = 0, Hvv must converge to zero at u = 0 by eq. (3.28). As H′vv(1) < 0 by eq. (3.29), Hvv
would have a local maximum at some u = um (0 < um < 1) between the horizon and the
AdS boundary. This means that H′vv(um) = 0 and H′′vv(um) < 0. This is impossible because

(1− um)(1 + m̂2 − m̂2um) > 0 , m̂2

4u2
m

[1 + 2um + m̂2(1− um)] > 0 . (3.30)

Next, let us consider the case m̂2 < 0. Then, it should be −1 < m̂2 < −3/4 by eqs. (3.24)
and (3.28). As shown in the previous section, the right-hand side of eq. (3.24) is bounded
by 1 from below. This is impossible when γ3 < 1.

This theorem states that there is a lower bound for the three dimensional gravitational
constant G3, in order for a semiclassical static black hole solution with non-zero expectation
value of the stress-energy tensor to exist. By eq. (2.30) or equivalently (2.35), the lower
bound is given by

G3,min = π`

L2G4 , (3.31)

which is equivalent to γ3 = 1. As shown below, the existence of the static black hole
solution suggests that the BTZ black hole with 〈 Tµν 〉 = 0 is unstable when G3 > G3,min
(γ3 > 1). On the other hand, when G3 < G3,min(γ3 < 1), the backreaction of non-zero
〈 Tµν 〉 through the semiclassical eq. (3.15) is also small, and the BTZ black hole with
〈 Tµν 〉 = 0 would be stable. From the bulk point of view, the boundary condition at the
AdS boundary is a mixed boundary condition satisfying eq. (3.18). So, when G3 is small
enough, |a0| approaches zero for a fixed a3, and hence, the boundary condition approaches
usual Dirichlet boundary condition. This agrees with the result that the BTZ black hole is
stable against vacuum perturbations under the Dirichlet boundary condition [21, 22]. It
is noteworthy that G3 becomes a control parameter which determines the stability of the
BTZ solution.

When −1 < m̂2 < −3/4, one obtains the analytic solution from eqs. (3.26) and (3.27),
under the boundary condition (3.29). By introducing a new variable

Ψ := Hvv − fHrr , (3.32)
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Figure 2. Hvv, normalized at the horizon u = 1(r = rh), is shown for m̂2 = −4/5.
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Tμ
μ 

Figure 3. 〈Tt
t〉 (solid, blue), 〈Tr

r〉 (dashed, green), 〈Tϕ
ϕ〉 (dotted, red), and fHrr (dot-dashed,

brown) are shown under the normalization by the absolute value of 〈Tt
t〉 at the horizon for m̂2 = −4/5.

Hvv, Hrr, and Hϕϕ are expressed via eqs. (3.26) and (3.27) as

Hvv =
(3
u
− 2

)
Ψ− 2(1− u)Ψ′ ,

Hrr = `2

r2
h

(
3Ψ− 2uΨ′

)
,

Hϕϕ =
(3
u
− 1

)
Ψ− 2(1− u)Ψ′ , (3.33)

and the exact solution of Ψ satisfying the boundary condition (3.29) is given by

Ψ(u) = u(3−p)/2F

(1− p
2 ,

3− p
2 , 2 ; 1− u

)
. (3.34)

– 18 –



J
H
E
P
0
5
(
2
0
2
3
)
2
1
2

Figure 2 shows the profile of Hvv interpolating the horizon to the AdS boundary in
the m̂2 = −4/5 case. This is proportional to the energy density detected by an observer
along the timelike Killing orbit of ∂v. The unit tangent vector along the orbit is given by
V µ = (∂v)µ/

√
f . From eqs. (3.16) and (3.18), we obtain

〈 Tµν 〉V µV ν ∼ −εm̂2Hvv . (3.35)

So, when ε > 0, the energy density is everywhere positive outside the black hole horizon.
Figure 3 shows the stress energy tensor, 〈Ttt〉, 〈Trr〉, 〈T ϕϕ 〉, and fHrr are shown for

m̂2 = −4/5. By coordinate transformation, v = t+
∫
drf(r)−1, we obtain usual diagonal

metric from the Eddington-Finkelstein form (3.25). By eq. (3.16), the stress-energy tensor
〈Tµν〉 is proportional to the perturbed metric hµν , given by

ht
t = −εHvv, hr

r = −ε(Hvv − fHrr), hϕ
ϕ = ε(2Hvv − fHrr) . (3.36)

Near the horizon r = rh, fHrr is very small, and then we approximately write the form of
the stress-energy tensor as 〈

Ttt
〉
' 〈 Trr 〉 ' −

〈 Tϕϕ 〉
2 . (3.37)

This form is very similar to the one of a free conformal scalar field [23–26] and for a
holographic CFT dual to a four-dimensional bulk [27],

〈 Tνµ 〉 ∼
1
r3diag(1, 1,−2) . (3.38)

On the other hand, we find that fHrr grows toward the AdS boundary and fHrr ' Hvv
near u = 0 by eq. (3.26). This means that 〈 T rr 〉 quickly approaches zero, compared with
the other components,

〈
Ttt

〉
and 〈 Tϕϕ 〉 near the AdS boundary, being quite different

from the form (3.38).
According to the AdS/CFT dictionary, the states of the boundary field theory is

represented by the various geometries of the bulk solutions. In our holographic setting,
the bulk black hole connects two boundary black holes located on the north and south
poles, while in the holographic model of the BTZ black hole [27], the bulk geometry and
the horizon cap off smoothly on a bubble, and the boundary black hole is isolated from the
other bulk horizon. The former is usually referred to as black funnels, while the latter is
referred to as black droplets [28]. See figure 4 below. So, there are two possibilities. One
possibility is that the difference of the boundary stress-energy tensor reflects the difference
of the bulk geometry. Another possibility is that our static solution is unstable against
generic perturbations.

3.2.2 Time-dependent perturbations

Next, we consider time-dependent perturbation of the BTZ solution satisfying eq. (3.15) to
show that the BTZ solution is unstable when the three-dimensional gravitational constant
is larger than G3,min in eq. (3.31). As shown below, the solution of eq. (3.7) is analytically
obtained, under our metric ansatz.
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Figure 4. The bulk geometries of a black funnel (left) and a black droplet (right). The coordinate
system similar to (3.2) is taken so that the thick (semi-)circles, z = 0, πl, denote the AdS boundary,
the thin curves inside the bulk correspond to the bulk horizon, which connects two AdS boundaries in
the black funnel case (left), and which ends at the bubble of nothing in the black droplet case (right).

In terms of the coordinate variable u = r2
h/r

2 introduced just below eq. (3.27), the
background BTZ metric given in eq. (3.2) is cast into the form,

d̄s
2
3 = − r2

h

`2u
g(u)dt2 + `2du2

4u2g(u) + r2
h

u
dϕ2 , g(u) = 1− u . (3.39)

Introducing four functions T (u), U(u), S(u), and R(u), we make the metric ansatz of the
perturbation as

ds2
3 = −r

2
hg(u)
`2u

(1 + εT (u)e−iωt)dt2 + `2

4u2g(u)(1 + εU(u)e−iωt)du2

+ εrh
2u2g(u)S(u)e−iωtdudt+ r2

h

u
(1 + εe−iωtR(u))dϕ2 . (3.40)

From eq. (3.4), we obtain the following three constraint equations

R+ U + T = 0 , (3.41)(
u
d

du
− 2

)
S − iω̂uT = 0 , (3.42)

iω̂S

2g + ug′(U − T ) + g(R+ T − 2U + 2uU ′) = 0 , (3.43)

where here and in the following ω̂ := `2ω/rh. By eq. (3.41), R can be eliminated from
eqs. (3.43) and (3.7), and then, the following constraint equation

{2ω̂(1 + m̂2)g − 2ω̂(1 + ω̂2)u}U − i(m̂2 − ω̂2)S − 2uω̂(1 + ω̂2)T = 0 , (3.44)
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is derived. Eliminating T from eqs. (3.42) and (3.43) by using eq. (3.44), we obtain two
coupled differential equations,(

u
d

du
− ω̂2

2g − 2
)
Z + iω̂(1 + ω̂2)U = 0 ,(

u
d

du
+ ω̂2 − 2

2g

)
U + 1

4g2

(
iω̂ + m̂2 − ω̂2

iω̂(1 + ω̂2)g
)
Z = 0 ,

Z := S + 2iω̂gU . (3.45)

Then, it is easy to derive the following master equation by eliminating U as

Z ′′ −
(2
u

+ 1
g

)
Z ′ + 1

4u2g2

[
uω̂2 + g(8− m̂2)

]
Z = 0 . (3.46)

The solution is given by the hypergeometric function as

Z± = (1− u)−iω̂/2u(3±p)/2F

(
−1∓ p+ iω̂

2 ,
3± p− iω̂

2 , 1± p; u
)
. (3.47)

By imposing Dirichlet boundary condition at u = 0, we choose Z+ solution only. Near the
horizon, u = 1, we also impose the ingoing boundary condition, Z+ ∼ (1 − u)−iω̂/2. By
using Gaussian transform formula, the ingoing boundary condition becomes

ω̂ = i(1− p− 2n) , (n = 0, 1, 2, , · · · ) . (3.48)

This gives an unstable mode in the range of −1 < m̂2 < −3/4 by setting the lowest mode,
n = 0 as

ω̂ = i(1− p) = i(1−
√

1 + m̂2) . (3.49)

Substituting eq. (3.49) into eq. (3.47), Z+ reduces to a simple form:

Z+ = (1− u)−iω̂/2u2+iω̂/2 . (3.50)

The existence of the unstable mode (3.49) means that the BTZ black hole solution is unstable
against the quantum field perturbation via the semiclassical Einstein equations (3.15) when
G3 > G3,min.

One might wonder if the perturbed metric is regular on the horizon because both of
the functions T and U diverge near the horizon, u = 1 as

T, U ∼ (1− u)−1−iω̂/2 . (3.51)

To remove this apparent singularity, let us use the advanced null coordinate v, which is
now given by

dv = dt− `2

2rh
√
ug
du . (3.52)
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Then, the metric (3.40) becomes

ds2
3 = −r

2
hg

`2u

(
1 + εe−iωtT

)
dv2 − rh

u3/2

{
1 + ε

2
(
Q− e−iωtR

)}
dvdu− `2

4u2g
εQdu2

+ r2
h

u

(
1 + εe−iωtR

)
dϕ2 . (3.53)

In particular near the horizon u→ 1, the above metric takes the regular form,

ds2
3 ' −

r2
h

`2u

(
g + ε

2
e−iωv

1− iω̂

)
dv2 − rh

u3/2

(
1 + ε

4
e−iωv

1− iω̂

)
dvdu+ `2

4u2
ε

8
e−iωv

1− iω̂ du
2

+ r2
h

u

(
1− ε

2
e−iωv

1− iω̂

)
dϕ2 , (3.54)

where we have used the fact that R is obtained from eq. (3.41) and near the horizon
Q ∝ (1− u)→ 0.

3.3 Boundary dynamics and instability

It is interesting to investigate how the boundary black hole evolves according to the
semiclassical Einstein equations (3.15). Unfortunately it is in general difficult to determine
the location of the event horizon within the framework of the perturbation, as one needs to
know the whole evolution of the geometry to determine it. Nevertheless, we can still obtain
some insights for this problem by inspecting the behavior of energy flux across the apparent
horizon within the perturbation framework. For this purpose, let us examine the metric
ds2

3 = Gµνdxµdxν given by the near horizon expression (3.54). Suppose the apparent horizon
is located at uAH = 1 + εζe−iωv with the out-going null tangent lµ := (∂v)µ + εχe−iωv(∂u)µ,
where ζ and χ are some parameters. Then, it must follow that on u = uAH, lµlµ = 0 and
lµ∂µGϕϕ = 0. From these requirements, by using the concrete expressions of Gµν given in
eq. (3.54), we find

ζ = 1 + iω̂

2(1− iω̂) , χ = iκω̂

2(1− iω̂) , (3.55)

where here and hereafter κ denotes the surface gravity of the background BTZ black hole,
i.e., κ := rh/`

2. Therefore we obtain

uAH = 1 + ε

2
p

(2− p)e
κ(1−p)v +O(ε2) , (3.56)

with 0 < p =
√

1 + m̂2 < 1. The horizon radius rAH, defined by rAH := G1/2
ϕϕ (u = uAH), can

be evaluated, via eqs. (3.54) and (3.56), as

rAH
rh
' 1− ε

4
1 + p

2− pe
κ(1−p)v . (3.57)

When ε > 0, rAH decreases along the direction of lµ, implying that the black hole
evaporates due to quantum energy flux across the horizon. Indeed, the energy flux F :=
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〈 Tvv 〉 at O(ε) is evaluated by eqs. (3.16) and (3.18). For the unstable mode satisfying (3.49),
we find

8πG3F ∼ −
m̂2

2`2 δg(0)vv(u = 1) ∼ − ε4κ
2 1− p2

2− p e
κ(1−p)v = κ

rh

drAH
dv

, (3.58)

where we have used eq. (3.49) in the last equality. The energy flux is negative for ε > 0,
since we have a semiclassical solution only when −1 < m̂2 < −3/4, as shown in the previous
section.

At r = 0 (u = ∞) spacelike singularity inside the BTZ black hole, the stress-energy
tensor diverges as

〈 Tµν 〉 〈 T µν 〉 ∼ ε2HµνH
µν ∼ ε2e2κ(1−p)t(u− 1)1−pu1+p ∼ u2 →∞ , (3.59)

which is a gauge invariant quantity, up to O(ε2) because the background stress-energy
tensor is zero. This suggests that the perturbed BTZ black hole has a curvature singularity
at u =∞ because the perturbed Einstein tensor δEin(0)µν of the boundary metric g(0)µν
diverges at O(ε) as

(
Ein(0)µν −

g(0)µν
`2

)(
Ein(0)µν − g(0)µν

`2

)
= δEin(0)µνδEin(0)µν →∞ , (3.60)

through the semiclassical Einstein equations (3.15). So, the quantum corrected BTZ black
hole is singular at u =∞, although the unperturbed one has no curvature singularity there.
The boundary singularity is also a bulk curvature singularity at u =∞. This is observed
by the calculation of CKLMNC

KLMN at O(ε2) as

CKLMNC
KLMN = RKLMNR

KLMN − 24
L4 ∼ ε

2
(
`

L3 ξ(z) sin3 z

`

)2
e2κ(1−p)tu4 , (3.61)

near u =∞, which is also gauge invariant, up to O(ε2) by CKLMN = O(ε). The appearance
of the bulk curvature singularity implies that generic inhomogeneous AdS4 black string
contains a curvature singularity inside the black hole, even though the background BTZ
black string has no real curvature singularity.

It is interesting to explore what is the endpoint of the black hole evaporation. If the
boundary black hole completely evaporates until the radius reaches the Planck scale, a naked
singularity would appear on the boundary. From the bulk point of view, the initial black
string solution in eq. (3.2) becomes inhomogeneous under the evolution, and the horizon
pinch-off occurs at the AdS boundary, via the complete evaporation of the boundary black
hole. This is analogous to the Gregory-Laflamme instability of the black string solution [29].
In that case, the central curvature singularity would be seen by a bulk observer outside the
AdS black hole, implying the violation of the weak cosmic censorship in asymptotically AdS4
spacetime. This picture is consistent with the recently study in the Einstein-Maxwell (EM)
system [30]. In our semiclassical model, the naked singularity would be caused by the
boundary metric determined by the semiclassical Einstein equations (3.15).
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4 Summary and discussions

We have investigated semiclassical Einstein equations in the framework of the AdS/CFT
correspondence. We considered perturbations of the pure AdSd+1 spacetime and derived
a mixed boundary condition, which corresponds to the semiclassical Einstein equations
in which the ratio between the faster and the slower fall-off modes is determined by the
dimensionless parameter γd. In particular, we have analytically solved the perturbation
equations in the d = 3 case and found that the BTZ black hole with vanishing expectation
value of the stress-energy tensor is semiclassically unstable, provided that the parameter
γ3 exceeds the critical value (i.e., γ3 > 1), or equivalently the 3-dimensional gravitational
constant G3 is above the critical value (i.e., G3 > G3,min). The occurrence of this instability
can be interpreted as follows. When the gravitational constant is small enough, the mixed
boundary condition reduces to the ordinary Dirichlet boundary condition at the AdS
boundary under which the BTZ black hole is stable against any perturbations [21]. However,
as one increases the gravitational constant, the backreaction of the quantum stress-energy
tensor becomes important and it leads to a new instability caused by the quantum effect.10

Strictly speaking, we have examined the perturbations in the geometry of the pure
AdS3 expressed in terms of the BTZ coordinates, rather than the decent BTZ black hole,
which is constructed by making certain identification of spacetime points of the pure AdS3,
thus having a topologically non-trivial geometry. Accordingly the quantum field resides
on our boundary AdS3 with BTZ coordinates (or the covering space of a BTZ black hole)
is not in the Hartle-Hawking state with finite temperature, but is rather in the conformal
vacuum with zero-temperature. (For this reason, we have referred to our boundary setting
as the BTZ black hole with vanishing expectation value of the stress-energy tensor.) The
instability found in this paper can therefore be viewed as an instability (or phase transition)
of AdS3 itself due to the effects of strongly coupled quantum fields. It is important to check
whether this type of instability of pure AdS with quantum fields in conformal vacuum state
can also occur in higher dimensions d > 3. In this regard, it is also interesting to study the
role of trace anomalies when d is even.

There remains an open issue whether the bulk spacetime dynamically evolves in a
manner consistent with the semiclassical Einstein equations at the AdS boundary, since there
are many gravitational corner conditions [31]. Although further careful analysis is required
beyond the linear perturbation, it would be interesting to explore what is the final state of
the instability. One possibility is that the final state of the bulk spacetime is a non-uniform
black funnel solution, connecting two boundary AdS black holes [22, 32]. Another possibility
may be that the time evolution does not settle down to any stationary solution, such as
the static black funnel. When the boundary black hole evaporates completely, a naked
singularity appears on the boundary, as argued in the previous section. When the boundary
black hole horizon continues to expand, the bulk horizon of the black funnel gets thin by
the outflow of null generators from the bulk into the AdS boundary. In either case, pinch-off

10It would be interesting to study whether a similar type of instabilities could also occur for the gauge
field case. Although our preliminary calculations indicate no such instabilities to occur, we need further
study to reach a definite conclusion.
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of the bulk horizon would occur inside the bulk or on the boundary within a finite time,
analogous to the Gregory-Laflamme instability [29]. Our analysis can be extended into the
higher dimensional cases (d > 3) by perturbing higher dimensional AdSd+1 black string
solutions. In higher dimensional case, there is another control parameter describing the
black hole radius, in addition to the dimensionless parameter γd. As the semiclassical effect
renders the BTZ black hole unstable, it is natural to speculate that the parameter region in
which the higher dimensional AdS black string solution is stable becomes smaller than the
one analyzed under the Dirichlet boundary condition [22]. The complete analysis would
appear in the near future [33].

Many other interesting directions can be explored by applying the holographic semi-
classical method. One of them is the issue of the black hole evaporation. The backreaction
problem of the Hawking radiation has been investigated in the two-dimensional dilaton
model [34], but only few have so far been examined in higher-dimensional models. Although
the semiclassical approximation is violated at the final stage of the evaporation, it would be
valuable to investigate how the black hole evolves with evaporation. Another direction is
to test the self-consistent averaged null energy condition (ANEC) [35] in our holographic
semiclassical approach. The “self-consistent” means that the expectation value of the quan-
tum stress-energy tensor (in addition with other classical stress-energy tensor) satisfies the
semiclassical Einstein equations. This avoids violation of the ANEC observed in conformally
coupled scalar field in a conformally flat spacetime [36], or a strongly coupled field in a
holographic setting [37] in the absence of the self-consistent condition. If the self-consistent
ANEC holds in general spacetime, we can also establish various important theorems such
as the singularity theorem or the topological censorship, incorporating the quantum effect
semiclassically.

One way of viewing the holographic semiclassical Einstein equations might be in terms
of AdS/BCFT [38] (see also [39] and references therein). In the AdS/BCFT setting, one
includes an end-of-the-world (EOW) brane whose end at the AdS boundary corresponds to
the boundary of BCFT, so that the gravity dual of BCFT is given by the region of AdS
bulk surrounded by the AdS boundary and the EOW brane. The bulk metric is required
to satisfy the Neumann boundary condition at the EOW brane, rather than the Dirichlet
boundary condition. This in turn implies that the metric on the EOW brane becomes
dynamical, satisfying the braneworld Einstein equations [40], and thus correspond, as a
gravity dual, to the boundary degrees of freedom of the BCFT. One may expect that by
taking the limit toward the AdS conformal boundary, the braneworld Einstein equations
would turn to play a role of the boundary semiclassical Einstein equations. It would be
interesting to clarify the possibility of such relations between the braneworld gravity and
holographic semiclassical Einstein equations.
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A Derivation of the permittivity and permeability from the holographic
semiclassical Maxwell equations

As an example of our holographic semiclassical Maxwell equations (2.14), we derive the
permittivity and permeability [7] at finite temperature. Let us consider the semiclassical
problem (2.9) which couples to 〈 Jµ 〉 in dual field theory at finite temperature. For this
purpose, we consider as our bulk gravity Schwarzschild-AdS black hole (SAdS4), expressed
in the Poincaré like coordinates XM = (xµ ; z) = (t, x, y ; z) as

ds2
4 =

(
L

z

)2
(
−f(z) dt2 + dx2 + dy2 + dz2

f(z)

)
, f(z) := 1− (T z)3 , (A.1)

where the AdS conformal boundary is at z = 0 and where T := 4π TBH/3 with TBH being
the Hawking temperature.

In order to solve eqs. (2.14), let us assume Az = 0 and take the Fourier transformation
along the boundary as

Aµ(x, z) =
∫

d3k

(2π)3/2 eik·x Ãµ(k, z) , kµ = (−ω, q, 0) . (A.2)

Then, by taking expansion with respect to w := ω/T � 1, q := q/T � 1 one can find the
solutions. For simplicity, consider the stationary configuration ω = 0, in which eqs. (2.14a)
reduce to

0 =
(
−f ∂2

z + q2
)
Ãt , (A.3a)

0 = ∂zÃx , (A.3b)

0 =
{
∂z(f ∂z)− q2

}
Ãy . (A.3c)

The boundary conditions at the horizon z = zH := 1/T are given by

Ãt(q, zH) = 0 ,
∣∣ Ãx(q, zH)

∣∣ <∞ ,
∣∣ Ãy(q, zH)

∣∣ <∞ . (A.4)

Expanding eqs. (A.3), (A.4) with respect to q2, we find the following solutions:

Ãt(q, z) = 1− T z + q2 I(T z)
1 + q2 I(0) Ãt(q) +O(q4) , (A.5a)

Ãx(q, z) = Ãx(q) , (A.5b)

Ãy(q, z) = 1− q2 I ′(T z)
1− q2 I ′(0) Ãy(q) +O(q4) , (A.5c)

where

I(η) :=
∫ 1

η
dη′

∫ 1

η′

dη′′

1 + η′′ + η′′2
. (A.5d)
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Then, from eq. (2.12), we obtain the R-current as

〈 J t 〉 = T
g2

{
1 + q2

2

(
π√
3
− ln 3

)}
Ãt(q) +O(q4) , (A.6a)

〈 J x 〉 = 0 , (A.6b)

〈 J y 〉 = −T
g2 q2 Ãy(q) +O(q4) . (A.6c)

Here we have used the following:

I(0) = 9 ln 3−
√

3 π
18 , I ′(0) = −

∫ 1

0

dη

1 + η + η2 = − π

3
√

3
, I ′′(0) = 1 .

Using the above formulas, we can express eqs. (2.14b) as follows:

0 = −q2 Ãt −
T e2

g2

{
1 + q2

2

(
π√
3
− ln 3

)}
Ãt − e2 J text ∝

(
q2 + T

g2 ε

)
Ãt −

J text
ε

,

(A.7a)
0 = −e2 J xext , (A.7b)

0 = q2 Ãy + T e
2

g2 q2 Ãy(q)− e2 J yext ∝ q2 Ãy(q)− µJ yext . (A.7c)

where ε, µ are defined as

ε := 1
e2

(
1 + π −

√
3 ln 3

2
√

3
e2

g2 T

)
∼ 1
e2

(
1 + 0.36× e2

g2 T

)
, (A.8a)

µ := e2

1 + e2/(g2 T ) . (A.8b)

We note that the dual field theory with no current 〈 J µ 〉 = 0 corresponds to the limit of g →
∞ in eqs. (A.7a) and (A.7c). Taking this limit, we can find that ε, µ correspond, respectively,
the permittivity and permeability,11 and also that T /(g2 ε) =: 1/λ2

D in eq. (A.7a) represents
the screening effect due to the dual field with Debye length λD.

B The expression of 〈 Tµν 〉

The expectation value of the stress-energy tensor (2.19) is given by [17, 41]:

〈 T µν 〉 = 2√
−G

δSon-shell
bulk [G ]
δGµν

= lim
z→0

1
Ωd+2(z)

2√
−g

δSon-shell
bulk [ g ]
δgµν

= lim
z→0

1
Ωd+2(z)

(
−Kµν + gµν K

8πGd+1
+ 2√
−g

δSct
δgµν

)

= lim
z→0

Ω−(d+2)(z)
8πGd+1 L

{
− LKµν + gµν LK − (d− 1) gµν + L2

d− 2 Einµν [ g ] + · · ·
}
,

(B.1)
11Note that in our convention, the permittivity of vacuum corresponds to ε0 = 1/e2 and the permeability

of vacuum to µ0 = e2.
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where the geometric quantities appeared here are given in section 2, the conformal factor is
assumed to fall-off as eq. (2.1), and as for the counter-terms, only terms needed in d ≤ 3
are written.

Now we use the conformally rescaled metric and extrinsic curvature, g̃µν := Ω2 gµν and
the extrinsic curvature K̃µν := −∂z g̃µν/2 given by eq. (2.4), which are regular at z → 0. In
terms of which, we can rewrite eq. (B.1) as

〈 Tµν 〉 = lim
z→0

Ω−d
8πGd+1 L

[
− LΩ

(
K̃µν − g̃µν K̃

)
+ L2 Ω2

d− 2 Einµν [ g̃ ]

− (d− 1)
(
1− LΩ′

)
g̃µν + · · ·

]
(B.2a)

= lim
z→0

1
8πGd+1 L

[
L2 Einµν [G ] + Λd+1Gµν

(d− 2) Ωd−2 + L2 2 K̃K̃µν − ḡµν (K̃ρσK̃ρσ + K̃2)
2 (d− 2) Ωd−2

− L g̃νρ
(
LΩ
d− 2

∂

∂z
+ 1

)
K̃µ

ρ − δµρ K̃
Ωd−1

+ d− 1
d− 2

g̃µν
Ωd

{
L2 Ω2

(Ω′
Ω

)′
+ 1− d− 2

2
(
1− LΩ′

)2}+ · · ·
]
.

(B.2b)

Note that the indices are raised and lowered by Gµν in the left-hand side, and by g̃µν in the
right-hand side. Note also that the first term of the right-hand side if eq. (B.2b) vanishes
when there are no matter fields involved, due to the bulk Einstein equations (2.18a). The
second-line of the right-hand side is more suitable to examine the limit z → 0.

For asymptotically AdS bulk satisfying the bulk Einstein equations (2.18a), the asymp-
totic fall-off behavior of each term of eq. (B.2b) can be seen as follows. First note that
according to [13], the induced metric g̃µν behaves, at z → 0, as:

g̃µν ∼ Gµν (1 + ] z2 + [ z4 + · · · ) + g̃(f)
µν z

d (1 + · · · ) . (B.3)

In this expansion, the first term (slow fall-off mode) has a contribution to K̃µν atO(Ω), while
the second term (fast fall-off mode) at O(Ωd−1), and thus, K̃µν ∼ O(Ω) {]+ [O(z2)}Gµν +
O(Ωd−1) ḡ(f)

µν . Hence, under the fall-off (B.3), we can estimate the fall-off behavior of each
term of eq. (B.2b) as follows:

• The quadratic terms of K̃µν (the second-term in the first line) in the right-hand side
of eq. (B.2b) is at O(K̄2/Ωd−2) = O(Ω4−d) and only the slow mode is relevant. For
d ≤ 3, these terms have no contribution.

• The second-line have contributions at O(z4−d) from the slow fall-off mode of g̃µν and
at O(1) from the fast fall-off, when the following holds,

LΩ
z

= 1 +O(z2) . (B.4)

This is because, due to the effect of
LΩ
d− 2

∂

∂z
+ 1 = 1− LΩ

z
+ LΩ

z

(
1− z2−d ∂

∂z2−d

)
, (B.5)
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the contribution from the term ]z2 in (B.3) becomes at the same order of that from
the term [z4 in (B.3).

• The third-line has contributions at O(Ω4−d), if the following holds:

σ(z) := 1− LΩ/z
z2 is in C2 at z = 0 . (B.6)

In the d = 3 case, if the condition (B.6) is satisfied, eq. (B.2b) takes the following form,

〈 Tµν 〉d=3 = lim
z→0

1
8πG4 L

g̃νρ

(
LΩ ∂

∂z
+ 1

) −L K̃µ
ρ + δµ

ρ L K̃

Ω2 (B.7a)

= lim
z→0

1
8πG4 L

g̃νρ

(
z
∂

∂z
+ 1

)
L2

z2

(
−L K̃µρ + δµ

ρ L K̃
)
. (B.7b)

In particular, we have K̃µν = 0, whenever the metric ds̃2
4 = GMNdX

MdXN can be expressed
in terms of some Ω which satisfies condition (B.6) and metric g̃µν(x) which is independent
of z, so that

ds̃2
4 = Ω−2(z)

(
dz2 + g̃µν(x) dxµdxν

)
. (B.8)

Then, it immediately follows from eq. (B.7) that 〈 Tµν 〉d=3 = 0.

C Formulas for the holographic semiclassical Einstein equations

In this section, we provide some perturbation formulas of our holographic semiclassical
Einstein equations with pure AdSd+1 background (2.24), considered in section 2. For the
perturbed metric GMN = ḠMN + δGMN , we impose the gauge conditions δGzM = 0 so
that nontrivial part of the metric becomes Ω2Gµν = g̃µν(x, z) = ḡµν(x) + hµν(x, z). The
indices of the perturbation variables hµν are raised and lowered by the background metric
ḡµν , ḡ

µν . We denote the covariant derivative with respect to ḡµν by D̄µ and introduce the
projection operator

P̄µν = D̄(µD̄ν) −
1
d
ḡµνD̄

2 . (C.1)

Then, the perturbation variables are decomposed as

hµν = hLḡµν + P̄µνh
(0)
T + 2D̄(µh

(1)
Tν) + h

(2)
Tµν , (C.2)

where D̄µh
(1)
T µ = 0, D̄νh

(2)
T µν = h

(2)
T µ

µ = 0 are satisfied.

C.1 Perturbation formulas for the bulk Einstein equations

The bulk Einstein equation (2.18a) is expressed as EMN = 0 in terms of the tensor defined by,

EMN := RMN [G ] + d

L2 GMN . (C.3)
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For the case of the pure AdSd+1 background (2.26), the linear perturbations of EMN are
given, in terms of the gauge-invariant variable (2.32), by the following formulas:

δEzz =
(
∂z −

Ω′
Ω

)
∂zh = Ω ∂

∂z

(
∂zh

Ω

)
= d× Ω ∂

∂z

(
∂zhL

Ω

)
, (C.4a)

δEzµ = −∂z
(
D̄ρhµ

ρ − D̄µh
)

= (d− 1) D̄µ∂z

(
Φ + 1

`2
h

(0)
T

)
−
(
D̄2 − d− 1

`2

)
∂zh

(1)
T µ , (C.4b)

δEµν = Ωd−1

−2 ∂z

(
∂zhµν
Ωd−1

)
+ D̄(µD̄

ρhν)ρ −
1
2 D̄

2hµν + ḡµν
2

Ω′
Ω ∂zh−

1
2 D̄µD̄νh

− 1
`2

(hµν − ḡµν h)

= ḡµν

[ Ω
−2 ∂z

(
∂zhL

Ω

)
+ (d− 1) Ω′(z)

Ω ∂zhL −
d− 1
d

(
D̄2 − d

`2

)
Φ
]

− 1
2 P̄µν

{
Ωd−1 ∂z

(
∂zh

(0)
T

Ωd−1

)
+ (d− 2) Φ

}
− D̄(µ

Ωd−1 ∂

∂z

(
∂zh

(1)
T ν)

Ωd−1

)
− 1

2

{
∂2
zh

(2)
T µν − (d− 1) Ω′(z)

Ω ∂zh
(2)
T µν +

(
D̄2 + 2

`2

)
h

(2)
T µν

}
. (C.4c)

C.2 Perturbation formulas for the holographic semiclassical Einstein
equations

We write perturbation formulas for the holographic semiclassical Einstein equations (2.18b).
The left-hand side of eq. (2.18b) is given by the limit z → 0 of Einµν [ g̃ ] + Λd g̃µν . Noting
that Λd = −(d− 1) (d− 2)/(2 `2), we find the following expression:

δ (Einµν [ g̃ ] + Λd g̃µν) = (d− 1) (d− 2)
2 d ḡµν

(
D̄2 − d

`2

)
Φ− d− 2

2 d P̄µν Φ

− 1
2

(
D̄2 + 2

`2

)
h

(2)
T µν . (C.5)

Next we derive an expression for the perturbation of the expectation value of the CFT
stress-energy tensor (B.2b). Since in our background, the extrinsic curvature is vanishing
K̄µν = 0, we can ignore terms of O(K2). Then, we can write perturbation of eq. (B.2b) as

δ〈 Tµν 〉 = lim
z→0

1
8πGd+1 L

{
− L

(
LΩ
d− 2 ∂z + 1

)
δ(K̃µν)− ḡµν ḡρσδ(K̃ρσ)

Ωd−1 + · · ·
}
, (C.6)

where only terms which are relevant in d < 4 are expressed explicitly and · · · denotes those
in d ≥ 4, and where δ(K̃µν) = −∂zhµν/2.

The perturbation of the expectation value (C.6) is written, by using the bulk Einstein
equations δEMN = 0, as

δ〈 Tµν 〉 = lim
z→0

1
16πGd+1 L

[
−
(
LΩ
d− 2 ∂z + 1

)
L∂z

(
`2 P̄µν Φ

)
Ωd−1 +

2L∂zD̄(µh
(1)
T ν)

Ωd−1

+
(
LΩ
d− 2 ∂z + 1

) L∂zh(2)
T µν

Ωd−1 + · · ·
]
, (C.7)
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which is by itself gauge invariant due to the fact that 〈 T̄µν 〉 = 0 for our background.
From eqs. (C.5) and (C.7), we find that the perturbations of the semiclassical Einstein
equation (2.18b) is written as

lim
z→0

{(d− 1) (d− 2)
d

ḡµν

(
D̄2 − d

`2

)
Φ− d− 2

d
P̄µν Φ−

(
D̄2 + 2

`2

)
h

(2)
T µν

}

= lim
z→0

Gd
Gd+1 L

[
−
(
LΩ
d− 2 ∂z + 1

)
L∂z

(
`2 P̄µν Φ

)
Ωd−1 +

2L∂zD̄(µh
(1)
T ν)

Ωd−1

+
(
LΩ
d− 2 ∂z + 1

) L∂zh(2)
T µν

Ωd−1 + · · ·
]
. (C.8)
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