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1 Introduction

The transverse momentum (qT ) spectrum of the Higgs boson is one of the most important
observables at the LHC. High-luminosity measurements by the ATLAS and CMS detectors
promise qT -differential Higgs cross section data with relative experimental uncertainties of
eventually only a few percent, see e.g. ref. [1]. This precision can be exploited to discover
potential new physics effects from modified (effective) Higgs couplings in the spectrum at low
and moderate qT [2–5] (i.e. qT � mH and qT . mH with mH the Higgs mass, respectively).
The shape of the spectrum in the low-qT region, where the peak of the distribution is
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located, for instance, is sensitive to modifications of the Higgs-bottom Yukawa coupling [2].
To tap the full potential of such new physics analyses the theory uncertainty of the Standard
Model (SM) background should be at the same level (or smaller) than the experimental one.

The state-of-the-art theoretical predictions of the Higgs qT spectrum in gluon fusion,
which is by far the dominant Higgs production channel at the LHC, already come close
to the few-percent precision goal. They have reached the fiducial N3LL′ + N3LO level,1

i.e. they include fixed-order inclusive as well as fiducial corrections and resummation of
large logarithms ∝ ln(q2

T /m
2
H) up to third order in QCD [6–11]. Recently, even some of

the ingredients required to achieve N4LL resummation became available [12–14]. Small-qT
resummation is not only necessary to properly describe the shape of the spectrum, but also
improves the prediction for the total fiducial cross section of Higgs production measured by
the LHC experiments [6]. This in turn allows e.g. to probe the effective Higgs coupling to
gluons. The currently available high-order resummed results for the Higgs qT spectrum [6–
11] are obtained in the heavy-top limit (mt →∞),2 while all other SM quarks are treated
as massless.

Finite top mass effects become relevant for large qT (& mt). The full top mass
dependence of the Higgs qT distribution is known at NNLO (= NLO1 in Higgs+1jet
production) [15]. Regarding bottom mass effects there exists quite some literature, see
e.g. refs. [16–26]. Concentrating on the qT . mH region and working in the heavy-top
limit we distinguish bottom mass corrections proportional to (at least one power of) the
bottom Yukawa coupling yb ∼ mb/mH and those at leading power in 1/mH and thus O(y0

b ).
To the best of our knowledge all available literature is concerned with the former type
of corrections.

In gluon fusion these arise from a bottom (instead of a top) loop connecting the produced
Higgs boson and the two incoming gluons at the amplitude level. Virtual corrections to
the bottom quark mediated gluon-gluon-Higgs (ggH) form factor give rise to large (double)
logarithms ∝ ln(m2

b/m
2
H), which partly compensate the ybmb/mH ∼ m2

b/m
2
H suppression.

Their systematic resummation has been achieved recently [27].3 For the class of corrections
where a real gluon is attached to the bottom loop inducing the ggH interaction it is currently
unknown how to consistently resum potentially large logarithms of the type ln(m2

b/q
2
T )

or ln(m2
b/s) [20, 21].

In the intermediate-qT region, where (formally) mb � qT . mH ∼
√
s with s the

partonic center of mass energy, the bottom mass corrections proportional to one power of
yb (top-bottom interference) are dominant. All of them were computed at NLO in ref. [19]
and at NNLO in ref. [18], where only the leading terms of an expansion in m2

b/m
2
H , m2

b/q
2
T ,

m2
b/s are kept in the relevant two-loop amplitudes [29]. Recently, also the full NNLO result

for the top-bottom interference contribution became available [16]. In ref. [17] different
1In the primed counting of the logarithmic accuracy, NnLL′ implies that the fixed-order ingredients in

the corresponding factorized cross section are included at NnLO, and not only at Nn−1LO like at NnLL.
Throughout this paper fixed orders are counted w.r.t. the inclusive Higgs production process, i.e. NnLO for
the qT spectrum corresponds to Nn−1LO for Higgs + 1jet production. We will at times refer to the latter
counting as Nn−1LO1.

2The LO top-mass dependence can simply be restored by rescaling the heavy-top limit results with the
full Born cross section [6, 7], which affects the low-qT spectrum due to resummation.

3See ref. [28] for partial resummation at even higher powers in mb/mH .
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heuristic prescriptions to supplement these results with partial or ambiguous resummation
of large logarithms at NNLL were studied. The bottom mass effects on the Higgs spectrum
at moderate qT were found to be of O(5%) (and negative), while the remaining uncertainties
due to unknown higher-order (logarithmic) terms ∝ yb were estimated to be at the one-
percent level. The leading electroweak corrections to the spectrum in the qT . mH range
are somewhat smaller in size [26].

For a determination of yb from the shape of the spectrum at low qT also the bottom
annihilation channel to Higgs production (∝ y2

b ) plays an important role. This contribution
is known to NNLL + NNLO [30] in the “five-flavor scheme”, where bottom quarks are
included in the parton distribution functions (PDFs) and which effectively corresponds
to the mb → 0 limit with fixed yb. Beyond this approximation, i.e. consistently assuming
ΛQCD � mb � mH , the resummed qT spectrum in bottom quark annihilation can be
calculated in full analogy to the “primary mass effects” in the Z-boson qT spectrum (using
four-flavor PDFs) following ref. [31].

In the present paper we consider bottom mass corrections to the Higgs qT spectrum
at leading power in 1/mH ∼ 1/s. In contrast to the corrections discussed above these are
independent of the bottom Yukawa coupling yb ∼ mb/mH and insensitive to the structure
of the ggH interaction mediated by a top loop, i.e. we can safely work in the heavy-top
limit. The qT -dependent contributions of this type can be written as a series of (mb/qT )2n

terms (with n ∈ N) and first appear at NNLO in the spectrum. Hence, they come with an
additional factor of the strong coupling αs compared to the NLO contributions ∝ yb. Near
the peak of the Higgs qT distribution at qT ≈ 2mb ≈ 10GeV, both types of effects may
therefore be of similar size. The aim of this work is to compute the leading O(y0

b ) bottom
mass corrections in the regime ΛQCD � mb ∼ qT � mH and to provide a first analysis of
their numerical impact on the NNLO (= NLO1) spectrum.

Cross sections for sufficiently inclusive measurements in high-energy processes that
involve largely different (energy) scales can often be shown to factorize to a good approxima-
tion. This means that the physics at the various scales can be described independently by
separate factorization functions, which typically simplifies the calculation substantially. The
factorization of the qT -differential cross section of color-singlet production in the presence
of a massive quark flavor was worked out in ref. [31] in the context of the Drell-Yan process.
For the (four) relevant hierarchies between the hard scale Q set by the invariant mass of the
color singlet, its transverse momentum qT � Q, and the quark mass, generically denoted by
m, the appropriate factorization theorems were formulated there using soft-collinear effective
theory (SCET) [32–37].4 This factorization framework also applies to Higgs production in
gluon fusion with m = mb and allows to systematically resum all types of large logarithms
at leading power in the small scale ratios. The factorized cross section for the regime
qT ∼ m� Q takes a special role in this approach, because the factorization theorems for
the adjacent regions, i.e. qT � m � Q and m � qT � Q, represent its large and small
mass limits. The latter can therefore be derived together with the corresponding power
corrections by an expansion of the former in qT /m and m/qT , respectively.

4In the case where all quarks (except for the infinitely heavy top) are treated as massless the corresponding
factorization theorem for qT � Q was first derived in direct QCD [38] and later in SCET [39–41].
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The only missing (and arguably most complex) ingredients to compute the bottom
mass effects on the Higgs qT spectrum we are interested in are the transverse momentum
dependent (TMD) gluon beam functions for qT ∼ m � Q (= mH). These factorization
functions describe the initial state radiation collinear to the proton beams in the gluon
fusion process at the LHC.5 It is the main purpose of this work to calculate the quark mass
corrections to the gluon TMD beam functions to NNLO, while their massless version is
already known to N3LO [42, 43]. This will enable the small-qT resummation in the spectrum
with full bottom mass dependence at NNLL′ and N3LL level (and leading power in 1/Q).
The beam functions are independent of the hard scattering process. Our results therefore
not only contribute to the Higgs qT distribution at hadron colliders, but also to many other
TMD cross sections. In particular, all analytic expressions in this paper directly carry
over to the transverse momentum spectrum of any color singlet final state produced by
gluon fusion.

The paper is structured as follows: in section 2 we discuss the factorization theorem for
the qT -differential color-singlet production cross section and its ingredients in the regime
qT ∼ m � Q. We also give some details on the renormalization group (RG) evolution
of the TMD beam functions. The two-loop calculation of the quark mass corrections to
the gluon beam function is presented in section 3. The renormalized results are derived
and summarized in section 4. In section 5 we cross check our results containing the full
dependence on m/qT with known expressions in the small and large mass limits, m� qT
and m� qT . In section 6 we analyze the numerical impact of the computed NNLO bottom
mass corrections to the Higgs qT spectrum. We conclude in section 7.

2 Factorization with massive quarks

As the prototype of a TMD observable we consider in this work the qT spectrum of a
color singlet state X with invariant mass Q produced in proton-proton collisions. Using
this process as an example we discuss in the following factorization in SCET with an
active heavy quark flavor of mass m and nl massless quark flavors in the regime where
ΛQCD � qT ∼ m� Q. The relevant effective field theory (EFT) modes in this kinematic
region are na-collinear, nb-collinear, and soft. They are defined by the scaling of their
typical momenta:

na-collinear: pµna ∼
(q2

T

Q
,Q, qT

)
∼
(m2

Q
,Q,m

)
,

nb-collinear: pµnb ∼
(
Q,

q2
T

Q
, qT

)
∼
(
Q,

m2

Q
,m
)
,

soft: pµs ∼ (qT , qT , qT ) ∼ (m,m,m) , (2.1)

using the (light-cone) notation

pµ = na ·p
nµb
2 + nb ·p

nµa
2 + pµ⊥ ≡ (na ·p, nb ·p, p⊥) ≡ (p+, p−, p⊥) , (2.2)

5Bottom-quark initiated Higgs production requires the corresponding heavy-quark beam functions
computed in ref. [31].
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with opposite light-like beam directions na, nb and n̄a ≡ nb, n̄b ≡ na, n2
a = n̄2

a = 0, na·n̄a = 2.
In addition to the perturbative modes in eq. (2.1) we also define nonperturbative ultra-
collinear modes with the momentum scaling (Λ2

QCD/Q,Q,ΛQCD) and (Q,Λ2
QCD/Q,ΛQCD)

to describe the incoming protons (inside the two beams with radius ∼ 1/ΛQCD) and their
constituents. The associated ultra-collinear fields are part of a SCET with nl massless
quark flavors, where the heavy quark field has been integrated out. The matching between
the two SCET versions with and without massive quarks yields the beam function matching
coefficients we compute in this paper. For a detailed account on the EFT framework for the
factorization including other possible kinematic regimes with different hierarchies between
the scales qT , m, Q as well as the connections among them we refer to ref. [31].

The mode setup in eq. (2.1) is of SCETII type, because soft and collinear degrees of
freedom have parametrically the same invariant mass ∼ m2 ∼ q2

T and are only separated
in rapidity. As a consequence quantum corrections to soft and collinear operators will in
general generate rapidity divergences, which require renormalization and eventually manifest
themselves as large rapidity logarithms ∼ ln(m/Q) or ∼ ln(qT /Q) in fixed-order predictions
of physical observables. We will employ the MS-type approach to rapidity renormalization
devised in refs. [40, 44]. It allows to systematically resum the rapidity logarithms by
means of rapidity renormalization group equations (RRGEs). The corresponding rapidity
renormalization scale is denoted by ν, whereas µ represents the standard virtuality-type
MS renormalization scale.

The factorization theorem for the gluon fusion process we are concerned with is given
in analogy to the (quark-antiquark initiated) Drell-Yan process studied in ref. [31] by

dσ
dq2
T dQ2 dY

= H{nl+1}
gg (Q,µ)

∫
d2pT,a d2pT,b d2pT,s δ(q2

T − |~pT,a + ~pT,b + ~pT,s|2) (2.3)

×
[ ∑
k∈{q,q̄,g}

Igk,µν
(
~pT,a,m, xa, µ,

ν

ωa

)
⊗ f{nl}k (xa, µ)

]
Sgg(~pT,s,m, µ, ν)

×
[ ∑
l∈{q,q̄,g}

Iµνgl
(
~pT,b,m, xb, µ,

ν

ωb

)
⊗ f{nl}l (xb, µ)

] [
1 +O

(
qT
Q
,
m

Q
,
Λ2

QCD
m2 ,

Λ2
QCD
q2
T

)]
,

where

ωa = QeY , ωb = Qe−Y , xa,b = ωa,b
Ecm

, (2.4)

and Y is the rapidity of the color-singlet state. Here and in the following the superscripts {nl+
1} and {nl} on the m-independent factorization functions indicate whether the associated
operators belong to SCET with nl + 1 or nl active quark flavors. Their renormalization
group (RG) evolution (w.r.t. µ) is performed in the same flavor scheme above and below
their characteristic (matching) scale. Inside these functions the running QCD coupling
αs(µ) must be consistently evaluated in the respective {nl + 1} or {nl} flavor scheme in
order to avoid large logarithms when µ is of the order of the characteristic scale. In eq. (2.3)
this applies to the hard function H

{nl+1}
gg governed by the hard scale Q and the parton

distribution functions (PDFs) f{nl}k governed by the hadronization scale ΛQCD. The hard
function is process-dependent but independent of the observable (here in particular qT ). At

– 5 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
5

leading power in m/Q it corresponds to the squared coefficient of a SCET current operator
resulting from the matching between QCD and SCET carried out with nl + 1 massless
active quark flavors at µ ∼ Q. Explicit expressions of the hard function for gluon fusion
Higgs production (gg → H) can be found up to NNLO e.g. in ref. [45] and at N3LO (in the
large top mass limit) in ref. [46].

The m-dependent factorization functions in eq. (2.3) are the TMD gluon beam function
kernels Iµνgk and the gluon-fusion TMD soft function Sgg. They can be regarded as matching
coefficients at leading power in ΛQCD/m and are located at the flavor threshold where the
massive quark is integrated out, i.e. their matching scale is ∼ m. Accordingly, the RG
evolution above and below µ ∼ m is performed with nl + 1 active flavors (concerning the
running of soft and beam functions) and nl active flavors (concerning the PDF running),
respectively. The renormalized m-dependent functions Iµνgk and Sgg can be expressed in
terms of αs(µ) in either the {nl + 1} or the {nl} flavor scheme without introducing large
logarithms for µ ∼ m. For this reason we did not assign flavor scheme superscripts to Iµνgk
and Sgg in eq. (2.3). For concreteness we will, however, by default use α{nl+1}

s (µ) in explicit
expressions of these functions and indicate this by superscripts as Iµν{nl+1}

gk and S{nl+1}
gg

when necessary. The mass-dependent TMD soft function for gluon fusion processes Sgg is
up to three-loop order related to the corresponding soft function Sqq̄ in the quark-antiquark
channel by Casimir scaling. At NNLO it can therefore be directly obtained from the result
for Sqq̄ computed in ref. [31] for Drell-Yan processes by replacing the quadratic Casimir
coefficient CF → CA. We give the explicit expression in appendix C.5.

In this work we are mainly concerned with the matching coefficients Iµνgk of the TMD
gluon beam functions Bµν {nl+1}

g onto the standard collinear PDFs f{nl}k . The leading power
matching relation was used to formulate eq. (2.3) and reads (following refs. [47–49])

Bµν {nl+1}
g

(
~pT ,m,x,µ,

ν

ω

)
=

∑
k∈{q,q̄,g}

Iµνgk
(
~pT ,m,x,µ,

ν

ω

)
⊗xf{nl}k (x,µ)

[
1+O

(Λ2
QCD
m2 ,

Λ2
QCD
~p2
T

)]
,

(2.5)

with µ ∼ qT ∼ m and ν ∼ Q representing the virtuality and rapidity matching scales,
respectively. Here and in the following we use the symbol ⊗z for the (Mellin-) convolution

f(z)⊗z g(z) ≡
∫ 1

z

dx
x
f(x) g

( z
x

)
. (2.6)

The parton indices q and q̄ in the sums in eqs. (2.3) and (2.5), stand for all massless quark
and corresponding antiquark flavors: q = u, d, s, . . . We will use Q as the index for the
massive quark flavor in the following and g represents the gluon. The universal perturbative
matching kernels Iµνgk describe the na,b-collinear initial-state radiation characterized by the
beam function matching scales for the case of a gluon entering the hard scattering process.

The resummation of logarithms ln(q2
T /Q

2) and ln(m2/Q2) is accomplished by perform-
ing the (R)RG evolution of the different factorization functions in eq. (2.3) from their
characteristic scales to common renormalization scales µ, ν. The resummation kernels for
each factorization function (not shown in eq. (2.3) for compactness) contain the resummed
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logarithms and are obtained by solving the corresponding (R)RGEs. The µ evolution of
the TMD gluon beam function is determined by the RGE

µ
d
dµ B

µν {nl+1}
g

(
~pT ,m, µ,

ν

ω

)
= γ

{nl+1}
Bg

(
µ,
ν

ω

)
Bµν {nl+1}
g

(
~pT ,m, µ,

ν

ω

)
. (2.7)

Similar RGEs hold for the hard and soft functions in eq. (2.3). RG consistency in eq. (2.5)
implies that the dependence on the matching scale µ of the coefficients Iµνgk is subject to

µ
d
dµ I

µν
gk

(
~pT ,m, z, µ,

ν

ω

)
= γ

{nl+1}
Bg

(
µ,
ν

ω

)
Iµνgk

(
~pT ,m, z, µ,

ν

ω

)
−

∑
j∈{q,q̄,g}

[
Iµνgj ⊗z γ

{nl}
f,jk

](
~pT ,m, z, µ,

ν

ω

)
, (2.8)

where γ{nl}f,jk are the PDF anomalous dimensions (splitting functions) collected at one loop
in appendix C.1. In contrast to the µ anomalous dimensions, like γ{nl+1}

Bg
in eq. (2.7), the

beam and soft ν anomalous dimensions depend on the quark mass m. The corresponding
RRGEs read

ν
d
dνB

µν {nl+1}
g

(
~pT ,m, µ,

ν

ω

)
= γ

{nl+1}
ν,Bg

(~pT ,m, µ) ⊗⊥ Bµν {nl+1}
g

(
~pT ,m, µ,

ν

ω

)
, (2.9)

ν
d
dν S

{nl+1}
gg (~pT ,m, µ, ν) = γ

{nl+1}
ν,Sg

(~pT ,m, µ) ⊗⊥ S{nl+1}
gg (~pT ,m, µ, ν) . (2.10)

The symbol ⊗⊥ denotes the convolution6

g(~pT )⊗⊥ f(~pT ) ≡
∫
d2kT f

(
~pT − ~kT

)
g
(~kT ) (2.11)

in two-dimensional transverse momentum space. The ν-independence of the cross section
in eq. (2.3) implies the RG consistency condition

2γ{nl+1}
ν,Bg

+ γ
{nl+1}
ν,Sg

= 0 . (2.12)

The m-dependence of the TMD beam function matching coefficients Iµνgk is currently
unknown. Their quark mass dependent contributions are the only missing pieces in eq. (2.3)
at NNLO and will be computed in the present work to this order, i.e. O(α2

s). The tensor
structure of the Iµνgk can be decomposed as

Iµνgk
(
~pT ,m, z, µ,

ν

ω

)
= gµν⊥

2 Igk
(
~pT ,m, z, µ,

ν

ω

)
+
(gµν⊥

2 + pµT p
ν
T

~p 2
T

)
Jgk

(
~pT ,m, z, µ,

ν

ω

)
.

(2.13)

Note that for unpolarized proton beams the beam function matching kernels Igk and
Jgk depend on ~pT only via ~p 2

T due to rotation symmetry. Only Igk acquires a non-zero
contribution from tree-level matching:7

I(0)
gk

(
~pT ,m, z, µ,

ν

ω

)
= δgk δ(1− z) δ(2)(~pT ) , J (0)

gk

(
~pT ,m, z, µ,

ν

ω

)
= 0 . (2.14)

6This definition differs by a factor of (2π)2 from the definition in refs. [40, 50].
7Throughout this paper we are frequently using the identity δ(2)(~pT ) = δ(~p 2

T )/π.
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Here and in the following the superscript (n) with n = 0, 1, 2, . . . indicates an n-th order
contribution in the perturbative (loop) expansion, i.e. F (n) ∼ αns for (fixed-order) functions
F = Bg, Igk, Sgg, etc. and γ(n) ∼ αn+1

s for anomalous dimensions γ = γBg , γν,Bg , γf,ij , etc.
The tensor structure of Jgk is orthogonal to gµν⊥ (upon contraction of all Lorentz indices).
Thus, for cross sections that are insensitive to the gluon polarizations like eq. (2.3), only
the two-loop matching coefficients I(2)

gk are required at NNLO, or N2LL′ and N3LL when
including resummation. Moreover, there are no quark mass corrections to the one-loop
coefficient J (1)

gk . Hence, at NNLO (N2LL′, N3LL) accuracy, we only have to consider mass
effects on the “unpolarized” gluon beam function Bg ≡ gµν B

µν
g with matching kernel

Igk = gµν Iµνgk . We present their calculation in the next section.

3 Calculation of the two-loop beam functions

The SCET operator matrix element defining the bare unpolarized TMD gluon beam function,
which accounts for the effects of the n-collinear initial-state radiation (n = na, nb), reads

Bg(~pT ,m, x) = −ω θ(ω)
〈
pn(p−)

∣∣Bµcn⊥(0)
[
δ(ω − Pn) δ(2)(~pT− ~Pn⊥)Bcn⊥µ(0)

]∣∣pn(p−)
〉
,

(3.1)

where pn(p−) denotes the incoming spin-averaged proton with lightlike momentum pµ =
p−nµ/2 and x ≡ ω/p−. The operator Bµcn⊥ ≡ 2 tr[T cBµn⊥] is the gauge-invariant n-collinear
gluon field strength in SCET:

Bµn⊥ = 1
g

[
W †n iDµ

n⊥Wn
]
, iDµ

n⊥ = Pµn⊥ + gAµn⊥ , Wn =
[ ∑

perms
exp

(
− g

Pn
n̄ ·An

)]
. (3.2)

The SCET label momentum operators ~Pn⊥ and Pn ≡ n̄ · Pn [34] act on the n-collinear
gluon fields Aµn to their right. For more details on the involved SCET operators and Wilson
lines (Wn) we refer to refs. [35, 49, 51].

The beam function kernels Igk are in practice computed from a perturbative matching
calculation of partonic beam functions Bg/j obtained by replacing the incoming proton with
parton states (with the same momentum) onto corresponding partonic PDFs fk/j [49, 51].
The operator between the external states in eq. (3.1) is local in time. We can therefore
evaluate the corresponding real-emission Feynman diagrams in figure 1b and figure 2 directly
as loop diagrams without cutting (or taking a discontinuity or imaginary part).8 This is in
analogy to the SCET calculation of the standard PDFs [45, 51], but in contrast to that of
the virtuality-dependent beam functions [45, 51–53]. Apart from the vertices for the Bµcn⊥
operator insertions [45, 53] the usual (time-ordered) QCD Feynman rules can be used [33].

The bare partonic beam functions are ultraviolet (UV) and infrared (IR) divergent
due to the separation of the collinear regions from the hard and ultra-collinear regions in
virtuality. As argued in ref. [54], for the case of the unpolarized gluon beam function UV and
IR divergences can be regulated by conventional dimensional regularization upon replacing

δ(2)(~pT− ~Pn⊥) → (~p 2
T )−ε

Γ(1− ε)πε δ
(d−2)(~pT − ~Pn⊥) (3.3)

8Of course one may just as well sum the contributions of all possible final-state cuts of each diagram.
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(a) (b)

Figure 1. Lowest order diagrams with massive quark loop (thick blue) contributing to the matching
calculation of I(1)

gg (a) and I(2)
gq (b), respectively. The dashed line represents a collinear massless

quark q, curly lines (with a straight line inside) represent collinear gluons. The Bσcn⊥Bcn⊥σ operator
insertion according to eq. (3.1) is symbolized by the two crossed circles.

in (the real emission contribution to) eq. (3.1) with d = 4− 2ε. For the strong coupling αs
we employ the MS and for the (bottom) quark mass m the on-shell renormalization scheme.
We adopt the notation

B
(n,h)
g/j (~pT ,m, x) ≡ B(n)

g/j(~pT ,m, x)−B(n,l)
g/j (~pT , x) (3.4)

for the n-loop heavy-flavor correction to the partonic beam function, and analogously for
I(n,h)
gk , γ(n,h)

ν,B , etc. The contributions involving only gluons and the nl light (i.e. massless)
flavors are denoted by B(n,l)

g/j , I(n,l)
gk , γ(n,l)

ν,B , etc. In both parts we let αs evolve with nl + 1
active flavors, i.e. αs ≡ α{nl+1}

s (µ) throughout this paper, unless indicated otherwise.

3.1 Rapidity regulator

To regulate the rapidity divergences present in the real emission as well as the purely
virtual contributions to Bg(~pT ,m, x) we choose the symmetric Wilson line regulator of
refs. [40, 44]. The same rapidity regulator has been used in the calculation of the NNLO
TMD soft function Sgg for mb 6= 0 [31] and the massless NNLO TMD beam functions in
ref. [50] with which we will combine the massive quark contributions to be computed in the
present paper.9 It may be implemented by modifying the n-collinear Wilson lines as10

Wn =
[ ∑

perms
exp

(
−g w

2

Pn
|n̄ · Pg|−η

ν−η
n̄ ·An

)]
. (3.5)

Logarithmic rapidity divergences manifest themselves as 1/η poles in loop (and phase space)
integrals. The parameter w obeys the RRGE ν d/dν w = −η w/2 and is set to one after

9NNLO results for the massless gluon TMD beam functions obtained with different rapidity regulators
are found in refs. [55–58], see also ref. [59].

10In general, there are exceptions from this prescription. Consider, for example, the real quark-antiquark
cut and the real gluon cut of diagram 2i, which are separately rapidity divergent (as x → 1). In our
calculation of Bg(~pT ,m, x) the sum of the cuts vanishes exactly, such that the diagram in total does not
contribute. For measurements that put different weights on the one- and two-particle final states like the ones
in refs. [60–62], however, the contributions from figure 2i must cancel with similar terms from diagrams 2g
and 2h related by gauge symmetry (just like the corresponding rapidity divergences in the soft function).
This cancellation must be preserved by the rapidity regulator. In practice this means that we have to add
(i.e. cancel) these particular terms before regulating the involved diagrams by different powers of |n̄ · Pg|−η.
See appendix B.1 for a zero-bin calculation where such cancellation is crucial.
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the derivation of the ν anomalous dimension. To obtain the correct anomalous dimensions
it is crucial to take the limit η → 0 before ε→ 0 [40].

Because the relevant rapidity-divergent two-loop diagrams for B(2,h)
g/j in fact correspond

to one-loop graphs, where either a gluon line is dressed with a massive quark bubble or
a triple gluon vertex is replaced by a massive quark triangle subgraph, only single 1/η
poles occur in our calculation. This is consistent with the requirement that the rapidity
divergences of beam and soft functions cancel in the cross section eq. (2.3) at NNLO.
Moreover, since we have at most a single gluon attached to a Wilson line, the n-collinear
“group momentum” operator n̄ · Pg [40] can be replaced with the standard label momentum
operator Pn for our purposes.

For technical reasons we will furthermore employ the “δ-regulator” of ref. [63] in the
calculation of the virtual diagram in figure 3a. This corresponds to assigning an offshellness
to the involved eikonal (Wilson line) propagators. Although diagram 3a is rapidity-finite, we
introduce an auxiliary δ-regulator to avoid rapidity divergences in (intermediate) expressions
generated by an integration by parts (IBP) reduction to master integrals, see section 3.4.
In the context of IBP reduction the δ-regulator proves more efficient than the η-regulator,
which modifies the power of eikonal propagators to non-integer values, in the sense that it
yields a smaller set of master integrals.

Before applying them in our calculation let us point out an interesting peculiarity
of the rapidity regulators of the η- and δ-type. Consider the following rapidity-finite
one-loop integral

I0(a, b) =
∫ ddk

(2π)d
1

(−k2)a (−k2 +M2)b =
i 2−dπ−d/2 Γ

(
d
2 − a

)
Γ
(
a+ b− d

2
)

Γ(b) Γ
(
d
2
) Md−2(a+b) ,

(3.6)

where M ∼ m denotes some mass parameter (and we suppress the causal i0 prescription).
An integral of this type for example contributes to the unregulated virtual diagram in
figure 3b, where it arises after integrating the massive quark bubble (leaving a single-
parameter integral, see section 3.2) and canceling a factor of k− ≡ n̄ ·k in the numerator and
the (Wilson line propagator) denominator. Implementing the η-regulator in this diagram
according to eq. (3.5) yields

Iη(a, b) = νη
∫ ddk

(2π)d
|k−|−η

(−k2)a (−k2 +M2)b = 0 . (3.7)

Similarly, with the δ-regulator we have11

Iδ(a, b) =
∫ ddk

(2π)d
k−

(−k2)a (−k2 +M2)b (k−+ δ)

= I0(a, b)−
∫ ddk

(2π)d
δ

(−k2)a (−k2 +M2)b (k−+ δ) = 0 . (3.8)

11Adding a factor (k−+δ)−c in the integrand of eq. (3.6) results in an additional factor δ−c after integration.

– 10 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
5

In both cases the limit of vanishing regulator is not continuous:

lim
η→0

Iη(a, b) = lim
δ→0

Iδ(a, b) = 0 6= I0(a, b). (3.9)

While this does not pose a conceptual problem (as long as the rapidity regulator is correctly
implemented such that the combined soft and collinear contributions to an observable
reproduce the leading-power full-theory result at fixed order), it forces us to consistently
regulate also rapidity-finite terms which may complicate their calculation in practice.

The discontinuous behavior of the rapidity-regulated integral in eq. (3.9) is caused by
the absence of an external minus momentum component (here p−) in the denominator of
the integrand. For example, the η-regulated rapidity-finite integral (pµ = p−nµ/2)

Jη(a, b) = νη
∫ ddk

(2π)d
|k−|−η

[−(k − p)2]a (−k2 +M2)b

=
i 2−dπ−d/2Γ

(
d
2 − a

)
Γ(a− η)Γ

(
a+ b− d

2
)

Γ(a)Γ(b)Γ
(
d
2 − η

) (
p−

ν

)−η
Md−2(a+b) (3.10)

has a smooth η → 0 limit,12 and analogously using the δ-regulator:

lim
η→0

Jη(a, b) = lim
δ→0

Jδ(a, b) = J0(a, b) = I0(a, b). (3.11)

On the other hand, if the scalar loop integral in eq. (3.6) corresponds to a term of an
n-collinear SCET diagram like figure 3b the independence of the large lightcone momentum
component p− ∼ Q gives rise to a non-vanishing soft zero-bin (aka soft-bin) [63, 64]:
adopting soft scaling of the loop momentum, i.e. kµ ∼ (m,m,m), and expanding the
integrand (with M ∼ m) accordingly leaves the integral unchanged. Hence, subtracting the
zero-bin exactly removes the contribution of eq. (3.6) from the diagram. This cancellation
is not affected by the rapidity regulator. Indeed, we find by explicit calculation that after
zero-bin subtraction (see appendix B) all rapidity-finite contributions to the bare two-loop
beam function have a smooth η → 0 limit. We conjecture that this holds true for any
rapidity regulator of η- and δ-type and for any collinear matrix element at any loop order,
such that one can always safely drop the rapidity regulator in rapidity-finite terms when
consistent zero-bin subtractions are performed.

3.2 Dispersion relation for massive bubble diagrams

The two-loop Feynman diagrams in figure 1b, figure 2e-i, and figure 3b-d contain the
one-loop off-shell gluon self-energy consisting of a massive quark bubble as subdiagram.
For their evaluation in general covariant gauge (ξ = 0 corresponds to Feynman gauge) we

12Note that due to the pole structure in the complex k+ plane the integrand has only support for
0 < k− < p−. We can thus replace |k−|−η → (k−)−η in eq. (3.10) without changing the integral.
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conveniently employ the dispersion relation [65, 66]

1PI =
−i
(
gµρ−ξ p

µpρ

p2

)
p2+i0 Πρσ(p2,m2)

−i
(
gσν−ξ p

σpν

p2

)
p2+i0 (3.12)

= 1
π

∞∫
4m2

dM2

M2

−i
(
gµν−κp

µpν

p2

)
p2−M2+i0 Im

[
Π(M2,m2)

]
−
−i
(
gµν−κp

µpν

p2

)
p2+i0 Π(0,m2) .

Note that the gluon propagators to the left and right of the one-particle irreducible (1PI)
gluon self-energy bubble are included in eq. (3.12), color indices are suppressed, and we
have introduced the bookkeeping parameter κ ≡ 1 in the second line for convenience of
presentation, see below. The first term in the second line represents a weighted integral
over a massive gluon propagator (in Landau gauge), the second term is proportional to
a massless gluon propagator. The vacuum polarization function due to a virtual massive
quark pair is defined by

Πab
µν(p2,m2) = −i(p2gµν − pµpν)Π(p2,m2)δab =

∫
ddx eipx〈0|TJaµ(x)Jbν(0)|0〉 , (3.13)

with the vector current Jaµ ≡ igQ̄T aγµQ. The relevant one-loop expressions are

Π(1)(p2,m2) = αsTF
4π 22ε+3πεµ̃2ε Γ(ε)

∫ 1

0
dy y1−ε(1− y)1−ε

(
−p2 + m2

y(1− y)

)−ε
,

Im
[
Π(1)(p2,m2)

]
= θ

(
p2−4m2)αsTF

4π

(
p2

µ̃2

)−ε 24επ
3
2 +ε

Γ(5
2 − ε)

(2m2

p2 + 1− ε
)(

1− 4m2

p2

)1
2−ε

,

Π(1)(0,m2) = αsTF
4π

4
3(4π)ε Γ(ε)

(
m2

µ̃2

)−ε
, (3.14)

where µ̃ ≡ µ eγE/2(4π)−1/2 and αs ≡ αs(µ) is the running coupling in the MS scheme. Note
that the first term in the second line of eq. (3.12) corresponds to the insertion of the on-shell
renormalized vacuum polarization function and is thus UV finite for given pµ. The UV
divergence of the massive quark bubble is contained in the second (massless) term.

Using eq. (3.12) we can write each of the two-loop diagrams with an off-shell massive
quark bubble as sum of two parts. One part corresponds to the one-loop diagram where the
dressed gluon propagator is replaced by a massive gluon propagator with mass M ≥ 2m,
which must be integrated over. The other part equals the corresponding massless one-
loop diagram times a factor −Π(1)(0,m2). In the virtual diagrams figure 3b-d the latter
contribution vanishes because the loop integral is scaleless. Of course we can also use13

1PI = −
−i
(
gµν − κp

µpν

p2

)
p2 + i0 Π(p2,m2) . (3.15)

13We stress again that κ ≡ 1 is not a gauge parameter or anything alike. Like in eq. (3.12) the only purpose
of κ is to label the pµpν part of the dressed propagator in order to trace these terms in the calculations.

– 12 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
5

This leads to one-loop-type integrands including a massive propagator denominator to the
power of ε with mass m/

√
y(1− y), see first line of eq. (3.14). The integration over y, just

like the integration over M , is conveniently performed after the loop integration. In our
beam function calculation we used both methods and checked that the results agree for all
two-loop diagrams with a massive offshell bubble.

The approach based on the dispersion relation in eq. (3.12) allows a particularly
transparent discussion of the main features of the relevant two-loop diagrams, since their
calculation is effectively reduced to a one-loop problem with a massive gluon and integer
powers of propagator denominators. The integration over M does not affect important
properties of the original two-loop graph like the presence of a non-vanishing zero-bin, a
rapidity divergence, or the gauge-dependence. We will therefore mainly refer to this method
in the presentation of our beam function calculation.

In refs. [31, 65–67] it was argued that the terms (∝ pµpν) labeled by κ in eqs. (3.12)
and (3.15) cancel among the two-loop diagrams contributing to gauge-invariant SCET
matrix elements such as soft functions or quark jet and beam functions. The statement
also holds for the gluon beam function in eq. (3.1). For the real-emission diagrams this
can be understood from the analogy to the cancellation of the terms linear in the gauge
parameter ξ within the (massless) one-loop calculation of B(1)

g/g (or resorting to a Ward
identity). Note that (one/two-particle) real-emission and purely virtual contributions are
separately gauge-invariant, i.e. independent of ξ (and thus κ). It is straightforward to
explicitly verify that κ drops out separately in the real-emission diagrams 2e and 2f as well
as in the sum of diagrams 2g-i already at the integrand level.14

For the purely virtual diagrams in figure 3b-d the analogy to the ξ terms of the corre-
sponding massless one-loop graphs is more subtle, because the latter vanish in dimensional
regularization. However, the gauge-invariant coefficients Igg can also be obtained from the
matching of partonic beam functions and PDFs with offshell external legs or an artificial
gluon mass to regulate IR singularities. In this case also the massless virtual diagrams
contribute to B(1)

g/g and require zero-bin subtractions. The ξ-independence of the result
again suggests that also the κ terms from diagrams figure 3b-d must cancel upon zero-bin
subtractions. Indeed, we find by explicit calculation that their total κ term before zero-bin
subtraction exactly equals the total virtual zero-bin contribution. Hence, B(2,h)

g/g is inde-
pendent of κ. The crucial role of zero-bin subtractions for the gauge invariance of SCET
matrix elements involving massive gauge bosons was already pointed out in ref. [63].

The zero-bin contributions from real-emission graphs vanish, see appendix B.1. We thus
conclude that dropping the κ terms from the start removes all zero-bin contributions. At the
same time this eliminates all terms (∝ I0) that cause the issues with the rapidity regulator
discussed in section 3.1. We will therefore mostly exclude the κ terms in the following
presentation of our beam function calculation. Instead we will treat them separately
and explicitly demonstrate that they exactly cancel the non-vanishing virtual zero-bins in
appendix B.2.

14After the loop (and before M or y) integration all real-emission diagrams are separately κ-independent.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 2. Real emission diagrams with massive quark loop (thick blue) contributing to the matching
calculation of I(2)

gg . Diagrams j and k represent the one-loop massive wavefunction corrections to the
leading order (massless) real contribution. The total contribution (sum of all cuts) of diagram i
vanishes. Diagrams with a massive quark bubble and a gluon attached to a Wilson line (d, f, h, k)
are rapidity divergent. Left-right mirror graphs are not shown, but understood.

3.3 Real emission diagrams

The relevant (one- and two-particle) real emission diagrams for the computation of B(2,h)
g/q

and B(2,h)
g/g are shown in figure 1b and figure 2, respectively. The evaluation of the graph in

figure 1b (and its left-right mirror diagram) directly yields

B
(2,h)
g/q = α2

sCFTF
3π3 ~p 2

T

θ(x)Pgq(x)
[(

2(1− x)m̂2 − 1
)
c1−x ln c1−x − 1

c1−x + 1 + 4(1− x)m̂2 − 5
3

]
− 2Π(1)(0,m2)B(1)

g/q + Z(1,h)
αs B

(1)
g/q +O(ε) , (3.16)

where the splitting function Pgq is given in eq. (C.2) and we defined for (later) convenience

m̂ ≡ m

|~pT |
, cy =

√
1 + 4y m̂2 . (3.17)

According to the dispersion relation eq. (3.12) the first term in eq. (3.16) originates from
the one-loop diagrams with a massive gluon propagator, while the second term comes from
the massless one-loop diagram for Bg/q. The third term is due to the conversion of the bare
coupling constant to the MS renormalized αs ≡ α{nl+1}

s (µ) via the heavy flavor contribution

Z(1,h)
αs = αsTF

4π
4
3ε (3.18)
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to the one-loop MS coupling counterterm. Note that the O(ε) contribution of the massless
one-loop result B(1)

g/q given in eq. (C.3) contributes to the O(ε0) part of the second and third
term in eq. (3.16). In contrast, the calculation of the finite first term in eq. (3.16) can be
safely performed in d = 4 dimensions.

As noted above it is easy to see that the contributions ∝ κ from the diagrams for
B

(2,h)
g/g with a massive quark bubble cancel. In particular, using the dispersion relation in

eq. (3.12), the calculation of diagrams figure 2g,h resembles the one of the real emission
graphs contributing to B(2,h)

q/g in ref. [31]. The graphs in figure 2 with a coupling to a collinear
Wilson line are rapidity divergent. (Diagram 2i vanishes upon integration.) Implementing
the η rapidity regulator, according to eq. (3.5), for these diagrams amounts to an overall
factor of15

w2
(1− x

x

ω

ν

)−η
. (3.19)

This factor regulates the 1/(1− x) poles associated with rapidity divergences by translating
them to 1/η poles via the expansion

θ(1− x)
(1− x)1+η = −1

η
δ(1− x) +

∞∑
n=0

(−η)n

n! Ln(1− x) = −1
η
δ(1− x) + L0(1− x) +O(η)

(3.20)

in terms of the plus distributions

Ln(y) ≡
[
θ(y) lnn y

y

]
+

= lim
ε→0

d
dy

[
θ(y − ε) lnn+1 y

n+ 1

]
. (3.21)

The rapidity divergences of diagrams 2d-f (and their mirror graphs) cancel exactly. The
rapidity divergence of diagram 2h instead cancels with its soft analog in figure 6a within
the cross section in eq. (2.3) at fixed order.

The one-real-gluon cuts of the diagrams in figure 2 (if present) give rise to terms singular
in ~p 2

T , i.e. proportional to δ(2)(~pT ) or the plus distributions16

Ln(~pT , µ) ≡ 1
πµ2 Ln

(
~p 2
T

µ2

)
, (3.22)

via the expansion

1
π

(µ2)ε

(~p 2
T )1+ε = −1

ε
δ(2)(~pT ) +

∞∑
n=0

(−ε)n

n! Ln(~pT , µ) . (3.23)

The cuts through two massive quark lines result in regular (non-singular) functions of ~p 2
T .

The reason is that the limit ~p 2
T → 0 is effectively tied to the limit m2 →∞, where massive

15In the following we will suppress the parameter w and only restore it implicitly when required by the
RRG formalism [40], i.e. for the derivation of the ν anomalous dimension of the beam function in eq. (4.17).

16In refs. [40, 50] the notation LTn (~pT , µ) ≡ (−1)n
2 Ln(~pT , µ) was used. Useful properties and convolutions

of the Ln(~pT , µ) are summarized in ref. [68].
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(a) (b) (c)

(d)

2-
loop

(e) (f) (g)

Figure 3. Purely virtual two-loop diagrams for the calculation of I(2)
gg . Left-right mirror graphs

are understood. Diagrams c-g represent wavefunction renormalization corrections. Diagram c
corresponds to a Wilson-line self-energy graph (and vanishes after zero-bin subtraction). The two-
loop bubble in diagram e symbolizes the sum of all 1PI two-loop vacuum polarization subdiagrams
involving the massive quark flavor. Diagram d is part of diagram e and contains the complete κ
term of the two-loop wavefunction contribution. For consistent wave function renormalization the
graphs d, e, f, g (as well as their mirror diagrams) have to be multiplied with the factors 1/2, 1/2,
3/8, 1/4, respectively.

quarks in the final state are kinematically not allowed. The massive cuts therefore yield
terms proportional to 1/m2 rather than to 1/~p 2

T (in d = 4 dimensions) and therefore need
no regularization in terms of distributions.

The total zero-bin contribution to B(2,h)
g/g associated with real emission diagrams is scale-

less and vanishes similar to that from the massless diagrams. Details on the corresponding
zero-bin calculation are presented in appendix B.1.

3.4 Virtual diagrams

The one-loop contribution to Bg/g due to a massive quark flavor is given by the diagram
in figure 1a. It corresponds to a wavefunction-type correction to the tree-level result B(0)

g/g

and reads

B
(1,h)
g/g = −δ(1− x) δ(2)(~pT ) Π(1)(0,m2)

= αsTF
4π δ(1− x) δ(2)(~pT )

[
− 4

3ε + 4Lm
3 − 6L2

m + π2

9 ε+O(ε2)
]
. (3.24)

Here and in the following we use the shorthand notation

Lm ≡ ln
(
m2

µ2

)
. (3.25)

The two-loop virtual diagrams contributing to B(2,h)
g/g are displayed in figure 3. As

stated above and shown by explicit calculation in appendix B.2 the total virtual zero-
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bin contribution to B(2,h)
g/g exactly equals and thus cancels the terms proportional to the

bookkeeping parameter κ in the unsubtracted expression for B(2,h)
g/g . The calculation of the

virtual diagrams is somewhat more involved than the one of the real emission graphs in
figure 2, because the loop integrations are not constrained by the measurement δ-functions
in eq. (3.1). In fact, up to an overall δ(2)(~pT ) the virtual contribution equals the one of the
massive PDF matching coefficientM(2)

gg computed in direct QCD [69]. Given the complete
(one- and two-particle) real-emission contribution we could even extract the virtual part
from the knownM(2)

gg by taking the small mass (m� ~pT ) limit of the TMD beam function.
It is nevertheless instructive to calculate the virtual diagrams (and their zero-bins) in our
SCET setup. In section 5.1 we will then use the small mass limit as a strong cross check of
our explicit calculation. In the following we briefly discuss the evaluation and features of
the different virtual diagrams in figure 3:

Diagram 3a has a massive quark triangle subgraph and is arguably the most difficult
to compute. As there is no corresponding soft diagram with a massive triangle, all zero-bins
are power-suppressed and do not contribute to B(2,h)

g/g . For the same reason the diagram is
rapidity-finite and does a priori not require any rapidity regulator. To simplify the involved
two-loop Feynman integrals we want to use automated integration by parts (IBP) reduction
to a minimal set of master integrals, a standard tool of modern multi-loop calculations.
However, when eikonal (Wilson line) and massive propagators are present at the same
time a naive implementation of IBP reduction often fails, see e.g. the discussion in ref. [67].
For the unregulated rapidity-finite two-loop diagram 3a the IBP program FIRE5 [70] for
example leads to a rapidity-divergent expression due to unregulated rapidity-divergent
master integrals. In the present case there is a pragmatic solution to this problem: we
introduce an auxiliary rapidity regulator which ensures well-defined integrals in the result
and at intermediate steps of the IBP reduction. After evaluation of the master integrals
the dependence of the IBP reduced expression of the diagram on the rapidity regulator
cancels out. For practical reasons we choose the δ-regulator for this calculation. The IBP
reduction with FIRE5 [70] yields four master integrals, which we solved by direct integration
in Feynman parameter representation as functions of m and δ/p− (in the limit δ → 0). The
final result for diagram 3a is δ-independent, but depends on the gauge parameter ξ. The
ξ-dependent terms exactly cancel the ones of diagram 3b. As a check we computed the ε
poles of the diagram (for ξ = 0) also by direct loop integration without IBP reduction and
rapidity regulation.

Diagram 3b is rapidity divergent and ξ-dependent. Implementing the η-regulator
according to eq. (3.5) it entails rapidity-finite terms (∝ κ) that are however discontinuous
in the η → 0 limit as discussed in section 3.1. These terms cancel exactly after zero-
bin subtraction, see appendix B.2, leaving a smooth result for the rapidity-finite part as
η → 0 (which therefore can also be computed without regulator). Like for all relevant
diagrams with a massive quark bubble a particular convenient and transparent way to
calculate this diagram is via the dispersion relation as described in section 3.2. Note that
for the virtual diagrams the Π(0,m2) term in eq. (3.12) only gives rise to a vanishing
contribution proportional to the corresponding virtual massless one-loop diagram, and can
thus be dropped.
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Diagram 3c is proportional to the bookkeeping parameter κ when deploying eq. (3.12).
To derive the integrand one must carefully implement the Feynman rule for the triple gluon
field strength vertex given in appendix D of ref. [53]. One way to do this is to assign an
auxiliary offshellness δ to the Wilson line propagators and perform the necessary color index
contractions. The resulting Feynman integral then takes the form of Iδ(1, 1) in eq. (3.8).
Setting δ → 0 before the loop integration we end up with a result for diagram 3c that
is proportional to I0(1, 1) in eq. (3.6) and corresponds to a (soft) Wilson line self-energy
correction, cf. appendix A. This explains why Diagram 3c exactly vanishes upon zero-bin
subtraction, see appendix B.2. It can thus be effectively omitted in the calculation of B(2,h)

g/g

as a whole (independent of whether or not an unnecessary rapidity regulator is applied).
Diagram 3e represents the full (QCD) two-loop wave function correction from 1PI

massive quark vacuum polarization diagrams. One specific diagram included in this
correction is diagram 3d. It contains the complete κ term of the two-loop wave function
renormalization. The complete two-loop 1PI wavefunction contribution from a heavy flavor
can be obtained from diagram 3e by inserting the known expression (with κ = 1) for the
massive vacuum polarization function Π(2)(0,m2) given in ref. [71].17 In order to verify our
statement of section 3.2 that dropping the κ terms (and thus the zero-bins) also in the
purely virtual contribution yields the correct result we must carefully extract the κ term
due to wavefunction renormalization. To this end we evaluate

diagram 3d ∝
[
∂

∂p2 g
µν
⊥ Π(2,κ)

µν (p2,m2)
]
p2→0

, (3.26)

where Π(2,κ) denotes the κ Term of the gluon self-energy subgraph in diagram 3d (suppressing
color indices). Note that the gluon propagator connecting the subgraph with the O(g0)
vertex for the Bσcn⊥Bcn⊥σ operator is (∝ gµν⊥ and) in fact replaced by the derivative ∂/∂p2.
This is necessary, because gµν⊥ Π(2,κ)

µν /p2 (unlike the full gµν⊥ Π(2)
µν /p2) is not regular in the on-

shell limit p2 → 0. The limit is equivalent to p+ → 0 with p2 = p−p+ and may conveniently
be taken after the derivative but before the loop integration in eq. (3.26). The contribution
of diagram 3d is subtracted from that of diagram 3e (with κ = 1) to obtain the two-loop
1PI wavefunction correction to B(2,h)

g/g without κ term (and zero-bins).
Diagrams 3f and 3g represent the one-particle reducible contributions from wavefunc-

tion renormalization. They are straightforward to compute using eqs. (3.13) and (3.14). As
usual the external leg correction diagrams 3d-g (and their left-right mirror graphs) must be
multiplied with the fractional numbers given in the caption of figure 3 to obtain the correct
wavefunction renormalization contribution.

The soft zero-bin contributions of the virtual diagrams are necessary when the virtual
κ terms are included. Their calculation is discussed in appendix B.2. When expressing
the bare result for B(2,h)

g/g in terms of the MS renormalized coupling αs ≡ α
{nl+1}
s (µ) and

on-shell renormalized mass m we have to add the counterterm contributions

Z(1,h)
αs B

(1,l)
g/g + Z(1)

αs B
(1,h)
g/g +B

(1,h)
g/g (~pT ,m+ δm(1), x)

∣∣
α2
s
. (3.27)

17We recomputed Π(2)(0,m2) and found the same result as ref. [71] up to a different overall sign. This
might be a typo or due to a different (undocumented) convention. We fully agree with their Π(1)(0,m2)
though. For the calculation of diagram 3e we use our result for Π(2)(0,m2), which passes the cross checks
described in section 5.

– 18 –



J
H
E
P
0
5
(
2
0
2
3
)
1
7
5

The massless one-loop result B(1,l)
g/g is given in eq. (C.4). In the second term of eq. (3.27) the

one-loop heavy-flavor contribution in eq. (3.24) is multiplied with the full one-loop coupling
counterterm for nl + 1 active flavors,

Z(1)
αs = Z(1,h)

αs + Z(1,l)
αs = −αs4π

β
{nl+1}
0
ε

= −αs4π
1
ε

(11
3 CA −

4
3(nl + 1)TF

)
. (3.28)

The one-loop mass counterterm in the on-shell scheme is

δm(1) = αsCF
4π m

[
−3
ε

+ 3Lm − 4−
(3L2

m

2 − 4Lm + π2

4 + 8
)
ε+O(ε)

]
, (3.29)

and, as indicated, only the correction ∝ α2
s is to be kept in the third term of eq. (3.27).

The counterterm contributions in eq. (3.27) are included in our final result for B(2,h)
g/g .

4 Two-loop TMD beam function results

We now have the full (real + virtual) two-loop results for the heavy flavor contributions
B

(2,h)
g/g and B(2,h)

g/q to the bare partonic beam functions. The one-loop expression B(1,h)
g/g is

given in eq. (3.24) to the required order in the ε expansion, while B(1,h)
g/q = 0. From these

bare results we determine in this section the n-loop heavy-flavor contributions I(n,h)
gi to

the renormalized TMD beam function matching kernels I(n)
gi = I(n,h)

gi + I(n,l)
gi for n = 1, 2.

We also obtain the n-loop beam function anomalous dimensions γ(n−1,h)
Bg

and γ(n−1,h)
ν,Bg

for
n = 1, 2. The latter are fixed by RG consistency, which relates them to known expressions
for hard and soft anomalous dimensions [31]. Our beam function calculation provides an
explicit confirmation of these results, which serves as an important cross check.

The renormalized matching kernels Igk in eq. (2.5) are related to the bare partonic
beam functions via18

B
{nl+1}
g/j (~pT ,m, z) = Z

{nl+1}
Bg

(
~pT ,m, µ,

ν

ω

)
⊗⊥ I

{nl+1}
gi

(
~pT ,m, z, µ,

ν

ω

)
⊗z f{nl}i/j (z, µ) ,

(4.1)

where ZBg is the MS renormalization factor of the TMD gluon beam function operator
and the sum over all massless partons i is understood. Throughout this paper we always
express (any contributions to) Bg/j , ZBg , and Igj in terms of αs ≡ α{nl+1}

s (µ) as indicated
explicitly in eq. (4.1) by the superscript {nl + 1}. We stress that this also applies to the
massless n-loop expressions B(n,l)

g/j , Z(n,l)
Bg

, and I(n,l)
gi , which arise from nl light quark flavors

and gluons only. For compactness of notation we will often drop the {nl + 1} superscript in
the following. The (ultra-) collinear PDFs live in nl-flavor QCD, where the heavy flavor has
been integrated out, and are therefore naturally expressed in terms of α{nl}s (µ). In the MS
scheme we have

f
{nl}
i/j (z, µ) = δ(1− z) δij −

1
ε

α
{nl}
s (µ)

2π P
(0)
ij (z) +O(α2

s) (4.2)

18In this section we conventionally use the variable z (instead of x) for purely partonic longitudinal
light-cone momentum fractions.
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with the one-loop splitting functions P (0)
jk (z) given in appendix C.1. In the course of

extracting I(2,h)
gj and Z(2,h)

Bg
from eq. (4.1) we have to convert α{nl}s (µ) to αs ≡ α{nl+1}

s (µ)
via the threshold matching relation

α{nl}s (µ) = αs

[
1−Π(1)(0,m2) + Z(1,h)

αs +O(α2
s)
]

= αs

[
1 + αsTF

4π

(4Lm
3 − 6L2

m + π2

9 ε

)
+O(ε2, α2

s)
]
, (4.3)

with Lm ≡ ln(m2/µ2). Expanding eq. (4.1) to O(αs) and using

I(0)
gi = δ(1− z) δ(2)(~pT ) δgi , Z

(0)
Bg

= δ(2)(~pT ) , B
(0,h)
g/j = I(0,h)

gi = Z
(0,h)
Bg

= 0 , (4.4)

we have

B
(1,h)
g/j = Z

(1,h)
Bg

δ(1− z) δgj + I(1,h)
gj . (4.5)

With B(1,h)
g/g in eq. (3.24) and B(1,h)

g/q = 0 we thus obtain

I(1,h)
gg = αsTF

4π δ(1− z) δ(2)(~pT )
[4Lm

3 − 6L2
m + π2

9 ε+O(ε2)
]
,

I(1,h)
gq = I(1,h)

gq̄ = 0 ,

Z
(1,h)
Bg

= −αsTF4π
4
3ε δ

(2)(~pT ) . (4.6)

At O(α2
s) eq. (4.1) yields

Z
(2,h)
Bg

δ(1−z)δgj+I(2,h)
gj =B

(2,h)
g/j + αs

2πεB
(1,h)
g/i ⊗zP

(0)
ij + 1

2πε
[
α{nl}s (µ)−αs

]
α2
s

P
(0)
gj δ

(2)(~pT )

−Z(1,h)
Bg
⊗⊥I

(1,h)
gj −Z(1,h)

Bg
⊗⊥I

(1,l)
gj −Z

(1,l)
Bg
⊗⊥I

(1,h)
gj , (4.7)

where we have used eq. (4.5) for compactness. Inserting the massless one-loop results in
appendix C.2, the two-loop expressions B(2,h)

g/q and B(2,h)
g/g , as well as the one-loop heavy-flavor

contributions in eq. (4.6), we find19

I(2,h)
gg = α2

sCATF
6π2 θ (z)

{
θ (1−z)
π~p2

T

[
12m̂2z2 (1−4m̂2)U

(
z,m̂2)+6m̂2 (z−1)zU

(
1−z,m̂2)

+ 1
cz

[
2m̂4 (47z+29)z2+m̂2 (17z+5)z−2(z+1)

]
ln cz−1
cz+1

− 2
zc1

[
2m̂4 (65z3−33z2+24z−8

)
+m̂2 (25z3−12z2−6z+5

)
−
(
z3+3z−1

)]
ln c1−1
c1+1 +12m̂2 (z−1)z c1−z ln c1−z−1

c1−z+1

− m̂
2

z

(
83z3−95z2+48z−16

)
+ 1

3z
(
23z3−19z2+29z−23

)]
19Recall the definitions of m̂ and cy in eq. (3.17) and of the plus-distributions Ln(~pT , µ) in eq. (3.22).
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+ 1
π~p2

T

[
2
(
2m̂2−1

)
c1 ln c1−1

c1+1 +8m̂2− 10
3

][
δ (1−z) ln ω

ν
+L0 (1−z)

]
+2L0(~pT ,µ)Lm

[
2δ (1−z) ln ω

ν
+Pgg (z)

]
+δ(2)(~pT )δ (1−z)

[ 5
12 +2Lm−

(
L2
m+ 10

3 Lm+ 28
9

)
ln ω
ν

]}

+α2
sCFTF
6π2 θ (z)

{
θ (1−z)
π~p2

T

[
6
(
16m̂4z2+2m̂2 (z+3)z−z−1

)
U
(
z,m̂2)

+ 3
cz

[
64m̂4z2−2m̂2 (7z−3)z−3(z+1)

]
ln cz−1
cz+1

− 2
zc1

[
96m̂4z3+2m̂2 (7z3−12z2−1

)
−(z+2)

(
2z2+2z−1

)]
ln c1−1
c1+1

−48m̂2 (z−1)z+ 1
z

(z−1)
(
4z2+19z−2

)]

+δ(2)(~pT )δ (1−z)
(3

2Lm−
45
8

)}
+α2

sT
2
F

9π2 L2
m δ

(2)(~pT )δ (1−z)+O(ε) ,

(4.8)

I(2,h)
gq = I(2,h)

gq̄ = α2
sCFTF
3π3 ~p2

T

θ (z) Pgq (z)
[(

2(1−z)m̂2−1
)
c1−z ln c1−z−1

c1−z+1 +4(1−z)m̂2− 5
3

]
+αsTF

4π
8
3LmI

(1)
gq (~pT ,z,µ)+O(ε) , (4.9)

Z
(2,h)
Bg

= α2
sCATF
6π2

{
1
η

[
2
π~p2

T

(
−
(
2m̂2−1

)
c1 ln c1−1

c1+1−4m̂2+ 5
3

)
−2L1(~pT ,µ)

+2L0(~pT ,µ)
(1
ε
−Lm

)
−δ(2)(~pT )

( 1
ε2

+ 5
3ε−

π2

6 −
28
9 −L

2
m−

10
3 Lm

)
+O(ε)

]

+δ(2)(~pT )
[( 1

ε2
+ 5

3ε

)
ln ω
ν
− 1
ε

]}
−α

2
sCFTF
8π2ε

δ(2)(~pT ) . (4.10)

In order to write eq. (4.8) in a compact form, we have introduced the auxiliary function

U(z, m̂2) = Li2
(1− cz
c1 + 1

)
+ Li2

(
z
c1 + 1
1− cz

)
+ Li2

(
z
c1 + 1
cz + 1

)
+ Li2

(
cz + 1
c1 + 1

)
− Li2

(
z
cz + 1
cz2 + 1

)
− Li2

(
z

1− cz
cz2 + 1

)
− Li2

(
cz2 + 1
1− cz

)
− Li2

(
cz2 + 1
cz + 1

)
. (4.11)

The beam function anomalous dimensions are derived from the counterterm ZBg as follows:

γBg

(
µ,
ν

ω

)
δ(2)(~pT ) = −

(
ZBg

)−1 ⊗⊥
(
µ

d
dµZBg

)
, (4.12)

γν,Bg(~pT ,m, µ) = −
(
ZBg

)−1 ⊗⊥
(
ν
d
dνZBg

)
. (4.13)
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At O(αs) and O(α2
s) we thus obtain the heavy-flavor contributions

γ
(0,h)
Bg

δ(2)(~pT ) = −µ d
dµZ

(1,h)
Bg

∣∣∣
αs

= −(−2εαs)
∂

∂αs
Z

(1,h)
Bg

= −αsTF4π
8
3 δ

(2)(~pT ) , (4.14)

γ
(1,h)
Bg

δ(2)(~pT ) = −µ d
dµZ

(2,h)
Bg

∣∣∣
α2
s

−
(
−α

2
s

2πβ0
) ∂

∂αs
Z

(1,h)
Bg
− 2α2

sTF
3π

∂

∂αs
Z

(1,l)
Bg

−
(
Z

(1,l)
Bg

+ Z
(1,h)
Bg

)
γ

(0,h)
Bg

+ (−2εαs)Z(1,h)
Bg
⊗⊥

(
∂

∂αs
Z

(1,l)
Bg

)
= α2

s

(4π)2

{32
9 CATF

[
5 ln ω

ν
− 3

]
− 8CFTF

}
δ(2)(~pT ) , (4.15)

γ
(0,h)
ν,Bg

= −ν d
dνZ

(1,h)
Bg

= 0 , (4.16)

γ
(1,h)
ν,Bg

=
[
ηZ

(2,h)
Bg

]
η→1
− ν ∂

∂ν
Z

(2,h)
Bg
− Z(1,h)

Bg
⊗⊥

[
ηZ

(1,l)
Bg

]
η→1

+ Z
(1,h)
Bg
⊗⊥ ν

∂

∂ν
Z

(1,l)
Bg

= α2
sCATF
16π2

{
− 16

9π~p 2
T

[
3(2m̂2 − 1)c1 ln c1 − 1

c1 + 1 + 12m̂2 − 5
]

+ 8
27 δ

(2)(~pT )
(
9L2

m + 30Lm + 28
)
− 16

3 L0(~pT , µ)Lm
}
. (4.17)

In the derivation of anomalous dimensions within the RRG formalism using the η regulator
it is in general important to retain higher order ε terms in the 1/η poles of the corresponding
counterterms. In this particular case it is crucial to include the O(ε/η) term of Z(1,l)

Bg
, as

given in eq. (C.7), in the formulas for the two-loop anomalous dimensions. Moreover, for
eq. (4.15) it is necessary to restore the full µ dependence for finite ε in the 1/η terms of Z1,l

Bg

and Z2,h
Bg

, which are ∝ µ2ε and µ4ε, respectively. The results in eqs. (4.14) and (4.15) exactly
equal the contributions of a single light flavor, see ref. [50]. The heavy-flavor contribution
to the two-loop rapidity anomalous dimension in eq. (4.17) satisfies, according to eq. (2.12),
the RG consistency relation

2γ(1,h)
ν,Bg

+ γ
(1,h)
ν,Sg

= 0 , (4.18)

where γ(1,h)
ν,Sg

is part of the anomalous dimension of the TMD soft function Sgg. It is
determined via Casimir rescaling from the result in ref. [31] and given in eq. (C.16).

The results in this section represent the heavy-flavor contributions to the gluon TMD
beam function and its anomalous dimensions through O(α2

s). The corresponding massless
contributions I(n,l)

gi , γ(n−1,l)
Bg

, and γ
(n−1,l)
ν,Bg

for n = 1, 2 are given in ref. [50] and must be
added to obtain the complete expressions entering the factorized cross section in eq. (2.3)
and the (R)RGEs in eqs. (2.8) and (2.9), respectively:

I(n)
gi = I(n,h)

gi +I(n,l)
gi , γ

(n−1)
Bg

= γ
(n−1,h)
Bg

+γ(n−1,l)
Bg

, γ
(n−1)
ν,Bg

= γ
(n−1,h)
ν,Bg

+γ(n−1,l)
ν,Bg

.

(4.19)
The massless part of the soft function S(n,l)

gg and its anomalous dimensions are also found in
ref. [50], while the soft heavy-flavor contributions are computed in ref. [31] and collected
for convenience in appendix C.5. We emphasize again that our explicit results imply that
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both massive and massless contributions must be evaluated with αs ≡ α{nl+1}
s (µ). In the

coefficients of the αs expansion of the massless contributions from ref. [50] we must however
consistently replace nf → nl (e.g. in the expression for β0).

5 Beam function asymptotics

In this section we study the limiting behavior of the beam function matching coefficients
in eqs. (4.8) and (4.9) when m� pT � Q (“small mass limit”) and pT � m� Q (“large
mass limit”). Following ref. [31] we establish in this way the connection between the cross
section in eq. (2.3) and the corresponding factorization formulas in the two limits (with
pT ≡ |~pT | ∼ qT ), where also the matching coefficients Igi themselves exhibit a factorized
structure. The associated factorization ingredients and thus the asymptotic expressions
for the Igi are either available in the literature or can be inferred by consistency from
related factorization formulas for other processes. Verifying the expected limiting behavior
therefore represents a valuable and strong check of our results for the Igi. In particular the
virtual contributions, which are proportional to δ(2)(~pT ) and thus unaffected by the small
and large mass expansions, are directly cross-checked.

5.1 Small mass limit

In the small mass limit m � qT (for ΛQCD � m, qT � Q) the factorized cross section
of gluon-fusion color-singlet production takes the form (see ref. [31] for quark-initiated
processes)

dσ
dq2
T dQ2dY

=H{nl+1}
gg (Q,µ)

∫
d2pT,ad2pT,bd2pT,s δ(q2

T−|~pT,a+~pT,b+~pT,s|2)

×
[ ∑
i∈{Q,Q̄,q,q̄,g}

∑
k∈{q,q̄,g}

Igi,µν
(
~pT,a,xa,µ,

ν

ωa

)
⊗Mik

(
m,xa,µ

)
⊗f{nl}k (xa,µ)

]

×
[ ∑
j∈{Q,Q̄,q,q̄,g}

∑
l∈{q,q̄,g}

Iµνgj
(
~pT,b,xb,µ,

ν

ωb

)
⊗Mjl

(
m,xa,µ

)
⊗f{nl}l (xb,µ)

]

×Sgg(~pT,s,µ,ν)
[
1+O

(
qT
Q
,
m2

q2
T

,
Λ2

QCD
m2

)]
. (5.1)

Compared to eq. (2.3) the mass-dependent beam function matching coefficients are factorized
in eq. (5.1) into the corresponding coefficients for nl + 1 massless quarks and the known
PDF (flavor-threshold) matching factorsMij :

Igk,µν
(
~pT ,m, z, µ,

ν

ω

)
=

∑
i∈{Q,Q̄,q,q̄,g}

I{nl+1}
gi,µν

(
~pT , x, µ,

ν

ω

)
⊗zMik

(
m, z, µ

) [
1 +O

(
m2

~p 2
T

)]
.

(5.2)

Here the explicit superscript {nl + 1}, which has been suppressed in eq. (5.1), indicates
that the beam function matching coefficients must be evaluated using αs ≡ α{nl+1}

s in order
to avoid large logarithms ∼ lnn(m2/~p 2

T ). The relevantMij are collected up to O(α2
s) for

convenience in appendix C.3.
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We now show explicitly that our mass-dependent two-loop results for the unpolarized
coefficients Igi in section 4 indeed satisfy eq. (5.2). At one-loop we trivially have

I(1,h)
gg (~pT ,m, z, µ) = δ(2)(~pT )M(1)

gg (m, z, µ) , (5.3)

because the only contributing diagram is virtual, see figure 1 a, and thus survives the
expansion in eq. (5.2) as a whole. For the matching coefficient I(2,h)

gq in eq. (4.9) we find in
the small mass limit

I(2,h)
gq (~pT ,m,z,µ) −→

m�pT

α2
sCFTF
3π2

{
Pgq(z)L1(~pT ,µ)−L0(~pT ,µ)Pgq(z)

(
ln(1−z)+ 5

3

)
+δ(2)(~pT )

[
L2
mPgq(z)

2 +LmPgq(z)
(

ln(1−z)+ 5
3

)
+Lmθ(1−z)z

+Pgq(z)
(1

2 ln2(1−z)+ 5
3 ln(1−z)+ 28

9

)]}
+O(ε)

= I(2,l)
gq (~pT ,z,µ)

∣∣∣nl=1

TF
+δ(2)(~pT )M(2)

gq (m,z,µ) (5.4)

in agreement with eq. (5.2). The first term in the last line represents the contribution to
I(2)
gq due to a single massless quark flavor. The explicit expression is given in eq. (C.9).

Note that for pT > 0 the m2/~p 2
T expansion leading to eq. (5.4) is straightforward. However,

to determine the correct distributional structure and in particular to fix the coefficient of
δ(2)(~pT ) on the right-hand side of eq. (5.4) we also had to expand the cumulant, i.e. the
~pT -integral from 0 to an arbitrary ~p cut

T (with m� |~p cut
T |), of the left-hand side.

In the same manner we verify20 that our result for the matching coefficient I(2,h)
gg in

eq. (4.8) is in accordance with eq. (5.2):

I(2,h)
gg (~pT ,m, z, µ)

∣∣∣
T 2
F

= δ(2)(~pT )M(2)
gg (m, z, µ)

∣∣∣
T 2
F

, (5.5)

I(2,h)
gg (~pT ,m, z, µ)

∣∣∣
CFTF

−→
m�pT

I(2,l)
gg

(
~pT , z, µ,

ν

ω

)∣∣∣nl=1

CFTF
+ δ(2)(~pT )M(2)

gg (m, z, µ)
∣∣∣
CFTF

+ 2 I(1)
gq (~pT , z, µ)⊗zM(1)

Qg(m, z, µ) , (5.6)

I(2,h)
gg

(
~pT ,m, z, µ,

ν

ω

)∣∣∣
CATF

−→
m�pT

I(2,l)
gg

(
~pT , z, µ,

ν

ω

)∣∣∣nl=1

CATF
+ δ(2)(~pT )M(2)

gg (m, z, µ)
∣∣∣
CATF

+ I(1,l)
gg

(
~pT , z, µ,

ν

ω

)
⊗zM(1)

gg (m, z, µ) . (5.7)

Note that we have used I(1)
gQ(~pT , z, µ) ≡ I(1)

gq (~pT , z, µ) in the last term of eq. (5.6), because
here also the massive quark flavor Q is to be treated as massless. The factor of two in
front of this term allows for the equal contribution due to the respective antiflavor Q̄. The
explicit expressions for the required massless coefficients I(n,l)

gi are collected in appendix C.2.

20The (non-distributional) part of the δ(2)(~pT ) coefficient that is regular as z → 1 on the right hand side
of eqs. (5.6) and (5.7) we checked numerically for convenience.
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5.2 Large mass limit

In the large mass (or “decoupling”) limit qT � m� Q the factorized cross section reads

dσ
dq2
T dQ2dY =

∑
i,j∈{q,q̄}

H{nl+1}
gg (Q,µ)Hg

c

(
m,µ,

ν

ωa

)
Hg
c

(
m,µ,

ν

ωb

)
Hg
s (m,µ,ν) (5.8)

×
∫

d2pT,ad2pT,bd2pT,s δ(q2
T−|~pT,a+~pT,b+~pT,s|2)S{nl}gg (~pT,s,µ,ν)

×
[ ∑
k∈{q,q̄,g}

I{nl}gk,µν

(
~pT,a,xa,µ,

ν

ωa

)
⊗f{nl}k (xa,µ)

]

×
[ ∑
l∈{q,q̄,g}

Iµν{nl}gl

(
~pT,b,xb,µ,

ν

ωb

)
⊗f{nl}l (xb,µ)

][
1+O

(
qT
Q
,
m2

Q2 ,
q2
T

m2 ,
Λ2

QCD
q2
T

)]
.

The mass-dependent beam function matching coefficients of eq. (2.5) now factorize into
a hard threshold matching factor Hg

c and massless matching coefficients with nl active
quark flavors:

Igk,µν
(
~pT ,m, x, µ,

ν

ω

)
= Hg

c

(
m,µ,

ν

ω

)
I{nl}gk,µν

(
~pT , x, µ,

ν

ω

)[
1 +O

(
~p 2
T

m2

)]
. (5.9)

Similarly, the soft function in eq. (2.3) factorizes into the hard matching factor Hg
s and the

massless soft function with nl flavors in eq. (5.8). While the matching function Hg
s (arising

from virtual soft mass modes) equals the one for a Drell-Yan-type process Hq
s up to Casimir

rescaling (i.e the replacement CF → CA) [31], the matching functions Hg
c (arising from

virtual collinear mass modes) differ from their quark-initiated counterparts Hq
c and were so

far not given in the literature. They can, however, be inferred from consistency relations
between the different formulations of the factorization theorem in ref. [72] for deep inelastic
scattering in the (x → 1) endpoint region and a corresponding alternative factorization
theorem based on the approach of ref. [31].21 Concretely, one can show the relation

Hg
c

(
m,µ,

ν

ω

)
Hg
s (m,µ, ν)Sgc (ω(1− z),m, µ, ν) = 1

ω
Mg(1− z,m, µ) , (5.10)

where Sgc is, up to Casimir rescaling, the csoft function in ref. [31] andMg(1− z,m, µ) =
limz→1Mgg(z,m, µ) is the massive PDF matching coefficient in the threshold limit. The
explicit expression for Hg

c that we extracted up to O(α2
s) from eq. (5.10) is given in eq. (C.13).

We can now check our results for the heavy-flavor corrections to the gluon TMD beam
function coefficients in the large mass limit against eq. (5.9). At one loop we consistently have

I(1,h)
gg (~pT ,m, z, µ) = Hg(1)

c (m,µ) δ(1− z) δ(2)(~pT ) . (5.11)

21The alternative “mass-mode” and “universal” factorization approaches of ref. [31] and refs. [66, 72],
respectively, as well as the consistency relations between their ingredients are discussed in detail in ref. [67]
using the double differential hemisphere mass distribution in the process e+e− → QQ̄ as an example.
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Figure 4. Massive quark corrections to the gluon TMD PDF B̃g defined in eq. (6.1) (left panel)
and its cumulant (right panel) at O(α2

s) as a function of pT and pcut
T , respectively.

The first term in the two-loop matching coefficient I(2,h)
gq in eq. (4.9) vanishes in the

decoupling limit and we obtain

I(2,h)
gq (~pT ,m, z, µ) −→

m�pT

αsTF
4π

8
3Lm I

(1)
gq (~pT , z, µ)

=
(
Hg(1)
c (m,µ) + αsTF

4π
4
3Lm

)
I(1)
gq (~pT , z, µ) . (5.12)

The last term in eq. (5.12) arises from the flavor threshold matching relation eq. (4.3),
which is used in eq. (5.9) to switch from α

{nl}
s to αs ≡ α

{nl+1}
s in the massless one-loop

coefficient I(1,l)
gk . The large-mass expansion of the coefficient I(2,h)

gg in eq. (4.8) yields

I(2,h)
gg

(
~pT ,m, z, µ,

ν

ω

)
−→
m�pT

(
Hg(1)
c (m,µ) + αsTF

4π
4
3Lm

)
I(1,l)
gg

(
~pT , z, µ,

ν

ω

)
+Hg(2)

c

(
m,µ,

ν

ω

)
δ(2)(~pT ) δ(1− z) . (5.13)

The asymptotic behavior of the beam function coefficients in eqs. (5.12) and (5.13) agrees
with eq. (5.9) and thus confirms our results.

6 Numerical effect of bottom mass corrections

As a first step to quantify the effect of the quark mass corrections obtained in section 4
on physical observables, in particular the Higgs transverse momentum spectrum, we assess
here their numerical size at fixed order in αs. A full-fledged analysis including resummation
and the appropriate renormalization scale variations as well as the matching to the massless
full QCD fixed-order result relevant at large transverse momentum is left for future work.

To remove the dependence on the rapidity renormalization scale ν we consider the
symmetrized combination

B̃g(~pT ,m, ω, x, µ) =
∫
d2p′T Bg

(
~pT − ~p ′T ,m, x, µ,

ν

ω

)√
Sgg(~p ′T ,m, µ, ν) , (6.1)
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of TMD gluon beam and soft function, often referred to as TMD PDF. We are interested
in the O(α2

s) correction due to the massive quark flavor, i.e. B̃(2,h)
g . For simplicity we set

µ = m to evaluate B̃(2,h)
g in the following. This choice eliminates the one-loop correction

B̃
(1,h)
g ∝ Lm ≡ ln(m2/µ2) and thus yields22

B̃(2,h)
g (~pT ,m,ω,x,m) =

[
I(2,h)
gg

(
~pT ,m,x,m,

ν

ω

)
+ 1

2S
(2,h)
gg (~pT ,m,m,ν)δ(1−x)

]
⊗xf{nl}g (x,m)+

∑
k∈{q,q̄}

I(2,h)
gk (~pT ,m,x,m)⊗xf{nl}k (x,m) , (6.2)

with S(2,h)
gg as given in eq. (C.14).

In figure 4 we show plots of (2πpT times) B̃(2,h)
g and its cumulant, i.e. the integral∫

|~pT |<pcut
T

d2pT B̃
(2,h)
g (~pT ,m, ω, x, µ) = 2π

∫ pcut
T

0
dpT pT B̃(2,h)

g (~pT ,m, ω, x, µ) , (6.3)

as a function of pT and pcut
T , respectively. For the plots we set µ = m = mb = 4.8GeV

and x = ω/Ecm with ω = Q = mH = 125GeV, Ecm = 13TeV, and we used MMHT2014
NNLO PDFs [73]. The quark mass corrections can be expressed as an infinite series of the
subleading terms ∼ (m/pT )2n in the small mass expansion with n ≥ 1. Note that fixing µ
does not affect the (m/pT )2n corrections we want to visualize here: the difference between
the result with the full mass dependence (red curve) and its small mass limit (blue dashed
curve) is (unlike the individual curves) µ-independent, because the beam and soft function
(and equivalently the hard function) µ anomalous dimension is mass-independent. Note also
that this difference is of O(α2

s), i.e. the full and the small mass results are equal at O(αs).
We observe that for pT � m the deviation between the full result and the small mass

limit performed in section 5.1 is indeed small, while for pT ∼ 10GeV ∼ 2mb the deviations
are of O(100%) and the small mass result does not provide a sensible approximation of
the O(α2

sTF ) contributions. In the large mass limit and for µ = m the correction B̃(2,h)
g is

proportional to δ(2)(~pT ) as can be verified from the results in section 5.2 and ref. [31]. In
the plots of figure 4 the large mass limit is therefore illustrated by (dotted green) horizontal
lines at zero (left panel) and a nonzero value (right panel), which are touched by the curves
of the full result at pT = 0 and pcut

T = 0, respectively.
Finally, we assess the NNLO (=NLO1) quark mass corrections ∼ (m/qT )2n to the

Higgs qT distribution in top-induced gluon fusion at the LHC. In figure 5 we show their
effect relative to the full NLO (= LO1) result, i.e. relative to the leading order spectrum for
qT > 0. Concretely, we plot the cross section ratio23

dσ(2,h)

dσ(1) ≡
dσ(2,h)

dqT dY

/ dσ(1)

dqT dY

∣∣∣∣µ=m

Y=0
= B̃

(2,h)
g (~qT ,m,ω,x,m)
B̃

(1)
g (~qT ,m,ω,x,m)

= B̃
(2,h)
g (~qT ,m,ω,x,m)

B̃
(1,l)
g (~qT ,ω,x,µ=m)

(6.4)

as a function of qT > 0 with the same input as for figure 4. The newly computed quark mass
power corrections are nonsingular in the m→ 0 limit and composed of terms ∝ (m/qT )2n

22Recall that q and q̄ stand for the nl massless quark and antiquark flavors, respectively.
23Note that in accordance with eq. (2.3) the qT -independent hard function factors do not contribute for

µ = m and qT > 0 at the order of interest.
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Figure 5. Relative size of the massive quark corrections to the gluon fusion Higgs transverse
momentum distribution at NNLO (= NLO1) with respect to the NLO (= LO1) spectrum.

with n ∈ N, which can also contain positive powers of ln(m/qT ). The total mass-nonsingular
contribution to eq. (6.4) is depicted in figure 5 by the dotted violet curve. It corresponds
to the difference of the full result (solid red curve) and the small mass limit (blue dashed
curve), i.e. the mass-singular contribution, which includes massive PDF matching factors,
as described in section 5.1. Similar to the plots in figure 4, this difference (the dotted violet
curve) is µ-independent, while the full and small mass results for dσ(2,h)/dσ(1) individually
depend on µ, as dσ(1,h) is nonzero for µ 6= m.

Although the obligatory resummation (with mass-dependent RRG evolution kernels) in
the peak region (i.e. for qT ∼ 10GeV) may quantitatively change the result, figure 5 should
nevertheless give a reasonable estimate of the potential size of the bottom mass corrections
to the Higgs qT distribution in gluon fusion mediated by a top loop. As expected, the
corrections (represented by the dotted violet curve) become negligibly small for qT � 10GeV,
i.e away from the peak region. Around the peak they amount to ∼ 1− 2% and increase
for smaller qT . Despite their apparent small size, these corrections will likely matter for
precision analyses of the Higgs qT spectrum at N3LL′ accuracy (and beyond), which already
has reached the few percent level [6].

7 Conclusion

We have calculated the TMD gluon beam functions at NNLO in SCET with one massive
and nl massless quark flavors. Our results for the massive quark contributions to the
renormalized beam function matching kernels are presented in section 4. The relevant
two-loop diagrams associated with collinear real emissions are shown in figure 1b and figure 2.
Their calculation is rather straightforward. The purely virtual two-loop diagrams in figure 3,
however, require a careful subtraction of non-trivial zero-bin contributions and involve terms
that, upon rapidity regularization, exhibit a discontinuous behavior in the limit of vanishing
rapidity regulator even though they are rapidity-finite. Both types of contributions arise
from two-loop diagrams with a massive quark bubble subdiagram on a virtual gluon line.
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More precisely, they are generated by the part proportional to pµpν of the virtual gluon
propagator dressed with a massive quark bubble, where pµ is the off-shell four-momentum
flowing through the gluon line, see section 3.2. The corresponding parts of the two-loop
diagrams are referred to as κ terms in this work. We explicitly show that the zero-bin
subtraction completely removes all κ terms from the final beam function result. In other
words, one obtains the correct NNLO expressions by omitting the κ terms in all diagrams
with a massive quark bubble and thus also the non-vanishing zero-bin contributions.

An important application of our beam function results is the computation of bottom
mass effects on the gluon-fusion production of Higgs bosons with small transverse momenta
(qT � mH). We have derived the full (mb/qT )-dependence of the Higgs qT distribution at
leading order in the QCD coupling, i.e. at relative O(αs), and at leading power in 1/mH ,
i.e. at O(y0

b ) with yb the bottom Yukawa coupling. We have also confirmed the anomalous
dimensions relevant for the resummation of logarithms ∼ ln(m2

b/m
2
H) ∼ ln(q2

T /m
2
H) at

NNLL′. For N3LL resummation only the quark mass corrections to the three-loop rapidity
anomalous dimension is yet unknown. Apart from the process-dependent hard function, i.e.
an overall factor, our results directly carry over to the transverse momentum distribution
of any other color singlet final state produced by gluon fusion. We have performed a
first numerical analysis at fixed order and found a few-percent level effect of the new
bottom mass corrections on the Higgs qT spectrum in the peak region, where qT ∼ mb.
A more sophisticated analysis including the resummation of large logarithms based on
the factorization approach of ref. [31] for the different hierarchies between mb, mH , and
qT � mH is left for future work.
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A Review of soft function calculation

The two-loop heavy-flavor contribution S(2,h)
gg to the TMD soft function Sgg in the factor-

ization formula eq. (2.3) was derived in ref. [31].24 The relevant soft function diagrams
are displayed in figure 6. The calculation was performed using the dispersion relation in
eq. (3.12) with the κ terms set to zero as justified by a gauge invariance argument following
ref. [63]. In this appendix we explicitly demonstrate the cancellation of κ terms among

24The calculation in ref. [31] was done for incoming quark and antiquark, i.e. with Wilson lines in the
fundamental color representation. Their two-loop result can however be directly translated to S(2,h)

gg due to
Casimir scaling by replacing the overall color factor CFTF → CATF .
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(a) (b) (c) (d)

Figure 6. Diagrams with a massive quark loop (thick blue line) contributing to the soft function.
The little arrows on the Wilson (double) lines indicate the original parton (here gluon) flow. All
possible final-state cuts and mirror graphs are understood. Diagram c corresponds to the purely
virtual vertex correction. Diagram d corresponds to a soft Wilson line self energy correction. It must
be treated in analogy to a soft wave function correction, i.e. carefully regulated with an offshellness
(δ) and multiplied with a factor 1/2, see eq. (A.3).

the diagrams in figure 6. This requires a careful evaluation of diagram 6d, which is closely
related to the zero-bin contribution of the collinear diagram 3d, see appendix B.2.

By means of eq. (3.12) the two-loop calculation of S(2,h)
gg is split into two one-loop

calculations with a massive and a massless gluon exchanged between the soft Wilson lines,
respectively. The massless calculation yields the known result [40, 50] with an overall factor
∝ Π(1)(0,m2). Here we focus on the one-loop diagrams corresponding to the graphs in
figure 6 where the gluon line with a massive quark bubble is replaced by a gluon with mass
M over which we eventually integrate according to eq. (3.12). For the real corrections from
diagrams 6a and 6b we have to cut the massive gluon propagator, i.e. effectively replace it
with a δ-function that puts the gluon momentum on the mass shell (with positive energy).
The corresponding one-loop integrands read up to a common overall factor

[ 6a] = δ(d−2)(~k⊥ − ~pT,s) θ(k0) δ(k2 −M2)
( 2
k+k−

− κ

M2

)
,

[ 6b] = δ(d−2)(~k⊥ − ~pT,s) θ(k0) δ(k2 −M2) κ

M2 . (A.1)

Applying the η-regulator [40] both integrands in eq. (A.1) are multiplied with the same
factor νη|k− − k+|−η. We see that the κ terms of the two real-emission integrands cancel
each other.

The (normalized) integrand of the virtual diagram 6c is given by (suppressing the
i0-prescription)

[ 6c] = 2
k+k−(k2 −M2) −

κ

k2(k2 −M2) . (A.2)

Again the η-regulator adds a factor νη|k− − k+|−η. Note, however, that the κ term is
rapidity-finite and the result for this term is independent of whether the η → 0 limit is taken
before or after the integration (in contrast to the collinear integral in eq. (3.7)). This κ term
is exactly canceled by the soft wave function renormalization represented by diagram 6d.

The integrand [ 6d], similar to that of diagram 3d, requires an offshellness δ of the
external (Wilson) line with the self energy insertion, and the η-regulator must not be applied.
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In SCET, a consistent implementation of the offshellness in soft diagrams requires the
parametric scaling δ ∼ m2/Q� m, because δ is related to the offshellness p2 ∼ Qδ ∼ m2

of the underlying full QCD (and corresponding collinear) diagrams, like in eq. (3.26). To
comply with the EFT power counting we therefore must expand the integrand of diagram 6d
in δ/k ∼ δ/M ∼ m/Q, see also ref. [63]. With the same normalization as for eq. (A.2)
and taking into account the factor 1/2 for wave function renormalization we have (with
k− ↔ k+ for two of the mirror diagrams)

[ 6d] = 1
2

κ

k2(k2 −M2)

[
−k
−

δ
+ 1 +O(δ)

]
. (A.3)

The 1/δ pole in eq. (A.3) vanishes upon integration over the soft loop momentum kµ as it
is antisymmetric under kµ ↔ −kµ.25 So, (before integration over M) the total η-regulated
contribution of diagrams 6c, 6d, and their mirror graphs is proportional to

lim
δ→0

∫ ddk
(2π)d

(
2× [ 6c] νη|k− − k+|−η + 4× [ 6d]

)
=
∫ ddk

(2π)d
2νη|k− − k+|−η

k+k−(k2 −M2) (A.4)

and thus κ-independent. The final MS renormalized result for S(2,h)
gg is given in eq. (C.14).

B Soft zero-bin contributions

In this appendix we give details on the calculation of the soft zero-bin contributions. These
must be subtracted from the sum of the diagrams in figures 2 and 3 in order to avoid
double counting soft contributions already contained in the diagrams of figure 6. The
zero-bin contributions are obtained by expanding the integrand (including the measurement
δ-functions) of the corresponding collinear diagrams assuming a loop-momentum scaling
such that the momentum passing through at least one of the propagators is soft, while the
momenta of the other propagators may be soft or collinear [64]. In this way, for each two-
loop diagram in figures 2 and 3 different zero-bins associated with soft-collinear and soft-soft
loop-momentum regions arise. Except for some zero-bins from diagrams with a massive
quark bubble, however, we find that all of these are power-suppressed (w.r.t. 1/Q) and/or
individually scaleless and thus do not contribute to the (leading-power) beam function kernel
Igg. In particular, there is no non-trivial zero-bin contribution from diagrams with massive
quark triangle or box subgraphs. This is expected, because the zero-bin subtractions are
supposed to remove the overlap with the contributions from the soft graphs in figure 3,
which all contain a massive quark bubble.

For the relevant zero-bins the scaling of the loop momentum running inside the massive
quark bubble is the same than the momentum scaling of the gluons attached to it. It is
convenient to evaluate these contributions by means of the dispersion relation in eq. (3.12).
The relevant two-loop zero-bins can thus be expressed as one-parameter integrals of soft
zero-bins of the corresponding one-loop diagrams with a massive gluon propagator. The
second term in the second line of eq. (3.12) gives rise to a contribution proportional to the
total massless one-loop zero-bin, which is scaleless and vanishes [40].

25Equation (A.3) is therefore equivalent to
[
∂
∂δ
δ [ 6d]

]
δ→0

, where the integrand of diagram 6d is evaluated
in analogy to eq. (3.26). The δ → 0 limit must then consistently be taken before the loop integration.
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B.1 Zero-bin contributions of real-emission graphs

In this section we show that, like in the massless case, the total zero-bin contribution
from the real-emission diagrams in figure 2 vanishes. Employing the dispersion relation in
eq. (3.12) we find the following relevant zero-bin integrands from real emission diagrams up
to a common prefactor ∝ δ(1−x) Im

[
Π(1)(p2,m2)

]
/M (and suppressing the i0 prescription):

2× [ 2e]0-bin = 2ξ
(`−`+− ~p 2

T )2 ,

2× [ 2f]0-bin = 4
`−`+(`−`+− ~p 2

T )
− 2ξ

(`−`+ − ~p 2
T )2 ,

[ 2g]0-bin = κ

(`−`+− ~p 2
T )(`−`+ −M2 − ~p 2

T )
,

2× [ 2h]0-bin = 4
`−`+(`−`+ −M2 − ~p 2

T )
− 2κ

(`−`+− ~p 2
T )(`−`+ −M2 − ~p 2

T )
,

[ 2i]0-bin = κ

(`−`+− ~p 2
T )(`−`+ −M2 − ~p 2

T )
. (B.1)

The factors of 2 on the right account for left-right mirror graphs. The integration variables
are `+, `−, and M . The integration over ~̀⊥ has already been performed exploiting the
TMD beam function measurement ∝ δ(d−2)(~pT − ~̀T ). The zero-bin loop-momenta scale as
follows: `+ ∼ `− ∼ |~pT | ∼M ∼ m.

In eq. (B.1) no rapidity regulator has been implemented yet. Here, the naive implemen-
tation of the η-regulator according to the prescription in eq. (3.5) fails, because it violates
gauge symmetry (see also footnote 10). This concerns not only the ξ-dependent terms,
but indirectly also the κ-dependent terms, since the latter are tied to the ξ-dependent
terms of the corresponding massless one-loop zero-bin integrands by the replacement κ→ ξ

and M → 0. The naive prescription in eq. (3.5) would assign a factor |`−|−η to [ 2f]0-bin
and [ 2h]0-bin, and a factor |`−|−2η to [ 2i]0-bin. These terms would thus vanish upon `

integration and leave a non-zero gauge-dependent zero-bin contribution from [ 2e]0-bin and
[ 2g]0-bin. The η-regulator must therefore be implemented after the cancellation of the
ξ and κ terms in the sum of the zero-bin integrands. This treatment is consistent with
the cancellation of the κ terms in the real-emission soft function diagrams in figure 6a,b,
which are both regulated by the same factor ∝ |`− − `+|−η, cf. eq. (A.1). The κ- and
ξ-independent terms in eq. (B.1) integrate to zero (with or without η-regulator). Hence the
total zero-bin contribution from real emission graphs vanishes.

B.2 Virtual zero-bin contributions

The relevant (unregulated) zero-bin integrands of the virtual diagrams in figure 3 are

[ 3b]0-bin = 2
`+`−(`2 −M2) −

κ

`2(`2 −M2) ,

[ 3c]0-bin = κ

`2(`2 −M2) ,

[ 3e]0-bin = [ 3d]0-bin = 1
2

κ

`2(`2 −M2) , (B.2)
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where `µ∼M∼m and we suppressed a common factor ∝ δ(2)(~pT )δ(1−x)Im
[
Π(1)(p2,m2)

]
/M

(as well as the i0 prescription).
Implementing the η-regulator adds a factor νη|`−|−η to the integrand [ 3b]0-bin, so that

the integrated zero-bin contribution of diagram 3b vanishes (for η 6= 0). As discussed in
section 3.1, the κ term of [ 3b]0-bin exactly cancels the term in the integrand of diagram 3b
that gives rise to the discontinuous η → 0 limit due to the integral in eq. (3.7). The
rapidity-finite part (including the κ term) of the zero-bin subtracted diagram 3b therefore
does not need to be rapidity-regulated. The zero-bin integrand [ 3c]0-bin exactly equals that
of the unsubtracted diagram 3c. The zero-bin subtracted diagram 3c therefore vanishes
(regardless of rapidity regularization).

The zero-bin integrand [ 3e]0-bin is derived from the unintegrated eq. (3.26) respecting
the scaling p2 ∼ m2 and thus p+ ∼ m2/Q. As a consequence of SCET power counting we
must take the p+ → 0 limit at the level of the zero-bin integrand. This is consistent with
the evaluation of the soft diagram 6d in appendix A. The factor 1/2 in [ 3e]0-bin is due to
wavefunction renormalization. The zero-bin contribution of diagram 3e effectively cancels
the soft wave function contribution represented by diagram 6d once the corrections from all
four external legs (of the soft function and the two partonic beam functions, respectively)
are combined in the factorized cross section in eq. (2.3). This is expected because the
unsubtracted collinear wavefunction renormalization exactly equals that of full QCD [33].

After zero-bin subtraction the κ terms of diagrams 3b and 3d cancel each other exactly.
This resembles the cancellation of the κ dependence from diagrams 6c and 6d within the
virtual contribution to the soft function as shown in appendix A.

C Perturbative ingredients

C.1 Splitting functions

The leading-order (one-loop) PDF anomalous dimensions γ(0)
f,ij = αsP

(0)
ij /π are given by

P (0)
qiqj (z) = CF θ(z) δijPqq(z) ,

P (0)
qig (z) = P

(0)
q̄ig (z) = TF θ(z)Pqg(z) ,

P (0)
gg (z) = CA θ(z)Pgg(z) + β0

2 δ(1− z) ,

P (0)
gqi (z) = P

(0)
gq̄i (z) = CF θ(z)Pgq(z) , (C.1)

with qi explicitly denoting here the different massless quark flavors, and the usual one-loop
(LO) quark and gluon splitting functions

Pqq(z) = L0(1− z)(1 + z2) + 3
2 δ(1− z) ≡

[
θ(1− z) 1 + z2

1− z

]
+
,

Pqg(z) = θ(1− z)
[
(1− z)2 + z2] ,

Pgg(z) = 2L0(1− z)(1− z + z2)2

z
,

Pgq(z) = θ(1− z) 1 + (1− z)2

z
. (C.2)
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C.2 Beam function results for massless quarks

The bare massless one-loop partonic TMD beam functions are given by

B
(1)
g/q(~pT , z, µ) = I(1)

gq (~pT , z, µ)− αs
2πεP

(0)
gq (z) δ(2)(~pT ) , (C.3)

B
(1,l)
g/g

(
~pT , z, µ,

ν

ω

)
= Z

(1,l)
Bg

δ(1− z) + I(1,l)
gq (~pT , z, µ)− αs

2πεP
(0)
gg (z) δ(2)(~pT ) , (C.4)

with the (renormalized) massless one-loop matching coefficients

I(1,l)
gg

(
~pT ,z,µ,

ν

ω

)
= αsCA

4π

[
2δ(1−z) ln ω

ν
+θ(z)Pgg(z)

]
×
[
2L0(~pT ,µ)+ 1

6π
2δ(2)(~pT )ε−2L1(~pT ,µ)ε+O(ε2)

]
, (C.5)

I(1)
gq (~pT ,z,µ) = I(1,l)

gq (~pT ,z,µ) = αsCF

4π θ(z)
{

2θ(1−z)z δ(2)(~pT )+2Pgq(z)L0(~pT ,µ)

+
[
π2

6 Pgq(z)δ(2)(~pT )−2θ(1−z)zL0(~pT ,µ)−2Pgq(z)L1(~pT ,µ)
]
ε+O(ε2)

}
,

(C.6)

and the gluon beam function counterterm

Z
(1,l)
Bg

= αs
4π

{1
ε

(
β0 − 4CA ln ω

ν

)
δ(2)(~pT )

+ CA
η

[4
ε
δ(2)(~pT )− 4L0(~pT , µ)−

(
π2

3 δ
(2)(~pT )− 4L1(~pT , µ)

)
ε+O(ε2)

]}
. (C.7)

The plus distribution Ln(~pT , µ) is defined in eq. (3.22).
At two loops the contributions due to a single massless quark flavor read [50, 58]

I(2,l)
gg

∣∣∣nl=1

TF
= α2

sTF
16π2 θ(z)

{
CF θ(1− z)

[
L1(~pT , µ)

(
16(1 + z) ln z + 8(4 + 3z − 3z2 − 4z3)

3z

)

+ L0(~pT , µ)
(
−8(1 + z) ln2 z − 24(1 + z) ln z + 8(2− 21z + 15z2 + 4z3)

3z

)
+ 8

3δ
(2)(~pT )

(1 + z

2 ln3 z + 9 + 3z
4 ln2 z + 9(1 + z) ln z − 1− 24z + 24z2 − z3

z

)]
+ CA

[
L1(~pT , µ)

(16
3 δ(1− z) ln ω

ν
+ 8

3 Pgg(z)
)

+ L0(~pT , µ)
(
−80

9 δ(1− z) ln ω
ν
− 80

9 L0(1− z)− 16(1 + z)
3 θ(1− z) ln z

− 8(23− 29z + 19z2 − 23z3)
9z θ(1− z)

)
+ δ(2)(~pT )

(224
27 δ(1− z) ln ω

ν
+ 224

27 L0(1− z) + θ(1− z)
{4(1 + z)

3 ln2 z

+ 4(13 + 10z)
9 ln z − 4z

3 ln(1− z) + 4(121− 166z + 110z2 − 139z3)
27z

})]}
,

(C.8)
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I(2,l)
gq

∣∣∣nl=1

TF
= α2

sCFTF
16π2 θ(z)

{
16
3 Pgq(z)L1(~pT , µ)

− 16
3 L0(~pT , µ)Pgq(z)

[
ln(1− z) + 5

3

]
+ 4

3δ
(2)(~pT )

[
Pgq(z) ln2(1− z)

+ 2
(5

3Pgq(z)− θ(1− z)z
)

ln(1− z) + 56
9 Pgq(z)− 10

3 θ(1− z)z
]}

. (C.9)

C.3 Massive PDF matching factors

The massive PDF matching coefficients were calculated up to two loops in ref. [69]. At one
loop the relevant expressions read

M(1)
gg (m, z, µ) = αsTF

4π
4
3Lm δ(1− z) ,

M(1)
Qg(m, z, µ) = −αsTF4π 2Lm θ(z)Pqg(z) , (C.10)

where Lm ≡ ln(m2/µ2). At two loops we need

M(2)
gg = α2

sTF
16π2 θ(z)

{
CF

[
θ(1− z)

(
8(1 + z) ln z L2

m + 4(4 + 3z − 3z2 − 4z3)
3z L2

m

+ 8(1 + z) ln2 z Lm + 8(3 + 5z) ln z Lm −
8(2− 24z + 12z2 + 10z3)

3z Lm

+ 4(1 + z)
3 ln3 z + 2(3 + 5z) ln2 z + 16(2 + 3z) ln z − 8(1− 10z + 6z2 + 3z3)

z

)
+
(
4Lm − 15

)
δ(1− z)

]
+ CA

[(8
3L

2
m + 80

9 Lm + 224
27

)
L0(1− z) +

(16
3 Lm + 10

9

)
δ(1− z)

+ 8
3 θ(1− z)

(1− 2z + z2 − z3

z
L2
m + 2(1 + z) ln z Lm + 23− 29z + 19z2 − 23z3

3z Lm

+ 1 + z

2 ln2 z + 13 + 22z
6 ln z − z

2 ln(1− z) + 139− 157z + 137z2 − 175z3

18z

)]
+ 16

9 L
2
mTF δ(1− z)

}
, (C.11)

M(2)
gq = α2

sCFTF
16π2 θ(1− z) θ(z)

{
8(2− 2z + z2)

3z L2
m + 16(2− 2z + z2)

3z ln(1− z)Lm

+ 32(5− 5z + 4z2)
9z Lm + 4(2− 2z + z2)

3z ln2(1− z) + 16(5− 5z + 4z2)
9z ln(1− z)

+ 8(56− 56z + 43z2)
27z

}
. (C.12)
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C.4 Hard massive threshold correction

The matching correction Hg
c due to collinear mass modes arising in the limit Q� m� qT

can be inferred from the literature via eq. (5.12). Up to two-loop order we find

Hg
c

(
m,µ,

ν

ω

)
= 1 + αsTF

4π
4
3Lm + α2

sTF
16π2

{
CA

[(8
3L

2
m + 80

9 Lm + 224
27

)
ln ν

ω
+ 16

3 Lm + 10
9

]
+ CF

(
4Lm − 15

)
+ 16

9 TFL
2
m

}
+O(α3

s) . (C.13)

C.5 Soft function and rapidity anomalous dimension

The two-loop soft function correction due to the heavy quark flavor reads [31]

S(2,h)
gg (~pT ,m,µ,ν) = α2

sCATF
16π2

{
δ(2)(~pT )

[(
−16

3 L
2
m−

160
9 Lm−

448
27

)
ln ν
µ

+ 8
9L

3
m+ 40

9 L
2
m

+
(448

27 −
4π2

9

)
Lm+ 656

27 −
10π2

27 −
56ζ3

9

]
+ 16

9π~p2
T

[
2
(
−5+12m̂2+3c1(1−2m̂2) ln c1+1

c1−1

)
ln ν

m

+3c1(1−2m̂2)
(
Li2
((c1−1)2

(c1+1)2

)
+ln c1+1

c1−1 ln m̂
2(c1+1)2

4c2
1

−π
2

6

)
+c1(5−16m̂2) ln c1+1

c1−1 +8m̂2
]}

+αsTF
4π

4
3LmS

(1)
gg (~pT ,µ,ν) , (C.14)

where αs ≡ α{nl}s (µ), m̂ ≡ m/|~pT |, c1 =
√

1 + 4m̂2, and the one-loop contribution is [40, 50]

S(1)
gg (~pT , µ, ν) = αsCA

4π

[
−4L1(~pT , µ) + 8 ln ν

µ
L0(~pT , µ)− π2

3 δ
(2)(~pT )

]
. (C.15)

The massless η-regulated two-loop soft function S(2,l)
gg can be found in ref. [50]. The two-loop

massive quark correction to the soft rapidity anomalous dimension is given by [31]

γ
(1,h)
ν,S (~pT ,m, µ) = α2

sCATF
16π2

{32
3 Lm L0(~pT , µ)− δ(2)(~pT )

[16
3 L

2
m + 160

9 Lm + 448
27

]
+ 32

9π~p 2
T

[
−5 + 12m̂2 + 3c1(1− 2m̂2) ln c1 + 1

c1 − 1

]}
. (C.16)
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