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Abstract: We study non-planar corrections in two special N = 2 superconformal SU(N)
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with equal couplings and N = 2 vector multiplet coupled to two hypermultiplets in rank-
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the two models are related in a remarkably simple way: the free energies differ by the factor
of 2, whereas the Wilson loop expectation values coincide. Surprisingly, these relations hold
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1 Introduction and summary

Localization [1, 2] is a remarkable tool that allows us to compute exactly various observables
in conformal N = 2 supersymmetric 4d gauge theories (free energy on 4-sphere, circular
half-BPS Wilson loop, correlation functions of chiral primary operators) in terms of special
matrix models. It offers the possibility to study AdS/CFT correspondence beyond the
planar limit and, in this way, understand better the structure of higher loop corrections in
the dual string theory.

According to the standard AdS/CFT dictionary, (see, e.g., [3])1

gs = λ

4πN , T = L2

2πα′ =
√
λ

2π , (1.1)

the expansion of observables in gauge theory in 1/N and, then, in inverse powers of large
’t Hooft coupling λ ≡ g2

YMN corresponds on the string side to expanding in string coupling
gs ∼ 1/N and, then, in the inverse string tension T−1 ∼ 1/

√
λ. Within the localization

approach, this expansion is well understood in maximally supersymmetric SU(N) N = 4
Yang-Mills theory where the underlying matrix model is Gaussian (see, e.g., [4–7]). In N =
2 superconformal theories the localization matrix models contain nontrivial interaction
potentials given by an infinite sum of single and double trace terms [1, 8–10]. This makes
the derivation of large N , large λ expansion in these theories a non-trivial problem.

For the special class of superconformal N = 2 theories that are planar-equivalent
to N = 4 SYM, the leading non-planar corrections to free energy and circular Wilson
loop were studied using localization in a number of recent papers [6, 11–17]. The aim of
the present paper is to develop a systematical expansion of these observables beyond the
leading order in 1/N and understand the properties of non-planar corrections at strong
coupling. We shall consider two particular examples of N = 2 superconformal theories
that we denote as Q2 and SA models.

The Q2 model is the 2−node quiver N = 2 gauge theory (hence the name Q2) obtained
as Z2 orbifold projection of the SU(2N) N = 4 SYM. It describes an adjoint SU(N) vector
multiplet coupled to two SU(N) × SU(N) bi-fundamental N = 2 hypermultiplets with
the same coupling constant. This model is dual to type IIB superstring on the orbifold
AdS5 × (S5/Zorb

2 ) [18–21].
The SA model describes a vector multiplet coupled to two N = 2 hypermultiplets in the

rank-2 symmetric and antisymmetric representations of the SU(N) (hence the name SA for
“symmetric-antisymmetric”).2 This theory may be viewed as an “orientifold” projection
of the Q2 model. Its string theory dual is a special orientifold AdS5 × (S5/Γ), where
Γ = Zorb

2 × Zorient
2 is the product of the orbifold projection and an orientifold action that,

besides inversions of target space coordinates, also involves a product of world-sheet parity
and (−1)FL [23, 24].

1This dictionary is valid in maximally supersymmetric SU(N) N = 4 SYM — AdS5×S5 string duality.
In N = 2 cases some additional shifts of couplings may be required.

2This model is also sometimes referred to as “E–theory” [22] being one of the five (ABCDE) supercon-
formal 4d theories with gauge group SU(N).
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We shall mostly focus on computing the two important observables in these models —
the free energy on the unit 4-sphere and the vacuum expectation value of a circular half-
BPS Wilson loop. Due to the large N planar equivalence, at leading order in 1/N these
observables coincide with those of planar N = 4 SYM. The leading non-planar correction
was found using the localization matrix model in [11, 12, 14–16]. Here we will compute
the subleading non-planar corrections to the free energy and the circular Wilson loop in
the SA and Q2 models and also discuss their interpretation on the dual string theory side.

Let us summarize our main results found from the corresponding localization matrix
model.

Strong coupling expansion of free energy. The localization yields a matrix model
representation of the partition function Z(λ,N) of the Q2 and SA models on the 4-sphere.
As these models are planar equivalent to N = 4 SYM, it is convenient to split their free
energy F (λ,N) = − logZ(λ,N) into the sum of the free energy of the SU(N) N = 4 SYM
theory3 and the difference function

F SA(λ;N) = FN=4(λ;N) + ∆F SA(λ;N) ,
FQ2(λ;N) = 2FN=4(λ;N) + ∆FQ2(λ;N) ,

FN=4(λ;N) = −1
2(N2 − 1) log λ . (1.2)

In the Q2 model, the SU(N) N = 4 SYM contribution is doubled as in the planar limit
each node of the quiver gives rise to FN=4(λ;N).

In contrast to FN=4(λ;N), the difference free energy ∆F (λ;N) remains finite at large
N and has the following expansion4 in powers of 1/N2

∆F (λ;N) = F0(λ) + 1
N2 F1(λ) + 1

N4 F2(λ) + · · · . (1.3)

As was mentioned above, the partition functions of the SA and Q2 models are given by the
SU(N) matrix model integrals containing the interaction potential given by an infinite sum
of double traces of powers of the SU(N) matrices. A peculiar feature of the interaction
potential is that the double traces are accompanied by powers of the coupling constant.
As a consequence, the weak coupling expansion of the difference free energy ∆F (λ;N) can
be obtained by expanding the matrix integrals in powers of the interaction potential and
evaluating them in a free Gaussian model.

For the same reason, the evaluation of ∆F (λ;N) at strong coupling becomes an ex-
tremely nontrivial problem because it requires taking into account an infinite number of
terms in the interaction potential. For the leading term in (1.3), this leads to a representa-
tion of F0(λ) as the determinant of a certain (model-dependent) semi-infinite matrix K(λ).
Early attempts to extract the strong coupling expansion of F0(λ) used various approxima-
tions or numerical approaches in the SA model [12, 14, 16] and a numerical analysis [11] in
the Q2 model.

3We assume the same definition of the matrix model measure and regularization as in [1, 25] and omit
a λ-independent constant.

4Note that in the N = 2 models with hypermultiplets in the fundamental representation there are also
terms with odd powers of 1/N (see, e.g., [13, 17]).
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Recently, it was observed [15] that the semi-infinite matrix K(λ) in the SA model
coincides with the matrix elements of the so called truncated (or temperature dependent)
Bessel operator. It is interesting to note that this operator has previously appeared in
the study of level spacing distributions in matrix models [26] and in the computation of
four-point correlation functions of infinitely heavy half-BPS operators in planar N = 4
SYM [27–29]. Applying the methods developed in these papers, made it possible not only
to compute the strong coupling expansion of F0(λ) to any order in 1/

√
λ but also determine

non-perturbative (exponentially suppressed) O(e−
√
λ) corrections [15].

Similarly, it was shown that in the Q2 model the matrix K(λ) can be split into two
irreducible blocks (associated with the untwisted and twisted sectors of states), whose
determinants are captured by the extended Szegő-Akhiezer-Kac formula for the Fredholm
determinant of the Bessel operator [15].

The resulting strong coupling expansion of the leading term in (1.3) was found to
be [15] 5

FSA
0 (λ) =1

8λ
1/2 − 3

8 log λ− 3 log A + 1
4 −

11
12 log 2 + 3

4 log(4π)

+ 3
32 log λ

′

λ
− 15ζ(3)

64λ′3/2
− 945ζ(5)

512λ′5/2
− 765ζ(3)2

128λ′3
+O(λ′−7/2), (1.4)

FQ2
0 (λ) =1

4λ
1/2 − 1

2 log λ− 6 log A + 1
2 −

4
3 log 2 + log(4π)

+ 1
16 log λ

′

λ
− 3ζ(3)

32λ′3/2
− 135ζ(5)

256λ′5/2
− 99ζ(3)2

64λ′3
+O(λ′−7/2), (1.5)

where A is the Glaisher constant and λ′1/2 ≡ λ1/2 − 4 log 2 is a shifted coupling constant.
The rationale for redefining the expansion parameter λ→ λ′ is that it allows us to perform
a resummation of all terms with coefficients containing powers of log 2. Let us note that in
the Q2 model (1.5) the coefficient of the leading O(λ1/2) term is doubled as compared to
the SA one in (1.4) (just like the planar O(N2) contribution to the free energies FQ2 and
F SA in (1.2)).

In this paper we extend the analysis of [15] and derive the strong coupling expansion
of subleading non-planar corrections to (1.3). We show that in both models the functions
F1(λ),F2(λ), . . . in (1.3) are given by polynomials in the basic traces tr

[
RK(λ)/(1−K(λ))

]
involving again the leading-order matrix K and some specific coupling-independent semi-
infinite matrices R. We demonstrate that these traces can be expressed in terms of matrix
elements of the resolvent of the Bessel operator mentioned above. We develop a technique
for computing these matrix elements at strong coupling in a systematic way and, thus, find
the corresponding expansions of coefficient functions in (1.3).

5We omit non-perturbative O(e−
√
λ) contributions to the free energy in what follows.
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Explicitly, we find for the functions F1 and F2 in the SA model

FSA
1 (λ) = − λ3/2

2048 −
3λ

2048 + λ1/2
( 11

2048 −
log 2
128

)
+
(

3
128 −

log2 2
32 − log 2

512

)

+ 1
λ1/2

(
−15ζ(3)

2048 −
log3 2

8 − 3 log2 2
128 + 279 log 2

2048

)

+ 1
λ

(
105ζ(3)

8192 − 15ζ(3) log 2
128 − log4 2

2 − 5 log3 2
32 + 441 log2 2

512

)
+ . . . , (1.6)

FSA
2 (λ) = λ3

2949120 −
λ5/2

1310720 + λ2
( log 2

61440 −
251

7864320

)
+ λ3/2

(
107

3145728 + log2 2
15360 −

47 log 2
245760

)

+ λ

(
409

524288 + ζ(3)
65536 + log3 2

3840 −
19 log2 2
20480 − 191 log 2

262144

)
+ . . . , (1.7)

and for the function F1 in the Q2 model

FQ2
1 (λ) =− λ3/2

1024 −
λ

3072 + λ1/2
( 5

1024 −
log 2
192

)
− log2 2

48 + log 2
256

+ 1
λ1/2

(
−3ζ(3)

1024 −
log3 2

12 + log2 2
64 + 35 log 2

1024

)
+ . . . . (1.8)

These expressions involve terms with powers of log 2. Their resummation is less obvious
than in the leading terms FSA

0 (λ) in (1.4) and FQ2
0 (λ) in (1.5) and will be discussed below.

Double scaling limit. The obtained expressions for the non-planar corrections F0(λ),
F1(λ) and F2(λ) reveal an interesting structure. Namely, keeping only the leading large λ
terms in (1.4)–(1.8), we get for the corresponding ∆F in (1.3)

∆F SA(λ;N) = 1
8 λ

1/2 − 1
N2

λ3/2

2048 + 1
N4

λ3

2949120 + . . . ,

∆FQ2(λ;N) = 1
4 λ

1/2 − 1
N2

λ3/2

1024 + . . . , (1.9)

where dots stand for terms with subleading powers of λ at each order in 1/N2. We observe
that the coefficients of 1/N2 have increasing power of λ. The relation (1.9) suggests that in
this limit (i.e. N →∞ and then λ→∞) the expansion of the free energy effectively runs
in powers of λ3/2/N2. Moreover, we again observe that, as it happened at the O(N2) and
O(N0) orders, the coefficients of the subleading λ3/2/N2 terms in (1.9) are again related
by the factor of 2.

We shall argue that these properties can be understood as a consequence of the familiar
double-scaling limit in the matrix models, see e.g. [30, 31]. In the present context it
corresponds to the limit

N →∞ , λ→∞ ,
λ3/2

N2 = fixed . (1.10)
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Taking this limit directly in the localization matrix model representation of the gauge
theory partition function gives an efficient way of computing the coefficients of the leading
large λ terms in Fn in (1.3). By exploiting some recent results in the matrix models, we
find that in the SA theory

∆F SA ' 1
8
√
λ− 1

2048
λ3/2

N2 + 1
2949120

(
λ3/2

N2

)2

− 1
1486356480

(
λ3/2

N2

)3

− 1
304405807104

(
λ3/2

N2

)4

+ 17
365286968524800

(
λ3/2

N2

)5

+ . . . , (1.11)

where the sign ‘'’ indicates that this relation is valid in the limit (1.10).
In addition, we prove that in the double scaling limit the free energies in the SA and

Q2 models are related to each other as (to all orders in 1/N2)

∆FQ2 ' 2∆F SA . (1.12)

We would like to emphasize that this relation is not satisfied at weak coupling. The
appearance of this relation at strong coupling admits a possible interpretation on the
string theory side as being a consequence of the fact that the SA model may be obtained
from the Q2 one by an extra projection (see section 7).

The relation of (1.11) suggests that, in the double scaling limit (1.10), the difference
free energy takes the following general form6

∆F ' c0
√
λ+

∞∑
n=1

cn

(
λ3/2

N2

)n
= 2πc0T +

∞∑
n=1

cn

(
8πg

2
s

T

)n
, (1.13)

where cn are rational coefficients. Here in the second relation we switched to the expansion
parameters (1.1) of the dual string theory. We shall discuss the string theory interpretation
of this expansion and coefficients cn in section 7 below.

Remarkably, a similar scaling behaviour was observed earlier in the strong coupling
expansion of the circular Wilson loop in the N = 4 SYM theory in [5] (its dual AdS5 × S5

string-theory interpretation was given in [32]). However, in contrast to that case where
the (λ3/2/N2)n corrections to the Wilson loop exponentiated into exp(λ3/2/(96N2)) =
exp(πg2

s/(12T )), here the series in (1.11) and (1.13) is likely to develop Borel singularities
indicating the need to include non-perturbative, exponentially suppressed corrections.7

6Note that the leading O(
√
λ) term in (1.13) has a special structure compared to subleading terms. On

the matrix model side, this has to do with its origin from log det(1 −K(λ)) of the Bessel matrix, see [15]
and (3.7) below.

7Let us note that an explicit form of a similar strong coupling (large N and large λ) scaling limit may
depend on a particular model and also on a particular observable. For example, a correlator of the circular
Wilson loop with a chiral primary operator has an expansion in powers of λ/N2 ∼ g2

s/T
2 (which sums up

to a simple square root expression) [6]. Another model with reduced supersymmetry where a similar double
scaling limit exists is the 4d U(N) N = 4 SYM theory with a 1

2 -BPS codimension-one defect (hosting a 3d
N = 4 theory) which is dual to a D3-D5 system without flux. The associated localization matrix model
potential has an infinite number of single-trace terms and no double-trace terms. The analysis of the free
energy at strong coupling shows that it has a well-defined limit N →∞, λ→∞ with fixed λ/N2 (compared
to (1.10) above). It was computed in this limit in a closed form in [33] (see eq. (5.20) there).
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Strong coupling expansion of circular Wilson loop. The expectation value of the
half-BPS circular Wilson loop in the SA and Q2 models admits a representation in the
localization matrix model similar to that for the free energy.8 Its large N expansion in
both models takes the form

N−1W = W0 + 1
N2 W1 + 1

N4 W2 + · · · . (1.14)

As for the free energy (1.2), the leading planar correction W0 is the same in the SA and
Q2 models. It is equal to the planar term in the SU(N) N = 4 SYM expression W0 =
2I1(
√
λ)/
√
λ where I1 is a Bessel function [4, 5].

The deviation of W from the exact N = 4 SYM result [5] in the SA and Q2 models
starts at order O(1/N2). It was observed in [11, 12] that at this order it is proportional
to a derivative of the free energy with respect to the coupling constant. We found that a
similar relation to the free energy holds also at higher orders of 1/N2 expansion. Namely,
the ratios of the Wilson loop expectation values expanded in 1/N2 may be written as

W SA

WN=4 = 1− λ2

4N2 F′0+ 1
N4

(
−λ

3

48 F′0+λ4

96 F′02−λ
4

96F′′0−
λ3/2

4
I2(
√
λ)

I1(
√
λ)

F1−
λ2

4 F′1

)
+. . .

WQ2

WN=4 = 1− λ2

8N2 F′0+ 1
N4

(
− λ3

192 F′0+ λ4

384 F′02− λ4

384F′′0−
λ3/2

8
I2(
√
λ)

I1(
√
λ)

F1−
λ2

8 F′1

)
+. . . ,

(1.15)

where F0 and F1 are the coefficients of the 1/N2 expansion (1.3) of the free energy ∆F SA

and ∆FQ2 given by (1.4)–(1.8) and prime denotes derivative over λ. The leading O(1/N2)
terms in (1.15) were found in [11, 12].

The relations (1.15) hold for an arbitrary coupling λ. In the double scaling limit (1.10),
keeping the leading term at strong coupling at each order in 1/N2, the above relations
simplify as

W SA

WN=4 '
WQ2

WN=4 ' 1− 1
64
λ3/2

N2 + 1
6144

(
λ3/2

N2

)2

+ · · · . (1.16)

Thus the Wilson loops in the SA and Q2 models coincide in the double scaling limit,

W SA 'WQ2 . (1.17)

The matrix model origin of this strong-coupling equality will be discussed below.

Structure of the paper. The rest of the paper is organized as follows.
In section 2 we discuss the localization matrix models for the SA and Q2 models and

describe the structure of the diagrammatic expansion of the free energy in 1/N .
In section 3 we present explicit representations for the leading O(N0) term of the free

energy (1.3) and also for the next two O(1/N2) and O(1/N4) non-planar corrections. The
latter are expressed in terms of certain matrix elements of the resolvent of the truncated
(finite temperature) Bessel operator.

8In the Q2 model, the Wilson loop is defined in terms of the fields of the N = 2 vector multiplet at one
of the nodes.
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Section 4 is devoted to the explicit evaluation of these matrix elements in the non-trivial
strong coupling regime. It contains the main results of the paper.

In section 5 we clarify the origin of the peculiar structure that the strong coupling
expansion of the free energy in the SA and Q2 models takes when only the highest power of
λ is kept at each order in the 1/N2 expansion. This limit is related to the familiar double
scaling limit in matrix models. The explicit results for the coefficients of (λ3/2/N2)n terms
in (1.11) and (1.13) are obtained up to order O(1/N10).

Section 6 describes the computation of the subleading non-planar corrections to the
circular half-BPS Wilson loop in the SA and Q2 models and their form in the double scaling
limit.

In section 7 we suggest the dual string theory interpretation of the leading strong
coupling terms in the non-planar corrections to free energy in (1.11) and (1.13), relating
the values of the coefficients cn in (1.13) to those of the few leading higher-derivative
DnR4−like corrections in the type IIB superstring effective action.

There are also four appendices containing derivations of some of the results used in
the text.

2 Matrix model representation

In this section we discuss the matrix model representation for the partition function of the
SA and quiver Q2 models with a gauge group SU(N) on the unit sphere S4.

The partition function of the SA model is given by a matrix integral [1] (see [12] for
details)

ZSA =
∫ N∏

r=1
dar δ

(∑
r

ar
)

∆2(a) e−SSA(a) , (2.1)

where integration goes over eigenvalues a = {a1, . . . , aN} of a hermitian traceless N × N
matrix A describing zero modes of a scalar field on S4. Here ∆(a) =

∏
r<s(ar − as) is a

Vandermonde determinant and the potential SSA(a) has the following form

SSA(a) = 8π2N

λ

N∑
r=1

a2
r +

N∑
r,s=1

[
logH(ar + as)− logH(ar − as)

]
. (2.2)

It contains the function H(x) given by the product of the Barnes G−function

H(x) = e−(1+γE)x2
G(1 + ix)G(1− ix) = exp

( ∞∑
n=1

(−1)n

n+ 1 ζ(2n+ 1)x2n+2
)
. (2.3)

The second relation yields its expansion at small x and it involves the Riemann zeta values.
In a similar manner, the partition function of the quiver Q2 model with equal coupling

constants on the two nodes is given by

ZQ2 =
∫ N∏

r=1
da1,rda2,r δ

(∑
r

a1,r
)
δ
(∑

r

a2,r
) [

∆(a1)∆(a2)
]2
e−SQ2 (a1,a2) , (2.4)

– 7 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

where aα,i are eigenvalues of the SU(N) matrices Aα (with α = 1, 2). The potential is
given by

SQ2(a1,a2) = 8π2N

λ

N∑
r=1

(a2
1,r + a2

2,r)

+
N∑

r,s=1

[
2 logH(a1,r − a2,s)− logH(a1,r − a1,s)− logH(a2,r − a2,s)

]
, (2.5)

where the function H is defined in (2.3). Writing down (2.1) and (2.4), we neglected the
instanton contribution to the partition function as it is exponentially small at large N .

It is convenient to express the potentials (2.2) and (2.5) in terms of traces of the
hermitian matrices

Oi(A) = tr
(
A√
N

)i
=

N∑
r=1

(
ar√
N

)i
, (2.6)

where O1(A) = 0 for the SU(N) matrices. Expanding the H−functions in (2.2) and (2.5)
in powers of eigenvalues ar and rescaling them as ar → (8π2N/λ)−1/2ar, we get

SSA(a) = trA2 − Sint(A) ,
SQ2(a1,a2) = trA2

1 + trA2
2 − Sint(A1, A2) . (2.7)

The interaction terms in both models are given by infinite bilinear combinations of the
single traces (2.6)

Sint(A) = 1
2
∑
i,j≥1

C−ij (λ)O2i+1(A)O2j+1(A) , (2.8)

Sint(A1, A2) = 1
4
∑
i,j≥1

C−ij (λ) [O2i+1(A1)−O2i+1(A2)] [O2j+1(A1)−O2j+1(A2)]

+ 1
4
∑
i,j≥1

C+
ij (λ) [O2i(A1)−O2i(A2)] [O2j(A1)−O2j(A2)] , (2.9)

where the expansion coefficients C±ij with i, j ≥ 1 are

C−ij (λ) = 8
(
λ

8π2

)i+j+1
(−1)i−j+1 ζ(2(i+ j) + 1) Γ(2(i+ j) + 2)

Γ(2i+ 2)Γ(2j + 2) ,

C+
ij (λ) = 8

(
λ

8π2

)i+j
(−1)i−j+1 ζ(2(i+ j)− 1) Γ(2(i+ j))

Γ(2i+ 1)Γ(2j + 1) . (2.10)

They define two semi-infinite matrices whose entries are proportional to a power of ’t
Hooft coupling and odd Riemann zeta values. Notice that the interaction term in the SA
model (2.8) is given by the sum of double traces containing odd powers of matrices. At
the same time, the interaction term in the Q2 model (2.9) involves the double traces with
both even and odd powers of matrices. The superscript in C±ij refers to the parity of the
powers of matrices in the double traces.
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The partition function of N = 4 SU(N) super Yang-Mills theory ZN=4 is given by the
same integral (2.1) but with the interaction term SSA set to zero. Taking the ratio of the
partition functions, we can express (2.1) and (2.4) as the following matrix integrals

ZSA
ZN=4

=
∫
DAe− trA2+Sint(A) ≡

〈
eSint(A)〉 ,

ZQ2

[ZN=4]2 =
∫
DA1DA2 e

− trA2
1−trA2

2+Sint(A1,A2) ≡
〈
eSint(A1,A2)〉 , (2.11)

where the integration measure is normalized in such a way that
∫
DAe− trA2 = 1. As a

consequence, the free energy F = − logZ may be written as (1.2).
According to (2.11), the difference free energy (1.3) in both models can be computed

as expectation values of interaction terms (2.8) and (2.9) in a Gaussian matrix model

e−∆FSA =
〈
eSint(A)〉 , e−∆FQ2 =

〈
eSint(A1,A2)〉 , (2.12)

where the average is computed using the measure defined in (2.11).
At large N and fixed λ, the matrix integrals in (2.11) admit a topological expansion

over the so-called touching surfaces [34–37]. A somewhat unusual feature of these surfaces,
that follows from the double-trace form of the potentials (2.8) and (2.9), is that they are
given by a collection of spherical bubbles that touch other bubbles at two isolated points
at least. At large N the leading contribution to (2.11) comes from the touching bubbles
with neckless configuration and it scales as O(N0). This implies that the difference free
energy, ∆FSA and ∆FQ2 , stays finite in the large N limit and it takes the form (1.3). The
leading O(N2) contribution to the free energy (1.2) in the two models coincides (up to a
factor of 2 in the Q2 model) with that of N = 4 SU(N) SYM theory.

2.1 Free energy at weak coupling

At weak coupling, for λ � 1, the free energy (1.3) can be computed by expanding the
expectation values on the right-hand side of (2.12) in powers of Sint and doing Gaussian
averages.

This way we get, for instance, the first three functions in (1.3) in the SA model,

F0 = 5ζ5

(
λ

8π2

)3
− 105

2 ζ7

(
λ

8π2

)4
+441ζ9

(
λ

8π2

)5
+(−25ζ2

5−3465ζ11)
(
λ

8π2

)6
+· · · ,

F1 =−25ζ5

(
λ

8π2

)3
+ 735

2 ζ7

(
λ

8π2

)4
−3780ζ9

(
λ

8π2

)5
+(−650ζ2

5 +32340ζ11)
(
λ

8π2

)6
+· · · ,

F2 = 20ζ5

(
λ

8π2

)3
−735ζ7

(
λ

8π2

)4
+11907ζ9

(
λ

8π2

)5
+(9075ζ2

5−127050ζ11)
(
λ

8π2

)6
+· · · .

(2.13)

– 9 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

In the Q2 model we have instead

F0 = 3ζ3

(
λ

8π2

)2
− 15ζ5

(
λ

8π2

)3
+
(
− 9ζ2

3 + 315ζ7
4

)(
λ

8π2

)4

+ (120ζ3ζ5 − 441ζ9)
(
λ

8π2

)5
+ · · · ,

F1 = −3ζ3

(
λ

8π2

)2
+ 25ζ5

(
λ

8π2

)3
+
(
− 9ζ2

3 −
735ζ7

4

)(
λ

8π2

)4

+ (120ζ3ζ5 + 1260ζ9)
(
λ

8π2

)5
+ · · · ,

F2 = −10ζ5

(
λ

8π2

)3
+
(

18ζ2
3 + 315ζ7

2

)(
λ

8π2

)4
+ (−420ζ3ζ5 − 1701ζ9)

(
λ

8π2

)5
+ · · · .

(2.14)

Higher order terms of the expansion have increasing complexity and involve multilinear
combinations of the Riemann ζ-values ζn ≡ ζ(n).

Notice that the expansion of F0 and F1 in (2.13) and (2.14) starts at different order in
λ and there is no obvious relation between the functions ∆FSA and ∆FQ2 at weak coupling.
As we will see below, the situation is different at strong coupling.

2.2 Hubbard-Stratonovich transformation

As was already mentioned, the interaction terms (2.8) and (2.9) are bilinear in single
traces (2.6). We can linearize Sint by introducing auxiliary fields coupled to the traces (2.6).
For instance, in the SA model we use (2.8) to get

eSint(A) = (detC−)−1/2
∫
dJ− exp

∑
i≥1

J−i O2i+1(A)− 1
2
∑
i,j≥1

J−i J
−
j (C−)−1

ij

 , (2.15)

where the integration measure is dJ− =
∏
i≥1 dJ

−
i /
√

2π. Substituting this identity into
the first relation in (2.11), the matrix integral over A takes the form

Z(J−) =
〈
e
∑

i≥1 J
−
i O2i+1(A)〉 =

∫
DAe

− trA2+
∑

i≥1 J
−
i O2i+1(A)

. (2.16)

It coincides with a generating function of the correlators of single traces (2.6) in a Gaussian
unitary ensemble. In this way, we arrive at the following representation for the difference
free energy (2.12) in the SA model9

e−∆FSA = (detC−)−1/2
∫
dJ−Z(J−) e−

1
2J
−
i J
−
j (C−)−1

ij . (2.17)

Repeating the same calculation for the Q2 model we obtain a similar representation

e−∆FQ2 =(detC−detC+)−1/2
∫
dJ−dJ+Z(J−,J+)Z(−J−,−J+)e−J

−
i J
−
j (C−)−1

ij −J
+
i J

+
j (C+)−1

ij ,

(2.18)
9Here and in what follows the summation over repeated indices i, j ≥ 1 is tacitly assumed.

– 10 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

where dJ± =
∏
i≥1 dJ

±
i /
√

2π. Here the factors of Z(J−, J+) and Z(−J−,−J+) come from
integration over A1 and A2, respectively. They are given by

Z(J−, J+) =
〈
e
∑

i≥1(J+
i O2i(A)+J−i O2i+1(A))〉 =

∫
DAe− trA2+J+

i O2i(A)+J−i O2i+1(A), (2.19)

and similarly for Z(−J−,−J+).
As we show below, the relations (2.17) and (2.18) can be effectively used to derive

the strong coupling expansion of the free energy (1.3) to any order in 1/N2. Notice that
the dependence of (2.17) and (2.18) on the coupling constant comes from the semi-infinite
matrices C±ij defined in (2.10). At the same time, the dependence on 1/N2 comes from the
correlators (2.16) and (2.19) in a Gaussian unitary ensemble.

2.3 Correlators in a Gaussian unitary ensemble

In this subsection, we examine the properties of the function Z(J−, J+) defined in (2.19).
The function Z(J−) introduced in (2.16) can be considered as its special value for J+

i = 0

Z(J−) = Z(J−, 0) , Z(J−, J+) = Z(−J−, J+) . (2.20)

The second relation follows from invariance of (2.19) under A → −A. It implies that
the product Z(J−, J+)Z(−J−,−J+) that enters (2.18) is an even function of J− and J+

separately.
According to its definition (2.19), Z(J−, J+) is a generating function of correlators in

a Gaussian matrix model

Z(J−, J+) =
〈
e
∑

i≥2 JiOi
〉

= e
∑

JiGi+ 1
2
∑

JiJjGij+ 1
3!
∑

JiJjJkGijk+... . (2.21)

Here Ji coincides with J+
i or J−i depending on the parity of index, i.e. J+

i = J2i and
J−i = J2i+1, and Gi1...iL is a connected L−point correlator (see appendix A)

Gi =
〈
Oi
〉
, Gij =

〈
OiOj

〉
c
, Gijk =

〈
OiOjOk

〉
c
, . . . . (2.22)

Recall that O1 = 0 for the SU(N) group and, therefore, Gi1...iL is different from zero for
ip ≥ 2.

At large N , the correlators (2.22) admit an expansion in powers of 1/N2

Gi1...iL = βi1 . . . βiL
NL−2

[
PL−3 + 1

N2PL + 1
N4PL+3 + . . .

]
, (2.23)

where βi is given by a ratio of Γ−functions and depends on the parity of i, see (3.3) below.
The correlator (2.23) scales as O(1/NL−2). The leading term PL−3 is a polynomial in

i1, . . . , iL of degree L−3 for L ≥ 3. For L = 2 we have P−1 ∼ 1/(i1+i2+c) with the constant
c depending on the parity of indices (see (3.2)). The subleading corrections to (2.23) involve
polynomials in i’s of increasing degree. To the next order in 1/N2 their degree increases
by 3. Notice that for ip = O(N2/3) each term inside the brackets in (2.23) scales as
O(N2(L−3)/3) leading to Gi1...iL = O(1/N2L/3). This property will play an important role
in what follows.
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The explicit expressions for the polynomials PL−3, PL, PL+3, . . . in (2.23) depend on
the parity of indices i1, . . . , iL. For all indices even and for all but two indices even, the
leading polynomials PL−3 are known in a literature for a long time [38]. For arbitrary
values of indices and any L, a general expression for PL−3 was derived only recently [39]. A
general expression for the subleading polynomials in (2.23) remains unknown. Luckily, for
the purpose of computing the first few terms of 1/N2 expansion of the free energy (1.3),
we only need the correlators (2.23) of finite length L ≤ 6. The corresponding expressions
are summarized in appendix A.

Replacing the correlators with their expressions (2.23), we find that the terms in (2.21)
containing the product Ji1 . . . Jip are suppressed by the factor of 1/Np−2. Therefore, com-
puting the free energy (2.17) and (2.18) to order O(1/N2(g−1)) we are allowed to retain in
the exponent of (2.21) only the first 2g terms.

An additional simplification occurs after we take into account the relation (2.20). For
the function Z(J−) = Z(−J−) it leads to

Z(J−) = e
1
2J
−
i J
−
j Q−ij+

1
4!J
−
i J
−
j J
−
k
J−
l

Q−
ijkl

+ 1
6!J
−
i J
−
j J
−
k
J−
l
J−n J

−
mQ−

ijklnm
+O(1/N6) , (2.24)

where the exponent only involves even powers of J−i = J2i+1. Here the notation was
introduced for the correlators with odd indices

Q−i1...in = G2i1+1,...,2in+1 =
〈
O2i1+1 . . .O2in+1

〉
c
. (2.25)

For the product of Z−functions in (2.18) we get in a similar manner

Z(J−, J+)Z(−J−,−J+)

= eJ
−
i J
−
j Q−ij+J

+
i J

+
j Q+

ij+
1

12J
−
i J
−
j J
−
k
J−
l

Q−
ijkl

+ 1
12J

+
i J

+
j J

+
k
J+
l

Q+
ijkl

+ 1
2J

+
i J

+
j J
−
k
J−
l

Q+−
ijkl

+O(1/N4) , (2.26)

where J+
i = J2i and the following notation was introduced

Q+
i1...in

= G2i1,...,2in =
〈
O2i1 . . .O2in

〉
c
,

Q+−
ijkl = G2i,2j,2k+1,2l+1 =

〈
O2iO2jO2k+1O2l+1

〉
c
. (2.27)

As follows from their definition (2.25) and (2.27), the functions Q+
i1...in

and Q−i1...in are
completely symmetric in their indices, whereas Q+−

ijkl is symmetric with respect to the first
and second pair of indices.

2.4 Diagrammatic technique

Substituting (2.24) into (2.17) we can express the free energy in the SA model as an integral
over the auxiliary J−fields. This integral can be evaluated using a Feynman diagram
technique.

To this end, we combine together the two factors in the integrand of (2.17) and identify
the quadratic form in the exponent as defining a propagator of the auxiliary field

X−ij ≡
〈
J−i J

−
j

〉
=
[
C−(1− Q−C−)−1

]
ij
. (2.28)
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Figure 1. Diagrammatic representation of various terms in (2.29) involving the product of X−

and Q matrices. Solid lines denote the propagators (2.28) and grey disks represent the Q−matrices.

Here semi-infinite matrix C−ij is defined in (2.10) and Q−ij is the two-point correlator in a
Gaussian matrix model (2.25). The remaining terms in the exponent of (2.24), proportional
to the matrix model correlators Q−i1...in , define interaction vertices with n ≥ 4 outgoing lines.
Then, the free energy in the SA model is given by the sum of vacuum diagrams involving
an arbitrary number of interaction vertices as shown in figure 1. Their contribution to the
difference free energy (2.17) is given by

∆FSA = 1
2 log det(1− Q−C−)− 1

8X
−
ijX

−
kl Q

−
ijkl −

1
48X

−
ijX

−
klX

−
nm Q−ijklnm

− 1
48X

−
i1i2

X−j1j2X
−
k1k2

X−l1l2Q−i1j1k1l1
Q−i2j2k2l2

− 1
16X

−
i1j1

X−i2j2X
−
k1k2

X−l1l2Q−i1j1k1l1
Q−i2j2k2l2

+O(1/N6) . (2.29)

Notice that the semi-infinite matrices X− and Q− have an expansion in powers of 1/N2

and, therefore, each term in (2.29) generates a series in 1/N2.
In the Q2 model, the coefficient in front of the quadratic term in the exponent of (2.26)

is two times bigger as compared with that in (2.24). To use the same propagator as in (2.28)
it is convenient to rescale auxiliary fields in (2.18) as J−i → J−i /

√
2 and J+

i → J+
i /
√

2.
Then, the propagator of J+ is defined similar to (2.28)

X+
ij ≡

〈
J+
i J

+
j

〉
=
[
C+(1− Q+C+)−1

]
ij
. (2.30)

The resulting expression for the difference free energy in the Q2 model (2.18) is

∆FQ2 = 1
2 log det(1− Q−C−) + 1

2 log det(1− Q+C+)

− 1
16X

+
ijX

+
klQ

+
ijkl −

1
16X

−
ijX

−
klQ
−
ijkl −

1
8X

+
ijX

−
klQ

+−
ijkl +O(1/N4) . (2.31)

The first four terms in this relation are analogous to those in (2.29). The last term pro-
portional to Q+−

ijkl takes into account the interaction of J+ and J− fields.
In the next section, we first evaluate the individual terms in (2.29) and (2.31) and,

then, compute the difference free energy (1.3) in the two models.

3 Large N expansion of the free energy

The relations (2.29) and (2.31) express the difference free energy in the SA and Q2 models
in terms of two sets of semi-infinite matrices Q± and C± defined in (2.25), (2.27) and (2.10),
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respectively. The former are given by correlators in a Gaussian matrix model that are inde-
pendent of the coupling constant. The latter are fixed by the localization to be nontrivial
functions of the coupling constant and are independent of N .

The relations (2.29) and (2.31) are valid for any coupling constant. It follows from (2.10)
that C±ij = O(λi+j+1) at weak coupling and, therefore, the matrices C± can be replaced
in (2.29) and (2.31) by their finite dimensional minors. Expanding (2.29) and (2.31) in
powers of C± one can reproduce the weak coupling expansion (2.13) and (2.14).

At strong coupling, we have to find an efficient way to deal with the product of semi-
infinite matrices in (2.29) and (2.31). It proves convenient to think about semi-infinite
matrices C± and X± as matrix elements of certain integral operators. In this way, the
product of these matrices can be cast into a convolution of the corresponding integral
kernels. We show in this section that the integral operators defined by C± and X± coincide
with the temperature dependent (or truncated) Bessel operator. We exploit this property
in section 4 to work out the strong coupling expansion of the difference free energy (2.29)
and (2.31).

3.1 Leading order

At large N , the leading contribution to (2.29) and (2.31) comes from terms involving
log det(1 − Q±C±). The contribution of the remaining terms is suppressed by powers of
1/N2 in virtue of (2.25), (2.27) and (2.23).

Let us first summarize the properties of the matrices Q±ij that enter the leading term
in (2.29) and (2.31). According to (2.25) and (2.27), they are given by two-point correlators
in a Gaussian matrix model

Q−ij =
〈
O2i+1O2j+1

〉
, Q+

ij =
〈
O2iO2j

〉
−
〈
O2i

〉〈
O2j

〉
. (3.1)

To the first few orders in 1/N2 they take the following form

Q−ij = β−i β
−
j

[ 2
i+ j + 1 + 1

6N2 (i2 + ij + j2 − 5(i+ j)− 13) +O(1/N4)
]
,

Q+
ij = β+

i β
+
j

[ 2
i+ j

+ 1
6N2 (i2 + ij + j2 − 8(i+ j) + 7) +O(1/N4)

]
, (3.2)

where normalization factors are

β+
i = 21/2−iΓ(2i)

Γ2(i) , β−i = 2−1−i Γ(2i+ 2)
Γ(i+ 2)Γ(i) . (3.3)

These relations match (2.23) for L = 2.
The leading O(N0) term in (3.2) admits the following representation

Q± = U±(U±)t +O(1/N2) , (3.4)

where U± are lower triangular matrices and (U±)t denote transposed matrices. The explicit
expression for these matrices can be found in (B.2).10 We apply the matrices U± to define

K± = (U±)tC±U± . (3.5)
10The matrices U± have a simple interpretation in the Gaussian matrix model as they allow us to construct

the basis of orthonormal traces Ôi satisfying
〈
ÔiÔj

〉
= δij +O(1/N2) (see (B.1)).
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A distinguished feature of these matrices is that they admit an integral representation in
terms of Bessel functions, see (3.29) and (3.27) below. Combining together (3.4) and (3.5)
we obtain

log det(1− Q±C±) = log det(1−K±) +O(1/N2) . (3.6)

As we will see in a moment, the expression on the right-hand side coincides with a Fredholm
determinant of the Bessel operator.

To summarize, the leading corrections to the difference free energy (2.29) and (2.31)
in the SA and Q2 models are given by

FSA
0 = 1

2 log det(1−K−) ,

FQ2
0 = 1

2 log det(1−K−) + 1
2 log det(1−K+) . (3.7)

3.2 Subleading corrections

To compute subleading corrections to (3.6) in 1/N2, we generalize (3.4) as

Q± = U±R±(U±)t , (3.8)

where R± = 1 + O(1/N2). To determine the (matrix) coefficients in the expansion of R±
in powers of 1/N2, we apply an inverse transformation to the matrices (3.2).

To any order in 1/N2, the correlators (3.2) are given by a sum of terms of the form
βiβji

njm

Q± = U±(U±)t + 1
N2βiβj

∑
n,m≥0

c±nmi
njm , (3.9)

where the expansion coefficients c±nm are series in 1/N2 with rational coefficients. They can
be found by matching (3.9) to the expression (3.2) of the two-point correlators Q±. For
instance, for N →∞ the only nonzero entries are

c±02 = c±11 = 1
6 , c+

01 = −4
3 , c−01 = −5

6 , c+
00 = 7

6 , c−00 = −13
6 . (3.10)

and c±nm = c±mn.
Combining together (3.8) and (3.9), we find

R± = 1 + 1
N2

∑
n,m

c±nmR
±
nm . (3.11)

As compared to (3.9), each term of the sum gets replaced by a matrix Rn,m = Rn ⊗ Rm
defined as

(Rnm)ij = (Rn)i(Rm)j , (Rn)i =
∑
k≥1

U−1
ik k

nβk . (3.12)

To simplify the formula, we do not display here the superscript ‘±’. The explicit expressions
for the vectors R±n can be found in appendix B.
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It follows from (3.11) and (3.10) that the semi-infinite matrices R± are given to order
O(1/N2) by

R+ = 1 + 1
6N2

[
R+

0,2 +R+
2,0 +R+

1,1 − 8R+
1,0 − 8R+

0,1 + 7R+
0,0

]
+O(1/N4) ,

R− = 1 + 1
6N2

[
R−0,2 +R−2,0 +R−1,1 − 5R−1,0 − 5R−0,1 − 13R−0,0

]
+O(1/N4) . (3.13)

The main advantage of dealing with matrices R± is that they allow us to express the
subleading corrections to the free energy (2.29) and (2.31) in terms of the same matrices
K± that appeared at the leading order (3.7).

To show this we take into account (3.5), (3.8) and (3.11) to obtain

log det(1− Q±C±) = log det(1− R±K±)

= log det(1−K±) + log det
(
1− 1

N2

∑
n,m

c±nmR
±
n,m

K±

1−K±
)
. (3.14)

Expanding the second term on the right-hand side in powers of R± and using a factorized
form of this matrix, Rnm = Rn ⊗Rm, we get

log det(1− Q±C±) = log det(1−K±)−
∑
L≥1

1
LN2L c

±
n1,m1W

±
m1,n2c

±
n2,m2 . . . c

±
nL,mL

W±mL,n1 ,

(3.15)

where the notation was introduced for the scalar quantity

W±nm = (R±n )i

(
K±

1−K±

)
ij

(R±m)j , (n,m ≥ 0) . (3.16)

It is symmetric in indices, W±nm = W±mn, depends on the ’t Hooft coupling λ but is inde-
pendent of N . Expansion of W±nm at strong coupling is derived in section 4.

The relation (3.15) can be used to systematically expand log det(1−Q±C±) in powers
of 1/N2. In particular, the O(1/N2) correction to (3.15) is given by

1
2 log det(1− Q+C+)

∣∣∣
O(1/N2)

= − 7
12W

+
0,0 + 4

3W
+
0,1 −

1
6W

+
0,2 −

1
12W

+
1,1 ,

1
2 log det(1− Q−C−)

∣∣∣
O(1/N2)

= 13
12W

−
0,0 + 5

6W
−
0,1 −

1
6W

−
0,2 −

1
12W

−
1,1 . (3.17)

Let us now examine the remaining terms in (2.29) and (2.31). They contain the product
of matrices X± whose indices are contracted with the Q−tensors, e.g. X−ijX

−
klQ
−
ijkl and

X+
ijX

−
klQ

+−
ijkl. Applying (3.5) and (3.8), we can express the matrices X± defined in (2.28)

and (2.30), in terms of the Bessel matrices (3.30)

X± = (U± t)−1K±(1− R±K±)−1(U±)−1 . (3.18)

According to (2.23), (2.25) and (2.27), the Q−tensors are proportional to the product of
β−factors and certain polynomials in indices. As a result, X−ijX

−
klQ
−
ijkl and X+

ijX
−
klQ

+−
ijkl
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are given by a sum of terms each of which factorizes into a product of terms of the form

injmβ±i β
±
j X

±
ij = (Rn)i(K±(1− R±K±)−1)ij(Rm)j

= W±nm +
∑
L≥1

1
N2LW

±
nn1c

±
n1m1W

±
m1n2 . . . c

±
nLmL

W±mLm . (3.19)

Here in the first relation we took into account (3.12) and in the second relation expanded
the right-hand side in powers of R± and applied (3.11) and (3.16).

The relation (3.19) allows us to express various terms in (2.29) and (2.31) in terms of
the matrix elements (3.16). As an example, the leading O(1/N2) correction to the second
term in (2.29) can be computed as

−1
8X
−
ijX

−
kl Q

−
ijkl = −(2 + i+ j)β−i β

−
j X

−
ijβ
−
k β
−
l X

−
kl +O(1/N4)

= −2(W−0,0 +W−0,1)W−0,0 +O(1/N4) , (3.20)

where we replaced Q−ijkl with its expression (A.4) and applied (3.19).
Combining together the above relations we obtain from (2.29) and (2.31) the O(1/N2)

correction to the difference free energy (1.3) in the SA and Q2 models

FSA
1 = − 2W−0,0(W−0,0 +W−0,1) + 13

12W
−
0,0 + 5

6W
−
0,1 −

1
6W

−
0,2 −

1
12W

−
1,1 ,

FQ2
1 = − (W+

0,0 +W−0,0)(W+
0,1 +W−0,1)− (W−0,0)2 + 1

4(W+
0,0)2

+ 13
12W

−
0,0 + 5

6W
−
0,1 −

1
6W

−
0,2 −

1
12W

−
1,1 −

7
12W

+
0,0 + 4

3W
+
0,1 −

1
6W

+
0,2 −

1
12W

+
1,1 .

(3.21)

Notice that the expression for FQ2
1 contains mixed terms proportional to the product of

W+ and W−. They come from X+
ijX

−
klQ

+−
ijkl term in (2.31).

The same technique can be used to determine subleading O(1/N4) correction to the
free energy (1.3). Going through the calculation we obtain in the SA model

FSA
2 =−64

3 W
4
0,0−

128
3 W0,1W

3
0,0−

10
3 W1,1W

3
0,0−18W 2

0,1W
2
0,0+ 11

3 W
3
0,0−

86
3 W0,1W

2
0,0−

49
3 W0,2W

2
0,0

−W0,3W
2
0,0−

31
3 W1,1W

2
0,0−

10
3 W1,2W

2
0,0−

131
3 W 2

0,1W0,0−13W0,1W0,2W0,0−
37
3 W0,1W1,1W0,0

− 25
3 W

3
0,1−

133
144W

2
0,0+ 499

36 W0,1W0,0+ 307
36 W0,2W0,0−

1
6W0,3W0,0−

1
6W0,4W0,0+ 443

72 W1,1W0,0

+ 41
36W1,2W0,0−

1
2W1,3W0,0−

25
72W2,2W0,0+ 77

6 W
2
0,1−

49
72W

2
0,2−

37
144W

2
1,1+ 77

36W0,1W0,2

−W0,1W0,3+ 131
36 W0,1W1,1−W0,2W1,1−

73
36W0,1W1,2+ 37

60W0,0+ 41
180W0,1−

151
120W0,2−

31
240W0,3

+ 1
10W0,4−

1
144W0,5−

151
240W1,1−

251
360W1,2+ 71

240W1,3−
1
48W1,4+ 5

24W2,2−
29
720W2,3 ,

(3.22)

where Wn,m ≡W−n,m.
We would like to emphasize that the relations (3.7), (3.21) and (3.22) hold for an

arbitrary ’t Hooft coupling. We verified that at weak coupling they are in agreement
with (2.13) and (2.14).
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3.3 Relation to the Bessel operator

In what follows we shall use the notation

g ≡
√
λ

4π . (3.23)

Let us show that the semi-infinite matrices (3.5) are given by matrix elements of the
truncated Bessel operator K`. This operator is defined as

K`f(x) =
∫ ∞

0
dyK`(x, y)χ

(√
y

2g

)
f(y) , (3.24)

where f(x) is a test function and K`(x, y) is expressed in terms of the Bessel functions
(hence the name of the operator)

K`(x, y) =
∑
i≥1

ψi(x)ψi(y) =
√
xJ`+1(

√
x)J`(

√
y)−√yJ`+1(√y)J`(

√
x)

2(x− y) . (3.25)

Here ` is an arbitrary positive real parameter and ψi(x) is an orthonormal basis of functions

ψi(x) = (−1)i
√

2i+ `− 1J2i+`−1(
√
x)√

x
,

〈
ψi|ψj

〉
=
∫ ∞

0
dxψi(x)ψj(x) = δij . (3.26)

The function χ(x) is conventionally called the “symbol” of the Bessel operator. In what
follows we choose this function as

χ(x) = − 1
sinh2(x/2)

. (3.27)

It vanishes at infinity and truncates the integral in (3.24) at y = O(g2).
The Bessel operator (3.24) can be realized as a semi-infinite matrix on the space of

functions spanned by ψi(x)

K` ψi(x) = (K`)ijψj(x) . (3.28)

Its matrix elements (K`)ij =
〈
ψi|K`|ψj

〉
are given by

(K`)ij = (−1)i+j
√

2i+ `− 1
√

2j + `− 1
∫ ∞

0

dt

t
J2i+`−1(

√
t) J2j+`−1(

√
t)χ
(√

t

2g

)
. (3.29)

where i, j ≥ 1.
The reason for the choice of the symbol function (3.27) is that the resulting matrix

K` coincides for ` = 1 and ` = 2 with the semi-infinite matrices K± defining the leading
contribution to the free energy (3.7) ,

K+ = K`=1 , K− = K`=2 . (3.30)
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Being combined with (3.7), this relation implies that the O(N0) contribution to the dif-
ference free energy in SA and Q2 models is given by a Fredholm determinant of the Bessel
operator

FSA
0 = 1

2 log det(1−K`=2) ,

FQ2
0 = 1

2 log det(1−K`=1) + 1
2 log det(1−K`=2) . (3.31)

For the special choice of the symbol χ(x) = θ(1−x), the Fredholm determinant of the Bessel
operator coincides with the celebrated Tracy-Widom distribution describing statistics of
the spacing of the eigenvalues in Laguerre ensemble [26]. In application to the SA and Q2
models, we encounter the symbol of the form (3.27).

Strong coupling expansion of (3.31) was derived in [15] using the technique developed
in [27–29]. It relies on the relation

log det(1−K`) =πg − 1
2(2`− 1) log g +B` + 1

8(2`− 3)(2`− 1) log(g′/g) (3.32)

+ (2`− 5)(2`− 3)(4`2 − 1) ζ(3)
2048π3g′3

− (2`− 7)(2`− 5)(4`2 − 9)(4`2 − 1) 3ζ(5)
262144π5g′5

+ . . . .

Here g is defined in (3.23), g′ = g − log 2/π and dots denote subleading corrections
suppressed by powers of 1/g as well as exponentially small O(e−4πg) corrections. Expand-
ing again the series in powers of 1/g, one can produce terms proportional to powers of
log 2/π. The constant term B` in (3.32), conventionally called the Widom-Dyson constant,
is given by

B` = −6 log A + 1
2 + 1

6 log 2− ` log 2 + log Γ(`) , (3.33)

where A is the Glaisher’s constant. Substituting (3.32) into (3.31) we arrive at

FSA
0 = πg

2 −
3logg

4 −3logA+ 1
4−

11log2
12 + 3

16 log g
′

g
− 15ζ(3)

4096(πg′)3−
945ζ(5)

524288(πg′)5 +. . . ,

FQ2
0 =πg−logg−6logA+ 1

2−
4log2

3 + 1
8 log g

′

g
− 3ζ(3)

2048(πg′)3−
135ζ(5)

262144(πg′)5 +. . . , (3.34)

where g′ is defined in (3.32). For g =
√
λ/4π these relations coincide with (1.4) and (1.5).

Subleading corrections to the free energy (3.21) and (3.22) involve the quantities W±nm
defined in (3.16). To establish the relation between W±nm and the Bessel operator, it is
convenient to introduce auxiliary functions φ±n (x) with n ≥ 0

φ±n (x) =
∑
i≥1

(R±n )i ψ
±
i (x) , (3.35)

where ψ+
i (x) and ψ−i (x) coincide with (3.26) for ` = 1 and ` = 2, respectively, and the

expansion coefficients (R±n )i are defined in (3.12). The matrices (3.30) and (3.29) admit
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the representation

K±ij =
∫ ∞

0
dt ψ±i (t)χ

(√
t

2g

)
ψ±j (t) . (3.36)

Their product can be expressed using (3.25) as a convolution of the Bessel kernels

[(K±)L]ij =
∫ ∞

0
dt1 . . . dtL ψ

±
i (t1)χ

(√
t1

2g

)

×K±(t1, t2)χ
(√

t2
2g

)
. . .K±(tL, tL−1)χ

(√
tL

2g

)
ψ±j (tL) , (3.37)

where K±(x, y) is the kernel (3.25) evaluated at ` = 1 and ` = 2. This relation can be
written in a compact form as

[(K±)L]ij =
〈
ψ±i |χ (K±)L−1|ψ±j

〉
, (3.38)

where the operator χ has a diagonal kernel δ(x− y)χ(
√
x/(2g)).

We apply the relation (3.38) to obtain the following representation of (3.16)

W±nm = (R±n )i
〈
ψ±i |χ

1
1−K± |ψ

±
j

〉
(R±m)j =

〈
φ±n |χ

1
1−K± |φ

±
m

〉
, (3.39)

where in the second relation we used (3.35). Thus, the quantities W±nm are given by matrix
elements of the resolvent of the Bessel operator with respect to the special states φ±n (x)
defined in (3.35).

According to (3.35), the functions φ±n (x) are given by infinite sums of the Bessel func-
tions (3.26) with the expansion coefficients (3.12). These sums can evaluated in a closed
form leading to (see appendix B)

φ−n (x) = − 1
2
√

2
(x∂x)nJ2(

√
x) ,

φ+
n (x) = − 1

2
√

2

n∑
i=0

2i−n
(
n

i

)
(x∂x)iJ1(

√
x) . (3.40)

To summarize, we demonstrated in this section that non-planar corrections to the free
energy admit a compact representation (3.21) and (3.22) in terms of the matrix elements
W±nm of the resolvent (3.39) of the truncated Bessel operator. In the next section, we
develop a technique for computing W±nm and, then, apply it to derive the strong coupling
expansion of the free energy (3.21) and (3.22).

4 Resolvent of the Bessel operator

The matrix elements (3.39) involve the Bessel operator (3.24) for ` = 1 and ` = 2
(see (3.30)). To treat them in a unified manner, we generalize (3.39) to arbitrary ` and
define the matrix elements of the resolvent of the Bessel operator (3.24)

wnm =
〈
φn|χ

1
1−K`

|φm
〉
, (4.1)
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where the functions φn(x) (with n ≥ 0) are given by

φ0(x) = J`(
√
x) , φn(x) = (x∂x)nφ0(x) . (4.2)

The operator χ is defined in (3.38), it acts on a test function as χf(x) = χ(
√
x/(2g))f(x).

In the previous section, we encountered different matrix elements (3.39). As follows
from (3.39) and (3.40), they are given by a linear combination of wnm evaluated for ` = 1
and ` = 2

W−nm = 1
8wnm

∣∣∣
`=2

,

W+
nm = 1

8

n∑
i=0

m∑
j=0

2i+j−n−m
(
n

i

)(
m

j

)
wij
∣∣∣
`=1

. (4.3)

The matrix elements (4.1) depend on the integer ` and the coupling constant g =√
λ/(4π). They have the following important properties. Expanding (4.1) in powers of K`

and taking into account the definition (3.24) of the Bessel operator, we find that wnm are
symmetric in indices

wmn = wnm . (4.4)

Besides, the matrix elements (4.1) are not independent. We show in appendix C that wnm
satisfy a functional equation(1

2g∂g − 1
)
wnm = 1

4w0nw0m + wn+1,m + wn,m+1 . (4.5)

For lowest values of n,m ≥ 0 it leads to

w01 = −1
8w

2
00 +

(1
4g∂g −

1
2

)
w00 ,

w11 = −w02 −
1
4w01w00 +

(1
2g∂g − 1

)
w01 ,

w12 = −1
8w

2
01 +

(1
4g∂g −

1
2

)
w11 , . . . . (4.6)

These relations hold for an arbitrary coupling. They allow us to express w01, w11 and
w12 in terms of w00 and w02. Examining the relation (4.5) for arbitrary m and n, we
find that the matrix elements wnm can be expressed in terms of independent quantities
w00, w02, w04, . . . . We discuss them in the next subsection.

4.1 Method of differential equations

The matrix element w00 is related to the Fredholm determinant of the Bessel operator
(see [27–29])

w00 = −2g∂g log det(1−K`) . (4.7)
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Its expansion at strong coupling follows from (3.32)

w00 = − 2πg + (2`− 1)− (2`− 3)(2`− 1) log 2
4πg − (2`− 3)(2`− 1) log2 2

4(πg)2

+
(2`− 3)(2`− 1)

(
3ζ(3)(2`− 5)(2`+ 1)− 256 log3 2

)
1024(πg)3 + . . . , (4.8)

where g =
√
λ/(4π). Substituting this expression into the first relation in (4.6), we can

obtain the strong coupling expansion of w01.
The strong coupling expansion of w0n can be found by applying the method of differ-

ential equations [26, 40]. It is based on the following identify [27] (see (C.7) in appendix C)

∂gw0n =
∫ ∞

0
dxQ0(x)Qn(x)∂gχ

(√
x

2g

)
, (4.9)

where the functions Qn(x) (with n ≥ 0) are matrix elements of the resolvent of the Bessel
operator

Qn(x) =
〈
x| 1

1−K`
|φn
〉
. (4.10)

It is tacitly assumed that Qn(x) also depends on the coupling g.
We show in appendix C that the functions Qn(x) satisfy recurrence relations

Qn+1(x) = −1
4Q0(x)w0n(g) + 1

2(g∂g + 2x∂x)Qn(x) . (4.11)

They can be used to express Qn(x) for n ≥ 1 in terms of Q0(x). In its turn, the function
Q0(x) satisfies a second-order partial differential equation [28, 29][

(g∂g + 2x∂x)2 + x− `2 + (1− g∂g)w00
]
Q0(x) = 0 . (4.12)

It involves a nontrivial function of the coupling w00 given by (4.7) and (4.8). A solution
to the differential equation (4.12) at strong coupling is described in appendix C. Being
combined with (4.11), it allows us to expand the integral on the right-hand side of (4.9) in
powers of 1/g and, then, obtain the strong coupling expansion of w0n.

In this way we obtain

w02 = (πg)3

4 + 1
8(πg)2(2`− 1) + πg

(
−`

2

2 −
1
32(2`− 3)(2`− 1) log 2

)

+
( 1

32(2`− 1)
(
4`2 + 4`+ 3

)
+ 1

32(2`− 3)(2`− 1) log 2 (2`+ 1− log 2 )
)

+O(1/g) ,

w04 = − 23(πg)5

64 − 5(πg)4

128 (2`− 9) + (πg)3

8

((
`2 − 2`+ 2

)
+ 5

64(2`− 3)(2`− 1) log 2
)

+ (πg)2

256

((
12`2 − 12`+ 11

)
(2`− 1)− 1

2(2`− 3)(2`− 1)(2(2`− 7) log 2− 5 log2 2)
)

+O(g) . (4.13)

– 22 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

We recall that all other matrix elements wnm follow unambiguously from the functional
relations (4.5).

Examining the relations (4.8) and (4.13), we observe that the matrix elements w0n
behave at strong coupling as a power of g

w0n = ω0n g
n+1 +O(gn) . (4.14)

It follows from (4.5) that wnm have a similar behaviour

wnm = ωnm g
n+m+1 +O(gn+m) . (4.15)

The explicit expressions for the leading coefficients ωnm are given by relations (5.16)–(5.18)
below. Most importantly they are independent of `.11

We recall that the free energy in the SA and Q2 models is expressed in terms of the
matrix elements (4.3) evaluated at ` = 1 and ` = 2. The fact that the leading asymptotic
behaviour of wnm at strong coupling is independent of ` suggests that the free energy in
the two models should be related to each other. Indeed, we establish such a relation in
section 5.1 below.

4.2 Next-to-leading corrections to the free energy

We are now ready to compute the subleading corrections to the (difference) free en-
ergy (3.21).

Applying the relations (4.3) we can express F SA
1 and FQ2

1 in terms of the matrix
elements wnm

F SA
1 = − 1

32w
−
00(w−00 + w−01) + 13

96w
−
00 + 5

48w
−
01 −

1
48w

−
02 −

1
96w

−
11 ,

FQ2
1 = − 1

64(w+
01 + w−01)(w+

0,0 + w−00)− 1
128w

+
00w

−
00 −

1
64(w−00)2 − 1

256(w+
00)2

+ w+
00

384 + 13
96w

+
01 −

1
48w

+
02 −

1
96w

+
11 + 13

96w
−
00 + 5

48w
−
01 −

1
48w

−
02 −

1
96w

−
11 , (4.16)

where w+
nm and w−nm are given by wnm for ` = 1 and ` = 2, respectively.

Replacing the matrix elements with their expressions (4.8), (4.13) and (4.6), we obtain
the strong coupling expansion of the difference free energy in the two models

F SA
1 = − (πg)3

32 − 3(πg)2

128 + πg

( 11
512 −

log 2
32

)
+
(

3
128 −

log2 2
32 − log 2

512

)

+
(
−15ζ(3)

8192 −
log3 2

32 − 3 log2 2
512 + 279 log 2

8192

)
1
πg

+
(

105ζ(3)
131072 −

15ζ(3) log 2
2048 − log4 2

32 − 5 log3 2
512 + 441 log2 2

8192

)
1

(πg)2 +O(1/g3) ,

(4.17)

11A logarithm of the Fredholm determinant of the Bessel operator (3.32) has the same property.

– 23 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

FQ2
1 = − (πg)3

16 − (πg)2

192 + πg

( 5
256 −

log 2
48

)
+
(

log 2
256 −

log2 2
48

)

+
(
−3ζ(3)

4096 −
log3 2

48 + log2 2
256 + 35 log 2

4096

)
1
πg

+
(

21ζ(3)
65536 −

3ζ(3) log 2
1024 − log4 2

48 + log3 2
256 + 53 log2 2

4096

)
1

(πg)2 +O(1/g3) . (4.18)

For g =
√
λ/(4π) these relations coincide with (1.6) and (1.8).

The following comments are in order.
A close examination of (3.34) shows that the leading O(N0) terms of the strong cou-

pling expansion (1.3) of the free energy in the SA and Q2 models differ by the factor of 2.
It follows from (4.17) and (4.18) that the same relation holds at order O(1/N2)

F SA
0
FQ2

0
= 1

2 +O(1/g) , F SA
1
FQ2

1
= 1

2 +O(1/g) . (4.19)

This relation is yet another manifestation of universality of matrix elements mentioned
in the previous subsection. We show in section 5.1 that it holds to any order of 1/N2

expansion (1.3).
It is important to emphasize that the relations (4.19) only hold at strong coupling.

At weak coupling, one uses (2.13) and (2.14) to verify that the ratios of functions differ
already at order O(g2)

F SA
0
FQ2

0
= 10ζ(5)

3ζ(3) g
2 +O(g4) , F SA

1
FQ2

1
= 50ζ(5)

3ζ(3) g
2 +O(g4) . (4.20)

Higher order corrections to (4.17) and (4.18) involve powers of log 2. The leading order
O(N0) functions F SA

0 and FQ2
0 given by (3.34) have the same property. In this case, terms

containing log 2 can be absorbed into redefinition of the coupling constant g′ = g− log 2/π.
It turns out that the functions F SA

1 and FQ2
1 have the same property.

Indeed, it is easy to see from (4.17) and (4.18) that terms with the maximal power
of log 2 to each order in 1/g form a geometrical progression. As a consequence, the rela-
tions (4.17) and (4.18) can be written in the following form

F SA
1 = −

(
(πg)3

32 − (πg)2

128

)
− (πg)2

32
g

g′
+ . . . ,

FQ2
1 = −

(
(πg)3

16 − (πg)2

64

)
− (πg)2

48
g

g′
+ . . . , (4.21)

where dots denote the remaining terms. Notice that the expressions inside the curly brack-
ets satisfy the relation (4.19).

4.3 Next-to-next-to-leading correction to the free energy

The O(1/N4) correction to the difference free energy (1.3) in the SA model is given
by (3.22). We use the first relation in (4.3) and replace the matrix elements wnm with
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their expressions to get

F SA
2 = (πg)6

720 −
(πg)5

1280 + (πg)4
( log 2

240 −
251

30720

)
+ (πg)3

(
log2 2
240 −

47 log 2
3840 + 107

49152

)

+ (πg)2
(
ζ(3)
4096 + log3 2

240 −
19 log2 2

1280 − 191 log 2
16384 + 409

32768

)
+O(g) . (4.22)

For g =
√
λ/(4π) this relation coincides with (1.7).

We observe that the terms with the maximal power of log 2 can be again eliminated
through the redefinition of the coupling

F SA
2 = (πg)6

720 −
19(πg)5

3840 + (πg)5

240
g

g′
+ . . . , (4.23)

where g′ = g − log 2/π.
The relations (3.34), (4.17) and (4.22) define the corrections to the difference free

energy (1.3) in the SA and Q2 models at strong coupling.

5 Double scaling limit

As follows from (4.17) and (4.22), the subleading corrections to the free energy (1.3) in the
SA model exhibit an interesting scaling behaviour at strong coupling, F SA

n = O(g3n) for
n = 1, 2.

This suggests to consider the double scaling limit

N →∞ , g →∞, g3/N2 = fixed . (5.1)

In this limit we retain the leading O(g3n) terms in the expression for F SA
n to arrive at the

following remarkably simple result

∆F SA = F SA
0 + 1

N2F
SA
1 + 1

N4F
SA
2 + . . .

' 1
2πg −

1
N2

(πg)3

32 + 1
N4

(πg)6

720 + . . . , (5.2)

where ‘'’ denotes the limit (5.1).
Moreover, taking into account the relation (4.19), we expect that, in the double scaling

limit, the free energy in the Q2 model differs from (5.2) by the factor of 2

∆FQ2 ' 2∆F SA . (5.3)

In this section we elucidate the meaning of the double scaling limit (5.1) and prove the
relation (5.3).

– 25 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

5.1 Gaussian correlators in the double scaling limit

We recall that, in the matrix model representation (2.17) and (2.18), the dependence of the
free energy (1.3) on 1/N2 is generated by non-planar corrections to the correlators (2.16)
and (2.19) in a Gaussian matrix model. The main observation is that in the double scaling
limit (5.1), the dominant contribution to the free energy (2.29) and (2.31) comes from the
correlators (2.23) with large indices. Indeed, for ip = O(N2/3) (with p = 1, . . . , L) all terms
inside the brackets in (2.23) scale at large N as O(N2(L−3)/3). As we show below, it is this
property that leads to the scaling behaviour of the free energy (5.2) for g = O(N2/3).

As was mentioned above, the correlators (2.23) with even and odd indices are described
by two different functions, see e.g. (2.25) and (2.27). It turns out that for large values of
indices these functions coincide. Indeed, one can see from (3.2) that this is true for the
functions Q+

ij and Q−ij for i, j = O(N2/3) as N →∞. The same property holds for L−point
correlators.

It can be understood by writing the correlators (2.23) as integrals over eigenvalues in
the Gaussian matrix model (see e.g. (A.13)). It is well-known that the distribution density
of the eigenvalues in this model has a finite support. In the limit of large indices, the
dominant contribution to the correlator (2.23) comes from integration close to the edge of
the spectrum. The distribution density of eigenvalues has remarkable universal properties
in this region. This allows one to determine the correlators (2.23) for ip = O(N2/3) in a
closed form. For instance, the two-point correlators are given in this limit by, see e.g. [41, 42]

Q−ij = 2β−i β
−
j e

i3+j3

12N2
∞∑
k=0

1
(2k + 1)!!

(i+ j)k−1(ij)k

2kN2k . (5.4)

One can verify that O(N0) and O(1/N2) terms in this relation are in agreement with (3.2)
for i, j = O(N2/3). For L−point correlator, the analogous expressions are known to the
first four orders of 1/N2 expansion [42, 43]. As we show below, they can be used to
compute the subleading corrections to the free energy (5.2) in the double scaling limit at
order O(1/N10).

We can exploit a universality of the correlators Q+
i1,...,iL

and Q−i1,...,iL for ip = O(N2/3)
to establish the relation between the free energy in the SA and Q2 models. Let us examine
the relations (2.17) and (2.18) in the limit when all matrix indices are large. According
to (2.10), the matrix elements C−ij can be obtained from C+

ij by replacing the indices
i → i + 1

2 and j → j + 1
2 . In the limit of large i and j we can neglect this shift and

identity the two matrices. In the similar manner, we identify Q+ and Q− tensors in (2.24)
and (2.26) to get from (2.17) and (2.18)

e−∆F SA = (detC)−1/2
∫
dJ− e−

1
2J
−
i J
−
j (C−1−Q)ij+V (J−) ,

e−∆FQ2 = (detC)−1
∫
dJ−dJ+ e−(J−i J

−
j +J+

i J
+
j )(C−1−Q)ij+V (J++J−)+V (J+−J−) . (5.5)

Going from (2.17) and (2.18), we separated the terms quadratic in J ’s in the exponent
of (2.24) and (2.26) and absorbed the remaining terms into the potential

V (J) = 1
4!JiJjJkJlQijkl + 1

6!JiJjJkJlJnJmQijklnm +O(1/N6) . (5.6)
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Changing the integration variables in the second relation (5.5) as J±′ = (J+ ± J−) we
observe that the integrals over J+′ and J−′ factorize leading to

e−∆FQ2 ' e−2∆F SA
. (5.7)

We would like to emphasize that this relation only holds in the double scaling limit (5.1).

5.2 Free energy in the double scaling limit

As follows from the calculation presented in the previous section, the free energy in the SA
and Q2 models takes a remarkably simple form (5.2) and (5.3) in the double scaling limit.
In this subsection we use the representation (5.5) of the partition function in this limit to
extend the relations (5.2) and (5.3) to order O(1/N10).

The calculation of (5.5) can be significantly simplified by replacing the correlators
Qi1i2... with their leading expressions in the double scaling limit (see (A.7)). In addition, the
corrections to the free energy (3.21) and (3.22) depend on matrices W±nm defined in (3.39).
According to (4.3), these matrices are given by linear combinations of matrix elements wnm
which have the scaling behaviour (4.14) and (4.15) at strong coupling. As a consequence,
in the double scaling limit (5.1) the relations (4.3) and (4.15) can be simplified as

W−nm = W+
nm '

1
8wnm = 1

8ωnmg
n+m+1 +O(gn+m) , (5.8)

where we took into account that the leading coefficients ωnm are independent of `.
Applying the relation (5.8), we observe that various terms in (3.21) and (3.22) have

different behaviour in g. In the double scaling limit, we can retain the terms with the
maximal power of g and neglect remaining ones. For instance, the first relation in (3.21)
simplifies as

FSA
1 = − 2W0,0W0,1 −

1
6W0,2 −

1
12W1,1 +O(g2) , (5.9)

where we suppressed the superscript of W±nm in virtue of (5.8).
As follows from (3.21), (3.22) and (5.8), the subleading O(1/N2L) corrections to the

free energy (1.3) are given in the double-scaling limit by a multilinear combination of w’s,
schematically

FL =
∑

fn1...n2p wn1n2 . . . wn2p−1n2p = O(g3L) , (5.10)

where the sum runs over non-negative integers ni ≥ 0 satisfying the condition∑
i(ni + 1

2) = 3L.
To illustrate (5.10) we use the first relation in (5.5) to obtain the following represen-

tation of ∆FSA in the double scaling limit

∆F SA = ∆F SA,(0) + ∆F SA,(int) . (5.11)

Here ∆F SA,(0) takes into account the contribution of quadratic in J terms in the exponent
of (5.5). It is given by the integral (5.5) with the potential V (J−) put to zero

∆F SA,(0) = 1
2 log det(1− QC) . (5.12)
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The second term in (5.11) yields the contribution of the interaction terms described by the
potential (5.6)

∆F (int)
SA =−

〈
J4〉

24N2−
1
N4

(〈
J4J4〉−〈J4〉2

1152 +
〈
J6〉
720

)

− 1
N6

(〈
J4J4J4〉−3

〈
J4〉〈J4J4〉+2

〈
J4〉3

82944 +
〈
J4J6〉−〈J4〉〈J6〉

17280 +
〈
J8〉

40320

)
+. . . ,

(5.13)

where
〈
J2p1J2p2 . . .

〉
denotes an expectation value of J2p = N2p−2Ji1 . . . Ji2pQi1...i2p (with

p = 2, 3, . . . ) with respect to a Gaussian measure in (5.5). The factor of N2p−2 was inserted
to ensure that J2p = O(N0) at large N . In a close analogy with (2.29), the right-hand side
of (5.13) can be expanded over the product of ‘propagators’

Xij ≡
〈
JiJj

〉
=
[
C(1− QC)−1

]
ij
, (5.14)

whose indices are contracted with the Q−tensors. Going through the same steps as in
section 3.2, we can express (5.13) in terms of matrix elements (5.8).

The relation (5.12) admits an expansion (3.15) in powers of 1/N2. As was explained
above, the matrices with ‘±’ superscripts coincide in the double scaling limit and for
this reason we suppress this superscript in what follows. The relation (3.15) involves the
coefficients cnm defined in (3.9). Their values can be found to any order in 1/N2 by
matching (3.9) to the exact expression for the correlator (5.4). To leading order in 1/N2

they are given by (3.10). Going through the calculation and taking into account (5.8)
and (3.7) we obtain from (3.15)

∆F SA,(0) = FSA
0 −

1
N2

(
w0,2
48 + w1,1

96

)
− 1
N4

(
w2

0,2
4608 +

w2
1,1

9216 + w0,5
1152 + w0,1w1,2

2304 + w1,4
384 + w0,0w2,2

4608 + 29w2,3
5760

)
+ . . .

(5.15)

where FSA
0 is given by (3.34). It is straightforward to expand (5.15) to any order in 1/N2.

The resulting expressions are lengthy and we do not present them here to save space. It
is easy to see that the coefficients in front of powers of 1/N2 in (5.15) have the expected
form (5.10). The coefficient of 1/N2 in (5.15) agrees with (3.17) up to subleading correction
in 1/g.

The expressions for the matrix elements wnm at strong coupling (5.8) are defined by
the set of parameters ωnm. It is convenient to define their generating functions

G(x) =
∑
n≥0

ω0n x
−n , G(x, y) =

∑
n,m≥0

ωnm x
−ny−m , (5.16)

where G(x, y) = G(y, x). As we argue in appendix C, the function G(x) should be given by

G(x) = 8π
[Γ2(1

2 −
x
2π )

Γ2(− x
2π ) + x

2π

]
. (5.17)
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It is well defined for x < 0 and its expansion at large negative x generates the coefficients
ω0n. It follows from (4.5) that the two functions in (5.16) are related to each other as

(x+ y)G(x, y) = −1
4G(x)G(y) + xG(y) + yG(x) . (5.18)

Being combined together the relations (5.16), (5.17) and (5.18) allows us to determine the
parameters ωnm and, as a consequence, the matrix elements (4.14) and (4.15). For instance,

w00 = −2πg , w01 = −1
2(πg)2 , w11 = −1

2(πg)3 , w02 = 1
4(πg)3 . (5.19)

These relations are valid up to corrections suppressed by powers of 1/g. We check that
they are in agreement with (4.8) and (4.13).

Replacing wnm in (5.15) with their expressions we find after some algebra

∆F SA,(0) = 1
2πg −

7(πg)6

92160N4 −
221(πg)9

743178240N6 + 21253(πg)12

23781703680N8 + 18670639(πg)15

45660871065600N10

+O(1/N12) , (5.20)

where we added the additional terms in 1/N2 expansion as compared with (5.15). This
relation holds in the double scaling limit (5.1). The O(1/N2) term is absent in (5.20) due
to the relation w02 = −w11/2 +O(g2).

In a similar manner, repeating the calculation of (5.13) we get in the double scaling
limit

∆F SA,(int) = − (πg)3

32N2 + 3(πg)6

2048N4 −
2077(πg)9

11796480N6 −
147997(πg)12

2642411520N8 + 754343579(πg)15

15220290355200N10

+O(1/N12) , (5.21)

where compared to (5.20) the expansion starts at order O(1/N2).
Finally, adding together (5.20) and (5.21), we obtain the following expression for the

difference free energy in the double-scaling limit

∆F SA = 1
2πg −

(πg)3

32N2 + (πg)6

720N4 −
(πg)9

5670N6 −
(πg)12

18144N8 + 17(πg)15

340200N10 +O(1/N12) .

(5.22)

This relation is one of the main results of this paper. Compared to (5.2), it contains three
additional terms.

Notice that the expansion coefficients of the series (5.20) and (5.21) are rather compli-
cated rational numbers but their sum is remarkably simple. We believe that this property
is not accidental and hints at the existence of hidden properties of the free energy (5.22)
in the double scaling limit.

In a close analogy with the known solution of two-dimensional quantum gravity and
c < 1 noncritical strings (for a review, see e.g. [30]), one might expect that the free energy
in the double scaling limit satisfies a certain nonlinear differential equation. This will
open up an exciting possibility to compute the free energy of the SA and Q2 models non-
perturbatively, to any order in 1/N .
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6 Circular Wilson loop

Let us now apply the technique developed in the previous sections to compute non-planar
corrections to expectation value of the circular half-BPS Wilson loop in the SA and Q2
models.

In the SA model the Wilson loop is defined as (see also [12])

W SA =
〈
tr P exp

{
gYM

∮
ds
[
i Aµ(x)ẋµ(s) + 1√

2
(φ(x) + φ∗(x))

]}〉
, (6.1)

where the gauge field Aµ and scalar field φ(x) from the N = 2 vector multiplet are inte-
grated along a circle of unit radius, x2

µ(s) = 1 and ẋ2
µ(s) = 1. In the Q2 model, the Wilson

loop WQ2 is given by the same expression (6.1) where Aµ and φ correspond to one of the
two SU(N) N = 2 vector multiplets.

The large N expansion of the Wilson loop in the SA and Q2 models has the form (1.14).
Due to the planar equivalence of these models with N = 4 SYM theory, the leading term
of the expansion W0 coincides with the analogous expression in the latter theory. Below
we present the results for the subleading corrections W1(λ) and W2(λ) in (1.14).

In the localization approach, the Wilson loop in both models can be represented as
the matrix model expectation values

W SA =
〈
tr e
√

λ
2NAeSint(A)〉〈
eSint(A)〉 , WQ2 =

〈
tr e
√

λ
2NA1eSint(A1,A2)〉〈
eSint(A1,A2)〉 , (6.2)

where the average is taken with the same Gaussian measure as in (2.11). Expanding the
exponential functions in powers of the matrices, we get

W = N +
∑
n≥1

1
(2n)!

(
λ

2

)n 〈O2ne
Sint
〉〈

eSint
〉 , (6.3)

where the single-trace operators O2n are defined in (2.6).

6.1 Non-planar corrections

The expectation value
〈
O2ie

Sint
〉
can be evaluated in the same manner as the difference

free energy
〈
eSint

〉
= e−∆F , see section 2.2. To accommodate for O2i inside the expectation

value, we can differentiate the generating function (2.19) with respect to the J+
i . In this

way, we get from (2.17) and (2.18)

W SA = NSA

∫
dJ− e−

1
2J
−
i J
−
j (C−)−1

ij

[
1 +

∑
n≥1

1
(2n)!

(
λ

2

)n ∂

∂J+
n

]
Z(J−, J+)

∣∣∣
J+=0

, (6.4)

WQ2 = NQ2

∫
dJ−dJ+ e−J

−
i J
−
j (C−)−1

ij −J
+
i J

+
j (C+)−1

ij

× Z(−J−,−J+)
[
1 +

∑
n≥1

1
(2n)!

(
λ

2

)n ∂

∂J+
n

]
Z(J−, J+) ,

where the normalization factors NSA andNQ2 are such that both integrals equal N after one
neglects the derivatives inside the brackets. Here in the first relation one has to put J+

n = 0
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after applying the derivative because the interaction potential in the SA model (2.8) only
involves Oi with odd indices. In the second relation, the derivatives act on the generating
function corresponding to one of the nodes of the Q2 model.

Replacing the generating function Z(J−, J+) with its expression (2.21) in terms of the
connected correlation function (2.22) we get from (6.4)

W = N +
∑
n≥1

1
(2n)!

(
λ

2

)n[
G2n + 1

2!〈JiJj〉G2n,ij + 1
3!〈JiJjJk〉G2n,ijk

+ 1
4!〈JiJjJkJl〉G2n,ijkl + . . .

]
, (6.5)

where
〈
JiJj . . .

〉
denotes the average with respect to the measure (2.17) or (2.18) with J2k =

J+
k and J2k+1 = J−k . Due to the symmetry of the integration measure under Ji → −Ji, the

terms in (6.5) with odd number of J ’s vanish. At large N , the connected correlators scale
as G2n,i1...iL = O(1/NL−1) and their contribution to (6.5) takes the expected form (1.14).

We recall that the auxiliary fields Ji were introduced to linearize the double-trace
interaction term (2.15). The first term inside the brackets in (6.5) is independent of these
fields. It arises from evaluating (6.2) for Sint = 0 and coincides with the expectation value
of the circular Wilson loop in N = 4 SYM theory

WN=4 = N +
∑
n≥1

1
(2n)!

(
λ

2

)n
G2n . (6.6)

Using known results for the correlators G2n in the Gaussian matrix model, WN=4 can
be found exactly for arbitrary λ and N in terms of a Laguerre polynomial [5]. For our
purposes we need its large N expansion

WN=4 = NW0+ 1
N

(
− λ8 W0+ λ2

48∂λW0
)

+ 1
N3

(λ2(744 + 5λ)
92160 W0−

λ2(2 + 3λ)
960 ∂λW0

)
+· · · ,
(6.7)

The leading term is given in terms of the I1 Bessel function [4]

W0 = 2√
λ
I1(
√
λ) =

√
2
π
λ−3/4 e

√
λ
(

1− 3
8
√
λ

+ · · ·
)
, (6.8)

where dots denote subleading corrections at strong coupling.
Subtracting the N = 4 result (6.6) from (6.5), we obtain the leading correction to the

difference of Wilson loops in the SA and Q2 models as

W SA −WN=4 =
∑
n≥1

1
2(2n)!

(
λ

2

)n
〈J−i J

−
j 〉G2n,2i+1,2j+1 +O(1/N3) ,

WQ2 −WN=4 =
∑
n≥1

1
4(2n)!

(
λ

2

)n [
〈J+
i J

+
j 〉G2n,2i,2j + 〈J−i J

−
j 〉G2n,2i+1,2j+1

]
+O(1/N3).

(6.9)

In the second relation we inserted an additional factor of 1/2 to take into account the
difference between the two-point functions

〈
JiJj

〉
in the two models. It arises because the
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coefficient in front of the quadratic term in the exponent of (2.26) is two times larger as
compared with that in (2.24). Going from (6.5) to (6.9), we separated the sum over even
and odd indices and put J+

i = J2i to zero in the SA model.
The connected three-point Gaussian correlators in (6.9) are given by

G2n,2i+1,2j+1 = 1
N
β−i β

−
j n(n+ 1)G2n +O(1/N3) ,

G2n,2i,2j = 1
N
β+
i β

+
j n(n+ 1)G2n +O(1/N3) , (6.10)

where G2n is the one-point correlator and β±i are defined in (3.3). Replacing the two-point
functions 〈J±i J

±
j 〉 with their expressions (2.28) and (2.30), we find that both relations

in (6.9) involve the quantities

β±i β
±
j 〈J

±
i J
±
j 〉 = β±i β

±
j X

±
ij = W±00 +O(1/N2) , (6.11)

where in the last relation we applied (3.19).
Taking into account (4.3) we obtain from (6.9)

W SA −WN=4 = 1
8N S w00

∣∣
`=2 +O(1/N3) ,

WQ2 −WN=4 = 1
16N S

(
w00

∣∣
`=1 + w00

∣∣
`=2

)
+O(1/N3) , (6.12)

where we introduced the notation

S =
∑
n≥1

1
(2n)!

(
λ

2

)n
n(n+ 1)G2n = λ∂2

λ(λW0) +O(1/N2) = 1
4λW0 +O(1/N2) . (6.13)

Here we applied (6.6) and (6.7) and used the properties of the leading term (6.8).
According to (4.7) and (3.7), the matrix elements w00 in (6.12) are related to derivatives

of the difference free energy. As a consequence, combining the above relations we find
from (6.12) that the leading non-planar correction to the difference of the Wilson loops
takes the same universal form in the two models

WA −WN=4 = − κA
4NW0λ

2∂λFA
0 +O(1/N3) , A = {SA,Q2} , (6.14)

where κSA = 1 and κQ2 = 1/2. Replacing WN=4 with its expansion (6.7), we determine
the leading non-planar correction to the Wilson loop (1.14)

WA
1 = −λ8 W0 + λ2

48∂λW0 −
κA
4 W0λ

2∂λFA
0 , (6.15)

where W0 is defined in (6.8) and FA
0 is the leading correction to the difference free en-

ergy (1.3) in the SA and Q2 models. We use the strong coupling expansion (4.17) and (4.18)
to get

WSA
1 = −

√
2
π

λ3/4

192 e
√
λ
(

1 + 69
8
√
λ

+ . . .

)
,

WQ2
1 = −

√
2
π

λ3/4

192 e
√
λ
(

1 + 117
8
√
λ

+ . . .

)
. (6.16)

– 32 –



J
H
E
P
0
5
(
2
0
2
3
)
1
6
5

Notice that the leading terms in the two expressions coincide leading to

W SA

WQ2
= 1 + λ

32N2 + . . . . (6.17)

This relation should be compared with the analogous relation (4.19) for the free energy.
We show below that the Wilson loops in the SA and Q2 models coincide in the double
scaling limit (5.1).

At the next order in the 1/N expansion, the Wilson loop (6.5) in the SA model is
given by

W SA −WN=4 =
∑
n≥1

1
(2n)!

(
λ

2

)n[1
2
〈
J−i J

−
j

〉
G2n,2i+1,2j+1

+ 1
24
〈
J−i J

−
j J
−
k J
−
l

〉
G2n,2i+1,2j+1,2k+1,2l+1

+ 1
48

∑
i,j,k,l

〈
J−p J

−
q J
−
i J
−
j J
−
k J
−
l

〉
Q−ijklG2n,2p+1,2q+1 + . . .

]
, (6.18)

where Q−ijkl = O(1/N2) and the average is taken in the Gaussian model with the propaga-
tor (2.28). A long but straightforward calculation shows that O(1/N3) correction to (6.18)
can be represented as

WSA
2 = 1

96λ
4W0 F′02 − 1

4λ
2W0 F′1 −

1
2λ

2W′0 F1 −
1
96λ

4W0F′′0

+ λ3

96
(
W0 −

λ

2 W′0
)

F′0 + λ2(744 + 5λ)
92160 W0 −

λ2(2 + 3λ)
960 W′0 , (6.19)

where F0 and F1 are corrections to the difference free energy in the SA model and prime
denotes a derivative over λ. We apply the relations (4.17) and (4.22) to derive the strong
coupling expansion of (6.19)

WSA
2 = λ9/4

√
2π
e
√
λ
[ 1

9216 + 121
122880

√
λ

+
( 1133

655360 + 3 log 2
1024

) 1
λ

+ · · ·
]
. (6.20)

The relations (6.8), (6.15) and (6.19) allows us to compute the first few terms of the large
N expansion of the Wilson loop (1.14) in the SA and Q2 models.

We use the obtained results to derive the ratio of the SA and N = 4 SYM Wilson
loops

W SA

WN=4 = 1− λ2

4N2 F′0 + 1
N4

(
−λ

3

48 F′0 + λ4

96 F′02 − λ4

96F′′0 −
λ3/2

4
I2(
√
λ)

I1(
√
λ)

F1 −
λ2

4 F′1

)
+O(1/N6) . (6.21)

It depends on the functions F0 and F1 defining corrections to the free energy (1.3) in the
SA model. The relation (6.21) holds for an arbitrary coupling λ.
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6.2 Double scaling limit

At strong coupling, keeping only the leading large λ terms at each order in 1/N2, we get
from (6.8), (6.16) and (6.20)

W SA ' 2N√
2π

λ−3/4 e
√
λ

[
1− λ3/2

192N2 + λ3

18432N4 + · · ·
]
. (6.22)

Surprisingly, the coefficient of λ3/N4 happens to be the same as in the N = 4 SYM
theory [5]

WN=4 ' 2N√
2π

λ−3/4 e
√
λ

[
1 + λ3/2

96N2 + λ3

18432N4 + · · ·
]
. (6.23)

Taking the ratio of these expressions we get

W SA

WN=4 ' 1− λ3/2

64N2 + λ3

6144N4 + . . . (6.24)

We observe that, similarly to the free energy (5.22), the strong coupling expansion of the
ratio of the Wilson loops runs in powers of λ3/2/N2 = (4π)3g3/N2.

We have shown in the previous section that the free energy in the SA and Q2 models
differ in the double scaling limit (5.1) by the factor of 2, see (5.3). As was mentioned above,
the ratio of the leading non-planar corrections WSA

1 /WQ2
1 approaches 1 in this limit. This

suggests that the Wilson loops in the two models coincide in the double scaling limit

WQ2 'W SA . (6.25)

To leading order in 1/N2, this relation follows immediately from (6.9) after one takes into
account that the two terms inside the brackets in the second relation in (6.9) coincide in
the double-scaling limit.

To any order in 1/N2, the relation (6.25) follows from the representation (5.5) of the
partition function of the SA and Q2 models. We recall that in the double-scaling limit
the partition function of the Q2 model (see the second relation in (5.5)) factorizes into
the product of two factors, one per SU(N) node. Each of these factors coincides with the
partition function of the SA model, i.e. ZQ2(J) ' [ZSA(J)]2. Applying (6.4) we find that, in
the double scaling limit, the Wilson loop in the SA and Q2 models is obtained by applying
the same differential operator to ZSA(J). As a consequence, the free energies in the two
models differ by the factor of 2 whereas the Wilson loops coincide.

Finding the exact expression for the ratio of the Wilson loops (6.24) in the double
scaling limit (5.1) is an interesting challenging problem.

7 String theory interpretation

Given the explicit strong coupling results obtained in this paper and summarized in the
Introduction, it is important to attempt to interpret them on the dual string theory side.

In general, in AdS/CFT context the free energy F of a conformal theory on S4 should
correspond to the type IIB string partition function Z(gs, T ) evaluated on the correspond-
ing AdS5 × X5 background. In the perturbative string theory regime, it should be given
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by an infinite series in the string coupling constant gs with coefficients Zn(T ) that are
functions of the effective string tension T ∼ L2/α′ (with L being the curvature scale,
cf. (1.1))

Z(gs, T ) = g−2
s Z−1(T ) + Z0(T ) +

∞∑
n=1

g2n
s Zn(T ) . (7.1)

Here the (properly defined) contribution of the 2-sphere Z−1 should correspond to the
planar term in (1.2), the contribution Z0 of the 2-torus — to the leading non-planar
correction in (1.3), etc. In the maximally supersymmetric case of N = 4 SYM dual to type
IIB string on AdS5×S5 the only non-trivial contributions to F should come from the sphere
and torus parts — in fact, just from the leading type IIB supergravity term in the tree-level
effective action [25] and the massless mode (supergravity) 1-loop correction [44]. Together
they reproduce indeed the (N2 − 1) log λ term in (1.2) (see also a discussion in [11, 12]).

Computing the Zn functions in the superstring theory defined on half-supersymmetric
orbifold or orientifold of AdS5×S5 appears to be a challenging task. Being interested here
only in the leading large tension limit α′/L2 → 0 of each Zn in (7.1), we shall make a
bold assumption that the resulting leading terms can be found just from the corresponding
leading α′ terms in the local part of the string low-energy effective action.12

In general, the string partition function on a curved background may contain special
local terms of particular order in α′ (i.e. in derivatives, curvature, etc.) that may receive
contributions only from few leading orders in the small gs perturbation theory. They may
then play a central role in the α′/L2 → 0 limit.

A support to this conjecture comes from the observation [11, 12, 15] that given that the
leading 1-loop (torus) term in the type IIB 10d effective action starts with the well-known
SR4 = 1

α′
∫
d10x

√
−GR4 quartic curvature term which on dimensional grounds should

scale as SR4 ∼ L2

α′ ∼
√
λ, this then reproduces the large λ scaling of the leading terms

in F0 in (1.4) and (1.5). The remaining problem, however, is to explain why this term
(supplemented by other flux-dependent terms, etc.) that should vanish on the AdS5 × S5

background may give a non-zero contribution when evaluated on the orbifold/orientifold
of AdS5 × S5.13

7.1 Type IIB effective action and strong-coupling expansion

Our aim below will be to go beyond the 1-loop matching SR4 ∼
√
λ and demonstrate that

the current knowledge about the structure of similar higher order terms in the type IIB
low-energy effective action is remarkably consistent with the strong-coupling scaling(

α′

L2 g
2
s

)n
∼
(
g2
s

T

)n
∼
(
λ3/2

N2

)n
, (7.2)

which we previously observed for the higher-genus terms in (1.13) on the gauge theory side.
12Similar idea goes back to [45] where the leading strong-coupling corrections to the O(N2) and O(N0)

orders in the planar expansion of the finite-temperature free energy of the N = 4 SYM theory were discussed.
13That may require understanding the role of resolution of the orbifold singularity in such effective action

computation.
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The structure of type IIB effective action can be symbolically summarized as follows
(keeping only curvature dependent terms with powers of α′ that are required on dimensional
grounds)14

Seff = 1
(2π)7

∫
d10x
√
−G

[
α′−4g−2

s R+ α′−1f0(gs)R4

+ α′f1(gs)D4R4 + α′2f2(gs)D6R4 + α′3f3(gs)D8R4 + . . .
]
.

(7.3)

Note that the α′-independent (dimension 10) term D2R4 does not appear due to maximal
supersymmetry of type IIB theory. The functions f0, f1, f2 (given by Eisenstein series) have
a finite number of perturbative terms plus a tail of non-perturbative O(e−1/g2

s ) corrections
(see [46–57])

f0 = 1
16
(
2ζ(3)g−2

s + 4ζ(2)
)

+O(e−1/g2
s ) ,

f1 = 1
32
(
2ζ(5)g−2

s + 8
3ζ(4)g2

s

)
+O(e−1/g2

s ) ,

f2 = 1
48
(
ζ(3)2g−2

s + ζ(3)ζ(2) + 6ζ(4)g2
s + 2

9ζ(6)g4
s

)
+O(e−1/g2

s ) , (7.4)

while f3 contains an infinite series in g2
s

15

f3 = 1
64ζ(9)g−2

s + k0ζ(3) log(−α′D2) +O(g2
s) +O(e−1/g2

s ) . (7.5)

Collecting the leading α′ terms at each order in g2
s in (7.3) corresponds to including only

the last (supersymmetry-protected) perturbative terms in f0, f1, f2 in (7.4).
Evaluating the action (7.3) on the corresponding 10d background with curvature scale

L and separating the tree-level R term contribution16 we then expect (on dimensional
grounds, R ∼ D2 ∼ L−2) to get from (7.3) the following leading non-planar contribution
to the free energy

∆F = 1
π2

[
a0ζ(2)L

2

α′
+ a1ζ(4) α

′

L2 g
2
s + a2ζ(6)

( α′
L2 g

2
s

)2
+ . . .

]
. (7.6)

Here the terms proportional to a0, a1, a2 originate the terms in (7.4) containing ζ(2),
ζ(4) g2

s and ζ(6) g4
s , respectively. The overall factor of 1

π7 × π5 = 1
π2 in (7.6) is dictated by

14Here D2nR4 (n = 0, 2, 3, . . .) stand for the corresponding invariants (containing also other terms with
5-form etc fields) of the same dimension that can be reconstructed from supersymmetry considerations and
are implied by the structure of the low-energy expansion of type IIB string scattering amplitudes. Some
overall rational factors are assumed to be absorbed into these symbols.

15The log(−α′D2) term in f3 indicates the presence of the corresponding p16 log p2 term in the 4-graviton
amplitude on flat background.The presence of an infinite tail of perturbative terms in f3 appears to be an
open question (we thank J. Russo for this remark).

16The leading supergravity term has the expected planar scaling: L8α′−4g−2
s ∼ λ2 (4πN)2

λ2 = π2N2. The
factors of π cancel against the overall 1

π7 in (7.3): indeed, for AdS5 × S5 we have vol(S5) = L5π3 and
vol(AdS5) = L5π2 log(L/a) where a→ 0 is an IR cutoff. Assuming a particular regularization a ∼

√
α′ as

in [25] that leads to the tree-level term being ∼ N2 log L2

α′ in agreement with (1.2).
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the normalization of the planar term (see footnote 16). The coefficients a0, a1, a2 coming
from curvature contractions should be rational, i.e. should not contain extra factors of π.
One may conjecture that this pattern may extend also to higher-order terms in (7.6).17

Using that L2/α′ = 2πT we find that the expansion (7.6) has precisely the same
structure as was found from localization in (1.13). Remarkably, we also check that, in
agreement with (1.9) and (1.10), the corresponding coefficients cn should be indeed rational

cn = an
ζ(2n+ 2)
16nπ2n+2 = anrn , (7.7)

where rn are rational numbers proportional to Bernoulli numbers.

7.2 Comments

Let us now add a few reservations and comments. The above argument was based on the
assumption that the higher-order curvature corrections in (7.3), that should vanish in the
maximally symmetric AdS5 × S5 case, become non-zero once supersymmetry is reduced
as in the orbifold/orientifold case. As already mentioned above, to show this explicitly
remains an open problem. Another puzzle is that since the orbifold/orientifold projection
applies to S5 only, one would expect that the IR divergent factor of the AdS5 volume
should still remain and thus, as in the leading tree-level part, should then produce a log λ
contribution after introducing an IR regularization. However, such log λ terms should be
absent in non-planar corrections to F beyond the torus order as seen from (1.6)–(1.9). It is
possible that there is a subtle “0×∞” cancellation mechanism at work that gives a finite
contribution.

The above discussion involved the special f0, f1, f2 terms in (7.3) that get contribu-
tions only from a finite number of perturbative g2n

s terms; this made it possible to isolate
the leading α′ correction at each of the lowest g2n

s (n = 0, 1, 2) orders. This pattern ap-
pears to change starting with the string 4-loop f3α

′3D8R4 term. For example, the 1-loop
ζ(3) log(−α′D2) term in (7.5) would naively lead to a ζ(3) log λ term in (1.4) and (1.5) but
the log λ term there has a rational coefficient (which should come from the torus partition
function).18 Thus extracting the leading α′ term at each of higher order g2n

s contributions
may require a detailed information about the structure of fn with n ≥ 3.

It is possible that the above discussion based on low-energy effective action is only a
short-cut to understand the leading large tension scaling of string loop corrections that
appear in the full string partition function (7.1). The latter should include, in particular,
also the contribution of the twisted sector states present in orbifold theories which are not
included in the generic 10d action effective action (7.3) (where, e.g., the contributions of
light twisted states should be added separately, cf. [21]).

17Let us recall in this connection that starting from the structure of the one-loop 4-graviton amplitude in
11d supergravity on S1 it was suggested in [58] that genus k correction to the D2kR4 term in type IIA theory
should be proportional to ζ(2k). As there may be several superinvariants (D2kR4, D2k−2R5, . . . , R4+k) of
the same dimension, that may actually apply to some of them that are non-vanishing on a given background.

18Still, it is interesting to note that a constant term that may accompany this 1-loop ζ(3) log(−α′D2)
term in (7.5) as a coefficient of the α′3D8R4 term in (7.3) could be a string counterpart of the ζ(3)λ−3/2

term in F0 in (1.4) and (1.5).
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Thus in general instead of starting with the effective action (7.3) (found by first ex-
panding string scattering amplitudes near flat space in α′ and then reconstructing the cor-
responding action for a generic background) and evaluating it on the corresponding back-
ground one is first to compute higher order terms in the g2

s expansion of the partition func-
tion (7.1) of the orbifold/orientifold string theory and then take the limit α′/L2 ∼ T−1 → 0.

We conjecture that the structure of the resulting expansion of the string partition
function computed for the AdS5 × X5 orbifold/orientifold corresponding to Q2 and SA
models will remain the same as in (7.6), i.e. it will be given by the sum of powers of
T−1g2

s ∼ λ3/2/N2 matching the localization result in (1.13).
This would imply that the double-scaling limit (1.10) should have a string-theory

counterpart: the leading T−1 → 0 terms at each order in g2
s may be captured by taking

the limit g2
s → 0 and T−1 → 0 with T−1g2

s kept fixed. Thus adding a handle to a genus n
surface should result in an extra factor of g2

s/T ∼ g2
sα
′/L2.19

Let us now comment on the string theory interpretation of the curious prediction of
the localization matrix model that the leading strong coupling coefficients at each order
of 1/N2 expansion of free energy in the SA and Q2 models are related by a factor of
1/2 (cf. (1.4)–(1.8) and (1.12)). The idea is to relate this fact to an extra Z2 orientifold
projection required to obtain the SA model from the Q2 one.

If we parametrize the S5 directions by 3 complex coordinates (z1, z2, z3) with |zi|2 = 1
then the Z2 orbifold model corresponds to modding out the AdS5×S5 theory by the action
z′1 = −z1, z

′
2 = −z2 or by the inversion of the 4 out of 6 real embedding coordinates. The

SA theory (see, e.g., [24]) is found by an additional orientifold projection that involves the
product of the inversion in the 2 remaining coordinates transverse to the original stack
of D3-branes in flat space or the AdS5 boundary, i.e. z′3 = −z3 and also the world-sheet
parity Ω and (−1)FL that changes the sign of the Ramond sector of left-moving modes in
the NSR description in flat space.

Assuming, as we discussed above, that the leading in α′/L2 ∼ 1/
√
λ → 0 terms at

least low orders in g2
s can be captured just at the level of the effective action, then only the

inversion part of this extra projection should matter. It implies restricting the angle in the
corresponding plane to half of its value and this then halves the volume of the corresponding
internal 5-space thus producing an extra 1/2 factor in the coefficients in (7.6).

As for the Wilson loop equality (1.17), on the string theory side its origin may be related
to the fact that in both orbifold and orientifold cases the circular Wilson loop expectation
value is given by a semiclassical expansion near the same AdS2 minimal surface that lies in

19An argument of why that should happen (at leading order in α′

L2 → 0) was attempted in [5] in the case
of the computation of the expectation value of the circular Wilson loop in the maximally supersymmetric
AdS5 ×S5 string theory. This case may be somewhat analogous to the one of the free energy in the N = 2
supersymmetric theory as this Wilson loop breaks half of supersymmetry and gets corrections at all orders
in genus expansion. The suggestion in [5] was that for α′ → 0 only the lightest (supergravity) modes should
propagate along thin handle. Inserting the latter is then like attaching a “massless” propagator which in the
AdS5×S5 case may lead to a factor of α′/L2. It appears to be hard, however, to make this argument precise
due to various ad hoc cutoffs required (see a discussion in appendix A of [6]). An alternative argument
specific to the Wilson loop case was given in [32]. We thank S. Giombi for a discussion of this issue.
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AdS5 only and then the leading in α′/L2 corrections at each order g2
s expansion may not

be sensitive to extra orientifolding projection.
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A Correlators in Gaussian matrix model

In this appendix we summarize the properties of correlation functions of single-trace oper-
ators in SU(N) Gaussian matrix model

Gi1...iL =
〈
Oi1 . . .OiL

〉
c
, Oi = tr

(
A√
N

)i
, (A.1)

where the subscript ‘c’ denotes the connected part. The partition function of this model is
defined as

Z[J ] =
∫
DAe− trA2+

∑
i
JiOi , (A.2)

where A =
∑N2−1
a=1 AaT a are hermitian traceless N×N matrices and the SU(N) generators

T a are normalized as tr(T aT b) = 1
2δ
ab. The integration measure is DA =

∏
a dA

a/
√

2π.
The correlation function (A.1) can be found as

Gi1...iL = ∂

∂Ji1
. . .

∂

∂JiL
logZ[J ]

∣∣∣
J=0

. (A.3)

It depends on the set of non-negative integers i1, . . . , iL and it is different from zero only
for even i1 + · · · + iL. At large N , the correlation function admits an expansion (2.23) in
powers of 1/N2.

The expressions for the correlation functions (A.1) are different for even and odd
indices. For instance, for L = 2 the correlation functions Q+

i1,i2
= G2i1,2i2 and Q−i1,i2 =

G2i1+1,2i2+1 are given by (3.2). For L = 4 we have

Q+
ijkl = G2i,2j,2k,2l = 4

N2β
+
i β

+
j β

+
k β

+
l (i+ j + k + l − 1) +O(1/N4) ,

Q−ijkl = G2i+1,2j+1,2k+1,2l+1 = 4
N2β

−
i β
−
j β
−
k β
−
l (i+ j + k + l + 4) +O(1/N4) ,

Q+−
ijkl = G2i,2j,2k+1,2l+1 = 4

N2β
+
i β

+
j β
−
k β
−
l (i+ j + k + l) +O(1/N4) , (A.4)

where β±i are defined in (3.3). The relations (3.2) and (A.4) are sufficient to compute the
O(1/N4) corrections to the free energy in the SA and Q2 models, see eqs. (2.29) and (2.31).
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To find the O(1/N6) correction to (2.29), we also need subleading corrections to L = 2
and L = 4 correlators as well as the leading order expression for L = 6 correlator, all with
odd indices. They are given by

Q−i1i2 =2β−i1β
−
i2

[ 1
e1+1 + 1

12N2 (e2
1−5e1−e2−13) + 1

1440N4 (5e5
1−10e2e

3
1+9e2

2e1−72e4
1

+75e2e
2
1−18e2

2+93e3
1+223e2e1+906e2

1−906e2−164e1−888)+O(1/N6)
]
,

Q−i1i2i3i4 = 4
N2β

−
i1
β−i2β

−
i3
β−i4

[
e1+4+ 1

12N2

(
e4

1−e2e
2
1−e3e1−2e4+e3

1−9e2e1

−49e2
1+20e2−94e1−6

)
+O(1/N4)

]
,

Q−i1i2i3i4i5i6 = 8
N4β

−
i1
β−i2β

−
i3
β−i4β

−
i5
β−i6

[
e3

1+15e2
1−6e2+44e1+30+O(1/N2)

]
, (A.5)

where ek (with k = 1, . . . , L) are symmetric polynomials in L variables i1, . . . , iL

e1 =
∑

1≤p≤L
ip , e2 =

∑
1≤p1<p2≤L

ip1ip2 , . . . , eL = i1 . . . iL . (A.6)

Notice that the coefficients of powers of 1/N2 in (A.5) are given by multi-linear combi-
nations of the symmetric polynomials whose total degree is correlated with the power of
1/N2.

Computing the free energy in the double scaling limit (5.1), we encountered the correla-
tors (3.2) evaluated for large values of indices ip = O(N2/3), or equivalently ek = O(N2k/3).
In this limit, the coefficients of 1/N2 in (A.5) grow as powers of N in such a way that all
terms inside the brackets in (A.5) have the same behaviour for N → ∞. In addition, as
can be seen from (3.2) and (A.4), the correlators with even and odd indices, Q+

i1i2...
and

Q−i1i2..., are given for large ip by the same function.
Indeed, it is well-known that for ip = O(N2/3) with p = 1, . . . , L, the correlators (2.23)

take the following universal form

〈
Oi1 . . .OiL

〉
c

= βi1 . . . βiL
NL−2

[
c0A0,L + c1

N2A1,L + c2
N4A2,L + . . .

]
, (A.7)

where βi = 2i/2−1√i/π arises from the large i limit of the functions (3.3) and the normal-
ization factors cp with p ≥ 0 are

cp = 2−L/2+3

96p p! . (A.8)

The functions Ag,L(i1, . . . , iL) are independent of the parity of indices ip. They describe
genus g contribution to the correlator.

In the integral representation of the free energy (5.5), the correlation functions (A.7)
play the role of the coupling constants Qi1,i2... =

〈
O2i1O2i2 . . .

〉
c
defining the interaction

potential (5.6) in the double scaling limit (5.1). A nontrivial scaling behaviour of the
correlation functions (A.7) in the Gaussian matrix model for ip = O(N2/3) and that of the
free energy for g = O(N2/3) are in one-to-one correspondence with each other.
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The explicit expressions for Ag,L for arbitrary L and g ≤ 3 were derived in [42]

A0,L = eL−3
1 ,

A1,L = eL1 −
L∑
k=2

(k − 2)!ekeL−k1 ,

A2,L = eL+3
1 − 2e2e

L+1
1 − 18

5 e3e
L
1 −

L∑
k=4

1
30
(
k3 + 21k2 − 70k + 96

)
(k − 3)!ekeL+3−k

1

+ 9
5e

2
2e
L−1
1 + 18

5 e2e3e
L−2
1 +

L∑
k=4

(k + 16)(k − 1)!
10 e2eke

−k+L+1
1 −

L∑
k=3

k!
10e3eke

L−k
1 ,

(A.9)

where symmetric polynomials ek are defined in (A.6). The expression for A3,L is more cum-
bersome and can be found in [42]. One can verify that for ek = O(N2k/3) the relations (A.5)
are in agreement with (A.7).

For lowest values of L the correlation function (A.7) is known to any order in 1/N2,
see [41, 59]

〈
Oi1

〉
= 4
√

2Nβi1e
i31

96N2 i−2
1 ,〈

Oi1Oi2
〉
c

= 4βi1βi2e
i31+i32
96N2

∞∑
k=0

1
(2k + 1)!!

ek−1
1 ek2

(4N)2k , (A.10)

where e1 = i1 + i2 and e2 = i1i2. Here the first relation holds for even i1. For odd i1 the
correlator

〈
Oi1

〉
vanishes.

The relations (A.9) take the form Ag,L = e
L+3(g−1)
1 + . . . where dots denote terms

with smaller power of e1 = i1 + · · · + iL. Such terms can be neglected by considering the
limit i1 = O(N2/3) and ip � i1 with p = 2, . . . , L. As follows from (A.7), the correlation
function is given in this limit by

〈
Oi1 . . .OiL

〉
c

i1�ip= βi1 . . . βiL
NL−2 × 23−L/2iL−3

1 e
i31

96N2 . (A.11)

In distinction to (A.10) this relation holds for i1 � ip with p = 2, . . . , L.
Notice the presence of a universal factor ei31/(96N2) in (A.10) and (A.11). Its origin can

be traced back to the universal behaviour of correlators in matrix models near a critical
edge (for a review see e.g. [31]). As an example, consider the two-point correlation function〈
Oi1Oi2

〉
c
. It is well-known that at large N the eigenvalues of the matrix A/N1/2 in the

SU(N) Gaussian unitary ensemble (A.2) condense on the interval [−2, 2] and their den-
sity is described by the Wigner semicircle distribution. Defining the two-point connected
distribution density of eigenvalues

ρ(x1, x2) = 1
N2

〈
tr δ

(
x1 −

A√
N

)
tr δ

(
x2 −

A√
N

)〉
c
, (A.12)
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we can express the two-point correlation function of Oi = tr
(
A/
√
N
)i

as an integral over
eigenvalues of the matrix A/

√
N

〈
Oi1Oi2

〉
c

=
∫ 2

−2
dx1dx2 ρ(x1, x2)xi11 x

i2
2 . (A.13)

It follows from this representation that for large i1 and i2 the integral receives a dominant
contribution from integration in the vicinity of the end points xi = ±2, or equivalently
near the edges of the distribution of eigenvalues. Because the two edges provide the same
contribution, we concentrate on the right edge xi = 2. Rescaling the integration variable
in this region as20

xi = 2 + ξiN
−2/3, (A.14)

one finds that at large N the distribution density (A.12) is given by a remarkably simple
expression (for a review, see e.g. [31])

lim
N→∞

ρ(x1, x2) = −[KAi(ξ1, ξ2)]2 ,

KAi(x, y) = Ai(x)Ai′(y)−Ai(x)Ai′(y)
x− y

, (A.15)

where Ai(x) is the Airy function. Substituting (A.15) into (A.13) we get

〈
Oi1Oi2

〉
c
∼
∫ ∞

0
dξ1dξ2 e

1
2 (ξ1i1+ξ2i2)N−2/3

K2
Ai(ξ1, ξ2)

∼
∫ ∞

0
dξ1dξ2 e

1
2 (ξ1i1+ξ2i2)N−2/3− 4

3 (ξ3/2
1 +ξ3/2

2 ) ∼ e
i31+i32
96N2 , (A.16)

where in the first relation we substituted xip = (2 + ξN−2/3)ip ∼ 2ie
1
2 ξipN

−2/3 and in the
second relation replaced the Airy function Ai(ξ) by its leading behaviour at large ξ. The
above analysis can be generalized to L−point correlators (A.11).

B Auxiliary matrices

In this appendix we describe properties of various matrices that enter the calculation of
non-planar corrections.

In a Gaussian matrix model, the two-point correlators of single traces
Oi = tr((A/

√
N)i/2) are given by the matrices Q+

ij =
〈
O2iO2j

〉
c
and Q−ij =

〈
O2i+1O2j+1

〉
defined in (3.2). Taking linear combinations of On

Ô2i = (U+)−1
ij O2j , Ô2i+1 = (U−)−1

ij O2j+1 , (B.1)

we can construct a basis of orthonormal traces satisfying
〈
Ô2iÔ2j

〉
=
〈
Ô2i+1Ô2j+1

〉
=

δij+O(1/N2). Here U± are lower triangular matrices, U±ij = 0 for i ≤ j−1, satisfying (3.4).
20In general, the scaling behaviour near the regular edge is parameterized by two integers p and q, so

that xi = 2 + ξiN
−q/(p+q). We encounter the special case p/q = 1/2.
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Their explicit expressions are

U−ij =
√

2j + 1 Γ(2i+ 2)
2i+1/2Γ(i− j + 1)Γ(i+ j + 2)

,

U+
ij =

√
2j Γ(2i+ 1)

2iΓ(i− j + 1)Γ(i+ j + 1) . (B.2)

The inverse matrices are given by

(U−)−1
ji = (−1)i+j 2i+1/2√2j + 1 Γ(i+ j + 1)

Γ(2i+ 2)Γ(−i+ j + 1) ,

(U+)−1
ji = (−1)i+j 2i

√
2j Γ(i+ j)

Γ(2i+ 1)Γ(−i+ j + 1) . (B.3)

We can use these matrices to define the infinite-dimensional vectors

(R±n )i =
∑
j≥1

(U±)−1
ij j

nβ±j , (B.4)

where β±j are given by (3.3). Going through a calculation we find that

(R−n )i =
√
i+ 1

2 P
−
n (i) , (R+

n )i =
√
i P+

n (i) , (B.5)

where P±n (i) are polynomials in i of degree 2n. For lowest values of n they are given by

P+
0 = 1 , P+

1 = i2 , P−2 = 1
2 i

4 + 1
2 i

2 ,

P−0 = 1 , P−1 = i(i+ 1)− 1 , P−2 = 1
2(i(i+ 1))2 − i(i+ 1) + 1 . (B.6)

For arbitrary n they look as

P+
n (i) =

i∑
l=1

(−1)i+lΓ(i+ l)
Γ(1 + i− l)Γ2(l) l

n−1 ,

P−n (i) =
i∑
l=1

(−1)i+lΓ(i+ l + 1)
Γ(1 + i− l)Γ(l)Γ(l + 2) l

n . (B.7)

Applying the relations (3.35), (3.26) and (B.5), we get the following representation of the
functions φ±n (x)

φ+
n (x) = 1√

2x
∑
i≥1

(−1)i 2i P+
n (i)J2i(

√
x) ,

φ−n (x) = 1√
2x
∑
i≥1

(−1)i(2i+ 1)P−n (i)J2i+1(
√
x) . (B.8)

Plugging in the expressions (B.7) for the polynomials P±n , both sums can be evaluated
leading to (3.40).
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C Method of differential equations

In this appendix we describe a technique that allows us to compute the matrix elements

wnm =
〈
φn|χ

1
1−K`

|φm
〉

(C.1)

of the resolvent of the Bessel operator (3.24) over the states φn = (x∂x)nJ`(
√
x) with n ≥ 0.

Functional relations. Expanding (C.1) in powers of K` and using the definition (3.24)
of the Bessel kernel, one can show that wnm is symmetric in indices, wnm = wmn. The
kernel of the Bessel operator (3.24) depends on the function χ(

√
x/(2g)). It satisfies

(
x∂x + 1

2g∂g
)
χ

(√
x

2g

)
= 0 . (C.2)

One can use this relation together with the definition of the Bessel operator (3.24) to show
that its resolvent satisfies the following operator identity [27][

x∂x + 1
2g∂g,

1
1−K`

]
= 1

4
1

1−K`
|φ0〉〈φ0|χ

1
1−K`

, (C.3)

where φ0(x) = J`(
√
x) and χ is a diagonal operator with the kernel δ(x − y)χ(

√
x/(2g)).

For special choice of the symbol χ(x) = θ(1 − x) the relation (C.3) coincides with the
identity derived by Tracy and Widom in [26].

Evaluating the matrix elements of both sides of (C.3) over the states 〈φn|χ and |φm〉
and making use of (C.2), we get

1
2g∂g

〈
φn|χ

1
1−K`

|φm
〉
−
〈
∂x(xφn)|χ 1

1−K`
|φm

〉
−
〈
φn|χ

1
1−K`

|x∂xφm
〉

= 1
4
〈
φn|χ

1
1−K`

|φ0
〉〈
φ0|χ

1
1−K`

|φm
〉
. (C.4)

Taking into account that x∂xφm = φm+1 and ∂x(xφn) = φn + φn+1 we can cast (C.4) into
a functional relation for the matrix elements (4.1)(1

2g∂g − 1
)
wnm = 1

4w0nw0m + wn+1,m + wn,m+1 , (C.5)

where n,m ≥ 0. Applying this relation, we can express wnm for arbitrary n and m in terms
of the minimal set of independent matrix elements w00, w02, w04, . . . . For instance,

w01 = −1
2

(
1 + 1

4w00 −
1
2g∂g

)
w00 ,

w11 = −
(

1 + 1
4w00 −

1
2g∂g

)
w01 − w02 . (C.6)

The dependence of the matrix elements wnm on the coupling constant g enters through
the symbol function χ(

√
x/(2g)). Under a variation of this function, χ→ χ+δχ, the matrix
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elements (C.1) change as

δwnm =
〈
φn|δχ

1
1−K`

|φm
〉

+
〈
φn|χ

1
1−K`

K`χ
−1δχ

1
1−K`

|φm
〉

=
〈
φn|

1
1− χK`χ−1 δχ

1
1−K`

|φm
〉

=
∫ ∞

0
dxQn(x)Qm(x) δχ

(√
x

2g

)
, (C.7)

where we introduced the notation

Qn(x) =
〈
x| 1

1−K`
|φn
〉

=
〈
φn|

1
1− χK`χ−1 |x

〉
. (C.8)

As above, the second relation can be verified by expanding the matrix element in powers
of K` and using the definition of the Bessel operator (3.24). In the special case when
δχ = δg ∂gχ the relation (C.7) reduces to (4.9).

Q−functions. We can apply (C.3) to show that the functions Qn(x) satisfy the functional
relation analogous to (C.4)(

x∂x + 1
2g∂g

)
Qn(x) =

〈
x| 1

1−K`
|x∂xφn

〉
+
〈
x
∣∣∣ [x∂x + 1

2g∂g,
1

1−K`

] ∣∣∣φn〉
= Qn+1(x) + 1

4
〈
x
∣∣∣ 1
1−K`

∣∣∣φ0
〉〈
φ0
∣∣∣χ 1

1−K`

∣∣∣φn〉
= Qn+1(x) + 1

4Q0(x)w0n . (C.9)

It can be used to express Qn(x) for n ≥ 1 in terms of Q0(x). For instance,

Q1(x) =
(
x∂x + 1

2g∂g
)
Q0(x)− 1

4Q0(x)w00 ,

Q2(x) =
(
x∂x + 1

2g∂g
)
Q1(x)− 1

4Q0(x)w01 . (C.10)

To find the function Q0(x), we take into account that the Bessel function φ0 = J`(
√
x)

satisfies a differential equation

φ2(x) = (x∂x)2φ0(x) = −1
4(x− `2)φ0(x) . (C.11)

Together with (C.8) this leads to

Q2(x) = `2

4 Q0(x)− 1
4
〈
x| 1

1−K`
x|φ0

〉
= 1

4(`2 − x)Q0(x) + 1
4
〈
x|[x, 1

1−K`
]|φ0

〉
= 1

4(`2 − x)Q0(x)− 1
4w01Q0(x) + 1

4w00Q1(x) . (C.12)

Here in the last relation we used the expression for the commutator from [26, 27].
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Combining together the relations (C.10) and (C.12), we obtain the partial differential
equation for Q0(x) [

(g∂g + 2x∂x)2 + x− `2 + (1− g∂g)w00
]
Q0(x) = 0 . (C.13)

This equation as well as the above relations hold for any coupling g. At weak coupling, we
can expand (C.8) in powers of the Bessel operator to get

Q0(x) = φ0(x) +O(g2(`+1)) = J`(
√
x) +O(g2(`+1)) . (C.14)

This relation provides a boundary condition for the differential equation (C.13).

Strong coupling expansion. Let us apply (4.9) and (C.13) to derive the strong cou-
pling expansion of w0n. Due to a complicated form of w00(g) (see (4.8)), the differential
equation (C.13) can not be solved exactly for an arbitrary g. A significant simplification
happens however at strong coupling.

Because the symbol χ(x) vanishes rapidly at large x, the dominant contribution to the
integral in (4.9) comes from

√
x = O(2g). This suggests the change of variables

x = (2gz)2 , qn(z, g) = Qn((2gz)2) . (C.15)

Then the relations (C.7) and (C.9) can be rewritten as

∂gw0n = −8g
∫ ∞

0
dz z2q0(z)qn(z)∂zχ(z) ,

qn+1(z) = −1
4q0(z)w0n + 1

2g∂gqn(z) . (C.16)

According to (C.13) the function q0(z) satisfies the differential equation[
(g∂g)2 + 4(gz)2 − `2 + (1− g∂g)w00

]
q0(z) = 0 . (C.17)

At strong coupling, the solution to this equation was constructed using semiclassical meth-
ods in [28, 29]

q0(z) = f0(z, g)√
1− χ(z)

,

f0(z, g) = 1√
2πgz

[
a0(z, g) sin(2gz) + b0(z, g) cos(2gz)

]
, (C.18)

where the functions a0(z, g) and b0(z, g) are given by series in 1/g

a0(z, g) = 1 +
∑
k≥1

a0,k(z)
gk

, b0(z, g) = 1 +
∑
k≥1

b0,k(z)
gk

. (C.19)

The expansion coefficients can be found by substituting the ansatz (C.18) into (4.12) and
equating to zero the coefficients in front of the powers of 1/g and trigonometric functions.
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Replacing w00 in (C.17) with its general expression at strong coupling w00 = A0g + A1 +
A2/g +O(1/g2), we get

a0(z, g) = b0(−z, g)

= 1− 4(`− 2)`+ 3
16gz − (2`− 5)(2`− 3)(2`− 1)(2`+ 1)− 128A2z

512g2z2 +O(1/g3) .

(C.20)

The expressions for the higher order corrections in 1/g can be found in [28, 29].
Combining together (C.18) and (C.16) we can obtain the functions qn(z) for any n.

They take the same form as (C.18) with the only difference that the coefficient functions
a0(z, g) and b0(z, g) are replaced with an(z, g) and bn(z, g), respectively. They are fixed
by the recurrence relations (4.11) in terms of the functions a0(z, g) and b0(z, g) and the
matrix elements w0m(g) with m ≤ n− 1.

The functions q0(z) and qn(z) are given by the sum of two terms proportional to rapidly
oscillating trigonometric functions sin(2gz) and cos(2gz). Substituting q0(z) and qn(z) into
the first relation in (C.16), we replace the rapidly oscillating trigonometric functions by
their average values to get

∂gw0n = 2
π

∫ ∞
0

dz z∂z log(1− χ(z))
[
a0(z, g)an(z, g) + b0(z, g)bn(z, g)

]
. (C.21)

The expression on the right-hand side depends on w0m(g) with m ≤ n− 1. Solving (C.21)
recursively for n = 2, 4, . . . we can determine the matrix elements w0n up to a few integra-
tion constants. We recall that, in virtue of (4.5), w0m with odd m are not independent.

The expression inside the square brackets in (C.21) is given by a double series in 1/g
and 1/z. Upon its substitution into (C.21), the integral over z can be expressed in terms
of the so-called profile function

In(χ) =
∫ ∞

0

dz

π
z1−2n∂z log(1− χ(z)) . (C.22)

For the symbol χ(z) that is smooth at the origin, the integral on the right-hand side is
well-defined for n ≤ 1/2. For n > 1/2 the integral is understood through an analytical
continuation. Replacing χ(z) in (C.22) with its expression (3.27) we get

In(χ) = 2(−1)n−1
(
1− 22−2n

)
π1−2nζ(2n− 1) , (C.23)

where ζ(z) is the Riemann zeta-function.
Going through the calculation we find from (C.21)

w00 = 4gI0 + C00 −
(2`− 3)(2`− 1)I1

8g − (2`− 3)(2`− 1)I2
1

16g2 +O(1/g3) ,

w02 = 2
3g

3
(
I3

0 − 2I−1
)

+ 1
2g

2(2`− 1)I2
0 + g

(
I0`

2 − 1
16I

2
0I1(2`− 3)(2`− 1)

)
+
(
C02 −

1
32I0I1(2`− 3)(2`− 1) (I0I1 + 2`+ 1)

)
+O(1/g) , (C.24)

where the integration constants C00 and C02 are independent of the coupling g.
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The value of C00 can be determined by comparing the first relation in (C.24) with (4.8).
Replacing In = In(χ) with its expression (C.22), we observe that the two relations coincide
provided that

C00 = 2`− 1 . (C.25)

Writing down the second relation in (C.24), we already took into account (C.25). In the
last line in the expression for w02 in (C.24) we used an ambiguity in defining the integration
constant C02 to insert an additional term depending on In’s. The reason for this is that,
as we show in appendix D, the constant C02 defined in such a way does not depend on the
choice of the symbol χ(z).

We exploit this property in appendix D to determine C02. Namely, we show there that
for a special choice of the symbol χ0(z) = −4/z2, the matrix elements w0n can be found
exactly for any coupling, see (D.4). Expanding them at strong coupling and matching on
to (C.24), we can identify the integration constant as

C02 = 1
32(2`− 1)

(
4`2 + 4`+ 3

)
. (C.26)

The same procedure works for the integration constants C04, C06, . . . .

Leading asymptotics at strong coupling. According to (4.14) and (4.15), the matrix
elements wnm scale at strong coupling as a power of the coupling constant

wnm = ωnmg
n+m+1 +O(gn+m) . (C.27)

We can use this property to determine the leading coefficients ωnm.
To find the leading asymptotics of w0n, we apply (C.21) and neglect O(1/g) corrections

to the functions an(z, g) and bn(z, g). In application to (C.18), this amounts to replacing
a0(z, g) and b0(z, g) with 1

q0(z) = sin(2gz) + cos(2gz)√
2πgz(1− χ(z))

+ . . . , (C.28)

where dots denote subleading corrections. Being combined with (C.16), this relation allows
us to determine the remaining functions qn(z). For instance,

q1(z) = 1
2g∂gq0(z)− 1

4q0(z)w00,

q2(z) = 1
4(g∂g)2q0(z)− 1

8g∂gq0(z)w00 −
1
8q0(z)(g∂gw00 + 2w01) . (C.29)

Notice that w00 = O(g) at strong coupling and, therefore, the first term in the expression
for q1(z) is subleading. In a similar manner, one finds, using w01 = O(g2), that the second
term in the expression for q2(z) is subleading and w01 � g∂gw00. In addition, the first
term in (C.29) can be simplified with the help of (C.17) as −(gz)2q0(z) + . . . . In this way
we get

q1(z) = −1
4q0(z)w00 + . . . ,

q2(z) = −(gz)2q0(z)− 1
4q0(z)w01 + . . . . (C.30)
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As above, we substitute (C.28) and (C.30) into (C.21), replace trigonometric functions by
their average values, e.g.,

q2
0(z)→ 1

2πgz(1− χ(z)) + . . . , (C.31)

and express the resulting integrals in terms of the functions In defined in (C.22). Taking
into account (C.27) we obtain a system of equations for the leading coefficients ω0n

ω00 = 4I0 ,

ω01 = −1
2I0ω00 = −2I2

0 ,

ω02 = −1
3(I0ω01 + 4I−1) = 1

3(2I3
0 − 4I−1) , . . . (C.32)

Replacing In with their expressions (C.23) we get

ω00 = −2π, ω01 = −π
2

2 , ω02 = π3

4 , ω03 = 5π4

32 , . . . (C.33)

These relations are in agreement with (4.8) and (4.13). It is straightforward to compute
ω0n for any finite n. It proves convenient to introduce the generating function (5.16).
Examining the resulting expressions for ω0n we found that it has a remarkably simple
form (5.17).

To find the remaining coefficients wnm we apply (C.5) and (C.27) and take into account
that the expression on the left-hand side of (C.5) is suppressed by the factor of 1/g as
compared to the right-hand side. This leads to a functional equation

ωn+1,m + ωn,m+1 = −1
4ω0nω0m , (C.34)

where n,m ≥ 0. Going to the generating function (5.16), we arrive at the relation (5.18).
At large x and y the generating function (5.18) admits the expansion

G(x,y) =−2π+
(
−π

2

2y−
π2

2x

)
+
(
π3

4y2−
π3

2xy+ π3

4x2

)
+
( 5π4

32y3−
π4

32y2x
− π4

32yx2 + 5π4

32x3

)
+
(
− 23π5

64y4 + 7π5

16y3x
− 13π5

32y2x2 + 7π5

16yx3−
23π5

64x4

)
+
(
− 53π6

256y5 + 7π6

256y4x
− π6

128y3x2−
π6

128y2x3 + 7π6

256yx4−
53π6

256x5

)
+. . . . (C.35)

By definition, ωnm can be read off as coefficients in front of 1/(xnym),

ω13 = 7π5

16 , ω22 = −13π5

32 , ω23 = − π6

128 , ω14 = 7π6

256 , etc. (C.36)

D Integration constants

The differential equation (C.16) allows us to determine the matrix elements w0n up to
integration constants C0n. Similar to w0n, these integration constants are not independent
and can be expressed in terms of an independent set of constants C00, C02, C04, . . . .
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In general, the matrix elements w0n and integration constants C0n depend on the
symbol χ(z) in a nontrivial way. It follows from (C.7) and (C.15), that under the variation
of the symbol,

δw0n = 8g2
∫ ∞

0
dz z q0(z)qn(z)δχ(z) . (D.1)

Replacing q0(z) with its asymptotic expressions (C.18) and doing the same for qn(z), we
can repeat the calculation of the integral on the right-hand side to obtain the expression
for δw0n in terms of functions In defined in (C.22) and their variation δIn. Comparing it
with the expression for w0n (see (C.24)), we can obtain the expression for δC0n. In this
way, one finds from (C.24) that

δC00 = δC02 = 0 . (D.2)

Thus, the integration constants C00 and C02 are independent of the symbol.
We can exploit this property to choose χ(z) to our convenience, e.g.,

χ0(z) = − 4
z2 . (D.3)

It coincides with the symbol (3.27) at small z but has different behaviour at infinity. A
distinguished feature of the symbol (D.3) is that, as we show below, the corresponding
matrix elements wnm(χ0) can be found exactly. For instance,

w00(χ0) = −8g I`(4g)
I`−1(4g) ,

w02(χ0) = −2g
(
8g2 + `2

) I`(4g)
I`−1(4g) ,

w04(χ0) = −g
(

48g4 + 8(`2 − 2`+ 2)g2 + 1
2`

4
)

I`(4g)
I`−1(4g) − 48g4 , (D.4)

where I`(4g) is the Bessel function (not to be confused with the profile function In(χ0)).
These relations hold for an arbitrary coupling constant.

At large g the relations (D.4) have to match (C.24) after we replace the profile functions
In in (C.24) with their expressions (C.22) evaluated for the symbol (D.3),

In(χ0) = (−1)n−12−2n+1 . (D.5)

Indeed, expanding (D.4) at large g and neglecting exponentially small O(e−8g) correc-
tions, we reproduce the first few terms on the right-hand side of (C.24) and determine the
integration constants (C.25) and (C.26).

Exact solution. As was mentioned above, for the symbol χ(z) of the form (D.3), the
Fredholm determinant of the Bessel operator (3.24) and the matrix elements (C.1) can be
computed exactly.

Replacing χ(x) with its expression (D.3), we find that the matrix (3.29) has nonzero
elements on the main diagonal and two adjacent subdiagonals

(K`)ij = − 4g2(−1)i+j√
`+ 2i− 1

√
`+ 2j − 1

[
δij + δj,i+1
`+ 2i + δij + δi,j+1

`+ 2(i− 1)

]
, (D.6)
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where i, j ≥ 1. Let us examine the eigenvalue problem for this matrix

(K`)ijΨj = Λ Ψi . (D.7)

We can use the properties of Bessel functions to verify that eigenfunctions are given by

Ψi = (−1)i
√

2i+ `− 1J2i+`−1(σ)
σ

, Λ = −(4g)2

σ2 , (D.8)

where i ≥ 1. Notice that Ψi coincides with the function ψi(x) in (3.26) evaluated at x = σ2.
A quantization condition for the eigenvalues Λ follows from the requirement Ψ0(y) = 0.
Together with (D.8) this implies that the eigenvalues of the matrix K` are related to zeros
of the Bessel function

J`−1(σk) = 0 , Λk = −(4g)2

σ2
k

, (D.9)

where k ≥ 1 enumerates the zeros. As a consequence, the Fredholm determinant of the
Bessel operator with the symbol (D.3) is given by

det(1−K`) = det
[
δij − (K`)ij

]∣∣∣
i,j≥1

=
∞∏
k=1

(1− Λk) =
∞∏
k=1

(
1 + (4g)2

σ2
k

)
= Γ(`)(2g)1−`I`−1(4g) , (D.10)

where in the last relation we used a well-known representation of the Bessel function
I`−1(4g) as a product involving its zeros. It is interesting to note that up to a rescal-
ing of the coupling constant, g → πg, the expression on the right-hand side coincides with
the correlation function of the product of circular Wilson loop and half-BPS operator of
dimension ∆ = `− 1 in planar N = 4 SYM theory [60].

Let us now examine the matrix elements (C.1). Taking into account (4.7) and (D.10),
we can determine w00 as

w00(χ0) = −2g∂g log det(1−K`) = −8g I`(4g)
I`−1(4g) . (D.11)

Substituting this expression into (C.6) we get

w01(χ0) = −8g2 + 4g` I`(4g)
I`−1(4g) . (D.12)

These relations hold for an arbitrary coupling.
Notice that 2w01+`w00 = −16g2. This relation is a particular case of a general relation

stating that 2w1n + `w0n is a polynomial in g2 of degree bn/2c+ 1. For instance,

2w11 + `w01 = 8`g2 ,

2w12 + `w02 = −16g4 − 4`2g2 ,

2w13 + `w03 = 8(`− 2)g4 + 2`3g2 ,

2w14 + `w04 = −32g6 − 8g4
(
`2 − 2`+ 2

)
− g2`4 , . . . (D.13)
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Combining these relations with (C.5) and (C.6) and taking into account (D.11), we can
determine all matrix elements wnm and reproduce (D.4).

The underlying reason for simplicity of (D.13) is that the sum of matrix elements
2w1n + `w0n involves the state 2φ1(x) + `φ0(x). Replacing φ0(x) and φ1(x) with their
expressions (4.2), we find that it is proportional to the function ψ0(y) defined in (3.26),

`φ0(y) + 2φ1(y) = yψ0(y)√
`− 1

. (D.14)

Recall that the states ψi(x) form the orthonormal basis (see (3.26)). Applying the Bessel
operator (3.24) to both sides of (D.14) we find that for the symbol (D.3)

K`(`|φ0〉+ 2|φ1〉) ∼
∑
i≥1
|ψi〉

〈
ψi|ψ0

〉
= 0 , (D.15)

where in the second relation we used (3.25). We can apply this relation to get

`wn0 + 2wn1 =
〈
φn|χ0

1
1−K`

|` φ0 + 2φ1
〉

?=
〈
φn|χ0|`φ0 + 2φ1

〉
= −16g2

∫ ∞
0

dx√
x
J`−1(

√
x)(x∂x)nJ`(

√
x) = −16g2(−`/2)n ,

(D.16)

where in the second line we expanded the matrix elements in powers of K`. For n = 0, 1
this relation is in agreement with (D.13). For n ≥ 2 it correctly reproduces O(g2) terms
in (D.13) but fails to reproduce terms with higher power of g2.

The reason for this is that the expansion of (D.16) in powers of K` is not well-defined
because the matrix elements

〈
φn|χ0(K`)p|` φ0 + 2φ1

〉
give rise to divergent integrals. In-

deed, one can check that the integral of the Bessel functions on the second line of (D.16)
diverges at large x for n ≥ 1. The expression on the right-hand side of (D.16) was obtained
by inserting the cut-off factor x−ε inside the integral and sending ε→ 0 afterwards. Care-
fully regularizing the integrals in

〈
φn|χ0(K`)p|` φ0+2φ1

〉
and going through the calculation

one arrives at (D.13).
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