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1 Introduction

In the AdS/CFT correspondence [1–3], a free falling particle in the AdS can be described
by the time evolution after a local quench in the strongly coupled CFT [4, 5]. In the
context of AdS3/CFT2, the time evolution, including the evolution of the entanglement
entropy and the expectation value of energy momentum tensor, can be well understood by
the quasi-particle picture [6–9]: a left and a right moving quasi-particle are emitted from
the point of the local quench and propagate freely through the system.

The time evolution can also be understood by extrapolating the result from the weakly
coupled region of the CFT to the strongly coupled region. In the weakly coupled CFT, the
left and right moving particles from the local quench split into a cascade of lower energy
particles. Let’s consider a simple toy model [10, 11]. We start with one left and one right
moving particle localized at the place of the local quench. They have wavelength 1/E, where
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E is energy injected by the local quench. At step one, the left and the right moving particles
split into two left and two right moving particles with wavelength 2/E. At step two, the two
left and two right movers will split to four left and four right movers with wavelength 4/E.
After step m, we will have 2m left and 2m right moving particles with wavelength 2m/E.

If the splitting is caused by a local operator in the CFT, the time for each step can be
obtained from dimensional analysis. If the first step takes time 1/E, the second step should
take time 2/E and the step m should take time 2m/E. In this picture, the wavelength
of the particles occupy a region centered at the location of the local quench. This region
grows linearly with time as the wavelengths of particles grow linearly with time. In the
strongly coupled region of the CFT and including all higher order corrections, this linear
growth becomes the free propagation of quasi-particles.

As proposed in [10, 11], the size of operator can be defined as the number of particles
and thus the wavelength of each particle in the above process. The linear growth of
wavelength can be identified as the operator growth behavior, which is studied in the SYK
model [12, 13] and the higher dimensional toy model [10, 11]. Further work on operator
growth where the gravitational dual is a black hole background is given in [14–18].

In this paper, we study the splitting process in the context of the deformed D1D5
CFT [19–22] which we describe in more detail in the next section. It has been conjectured
that there is a point in the moduli space of this CFT where the theory is free. This
is called the ‘orbifold’ point [23, 24]. For more details and results of computations at
the ‘orbifold’ point see [19–22, 25–42]. In [43], by investigating the out-of-time-ordered
correlator (OTOC), it was shown that the free theory did not exhibit any chaotic behavior,
a phenomenon which is related to operator growth. However, this non-chaotic behavior
is expected at the orbifold point, where the theory is non-interacting. In this paper we
deform away from the orbifold point by turning on a marginal deformation of the theory.
We will see that adding an interaction is critical to producing the splitting effect. For
several works involving the deformation operator see [44–58].

Instead of using the OTOC as a probe of operator growth, we will study the splitting of
high energy particles into a cascade of lower energy particles as mentioned previously. To
be specific, we will study the simplest splitting where a left and a right moving high energy
bosonic mode splits into three left and three right moving bosonic modes. This splitting
process was studied in [57, 58]. It was found that the leading order splitting is caused
by two deformation operators. The computation involves mapping to a covering space to
resolve the twist operator in the deformation operator [45–49]. Due to this complication,
the splitting of high energy particles cannot be studied easily [57, 58] and the nature of the
splitting mechanism is not clear.

In this paper, we will study the splitting numerically and extrapolate the result to high
energies. We will find that at early times, i.e. t . π, the two deformation operators bind
together to form an effective local operator. Because the effective operator is local, the
splitting naturally satisfies the dimensional analysis mentioned previously. Thus we can
obtain a linear growth of the operator size. At late times π . t, the splitting amplitude
has periodicity 2π. The effect of the perturbation generates oscillations in the splitting
amplitude, but does not give rise to a term which leads to long term growth [57]. This
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agrees with the expectation that a freely moving graviton in AdS will not split into lower
energy gravitons or be excited into stringy states.

We outline the paper as follows. In section 2 we review the D1D5 CFT and the defor-
mation operator. In section 3 we describe the splitting process which we plan to investigate.
In section 4 we outline the computation of the splitting amplitude. In section 5 we numeri-
cally compute this splitting process for various initial energies and extrapolate the result to
large initial energies. In section 6 we will interpret the early time behavior as caused by an
effective local operator. We also discuss the relation of the splitting process to the behavior
of a freely falling graviton in AdS. Finally, in section 7 we discuss our results and outlook.

2 The D1D5 CFT

Here we review the main details of the D1D5 CFT at the orbifold point as well as some prop-
erties of the deformation operator which we use to perturb away from the orbifold point.

Compactify type IIB string theory as

M9,1 →M4,1 × S1 × T 4 (2.1)

On S1 we wrap N1 D1 branes and on S1 × T 4 we wrap N5 D5 branes. The low energy
limit of this brane bound state gives a CFT on the circle S1.

It has been conjectured that in the moduli space there is a point called the orbifold
point where the CFT is free [23, 24]. At this point the CFT is described by a 1+1 dimen-
sional sigma model. In the Euclidienized theory the base space is a cylinder spanned by
the complex coordinate

w = τ + iσ (2.2)

where
τ, σ : 0 ≤ σ < 2π, −∞ < τ <∞ (2.3)

The sigma model has a target space which is the ‘symmetrized product’ of N1N5 copies of
T 4,

(T 4)N1N5/SN1N5 (2.4)

where each copy of T 4 gives 4 bosonic excitations X1, X2, X3, X4 and 4 fermionic exci-
tations ψ1, ψ2, ψ3, ψ4 for the left movers. Similarly, for the fermions, the right movers
are ψ̄1, ψ̄2, ψ̄3, ψ̄4. The fermions have two types of boundary conditions on the σ circle:
antiperiodic (NS sector) or periodic (R sector). This theory has a total central charge

c = 6N1N5 ≡ 6N (2.5)

In this SN orbifold theory, there are twist sectors where k copies of the CFT are linked
together to give a single copy of the CFT on a circle of length 2πk. We call each such set
of linked copies a ‘component string’.
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2.1 Symmetries of the CFT

The D1D5 CFT has N = 4 supersymmetry for both left and right movers. For each of the
N = 4 algebras, the internal R symmetry group is SU(2), which gives a global symmetry
group SU(2)L× SU(2)R. The quantum numbers of these two SU(2) groups are denoted by

SU(2)L : (j, j3); SU(2)R : (j̄, j̄3) (2.6)

Geometrically, this corresponds to rotational symmetry along the 4 spatial directions of
M4,1, which is SO(4)E ' SU(2)L × SU(2)R, where the subscript E denotes ‘external’.
We use SO(4)I , where I stands for ‘internal’, to denote the SO(4) symmetry along the
T 4. The compactification of the torus breaks this symmetry. However, this SO(4)I '
SU(2)1 × SU(2)2 symmetry still gives a useful way to organize fields at the orbifold point.
The spinor indices α, ᾱ = +,− are used for SU(2)L and SU(2)R respectively. The spinor
indices A, Ȧ = +,− are used for SU(2)1 and SU(2)2 respectively.

We group the 4 real fermions in the left moving sector into complex fermions ψαA.
Similarly for the right moving fermions, we have ψ̄ᾱA. The 4 bosons Xi form a vector in
the T 4. This vector can be decomposed into the (1

2 ,
1
2) representation of SU(2)1 × SU(2)2,

which gives scalars XAȦ. The mode expansions for the left moving bosonic and fermionic
excitations on a component string labeled by i and with winding ki are

α
(i)
AȦ,m

= 1
2π

∫ 2πki

σ=0
∂wXAȦ(w)emwdw m = q

ki

dαA(i)
m = 1

2πi

∫ 2πki

σ=0
ψαA(w)emwdw m = q

ki
(R), m = q

ki
+ 1

2 (NS) (2.7)

where q is an integer. The R and NS denote the R sector and NS sector respectively. We also
have the corresponding bosonic mode ᾱAȦ,m and fermionic mode d̄ᾱAm for the right movers.

The N = 4 superconformal symmetry mentioned above is generated by the operators
Ln, G

α
Ȧ,r
, Jan for the left movers and L̄n, ḠᾱȦ,r, J̄

a
n for the right movers. This is the so-called

small N = 4 symmetry. The full symmetry is actually larger: it is the contracted large
N = 4 superconformal symmetry [59, 60]. It contains the following four bosonic modes
and four fermionic modes as extra generators for the left movers∑

i

α
(i)
AȦ,m

∑
i

dαA(i)
m (2.8)

and similarly for the right movers. These kinds of modes with a sum over all copies are
called ‘global’ modes. More about these ‘global’ modes and the large N = 4 superconformal
symmetry in our convention can be found in the appendix of [61, 62].

2.2 Deformation of the CFT

The orbifold CFT describes the ‘free’ point in moduli space. To move towards the su-
pergravity description, we add a marginal deformation operator D, which has conformal
dimensions (h, h̄) = (1, 1), to the action [44–49, 51–56]

S → S + λ

∫
d2zD(z, z̄) (2.9)
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In this paper we choose D to be a singlet under all the symmetries at the orbifold point

D = 1
4ε

ȦḂεαβεᾱβ̄G
α
Ȧ,− 1

2
Ḡᾱ
Ḃ,− 1

2
σββ̄ (2.10)

where σββ̄ are the twist-two chiral primaries of dimension (1/2, 1/2) in the orbifold theory.
The twist operator can join two component strings of the CFT with winding numbers k1
and k2 into a component string with winding number k1+k2. It can also break a component
string with winding number k1 + k2 into two component strings with winding number k1
and k2. The twist operator in (2.10) is defined as

σββ̄ =
∑
i<j

σββ̄ij (2.11)

where σij twists the two copies labelled by i and j. The operators G and Ḡ are the left
and right moving supercharge operators at the orbifold point.

We will study the large N limit, where N = N1N5. Following [63, 64] we define g as1

g ≡ λN1/2 (2.12)

where the coupling g plays the role of the ’t Hooft coupling. The coupling g should not
be confused with the string coupling gs. Assuming N1 ∼ N5, the perturbative CFT is de-
scribed by g � 1, while the parameter region describing the D1D5 supergravity solution is

1� g �
√
N (2.13)

In the following, we will do the computation in the perturbative CFT region where g � 1
and then extrapolate the results to the gravity region where g is large.

3 The splitting process

Here we discuss the types of processes we will be looking at. We start with the NS vacuum
of N singly wound strings given by

|Ω〉 = |0〉(1)|0̄〉(1)|0〉(2)|0̄〉(2) . . . |0〉(N)|0̄〉(N) (3.1)

where |0〉(i) and |0̄〉(i) label the NS vacuum of the left and right movers for the ith copy
of the singly wound strings. The dual spacetime is AdS3 × S3 × T 4. Consider sending a
graviton into AdS. In the CFT, this corresponds to a state with a left and a right moving
bosonic mode ∑

i

α
(i)
−mᾱ

(i)
−m|Ω〉 (3.2)

1By matching the string spectrum in the PP-wave limit [64], the coupling λ in (2.9) can be identified with
the six-dimensional string coupling g6 = gs

√
Q5/Q1. The radius of AdS3 and S3 is (RAdS/ls)2 = g6

√
N .

The first inequality in (2.13) arises from the requirement that the AdS radius be much larger than the
string length (RAdS/ls � 1) while the second follows from the requirement that the string coupling itself
be small (gs � 1).
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...

one left and

one right mover
N - 1 vacuum copies

...

three left and

three right movers
N - 1 vacuum copies

(a) Initial state (b) Final state

Figure 1. The initial and final state of the 1→ 3 process. One left and one right mover split into
three left and three right movers.

where we omit the charge indices A and Ȧ to write the state schematically. Here (i) labels
the copy that the modes act on. Notice that because a physical state must be symmetric
among all copies we have summed over the copy label i in state (3.2). The actual initial
state will be a localized wave packet, which is a superposition of the above states with
different energies.

At the orbifold point, in addition to a phase factor the initial state (3.2) will not evolve
with time since there is no interaction. Let us look at the evolution of the initial state when
we deform the CFT away from the orbifold point. The initial state contains N singly wound
strings. The first deformation operator, which contains a twist operator, can twist any two
singly wound strings into a doubly wound string. Then a second deformation operator can
break the doubly wound string into two singly wound strings. After acting with two defor-
mation operators, the one left and one right mover in the initial state can split into three left
and three right movers. We call this a 1→ 3 process. This process is depicted in figure 1.

The left and right mover in each term of the initial state (3.2) are on the same copy. Let
us consider a more general process where the left and right movers can be on different copies

α
(i)
−m ᾱ

(j)
−m|Ω〉 → (α(i′)

−m/3)3 (ᾱ(j′)
−m/3)3|Ω〉 (3.3)

where i, j, i′, j′ can only take two possible values from the range 1, . . . , N for any given am-
plitude. This is because the twist and untwist in this process only involves the same two
copies. In this paper, we consider the case that all three resulting left (right) movers are
on the same copy i′ (j′). There can be more general cases where the resulting left (right)
movers are on different copies but we will not consider them in this paper. Throughout
the process, the left and right movers split into more and more left and right movers with
lower dimension due to the ‘collision’ between left and right modes (3.3).

The amplitude of the process is studied in [57]. The computation involves correlation
functions with two twist operators. To compute this correlation function, we need to map
it to the covering space and perform the Wick contractions. We outline this process in the
next section. For the simplest case of m = 3, the explicit result is written down in [57].
However, the complication of the computation grows quickly with the dimension m. Due to
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this complication, no explicit result for general m or even large m is known. This makes the
nature of the splitting (3.3) unclear. In this paper, we will study the amplitude numerically
upto m = 36. We find that in the large N limit, the initial and final bosonic modes tend
to stay on the same component string. When the time scale is much larger than 1/m, we
find that the amplitude of the dominate process in the large N limit is

Ãii→iim (t) ≈ g2 c

m2 [t]saw-like,2π m→∞ (3.4)

with c ≈ π
18 and i = 1, . . . , N . The t is the time interval between the initial and final

states and g is the ’t Hooft coupling (2.12). The ‘saw-like, 2π’ means that we start with
the function in the square bracket in the region (0, π) and then reflect it across π to obtain
the function in the region (π, 2π). Then we make a saw-like function with periodicity 2π.
For an exmaple, see figure 2.

One may wonder if the following simpler process exists. Instead of having a ‘collision’
between a left and right mover, we may consider the ‘splitting’ of a left (right) mover only.
We consider the initial state ∑

i

α
(i)
−m|Ω〉 (3.5)

where we have summed the copy label i to make the state symmetric among all copies.
The bosonic mode in state (3.5) is the ‘global’ mode mentioned in (2.8). It is a generator
of the symmetry, which is kept by the deformation operator. The deformation cannot split
the bosonic mode in state (3.5). Thus the process (3.3) is the simplest splitting process.

4 Computing the amplitude

The method of computing the amplitude for splitting (3.3) is studied in detail in [58]. In this
section, we will compute them numerically and find an empirical formula for large dimension
m. Without loss of generality, let us call the two copies involved in the process (3.3) copy 1
and copy 2. The NS vacuum in both the left and right moving sector for these two copies is

|Ω1,2〉 = |0〉(1)|0̄〉(1)|0〉(2)|0̄〉(2) (4.1)

The effect of other copies in (3.1) and the large N limit will be studied in section 5.3. Con-
sider the following splitting process coming from the effect of two deformation operators

|Φ0; i, j〉 = α
(i)
−−,−mᾱ

(j)
++,−m|Ω1,2〉

→ |Φf ; i′, j′〉 = α
(i′)
−−,−pα

(i′)
++,−qα

(i′)
−−,−r ᾱ

(j′)
++,−pᾱ

(j′)
−−,−qᾱ

(j′)
++,−r|Ω1,2〉 (4.2)

where the copy labels i, j, i′, j′ can be 1, 2. Here we consider a particular case of charge
indices in the process (3.3). Next, we write down the amplitude that we’ll need to compute.

4.1 The amplitude

We put the initial state |Φ0; i, j〉 at time 0 and the final state |Φf ; i′, j′〉 at time τ . In the
time interval between them, there are two insertions of deformation operators. The explicit
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amplitude 1→ 3 that we’d like to compute is given by

Aij→i
′j′

m (τ) ≡ 1
2λ

2
∫
d2w2d

2w1
1

mpqr(1 + δp,r)
〈Φf ; i′, j′|D(w2, w̄2)D(w1, w̄1)|Φ0; i, j〉

≡ 1
2λ

2
∫
d2w2d

2w1Aij→i
′j′(w1, w2, w̄1, w̄2) (4.3)

where the wi is defined by
wi = τi + iσi (4.4)

and the region of integral is

0 ≤ σi < 2π, 0 < τi < τ i = 1, 2 (4.5)

The amplitude before the integral is

Aij→i′j′(w1, w2, w̄1, w̄2) (4.6)

≡ εĊḊεȦḂ 1
mpqr(1 + δp,r)

×(1)〈0|(2)〈0|α(i′)
++,pα

(i′)
−−,qα

(i′)
++,rG

+
Ċ,− 1

2
σ−(w2)G−

Ȧ,− 1
2
σ+(w1)α(i)

−−,−m|0〉(1)|0〉(2)

×(1)〈0̄|(2)〈0̄|ᾱ(j′)
−−,pᾱ

(j′)
++,qᾱ

(j′)
−−,rḠ

+
Ḋ,− 1

2
σ̄−(w̄2)Ḡ−

Ḃ,− 1
2
σ̄+(w̄1)ᾱ(j)

++,−m|0̄〉(1)|0̄〉(2)

Here we have taken the conjugate of the final state |Φf ; i′, j′〉. We see a factorization
between left and right movers. The front factor 1

mpqr(1+δp,r) comes from the normalization
of initial and final states. We will not present the details of the computation of A here as
they are lengthy but straightforward. They are provided in full detail in [57]. The outline
of the steps of the computation are as follows

1. The amplitudes above are defined on a base space which has the geometry of a cylin-
der. The cylinder coordinate is given by w which is expressed in (2.2), with a range
given in (2.3). The operator insertions on the cylinder contain twist operators which
make the fields multivalued. To remove this ambiguity we map the cylinder ampli-
tude to a covering space labeled by the coordinate t. The fields in the covering space
are single valued. To do this we first map the cylinder to the complex z plane through

z = ew (4.7)

and then to the covering space through

z = (t+ a)(t+ b)
t

(4.8)

For details about the map see [45–49].

2. When mapping to the t-plane the amplitudes take the schematic form

A→ CAt (4.9)
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The constant C contains Jacobian factors coming from coordinate transformations
from the w-cylinder, to the t-plane. The details of these transformations are given
in [58, 61]. In the t-plane the bosonic and fermionic fields are now single valued.
There are also other various operator insertions which are present. The t-plane am-
plitude, At, arises from Wick contractions between pairs of bosonic and fermionic
operators. The methods used to compute these contractions are given in [45–49].
They are combined to compute At which is recorded in detail in [58].

3. This computation yields both holomorphic and antiholomorphic parts of the ampli-
tude which are finally multiplied together and integrated over the positions of the
deformation insertions. This provides the full answer which we present numerically.

After carrying out the above steps we find that A has the form

Aij→i′j′(w1, w2, w̄1, w̄2) =
2m−1∑

k=−(2m−1)∈Zodd

2m−1∑
k̄=−(2m−1)∈Zodd

Bij→i′j′

k,k̄
(m; p, q, r)e

k∆w
2 + k̄∆w̄

2

(4.10)
where

∆w = w2 − w1 ∆w̄ = w̄2 − w̄1 (4.11)

Here −k/2 and −k̄/2 give the left and right dimensions (relative to the initial dimension)
of the intermediate states in the region τ1 < τ < τ2 between the two deformation operators.
Note that k and k̄ have an upper bound and a lower bound. Thus only finite number of
intermediate states contribute. Further, k and k̄ are odd integers.

4.2 Integrating the amplitude

In this section we integrate over the twist insertions to obtain the full amplitude. We begin
with the expression

Aij→i
′j′

m (t) = 1
2λ

2
∫
d2w2d

2w1Aij→i
′j′(w1,w2,w̄1,w̄2)

= 1
2λ

2
∫
d2w2d

2w1

2m−1∑
k=−(2m−1)∈Zodd

2m−1∑
k̄=−(2m−1)∈Zodd

Bij→i′j′

k,k̄
(m;p,q,r)e

k∆w
2 + k̄∆w̄

2

≡ λ2
2m−1∑

k=−(2m−1)∈Zodd

2m−1∑
k̄=−(2m−1)∈Zodd

Bij→i′j′

k,k̄
(m;p,q,r)Ik,k̄ (4.12)

where
Ik,k̄ = 1

2

∫
d2w2 d

2w1 e
k∆w

2 + k̄∆w̄
2 (4.13)

To obtain a real space amplitude we must wick rotate back to Lorentzian signature by
taking τ → it. This gives

∆w = w2 − w1 = i(t2 − t1 + σ2 − σ1)
∆w̄ = w̄2 − w̄1 = i(t2 − t1 − (σ2 − σ1)) (4.14)
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The region of integration is

0 ≤ σi < 2π, 0 < ti < t i = 1, 2 (4.15)

Because k and k̄ are odd numbers, (k − k̄)/2 is an integer and k, k̄ 6= 0. Due to the
integration of σi, only terms with k = k̄ contribute. Thus in (4.12) only terms with

k = k̄ 6= 0 (4.16)

contribute. In this case, we have

Ik=k̄ 6=0(t) = 1
2

∫
d2w2 d

2w1 e
k∆w

2 + k̄∆w̄
2

=
∫ t

2

− t
2

dt2

∫ t2

− t
2

dt1

∫ 2π

σ=0
dσ2

∫ 2π

σ=0
dσ1 e

ik(t2−t1)

= 4iπ2

k2

(
kt− 2ei

kt
2 sin

(
kt

2

))
(4.17)

Thus the integrated amplitude is

Aij→i
′j′

m (t) = λ2
2m−1∑

k=−(2m−1)∈Zodd

Bij→i′j′

k,k (m; p, q, r)4iπ2

k2

(
kt− 2ei

kt
2 sin

(
kt

2

))
(4.18)

In [57], it was found that

Bij→i′j′

k,k (m; p, q, r) = Bij→i′j′

−k,−k (m; p, q, r) (4.19)

Thus the integrated amplitude can be simplified to

Aij→i
′j′

m (t) = λ2
2m−1∑

k=1∈Zodd

Bij→i′j′

k,k (m; p, q, r)16π2

k2 sin2
(
kt

2

)
(4.20)

We find that the terms linear in t in (4.18) are cancelled. The integrated amplitude is
periodic with periodicity 2π. Notice that to get this periodic behavior the following two
properties are essential. Firstly, there is no intermediate states with exactly the same left
and right dimensions as the initial state. Otherwise, from eq. (4.13) there is a term

Ik=k̄=0(t) = 1
2

∫
d2w2 d

2w1 = 2π2t2 (4.21)

This term is not periodic and grows with time. Secondly, the intermediate states with
energies increasing and decreasing by the same amount compared to the initial energy
should have the same amplitude as shown in (4.19). In appendix A, we list the results of
B11→11
k,k (m;m/3,m/3,m/3) for m = 18, 24, 30, 36.
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Figure 2. Left: A11→11
m (t) for different m. Right: m2A11→11

m (t) for different m and π
18 t (black

dashed). In the plot, we set λ2 = 1.

5 Numerical results

5.1 The amplitude

In section 4, we review the computation of the amplitude Aij→i′j′
m (t) (4.12). There is no

closed form for general m. In this section, we will study the large m behavior. Let us start
with A11→11

m (t), where the initial and final bosonic modes are placed in the copy 1 in the
process (4.2).

Using the numerical results in appendix A, the amplitude A11→11
m (t) and the rescaled

amplitude m2A11→11
m (t) as a function of t for different m are shown in figure 2. From the

left panel of figure 2, we find that the amplitude is an approximate linear function of t in the
region 0 . t . π for large enough m. The slopes are different for different m. To find the m
dependence, in the right panel of figure 2 we plot the rescaled amplitude m2A11→11

m (t). The
slopes are approximately the same for different m. Thus we conclude for large enough m

A11→11
m (t) ≈ λ2 c

m2 t (5.1)

where c is a constant. In the right panel of figure 2, we also plot the linear function π
18 t

with the rescaled amplitude, which indicates

c ≈ π

18 (5.2)

For the small t region, by taking sin(kt/2) ≈ kt/2 in (4.20) we have

t→ 0 : A11→11
m (t) = λ2

2m−1∑
k=1∈Zodd

B11→11
k,k (m; p, q, r)4π2t2 ≈ λ2 0.0016

m
4π2t2 (5.3)

where we have used the following numerical result that will be explored in the next section.

2m−1∑
k=1∈Zodd

B11→11
k,k (m;m/3,m/3,m/3) ≈ 0.0016

m
(5.4)
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We expect that there is a smooth connection between the linear t behavior (5.1) and
quadratic t behavior (5.3) at 1

m2 t ∼ 1
m t

2, which is

t ∼ O(m−1) (5.5)

In summary, the amplitude is

A11→11
m (t) ≈

λ2 0.0016
m 4π2t2 0 ≤ t . O(m−1)

λ2 π
18m2 t O(m−1) . t . π −O(m−1)

(5.6)

From (4.20), we find that the amplitude has periodicity 2π, which can also be seen from
figure 2. The linear behavior is only valid for some regions. When the time scale is much
larger than 1/m, the quadratic behavior can be neglected and the amplitude can be ap-
proximated as

A11→11
m (t) ≈ λ2 c

m2 [t]saw-like,2π (5.7)

where c ≈ π
18 . In the next section, we will study how this linear behavior in the region

(0, π) emerges from the sum in (4.20).

5.2 Properties of Bij→i′j′

k,k

To better understand the properties of the amplitude in the large m limit, in this section we
will study the properties of the coefficient Bij→i′j′

k,k in the amplitude (4.20). The numerical
results of B11→11

k,k (m;m/3,m/3,m/3) for m = 18, 24, 30, 36 are given in appendix A.
In figure 3, we plot m2B11→11

k,k as a function of m for different m. We can see that for
different m the plots follow the same shape. As m becomes larger, more points fit into this
curve. We expect that this is true in the limit m→∞.

Thus as m becomes larger, more and more points fit into the small k region, say the
region m . m/6. In this region the m2B11→11

k,k can be approximated as a constant. From
the right panel of figure 3, we find that the constant is

m2B11→11
k,k ≈ 0.0028 k � m m→∞ (5.8)

In this approximation, the amplitude A11→11
m (t) (4.20) becomes

A11→11
m (t) ≈ λ2

m/6∑
k=1∈Zodd

0.0028
m2

16π2

k2 sin2(kt2 )

≈ λ2 0.0056π3

m2 [t] saw-like,2π ≈ λ2 π

18m2 [t] saw-like,2π (5.9)

In the large m limit, the upper limit of the summation becomes m/6→∞. In the second
step we have used

∞∑
k=1∈Zodd

1
k2 sin2

(
kt

2

)
=


π
8 t 0 ≤ t ≤ π
π
8 (2π − t) π ≤ t ≤ 2π

≡ π

8 [t] saw-like,2π (5.10)

where we sum over all positive odd numbers k.
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Figure 3. m2B11→11
k,k as a function of m for m = 18 (Left) and m = 36 (Middle). m2B11→11

k,k as a
function of k

m for m = 18, 24, 30, 36 (Right).

The (5.10) explains how the linear region emerges from a sum of periodic functions.
Because sin2(kt2 ) is bounded, the factor 1/k2 makes the sum converge to a linear function
in t quickly. From figure 3, we see that the B11→11

k,k is bounded as a function of k. Thus
due to the factor 1/k2, which decays at large k, the amplitude A11→11

m (t) (4.20) can be well
approximated by using k with small values, say k . m/6.

Now let us verify eq. (5.4). From figure 3, the curves of m2B11→11
k,k as a function of k

for different m are the same. There are m points of m fitting into this curve. Thus the
sum of m2B11→11

k,k over k is proportional to m, which gives

2m−1∑
k=1∈Zodd

B11→11
k,k (m;m/3,m/3,m/3) ∝ 1

m
(5.11)

The proportional constant can be fixed by summing the numerical results in appendix A,
which gives (5.4).

5.3 Amplitudes involving other copies

In section 5.1, we studied the amplitude A11→11
m (t), where the initial and final bosonic

modes are placed on copy 1 in the splitting process (4.2). In this section, we will study the
general amplitudes Aij→i′j′

m (t), where the i, j, i′, j′ can be 1, 2.
By studying the numerical results, we find that

Aij→i
′j′

m = (−1)i+j+i′+j′
A11→11
m i, j, i′, j′ = 1, 2 (5.12)

Every time we change 1 to 2 in the amplitude A11→11
m we get a minus sign. It is convenient

to use the base where the splitting processes are

|Φ0; 1± 2, 1± 2〉 = (α(1)
−−,−m ± α

(2)
−−,−m)(ᾱ(1)

++,−m ± ᾱ
(2)
++,−m)|Ω1,2〉

→ |Φf ; 1± 2, 1± 2〉 = (α(1)
−−,−pα

(1)
++,−qα

(1)
−−,−r ± α

(2)
−−,−pα

(2)
++,−qα

(2)
−−,−r)

×(ᾱ(1)
++,−pᾱ

(1)
−−,−qᾱ

(1)
++,−r ± ᾱ

(2)
++,−pᾱ

(2)
−−,−qᾱ

(2)
++,−r)|Ω1,2〉 (5.13)

In this new basis, we will label the amplitude as Aij→i′j′
m (t) with i, j, i′, j′ = 1+2, 1−2. The

mode labeled by 1 + 2 is symmetric between the two copies. The mode labeled by 1− 2 is
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antisymmetric between the two copies. From (5.12), we find that amplitudes involving sym-
metric mode are zero. Thus the only nontrivial amplitude is the A1−2,1−2→1−2,1−2

m in (5.13).
Recall that α(1)

−−,−m +α
(2)
−−,−m is a ‘global’ mode defined in (2.8), which is a symmetry

of the system of two component strings. Thus it can not be split by the deformation
operator, which is consistent with the result that the amplitude is zero.

From (5.12), we find that for the case of two singly wound strings, there are collisions
between the left and right movers on the same copy and on different copies. The resulting
left and right movers can be on the same and different copies. The amplitudes have the
same magnitude.

6 Properties of the splitting process

6.1 Large N limit

In section 5, we found that for the case of two singly wound strings the amplitude of the
splitting is

A11→11
m (t) ≈ λ2 c

m2 [t]saw-like,2π (6.1)

where c ≈ π
18 . Other processes involving copy 2 can be obtained from (5.12). They all

have the same magnitude. Thus if we start with excitations on copy 1, after the splitting
process, the resulting excitations can easily ‘move’ to copy 2. In this section, we will study
the case of N singly wound strings. We will find that if we start with excitations on a
particular copy, the resulting excitations will stay on this copy in the large N limit.

Let us first consider the amplitude Ã11→11
m (t) where the initial and final excitation are

on copy 1 and the remaining N − 1 copies are in the NS vacuum. We use Ã to label the
amplitude when there are N singly wound strings. The two deformations can twist and
untwist copy 1 with any of the remaining N − 1 strings. The amplitude is enhanced by a
factor of N − 1

Ã11→11
m (t) ≈ (N − 1)λ2 c

m2 [t]saw-like,2π ≈ g2 c

m2 [t]saw-like,2π (6.2)

where the t’ Hooft coupling is defined as g = λN1/2.
If the resulting left and right movers are not on the same copy, for example consider

Ã11→1j′
m (t) ≈ λ2 c

m2 [t]saw-like,2π j′ = 2, 3, . . . , N (6.3)

Here we do not have the enhancement factor N because different values of j′ correspond to
different final states. In the large N limit, summing over all possible values of j′, we have

N∑
j′=2
|Ã11→1j′

m (t)|2 ≈ |λ2 c

m2 [t]saw-like,2π|2N � |Ã11→11
m (t)|2 (6.4)

Note that for the 11 → 11 process the probability comes with a factor of N2 whereas for
the 11→ 1j′ the probability comes with a singly power of N . Thus the resulting left and
right movers prefer to stay on the same copy as the initial state. In the large N limit, the
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dominate splitting process will not spread the excitations onto more and more copies and
is given by

Ãii→iim (t) ≈ g2 c

m2 [t]saw-like,2π (6.5)

where i = 1, . . . , N labels one of the singly wound component strings.

6.2 Effective local operator

We have studied the splitting process in the previous sections. In this section, we will
interpret the amplitude (6.5) in the region (0, π)

Ãii→iim (t) ∝ 1
m2 t (6.6)

as a result of an effective local operator. We also discuss its consequence on operator
growth.

Notice that in the amplitude (4.12) there are two time integrals for the time of the
two deformation operators. The linear t behavior in (6.6) indicates that the contribution
when the two deformations are separated far away is small. The two deformation operators
are bound together and thus there is only one time integral left. However, not all linear
t behavior comes from local operators. In the following, we will show that the 1/m2

dependence in the amplitude (6.6) is a consequence of a local operator.
Suppose L is the length of a singly wound string. There are two energy scales in the

process, the energy scale 1/L from the size of the cylinder and the energy scale E ∼ m/L of
the splitting process α−mᾱ−m →

(
α−m/3

)3 (
ᾱ−m/3

)3
. The bosonic modes α−m and ᾱ−m

come from the local operators ∂X and ∂̄X as shown in (2.7). Thus the following operator
in the Lagrangian can cause the splitting process

g(E)(∂X)4(∂̄X)4 (6.7)

where g(E) is the coupling which can depend on the energy scales. The ∂X and ∂̄X are
local operators both with mass dimension 1. The interaction (6.7) must have total mass
dimension 2 as required by being a term in the Lagrangian in two dimensions. Thus the
coupling g(E) has mass dimension −6. If it is a local operator, it should only depend on
the energy scale E ∼ m/L but not 1/L

g(E) ∼ g

E6 (6.8)

Therefore, the operator (6.7) will not see the size of the cylinder and cannot involve the
energy scale 1/L, which is an indication of non-locality. In terms of normalized fields

1√
E
∂X and 1√

E
∂̄X, the local operator (6.7) can be written schematically as

g

E6 (∂X)4(∂̄X)4 ∼ g

E2

( 1√
E
∂X

)4 ( 1√
E
∂̄X

)4
(6.9)

Thus the amplitude for the splitting process from the local operator, in which the modes
are all normalized, should be

g

m2 t (6.10)
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This explains the 1/m2 and t behavior in (6.6). Thus the amplitude can result from an
effective local operator like (6.7).

The effective local operator breaks down at very early times 0 ≤ t . O(m−1), where
we have Ãii→iim (t) ∼ t2 from (5.6). The connection between the t and the t2 behavior is at
t ∼ O(m−1). Thus the two deformations form a bound state of size O(m−1). When the
time is shorter than O(m−1), they can move freely and result in t2 behavior. When the
time is longer than O(m−1), they form a bound state and result in t behavior. This can
also be understood from the properties of Bij→i′j′

k,k in the amplitude (4.20), where −k/2
is the dimension of the intermediate states relative to the initial energy. In section 5.2,
Bij→i′j′

k,k has the same magnitude for |m| . O(m). The uncertainty in energy is O(m), which
indicates that the uncertainty in time is O(m−1). Thus the two deformation operators are
bounded with a size O(m−1) in the time direction.

6.3 A freely falling graviton in AdS

In this section, we will relate the properties of the splitting process to the behavior of a
freely falling graviton in the bulk. We will discuss the behavior at early times and late
times separately.

(i) Early time behavior, 0 . t . π: recall that at early times the splitting is caused
by an effective local operator. Consider a wave-packet containing a left mover and a
right mover α−mᾱ−m which has a size of about 1/m. The probability of the splitting
should only involve the energy scale m of the wave-packet. Further, the probability
is proportional to g4 and t2 since it is proportional to the modulus squared of the
amplitude. Because probability is dimensionless, it can be written as

P ∼ g4m2t2 (6.11)

Setting P ∼ 1, the time for splitting can be estimated as

t ∼ 1
g2m

(6.12)

If we extrapolate it to the strongly coupled region where g ∼ O(1), we find the time
is about t ∼ 1/m. During this time, the wavelengths of the modes increase from
1/m to 3/m. Thus the growth is linear in time, which is expected if the splitting is
caused by a local operator. As mentioned in the introduction, linear growth of the
wavelength in the CFT corresponds to a free falling graviton in AdS. As the graviton
moves deeper in AdS, it becomes more and more redshifted and the wavelengths of
the modes within the CFT become longer.

(ii) Late time behavior, π . t: for a free falling graviton in AdS, it will travel along a
geodesic, and by symmetry all points along its path are equivalent. The freely moving
graviton in AdS will not split into lower energy gravitons or excite into stringy states.
From eq. (4.20), we find that in the CFT the splitting amplitude has periodicity 2π.
The effect of the perturbation generates oscillations in the splitting amplitude, but

– 16 –



J
H
E
P
0
5
(
2
0
2
3
)
1
3
5

does not lead to a term which yields long term growth [57]. Therefore, the CFT com-
putation to this order agrees with the expectation from gravity. Furthermore, the
amplitude is zero at t = 2π. In the weakly coupled CFT, the initial bosons will not
split to lower energy bosons if the time is 2π. From the bulk point of view, the infalling
graviton takes time 2π to travel across AdS and back to the initial state. The decreas-
ing region in the amplitude shown in figure 2 may be an indication of this return.

7 Discussion

Here we studied a freely falling graviton propagating in AdS in the context of the D1D5
CFT. To do this we computed transition amplitudes for one left and right moving boson
to split into three left moving and right moving bosons at second order in the deformation
operator as depicted in figure 1.

For an initial left and right mover each with dimension m, which correspond to a total
energy of 2m, we showed that the amplitude oscillates with a period of 2π. Within each
period the amplitude rises to a maximum at a multiple of π. Before time t ∼ O( 1

m) the
amplitude grows like t2 meaning that each deformation operator moves freely. After a
time t ∼ O( 1

m) the amplitude switches to a linear growth in t. This signifies that the two
deformation operators bind together and act as an effective local operator of size ∼ O( 1

m).
This linear behavior becomes more and more pronounced as we increase the value of m.
This linear growth corresponds to an infalling graviton becoming redshifted in AdS. For a
discussion about redshift and thermalization in the context of fuzzballs, see section 8 of [50].

One may wonder why the amplitude is periodic and doesn’t continue to grow in t.
We have shown that the following two properties of the intermediate states between the
two deformation operators are essential. First, there is no intermediate states with exactly
the same left and right dimensions as the initial state. Second, the intermediate states
with energies increasing and decreasing with same amount compared to the initial energy
should have the same amplitude as shown in (4.19). The above properties of intermediate
states may be found by studying the effect of one deformation operator [54–56]. We hope
to return to this in a future work. The periodic behavior of the amplitude in the CFT
is consistent with the gravity dual. In AdS, a single graviton which is sent in from the
boundary should propagate freely through the bulk to the other side and back again to its
starting point. We don’t expect that it will split into lower energy gravitons or become
excited into stringy states, which is a signal of thermalization [50].

In previous work [57, 58] we found the oscillatory behavior for the one to three splitting
process for some low energies. In this paper, we show that there is oscillatory behavior
for large energies and analyze it in detail. In [57, 58] we also computed a two to four
process which was shown to grow like t2, which we argued was a preliminary signal of
thermalization. This would correspond to two gravitons colliding in the gravity dual.
In [65, 66], the tidal force on an infalling graviton is studied in the (1, 0, n) superstratum
geometry. The infalling graviton would become tidally excited into string states. In the
CFT dual, the state corresponding to the (1, 0, n) superstratum is in the Ramond sector.
It has extra left moving modes with nonzero energy and right moving modes with zero
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energy compared to the case we studied in this paper. If we consider the splitting of one
left and right mover in this CFT background, we expect that the left and right mover will
collide with extra left and right movers in the background. This could result in a growing
term like t2 as shown in (4.21) and may explain the tidal force in [65, 66]. We hope to
return to this in a future work.
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— QBH Structure.

A B11→11
k,k (m; m/3, m/3, m/3)

In this appendix we tabulate the coefficients, B11→11
k,k (m;m/3,m/3,m/3) for initial energies

m = 18, 24, 30, 36. Figures 2, 3 were made using exact values of rational numbers but for
brevity we present them here in numerical form. We keep an appropriate level of precision
such that there is no distinguishable difference between the plots using the exact values
and plots using the approximate values here.
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k B11→11
k,k (18;6,6,6) B11→11

k,k (24;8,8,8) B11→11
k,k (30;10,10,10) B11→11

k,k (36;12,12,12)
1 8.711×10−6 4.903×10−6 3.138×10−6 2.180×10−6

3 8.147×10−6 4.722×10−6 3.064×10−6 2.144×10−6

5 7.142×10−6 4.382×10−6 2.920×10−6 2.073×10−6

7 5.857×10−6 3.922×10−6 2.719×10−6 1.973×10−6

9 4.446×10−6 3.379×10−6 2.474×10−6 1.847×10−6

11 3.060×10−6 2.791×10−6 2.196×10−6 1.701×10−6

13 5.103×10−6 2.194×10−6 1.898×10−6 1.540×10−6

15 5.737×10−6 1.622×10−6 1.592×10−6 1.369×10−6

17 5.922×10−6 2.799×10−6 1.289×10−6 1.193×10−6

19 5.552×10−6 3.103×10−6 1.001×10−6 1.016×10−6

21 4.567×10−6 3.283×10−6 1.764×10−6 8.430×10−7

23 2.968×10−6 3.305×10−6 1.930×10−6 6.787×10−7

25 1.092×10−6 3.148×10−6 2.050×10−6 1.213×10−6

27 1.430×10−6 2.798×10−6 2.112×10−6 1.313×10−6

29 2.428×10−6 2.246×10−6 2.106×10−6 1.392×10−6

31 3.851×10−6 1.502×10−6 2.025×10−6 1.445×10−6

33 5.632×10−6 6.427×10−7 1.865×10−6 1.468×10−6

35 7.757×10−6 6.728×10−7 1.624×10−6 1.457×10−6

37 — 9.771×10−7 1.299×10−6 1.411×10−6

39 — 1.448×10−6 8.960×10−7 1.326×10−6

41 — 2.048×10−6 4.292×10−7 1.202×10−6

43 — 2.761×10−6 4.004×10−7 1.038×10−6

45 — 3.584×10−6 5.108×10−7 8.340×10−7

47 — 4.517×10−6 7.044×10−7 5.916×10−7

49 — — 9.597×10−7 3.089×10−7

51 — — 1.267×10−6 2.715×10−7

53 — — 1.621×10−6 3.141×10−7

55 — — 2.020×10−6 4.043×10−7

57 — — 2.463×10−6 5.292×10−7

59 — — 2.952×10−6 6.822×10−7

61 — — — 8.598×10−7

63 — — — 1.060×10−6

65 — — — 1.282×10−6

67 — — — 1.526×10−6

69 — — — 1.791×10−6

71 — — — 2.078×10−6

Table 1. Tabulation of coefficients B11→11
k,k (m;m/3,m/3,m/3) for various values of initial energym.
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